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Samenvatting (Summary in Dutch)

Wolken zijn chaotische, moeilijk te voorspellen, maar bovenal prachtige natuurver-
schijnselen. Er zijn verschillende soorten wolken: stratus, een dikke wolkenlaag
waaruit het soms de hele dag miezert, cirrus, wolken die hoog in de atmosfeer te
vinden zijn, en cumulus, stapelwolken die als bloemkolen de atmosfeer inschieten.
De laatste variant duidt op convectie.

Een voorbeeld van convectie in de atmosfeer is thermiek, welbekend bij vogels
en zweefvliegers die dankbaar gebruik maken van deze opwaartse luchtbeweging.
Thermiek ontstaat als de zon het aardoppervlak verwarmt. Warme vochtige lucht
stijgt in thermiekbellen naar boven. Warmte en vocht worden zo door convectie ver-
ticaal in de atmosfeer getransporteerd en verspreid. Convectie gaat vaak samen
met wolkvorming en hevige regenval. Met name in de tropen zorgen cumuluswol-
ken voor veel regen. Verder beïnvloeden convectie en wolkvorming de grootscha-
lige windcirculatie op aarde. Ze hebben aldus een grote impact op de atmosfeer en
daarmee op weer en klimaat op aarde.

Evenzo spelen deze processen een grote rol in simulaties van weer en klimaat.
In globale circulatiemodellen worden grootschalige windstromingen en grootheden
als temperatuur berekend op een driedimensionaal rooster dat gespannen is over
de hele aarde. Kleinschalige processen, zoals convectie en wolkvorming, kunnen
hiermee niet expliciet berekend worden. Deze moeten daarom worden geparame-
triseerd: er wordt een schatting gemaakt van het effect dat ze hebben op de groot-
schalige modelvariabelen. Voor een grofmazig rooster kan een dergelijke schatting
statistisch worden gedaan, omdat het effect van een groot aantal realisaties van
dezelfde kleinschalige processen goed uitmiddelt. Zo kan bijvoorbeeld het geza-
menlijke effect van een groot aantal wolken in principe statistisch worden gerepre-
senteerd.

De zaak verandert doordat operationele weer- en klimaatmodellen met steeds
fijnmazigere roosters werken. Met een fijnmaziger rooster kunnen stromingen in
de atmosfeer nauwkeuriger berekend worden waardoor het voorspellend vermo-
gen van deze modellen meestal verbetert. Er komt echter een moment waarop de
modelroosters zo fijnmazig zijn dat er nog maar een paar wolken in een roostercel
passen. Dan wordt het chaotische gedrag van wolkvorming een belangrijke factor
en is het door de parametrisaties berekende effect niet meer representatief. De
toename van variabiliteit en willekeur is een motivatie voor het introduceren van
stochastiek in convectieparametrisaties voor modellen met een relatief fijnmazig
rooster.

In dit proefschrift staat stochastische convectieparametrisatie centraal. Kans-
processen worden gebruikt in de parametrisaties van convectie en bijbehorende
wolkvorming. Een meerwaarde ten opzichte van traditionele deterministische pa-
rametrisaties is dat stochastische parametrisaties fluctuaties rond het verwachte
effect kunnen genereren. Stochastiek kan op meerdere manieren worden inge-
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8 Samenvatting (Summary in Dutch)

voerd. In dit proefschrift wordt gebruik gemaakt van Markovketens, kanspro-
cessen die zijn vernoemd naar de bekende Russische wiskundige Andrei Markov
(1856-1922). Deze kansprocessen hebben een eindig aantal toestanden, waarvan
de overgangskansen geschat kunnen worden uit data. Door de overgangskansen
te schatten met data van convectie, wordt het gedrag van convectie nagebootst.

Een Large-Eddy Simulation model is gebruikt om data te produceren, een mo-
del dat convectie en wolken zeer nauwkeurig simuleert. Met de data zijn Markovke-
tens gemaakt die convectie en wolkvorming, zoals waargenomen in een meetcam-
pagne nabij Barbados, nabootsen. Hetzelfde is gedaan voor wolkvorming in Brazi-
lië. Voor een beperkt scala aan atmosferische omstandigheden werken deze Markov-
ketens goed. Een ander Markovmodel is gemaakt met een grote dataset waarne-
mingen van een regenradar in Darwin in Australië. Deze Markovketens werken
voor algemenere atmosferische omstandigheden. Ze zijn gebruikt voor het testen
van stochastische convectieparametrisatie in een klimaatmodel. Dit heeft geleid
tot verbeteringen in de variabiliteit van de gesimuleerde convectie en ook de ver-
deling van de gesimuleerde regen in de tropen is verbeterd. Helemaal perfect werkt
het Markovmodel nog niet, maar er is wel een grote stap gezet in de ontwikkeling
van deze stochastische methode voor convectieparametrisatie in weer- en klimaat-
modellen.

Links: cumuluswolken in Amsterdam. Rechts: dezelfde soort wolken boven Duitsland gefotografeerd
vanuit het vliegtuig. Foto’s gemaakt door JD.



Summary

Clouds are chaotic, difficult to predict, but above all, magnificent natural phenom-
ena. There are different types of clouds: stratus, a layer of clouds that may produce
drizzle, cirrus, clouds in the higher parts of the atmosphere, and cumulus, clouds
that arise in convective updrafts.

Thermals, rising air that is often used by birds and gliders to gain height, are
an example of atmospheric convection. When the sun heats Earth’s surface layer,
warm and moist air rises in thermals to higher parts of the atmosphere. In this
way, convection transports heat and moisture vertically in the atmosphere. This of-
ten leads to the formation of clouds and heavy rainfall. A major part of the rainfall
on Earth, especially in the tropics, is produced by cumulus clouds. Furthermore,
convection and cloud formation affect the large-scale planetary circulation. In the
atmosphere, these processes are of major importance for Earth’s weather and cli-
mate.

Convection and clouds also play a major role in numerical simulations of weather
and climate. With general circulation models, the large-scale wind circulation and
variables such as temperature and humidity are calculated on a three-dimensional
global grid. The model grid resolution is low, and therefore, smaller-scale processes
such as convection and cloud formation can not be calculated explicitly. The im-
pact of these small-scale processes has to be determined in another way. They are
represented by parameterizations that give an estimate of the effect of the small-
scale processes on the large-scale model variables. For models with relatively large
columns, the presence of a large number of realizations of the same small-scale
process justifies the expression of their effect on the large-scale variables in terms
of statistical properties. For example, the effect of a large number of clouds can be
represented statistically.

A problem arises from the fact that the resolution of operational weather and
climate models tends to increase. Generally speaking, with higher model resolu-
tions the atmosphere can be simulated more accurately. However, if resolutions
keep increasing, the expression of the small-scale effects in terms of statistical
properties can no longer be justified. In a small model column, there is for example
only space for a small number of clouds. The chaotic behavior of convective clouds
becomes an important factor and deterministic parameterizations no longer give
accurate estimates. The increase of fluctuations and randomness is a motivation
for using stochastic convection parameterizations.

The central research theme in this dissertation is stochastic convection parame-
terization. Stochastic processes are used in the representation of convective clouds.
Traditional deterministic parameterizations only give an estimate of the expected
value of the effect of small-scale variables. Stochastic parameterizations can de-
viate from this expected value and can produce a range of convective responses.
Especially in models with a relatively high resolution, it is important that parame-
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10 Summary

terizations can represent fluctuations around the expected value. There are several
ways of introducing stochastics. In this dissertation, Markov chains are examined,
stochastic processes that are named after the famous Russian mathematician An-
drei Markov (1856-1922). Markov chains have a finite number of states of which
the transition probabilities can be estimated from data. By inferring transition
probabilities from high-resolution data of convection, Markov chains mimic con-
vective behavior.

A Large-Eddy Simulation model is used to construct a data set. Large-Eddy
Simulation models are able to resolve clouds and convection in detail. After in-
ference of the Markov chains, they are able to mimic clouds and convection as
observed in a field-experiment near Barbados. The same method has also been ap-
plied for convective clouds in Brazil. These Markov chains only work for a very spe-
cific range of atmospheric circumstances. Therefore, another Markov chain model
is constructed from a large observational data set from a rain radar in Darwin,
Australia. A larger range of atmospheric circumstances is covered, and the Markov
chains can be applied more generally. The Darwin Markov chains are implemented
in a climate model to stochastically parameterize convection. This improves the
variability related to convection as well as the distribution of the simulated tropi-
cal precipitation. The Markov-chain model is not perfect yet; however, a large step
has been made in the development of this stochastic method for usage in state-of-
the-art weather and climate models.

Left: Cumulus clouds in Amsterdam. Right: the same type of clouds in Italy photographed from an
airplane. Photos by JD.



Chapter I
Introduction

1.1 Atmospheric convection
Everyone knows what a cloud is. We can see them floating in the sky with our
own eyes. There are different types of clouds. We will focus on convective clouds
that are related to the process of atmospheric convection; which is a less known
natural phenomenon. To explain what convection is, it is easier to come down to
Earth. You likely heard of lava lamps (Fig. 1.1). In these lamps, wax floats in a
closed glass filled with a liquid. The glass is heated from below by a lamp. The
temperature of the wax that is close to the bottom increases and as a result the
wax starts rising. At the top of the glass it cools down and descends. Warm wax
is lighter than cold wax: its density is lower which gives it positive buoyancy. This
process is an example of convection which could be defined as ‘buoyancy-driven
turbulent flow’.

In the atmosphere, there are temperature differences as well, mainly because
the sun warms the Earth’s surface and the atmosphere loses heat by emitting in-

Figure 1.1: Convection in a lava lamp. If the wax is close to the bottom of the glass, a lamp heats it and
as a result it starts rising. At the top of the glass it cools down and decends. Heat is transported from
the bottom to the top of the glass.

11



12 1. Introduction

frared radiation into space. Just compare the sun with the lamp that warms the
bottom of the glass in the lava lamp. Sunlight penetrates the atmosphere quite eas-
ily and therefore the heating of the atmosphere by the sun is mainly done from the
surface. Air parcels are heated and start rising in so-called updrafts or thermals,
similar to the rising of the warm wax in the lava lamp. In this way, heat from the
surface is transported vertically in the atmosphere. One of the main contributions
of convection to Earth’s atmospheric system is that it transports heat, moisture,
momentum and various other physical quantities vertically in the atmosphere.

Convection is also visible in the atmosphere. Sometimes when the sun heats
the Earth’s surface, you can see that the air is trembling a bit. The warm air rises
right into the colder air and the density differences cause refraction of the light.
A far more easy way to discern convection in the atmosphere is by looking at . . .
clouds! Convection can result in the formation of clouds. Rising air cools, because
it is expanding. The air in the parcel contains water, but in the gas phase (water
vapor), which can not be seen. If the temperature in the rising air parcel drops
below the condensation temperature, the air becomes oversaturated, the moisture
starts to condensate and a cloud appears.

These convective clouds are called shallow convective cumulus clouds if they
are of limited vertical extent and deep convective cumulus clouds in case they are
larger and produce rain. In the Dutch and English summaries of this thesis you
can see pictures of shallow convective cumulus clouds and deep convective cumulus
clouds, respectively. Let us summarize the types of convection in the atmosphere:
a distinction is made between dry and moist convection, and the latter can further
be divided into shallow and deep convection.

The role of convection in Earth’s atmosphere and climate
Convection plays a major role in Earth’s atmosphere and climate [3, 137]. Locally,
it stabilizes the atmosphere by vertical transport of heat and moisture. The atmo-
sphere is unstable when layers of relatively warm less-dense air are below layers of

convection

radiative cooling

surface fluxes

space

solar

heating

Earth

Figure 1.2: Schematic illustration: convection counteracts the destabilizing large-scale forcing. For
example, convection transports the excess of heat at the surface, caused by solar heating, to higher
levels in the atmosphere where it balances radiative cooling.



1.1. Atmospheric convection 13

colder denser air, which can be the result of surface heating by the sun or radiative
cooling (the emission of infrared radiation into space), which are two examples of
large-scale forcings. The large-scale forcing is defined as ‘the destabilizing effects
of large-scale processes’ [5] and the processes can be referred to as large-scale forc-
ings. Convection counteracts the large-scale forcing (Fig. 1.2): convection tends
to stabilize the atmosphere by redistributing heat and moisture, thereby removing
instabilities. If the large-scale forcing continuously destabilizes the atmosphere, a
balance is formed between forcing and convection. We can schematically express
this as follows:

∂φ

∂t
= ∂φ

∂t convection
+ ∂φ

∂t forcing
, ||∂φ

∂t
||¿ ||∂φ

∂t forcing
||,

where φ can be temperature or moisture and φ is the horizontal average of the vari-
able over a large area of the order of 1002km2. This means that the atmospheric
circumstances over a large area are changing at a much slower rate than that
convection is counteracting the large-scale forcing. This possibly slowly changing
balance is called quasi-equilibrium.

The appearance of clouds in convection makes convection a process of even
more importance. Convective clouds affect the large-scale planetary circulation
[19]. Shallow cumulus clouds are abundant in the trade wind region and the mois-
ture that they transport to higher atmospheric levels is advected further by the
trade winds towards the equator. There it works as an extra supply of moisture
in the Intertropical Convergence Zone (ITCZ) (Fig. 1.3). Shallow cumulus clouds
supply the tropical atmosphere with moisture, which facilitates the formation of
deep convection. In the ITCZ, air rises as part of the Hadley circulation and deep
convection intensifies this upward motion of air by latent heat release. We see that
shallow and deep convection intensify the Hadley circulation [128].

tropopause

shallow cumulus clouds

trade winds
ITCZ

Equator 30 N30 S

deep

cumulus

clouds

o o

Figure 1.3: Schematic depiction of the north and south cell of the Hadley circulation. At the equator, in
the Intertropical Convergence Zone (ITCZ), deep convective cumulus clouds intensify the strong upward
motion. At a height of around 15 km in the atmosphere winds blow northward and southward and
descend slowly at 30◦N and 30◦S. In these regions with subsiding air, shallow cumulus clouds form and
are advected by the trade winds in the direction of the equator. There they act as an extra moisture
supply for deep convection.



14 1. Introduction

Besides stabilizing the atmosphere, transporting heat, moisture and momen-
tum and affecting the large-scale circulation, deep convection also largely deter-
mines precipitation. Moreover, deep convection is related to spatially organized
large structures of deep convective events that are called convectively coupled equa-
torial waves [76, 85, 143], that only occur around the equator. The structures are
called waves, but don’t look like waves as you know from the beach, because they
are much larger with a wavelength of the order of 1,000−10,000 km. The convec-
tively coupled equatorial waves determine in part the variability of precipitation
around the equator. Finally, convective clouds affect the planetary energy budget,
as all clouds do. Clouds reflect sunlight back into space and they absorb and emit
infrared radiation.

Now that we have some idea of what convection is and what its role is in Earth’s
atmospheric system, we will have a closer look at shallow and deep convection.

Shallow convection
Shallow cumulus convection is most common in the subtropics, as explained espe-
cially in the trade-wind region above the ocean, but it is also frequently observed in
the tropics and in the mid-latitudes above land and sea. A classic field experiment
with shallow cumulus convection over sea in the trade-wind region is the Barbados
Oceanographic and Meteorological Experiment (BOMEX) carried out in 1969 [58].
To give an indication of the vertical extent of the clouds: a typical cloud base height
was found around 500−600 m and the cloud top around 1,500−1,600 m.

Since large-scale forcings are typically homogeneous over large areas of the
ocean in the trade-wind region and constant over long time periods, shallow cu-
mulus clouds appear in large cumulus ensembles, i.e., a large number of cumulus
clouds spread over the area. The ensemble continuously counteracts the large-
scale forcings, forming a quasi-equilibrium. Note that individual cumulus clouds
in the ensemble can be at different stages of their life cycle, e.g., some of the clouds
may just have arisen and others may already be dissolving. On average, however,
a nearly constant number of cumulus clouds is distributed randomly over the area.

Let us look in more detail at the vertical structure of the atmosphere in the
case of shallow cumulus convection. The easiest way to do this, is by comparing the
virtual potential temperature of an ascending parcel θv,p with the virtual potential
temperature of the environmental air θv through which it penetrates. The virtual
potential temperature is defined as:

θv := θ(1+0.61qv − ql),

with qv the water vapor specific humidity [126], ql the liquid water specific hu-
midity [126], and θ the potential temperature [126, 135]. The difference between
θv of the parcel and the environment is proportional to their density difference.
Therefore it can be used as a measure of buoyancy. In Fig. 1.4, we see a schematic
depiction of θv of a rising parcel and its environment. The height above Earth’s
surface is on the vertical axis and θv on the horizontal axis. The layer near the
surface is unstable, which causes air parcels to rise upward. The virtual potential
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LCL
LFC

z0

LNB

free[troposphere

turbulence

inversion

cloud[layer

well-mixed

sub-cloud[layer

CIN

 

v[K]

CAPEenvironment

parcel

parcel

Figure 1.4: Schematic depiction of the virtual potential temperature θv of an entraining air parcel and
the environment. Several important height levels are indicated on the left vertical axis and several
layers on the right vertical axis. CIN is the area below the LFC that is enclosed by the two curves and
CAPE the area between the LFC and the LNB (after Siebesma (1998) [126]).

temperature of these parcels is higher than of their environment, resulting in a
positive buoyancy force:

B = g · θv,p −θv

θv
,

with g = 9.81 m s−2, the gravitational acceleration constant. The parcels will rise
and may reach the level where water vapor starts to condensate, depending on
their strength and on the vertical extent of the well-mixed boundary layer (Fig.
1.4).

The level at which water vapor condensates is called the lifting condensation
level (LCL). Moist convection is a more complex process than dry convection, mainly
because phase changes of water are accompanied with energy release or energy
costs that change the buoyancy of the rising air parcels. Latent heat release in a
saturated updraft generates extra buoyancy, because the temperature increases.
This enables saturated updrafts to reach much higher levels in the atmosphere
than unsaturated updrafts. In effect, it works as an extra engine for reaching
higher in the atmosphere. However, an updraft coming from the surface first has
to penetrate through a layer in which it experiences negative buoyancy.

Only strong moist updrafts can penetrate through the layer of negative buoy-
ancy and reach higher levels in which they experience positive buoyancy, solely
due to latent heat release. The level above which a parcel experiences positive
buoyancy is called the level of free convection (LFC). If we look in Fig. 1.4, we see
that the level is located where θv,p = θv. Strong updrafts that reach this level can
potentially ascend up to much higher stable layers in the atmosphere.

A measure for the strength of the negative buoyancy below the LFC is the con-
vective inhibition (CIN) and is defined by:

CIN :=−
∫ LFC

z0

B−dz,
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where B− =min(B,0). A large CIN value indicates that it is difficult to form con-
vective clouds. In Fig. 1.4 it is the area between the two curves (θv of updraft and
environment) just below the LFC. Updrafts that come above the LFC experience
positive buoyancy and they can rise all the way to the level of neutral buoyancy
(LNB) which is the level higher in the atmosphere where the buoyancy becomes
zero again. A measure for the positive buoyancy above the LCL is the convective
available potential energy (CAPE) and can be defined as:

CAPE :=
∫ LNB

LFC
Bdz.

Note that also other vertical levels can be chosen, for example a level close to the
surface z0 instead of the LFC. If the atmosphere is unstable, because it is too warm
and moist in lower levels, CAPE will have a large value; while in case the atmo-
sphere is stable, CAPE will have a small value or be equal to zero. This explains
why CAPE is generally accepted as an indicator (i.e., predictor) of convection.

Since only strong moist updrafts can penetrate the layer of negative buoyancy,
the result of this selection system is that moist convection is far more intermittent
and random in character than dry convection in the boundary layer below the LCL.
In the boundary layer, mixing by convection and turbulent eddies can be roughly
seen as a very effective diffusion process with a corresponding eddy-diffusion coef-
ficient that is orders of magnitude larger than the molecular diffusion coefficient
[59]. The layer below the LCL is called the well-mixed subcloud layer (Fig. 1.4). In
this layer, heat and moisture are horizontally and vertically well mixed: they are
distributed such that the potential temperature is constant. Without a well-mixed
subcloud layer reaching the LCL, it is difficult for updrafts to reach the LCL. Above
the LCL, strong updrafts arrive in sudden bursts at intermittent rates and shal-
low cumulus clouds form at the LCL and rise up to the LNB. The layer in between
these two levels is therefore called the cloud layer (Fig. 1.4). Generally, the clouds
do not exceed this layer because it is capped by an inversion layer, in which the
convective updrafts loose buoyancy, and therefore kinetic energy, quickly. Because
shallow cumulus clouds are of limited vertical extent, precipitation effects are usu-
ally negligible for shallow convection. If updrafts are strong enough, they will
reach even higher levels, and deep convective clouds will form. Deep convection is
the topic of the next subsection.

A comprehensive introduction to shallow convection is found in Siebesma (1998)
[126], in which all relevant terms and concepts, loosely mentioned in the present
introduction (e.g., instability, several temperature definitions) are well defined and
explained. Also, the important concepts of entrainment and detrainment, mixing of
environmental air with cloud air, are discussed in detail. More information about
detrainment in shallow cumulus can be found in [31, 129] and more about entrain-
ment in deep convective clouds in [95, 122].

Deep convection
Precipitation can usually be neglected for shallow cumulus convection. This is not
the case for deep convection, because its clouds are much larger, which enables the
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formation of precipitation. Deep convection is characterized by heavily precipitat-
ing cumulus clouds, often accompanied with lightning, reaching very high levels
in the atmosphere, sometimes up to 20 km. Deep convection is very common in
the tropical belt, which is the reason that it is sometimes referred to as tropical
convection. It is also common outside the tropics, for example at the end of a hot
period in summer in the mid-latitudes. Deep convection is a more complex process
than shallow convection. Deep convective updrafts are strong enough to penetrate
the inversion layer that caps the shallow cumulus clouds (Fig. 1.5). As a result,
their vertical extent is large enough to allow for the formation of precipitation.
When precipitation takes place, liquid water falls from higher levels to lower lev-
els of the atmosphere. It is possible that the liquid water falls through a warmer
layer and evaporates before it reaches the surface, which cools the layer. When
updrafts reach the freezing level at around 5 km (in the tropics), ice is formed and
energy is released. This means that deep convective updrafts have a (modest) sec-
ond buoyancy engine available, in addition to the latent heat release at the LCL.
The amount of energy is, however, much less than the latent heat release at the
LCL.

ITCZ

Equator 30lN30lS

2lkm

5lkm

16lkm
tropopause

inversion

freezingllevel

tradelinversion
shallowlcumulus

cumuluslcongestus

deeplconvectivelcumulus

o o

Figure 1.5: Schematic illustration of the typical location and vertical extent of shallow, congestus and
deep convective cumulus clouds. Shallow cumulus clouds are capped by the trade inversion, conges-
tus clouds do not reach higher than the freezing level and deep convective cumulus clouds reach the
tropopause inversion (after Johnson et al. (1999)[65]).

The atmospheric conditions under which the initiation of deep convection is
possible, are still debated. A necessary condition is a large CAPE value, because
the atmosphere needs to be unstable in order for deep convection to occur. The
role that shallow convection and cumulus congestus clouds (precipitating convec-
tive clouds that are not strong enough to go through the freezing level) play in the
formation of deep convection is still not entirely understood. Johnson et al. (1999)
[65] argue that by moistening the lower troposphere, thereby preconditioning, the
shallow cumulus and congestus clouds enable the formation of larger deep con-
vective cumulus towers. The importance of this preconditioning by the congestus
clouds is debated by Hohenegger and Stevens (2013)[57]. They argue that large-
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scale moisture convergence is more important for the formation of deep convection.
Furthermore, organization of clouds also plays an important role: deep convective
clouds help the formation of other deep convective clouds, because deep convective
clouds are triggered at points where spreading cold pools originating from different
convective clouds meet [17, 138]. In case deep convection occurs, the deep convec-
tive updrafts reach the strong tropopause inversion and spread horizontally and
form a modestly raining stratiform anvil. Stratiform decks dissolve slowly due to
precipitation and mixing with the environmental air.

As is the case for shallow cumulus clouds, deep convective cumulus clouds often
appear in cumulus ensembles. Deep convective clouds are much larger than shal-
low cumulus clouds, both in vertical and horizontal extent. Updrafts are so strong
that deep convection causes horizontal convergence of air. On the other hand, con-
vergence or moisture convergence also supports the formation of deep convection
[53, 57]. We conclude that convergence and deep convection form a positive feed-
back system.

We have seen that convection and clouds play several important roles in Earth’s
atmosphere and climate. Further, we have seen that convection and cloud for-
mation are complicated processes that take place at several length scales and af-
fect the atmosphere and climate in several ways over a large range of space and
time scales. Because the prediction of intermittent and randomly occurring moist
convection is complex, clouds and convection are a large source of uncertainty in
weather and climate prediction models [117]. It is for example difficult to predict
how clouds will respond to a warming climate and climate models do not show
agreement [18, 19, 22, 69]. In order to make reliable weather and climate pre-
dictions, moist convection should be accurately represented in general circulation
models (GCMs), used in numerical weather and climate models. The next section
explains what a GCM is, how moist convection is currently represented in GCMs,
and what the shortcomings of these representations are.

1.2 Parameterization
GCMs simulate Earth’s entire atmosphere. Vilhelm Bjerknes [15] was the first to
propose that the weather can be predicted by solving equations. Given the initial
conditions, boundary conditions and external forcings it is, in theory, possible to
calculate the time evolution of temperature T, pressure p, wind velocity in three
directions (u,v,w), air density ρ and humidity qt (defined below). The most impor-
tant equations that apply to the movement of any incompressible fluid are the in-
compressible Navier-Stokes equations, which are the fluid-equivalents of Newton’s
second law (relating force, mass and acceleration) combined with the conservation
of mass:

Dui

Dt
=− 1

ρ0

∂p
∂xi

+ν∆ui +Fi, i ∈ {1,2,3}, (1.1)

div(u)= 0,

with ui ∈ {u,v,w}, the material or total derivative D/Dt = ∂/∂t+u ·∂/∂u+ v ·∂/∂v+
w ·∂/∂w, the divergence div, the kinematic viscosity ν and ∆=∑3

i=1
∂2

∂x2
i

[21], and ρ0
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a reference density. Any force that is acting on a fluid parcel results in an accel-
eration if it is not counteracted by another force. These forces are for example the
pressure force which is the first term on the right-hand side, Earth’s gravitational
force, the third term on the right-hand side for the vertical velocity equation with
F3 =−g and, as a result of Earth’s rotation, the Coriolis force, also the third term,
but with F1 = cv,F2 =−cu, in which c is the Coriolis parameter.

In practice, it is impossible to resolve the full Navier-Stokes equations for a
domain as large as Earth’s entire atmosphere. Therefore in atmospheric GCMs,
which are at the core of global numerical weather and climate prediction models,
the simpler primitive equations are used instead [27]. These simplifications are ob-
tained by using scale analysis of all terms in the equations for Earth’s atmosphere
[27]. In addition, instead of using the ‘normal’ temperature T and the humidity, the
liquid water potential temperature θl and the total water specific humidity qt can
be used, because they are conserved for moist adiabatic processes in the absence of
precipitation. They are defined as:

θl = θ−
L

cpπ
ql , (1.2)

qt = qv + ql (1.3)

where L is the latent heat of vaporization, cp the specific heat of dry air at constant
pressure, and π the Exner function: the ratio of absolute and potential tempera-
ture.

Furthermore, the variables in the equations are Reynolds averaged, i.e., decom-
posed in a mean part and a deviation part:

φ=φ+φ′,

Figure 1.6: Schematic illustration of a global three-dimensional grid of a GCM. The left panel displays
a part of a meridional cross-section of the grid. We see seven vertical columns and each column contains
six z-levels. The right panel displays the grid on a map of Earth. The arrows indicate grid points
located at latitudes 15◦N and 15◦S in both panels. Model variables are only resolved in grid points and,
therefore, grid point values represent variables in the entire grid box. In each vertical column the most
important subgrid processes have to be represented by parameterizations. Note that state-of-the-art
GCM grids can be much finer than the grid in this illustration.
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where φ is again the horizontal average of a generic quantity φ over a large area of
the order of 102km2-1002km2, and φ′ is a deviation from this average, see [12, 27]
and [110] for similar treatments. To give an example, after Reynolds averaging of
Eq. (1.1), the momentum equation for the zonal velocity, becomes:

D̄u
Dt

=− 1
ρ0

∂p
∂x

+ν∆u+Fi −
(∂u′u′

∂x
+ ∂v′u′

∂y
+ ∂w′u′

∂z

)
, (1.4)

in which the last three terms are the Reynolds stresses, effects of small-scale pro-
cesses that are smaller than the area size over which has been Reynolds averaged.

In GCMs, equations are discretized for computation on a three-dimensional
global grid (Fig. 1.6). The left panel of Fig. 1.6 displays a part of a meridional
cross-section of a grid. The right panel of Fig. 1.6 displays a GCM grid from a
‘top view’. State-of-the-art GCMs often work with finer grids than displayed in this
illustration; for example, the EC-Earth model’s spectral resolution corresponds to
a horizontal grid spacing of 1.125◦ [55]. Model equations are truncated at the grid
size and variables φ are spatial representatives of the grid box. This truncation
leads to subgrid processes of which the most important effects have to be repre-
sented by parameterizations. For example, for φ = θl , the subgrid term with the
largest effect is the z-derivative of the turbulent vertical heat flux, the first term
on the right-hand side of the equation for θl :

D̄θl

Dt
=−

∂w′θ′l
∂z

+FLS ,

with FLS heating due to large-scale forcings. Representing subgrid processes sim-
ply and adequately in GCMs is a difficult topic and parameterizations (especially of
clouds and convection) cause large uncertainties and errors in numerical weather
and climate model predictions.

Parameterization of subgrid processes
The distance between the grid points determines the GCM’s resolution. In case
the model solves the dynamical equations with a spectral method, the number of
spectral modes determines the resolution, but for the calculation of the parame-
terized physical effects, the variables are transformed to physical space on a grid,
and therefore the distance between the grid points can still be seen as the model’s
resolution. A vertical grid column represents a geographical region in which it is
located, a region of which the size depends on the model resolution.

Variables such as temperature can be seen as horizontal averages over the re-
gion. Processes that are of a scale much smaller than the grid size can not be
explicitly resolved by the model. These subgrid processes, despite their small size,
can have major effects on the resolved variables. For example, convection trans-
ports large quantities of heat and moisture vertically in the atmosphere, even in
case the horizontally averaged vertical velocity is zero. Therefore, for correct cal-
culation of the resolved variables, the most important subgrid processes need to
be represented in some accurate yet simple way. In GCMs they are represented
by parameterizations, which are functions of the resolved variables. For example,
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the turbulent heat flux is expressed in terms of the resolved-scale variables by a
function f :

w′θ′l = f (u,v,w,θl , qt,FLS).

Parameterizations should be simple, since they should not cost too much computa-
tionally. In GCMs, the variables that are resolved on the grid are called prognostic
variables or large-scale variables (e.g., u,θl), and the variables that are represent-
ing processes of a scale much smaller than the grid size are called subgrid variables
or, in case one refers to the corresponding terms in the governing equations, sub-
grid terms, e.g., the z-derivative of the turbulent heat and moisture fluxes and
Reynolds stresses.

Multi-scale modeling
The problem of parameterization of subgrid processes in weather and climate pre-
diction models can be placed in a more general mathematical context: the atmo-
spheric flow consists of many scales of motion [89], and hence, global simulation
of the atmospheric flow is a typical multi-scale problem. The main objective is re-
solving the large-scale flow, with for example an efficient macroscopic model that
does not resolve processes at the microscopic scale. At the same time, however,
the microscopic processes partly determine the large-scale flow. The macroscopic
model is efficient, but in order to be accurate it should incorporate the effects of the
microscopic-scale processes. This is for example solved by assuming a separation
of the two scales (the macro and micro scale), such that the microscopic effects can
be obtained by a micro-scale model assuming a fixed large-scale state. Multi-scale
modeling focuses on linking micro- and macro-scale models. Multi-scale problems
are not only common in atmospheric sciences, but occur in many fields, e.g., compu-
tational chemistry and physics, biological systems, mathematics, material science
[38, 49, 67, 70, 111]. This means that the parameterization approach that is ex-
amined in this dissertation, could also be applied in various other fields. In this
dissertation the focus is on parameterization of moist convection, which is the topic
of the next subsection.

Parameterization of moist convection
In order to resolve moist convection, a horizontal grid resolution of 10−100 m is
needed, while GCMs operate with resolutions of the order of 10−100 km. There-
fore, moist convection is a subgrid process and has to be represented by parame-
terizations. For every grid column, the trigger function of the model’s convection
scheme determines if there is convection present; and if so, it also determines the
type of convection: dry, shallow or deep. This is done with a simple cloud parcel
model [64]. A virtual air parcel is released from the surface with small excesses
in temperature and moisture, as illustrated in Fig. 1.4. If there is moist convec-
tion present, the cloud parcel model determines the cloud base, the cloud top and
in-cloud variables such as temperature, moisture, and the liquid water content.
Almost all convection schemes are mass flux based, they determine the vertical
profile of the mass flux in the atmosphere. This profile is a function of height and
can be used to calculate subgrid fluxes (of for example heat and moisture) that are
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necessary to evolve the prognostic variables of the GCM, i.e., calculate the time-
derivatives of the prognostic variables. The turbulent heat and moisture flux are
calculated with the following expression:

w′φ′ = M(φu −φ), φ ∈ {θl , qt},

in which the mass flux M = ρauwu, with au the convective area fraction multiplied
by wu, the vertical velocity in the updraft [126], and φu is φ in the updraft.

The usage of mass-flux based parameterizations of convection in GCMs relies
on the assumption that in a grid column a cumulus ensemble and the large-scale
forcing are in quasi-equilibrium [5]. This means that the cumulus ensemble re-
sponds quickly to large-scale cooling and drying. Since the large-scale forcing is
typically not entirely constant in time, the equilibrium can also change slowly in
time. The quasi-equilibrium ensures that the heat and moisture transport of the
cumulus ensemble can be expressed in terms of the prognostic model variables. To
do so, one switches from the convective properties of a single cloud to the statistical
properties of the ensemble, for which for example the cloud area fraction at cloud
base is more important than cloud life cycles of individual clouds.

As mentioned, in the dry convective boundary layer, parameterizations based
on eddy-diffusivity are appropriate (although this is already a rough approxima-
tion), while for shallow cumulus convection parameterizations based on mass flux
are more appropriate. In the eddy-diffusivity mass flux (EDMF) approach [112,
130, 132] these two types are combined:

w′φ′ =−K
∂φ

∂z
+M(φu −φ), φ ∈ {θl , qt},

in which K is the eddy-diffusivity. This scheme has been improved with the dual
mass-flux closure for shallow and dry convection by Neggers et al. (2009) [104].
The updraft θl and qt values are found with a cloud parcel model. The mass flux
vertical profile can be calculated only if the mass flux at cloud base is determined
by a closure. There are several mass flux closures [105], several indicators (e.g.,
CAPE, CIN) can be used [29], and as we will see in Chapter 4, there is not yet a
general consensus on the best closure.

Parameterizations of convection can have major impact on model results, e.g.,
the location of the ITCZ [100], since the process has a large effect on the atmo-
sphere and climate. We will see in Chapter 5 that convection parameterizations
can have major impacts on GCM climate values, e.g., precipitation. Errors made in
convection parameterizations are reflected in biases and uncertainties in the sim-
ulation of the atmosphere, and therefore, also in weather and climate predictions.
Shortcomings in convection parameterizations can arise from for example:

• inadequate closures of the mass flux at cloud base; Should the closure be
based on dynamical (e.g., convergence) or thermodynamical variables (e.g.,
CAPE, CIN)? (Discussed further in Chapters 3, 4);

• classification of only three types of convection: dry, shallow, deep, while con-
gestus clouds may deserve their own treatment [73], (Chapters 3, 4);
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• the occurrence of multiple types of convection in the same model column at
the same time is often not possible [39]. In reality, deep convective clouds can
be surrounded by shallow convective clouds (Chapter 3);

• the trigger function: sometimes the trigger function tends to switch on and
off too rapidly and destroys smoothly decaying convection (Chapter 5);

• no unified treatment of convection and clouds [4]. For example, cloud cover
should be related to convective area fractions (Chaper 4);

• no scale-adaptive/aware convection parameterizations, but dependent on a
fixed coarse resolution (Chapters 4, 5);

• not enough subgrid-scale variability associated with convection (Chapters 2,
3, 4, 5);

• the usage of deterministic parameterizations instead of stochastic parame-
terizations. By using deterministic functions to determine the effect of con-
vection on the resolved model variables, random fluctuations around the ex-
pected values can not be captured. Stochastic parameterizations do allow
correct representation of variability (topic of Section 1.3).

• no direct coupling to neighboring model columns (spatial dependencies) (Chap-
ters 3, 4, 5);

In convection parameterizations there are many parameters of which the val-
ues have to be estimated, either from observations or from high-resolution com-
puter simulations, before implementation in a GCM. One of these high-resolution
computer simulations is Large-Eddy Simulation (LES), which is described in the
next subsection and which we will use in Chapters 2 and 3 to construct convection
parameterizations.

Large-Eddy Simulation
To examine clouds and convection one can make use of LES (Fig. 1.7). On a domain
with a horizontal size of the order of 10−1,000 km, depending on computer capac-
ity, the evolution of the three-dimensional flow in the atmosphere is calculated on
a grid with a resolution of 10−100 m. This resolution is high enough to resolve
convection. The spatially filtered Navier-Stokes equations are solved using the
Boussinesq approximation [27, 133] for shallow convection or the anelastic approx-
imation [131] for deep convection. In grid points in which the air is oversaturated,
liquid water is present and this will be the case if there is a cloud. With an inte-
gration time step of a few seconds, the clouds are simulated from formation to the
point when they dissolve. Researchers are able to test assumptions about clouds,
convection and turbulence in this virtual laboratory [103, 129, 140, 148]. Depend-
ing on the predetermined initial state of the atmosphere, the boundary conditions
and the large-scale forcings, different types of clouds (e.g., shallow or deep) can be
examined. These predetermined conditions are typically obtained from field ex-
periments, for example from the aforementioned BOMEX. The model can also be
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Figure 1.7: A snapshot from a three-dimensional simulation of deep convection using a Large-Eddy
Simulation model (credits: J. Schalkwijk).

validated by comparison with data of such field experiments. Several LES models
have been developed at different universities and research institutes, with com-
parable results [127]. The LES model that is used for the research described in
this thesis is called DALES (Dutch Atmospheric LES), developed at KNMI, Uni-
versity Wageningen and Delft University of Technology, described in detail by [56].
A comprehensive introduction to the general aspects of LES models (e.g., equa-
tions, subgrid-scale filters, boundaries) is given by [12]. Running an LES model
is computationally expensive and this limits the capacity of the model in terms of
domain size and simulation time period.

We now have some basic notion of moist convection, its important role in Earth’s
atmosphere and climate, and its representation in GCMs. These representations
have shortcomings which can lead to model errors and uncertainties. In the next
section we will see that the usage of stochastics may improve representations of
convection.

1.3 Stochastics
Traditionally, GCMs are deterministic models. In deterministic models, each ten-
dency of each model variable φ is a deterministic function of the model’s prognostic
variables and large-scale forcings x= {u,v,w,θl , qt, . . .}:

∂φ

∂t
= f (x). (1.5)
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The initial state x0 determines the future time state xT in a deterministic way (Fig.
1.8). In stochastic models, random numbers affect the model variable tendencies:

∂φ

∂t
= f (x,α), (1.6)

in which α(x, y, z, t) is a stochastic process [66, 145], producing random numbers
that depend on time t and grid point location (x, y, z). In the schematic illustra-
tion in the right panel of Fig. 1.8, we see that model variable trajectories of φ
are not uniquely determined by the initial state x0, instead several trajectories
are possible and consequently several outcomes for the future time state xT . You
may see similarities between the right panel of Fig. 1.8 and ensemble prediction
model outcomes in which initial conditions are slightly perturbed in order to gener-
ate several possible predictions, reflecting the uncertainty in the initial conditions.
Still, stochastic modeling is something different than perturbing initial conditions
since random numbers affect the time derivatives every time step, thereby possibly
changing model behavior.

Now we have some idea about differences between deterministic and stochastic
modeling. However, we have not yet discussed what the distribution is of the ran-
dom numbers, and where and how they affect model tendencies. Furthermore, we
have to discuss why we introduce stochastics. Therefore, first of all, we will moti-
vate why we use stochastics. After that, we will look in detail how random numbers
can be incorporated in models. We are mainly interested in introducing stochastic
elements in the convection parameterization scheme of GCMs, as reflected in the
title of this thesis.

time time0 T 0 T

deterministic stochastic

Figure 1.8: In deterministic models, each tendency of each model variable φ is a deterministic function
of the model’s prognostic variables and large-scale forcings x = {u,v,w,θl , qt, . . .}. The initial state x0
determines the future time state xT in a deterministic way. In stochastic models, random numbers
affect the model variable tendencies. In this illustration, the stochastic process is indicated by α. Model
variable trajectories of φ are not uniquely determined by the initial state x0, instead several trajectories
are possible and consequently several outcomes for the future time state xT .
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The Grey Zone
GCMs are typically defined on a grid for which each vertical grid column represents
a region on Earth so large that if moist convection is present, it is reasonable to
assume that moist convection is in quasi-equilibrium with the large-scale forcings.
The quasi-equilibrium assumption is valid if the resolution of the grid is coarse
enough to be sure that a large number of convective updrafts is present in one col-
umn: for example a horizontal grid point distance of a few hundred kilometers. In
this case, convective transport by cumulus clouds can be reasonably represented
by parameterizations [5]. In case the resolution is so high that individual convec-
tive clouds are resolved by a model, which is the case for cloud resolving models or
high-resolution models such as LES, no convection parameterization is needed.

With higher model resolutions, atmospheric flows can be simulated in more de-
tail. Therefore, atmospheric models tend to get more accurate if the resolution
increases. The availability of more computational resources enabled modelers to
increase the grid resolution of GCMs for decades. This partly explains the major
improvements of numerical weather and climate models. At the moment, however,
complications are encountered when increasing model resolutions, because GCMs
operate with resolutions that are getting close to, or are already in, the Grey Zone
[48, 60, 149] or terra incognita [147]. For models with grid resolutions such that
convection is partly resolved and partly unresolved, the so-called Grey Zone resolu-
tions, grid resolutions in between the two extreme situations described above (Fig.
1.9), transport has to be represented in a different way. The quasi-equilibrium
assumption is no longer valid since the ensemble of cumulus clouds is too small.
Individual cloud life cycles are important in this case and traditional mass-flux pa-
rameterizations are not correct. Entirely omitting convection parameterizations,
as is done for LES, is also not possible, because then convective transport would
be underestimated. Note that by definition the Grey Zone is a range of grid reso-
lutions that is dependent on the subgrid process that is considered. For example,
the Grey Zone for deep convection differs from the Grey Zone for shallow convec-
tion, because the processes have different typical sizes. The range of Grey Zone

resolved convection Grey Zone parameterized convectionstochastic zone

Δx ~ l  Δx > l  Δx >> l  Δx << l  

Figure 1.9: Top view of the atmosphere. Each dot represents a convective updraft with horizontal
length scale l. The panels illustrate different situations: for models with high-resolutions (∆x ¿ l),
convection is explicitly resolved (left panel); for models with coarse resolutions (∆x À l), convection can
be parameterized (right panel); for models with resolutions in the Grey Zone (∆x ∼ l) in between the two
extremes, convection is partly resolved (second panel from the left); and for models with resolutions ∆x
that are only slightly larger than l, convection can be parameterized, but since the number of updrafts
that are present in a model column varies significantly, stochastics are needed (second panel from the
right).
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resolutions corresponding to shallow convection is shifted to smaller grid sizes as
compared to the range of Grey Zone resolutions of deep convection.

As computational power increases, GCMs will get or already are in the Grey
Zone for deep convection, followed by the Grey Zone for shallow convection. This is
a problem that has to be addressed and can not be neglected.

Stochastic parameterization of convection
The intermittent and random character of moist convection vanishes when only
statistical properties of an ensemble over large areas are important, and therefore,
for coarse grid resolutions, deterministic parameterizations of moist convection are
appropriate. For higher resolutions and, in particular, in the Grey Zone, the in-
termittent and random character of moist convection is reflected in the random
fluctuations of turbulent heat and moisture fluxes around the expectation values.
In the second panel from the right in Fig. 1.9, it can be seen that the number of
updrafts that are present in a model column varies significantly, the number of
updrafts ranges from only two to more than ten updrafts. Therefore, in or close to
the Grey Zone, as is demonstrated in Chapter 2 of this thesis, stochastic parame-
terizations have more potential to adequately represent convection. One answer to
the question how, for resolutions in or close to the Grey Zone, subgrid variability
related to convective transport can be represented by parameterizations is ‘by in-
troducing stochastics in the parameterizations’. Stochastic processes can be used
in parameterizations to represent unpredictable random effects of individual cu-
mulus clouds and increase the variability in the output of parameterizations. This
idea is one of the main topics of this thesis. We have the following questions:

• How can stochastics be introduced in convection parameterizations in an ad-
equate way?

• What is the effect of stochastic parameterization of convection on GCM be-
havior?

• Is it necessary to introduce stochastics in the parameterizations, or can the
same effect be obtained with deterministic parameterizations?

Assume that we have a deterministic convective parameterization scheme in a
GCM. How can we make the scheme stochastic? There are several ways to do this,
and indeed, different approaches have been explored by researchers:

• multiply the output values of the convection scheme with random numbers
r ∈ [1− x,1+ x] every time step. This is a very ad hoc method, but has been
used in an even more general context by multiplying all subgrid terms with
random numbers, for example in Buizza et al. (1999) [20] with x = 0.5. In
Teixeira and Reynolds (2008) [136] only the convective tendencies are per-
turbed. It is important to take spatial and time correlations into account:
there should be a large correlation between grid points that are close to each
other, e.g., a vertical profile of the vertical heat flux is a smooth function and
if the random numbers are independent, this smoothness could be destroyed.
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The same is true for horizontal correlations and correlations in time. Convec-
tion gradually develops and gradually vanishes, and this could be destroyed
by multiplying with random numbers without any correlation;

• add random numbers (with zero mean) or a stochastic process to the output of
a parameterization. On top of the deterministic parameterization a random
process can be used to make it stochastic. Lin and Neelin (2000) [86] showed
that by adding red noise, they were able to improve the simulated total con-
vective variance in a tropical atmospheric model of intermediate complexity
and showed that the model results were sensitive to the autocorrelation time
of the stochastic process.

• take a part of the convection scheme and make it stochastic, e.g., the trigger
function [134], the mass flux at cloud base [88], or the entrainment [121]; or
make one suitable parameter of the convection scheme stochastic instead of
all outcomes of the scheme, e.g., Grant’s constant for shallow convection [51]
is a potential candidate. In this way, correlations are retained between fluxes
inside each grid column;

• focus only on shallow convection [123];

• employ a stochastic multiplume model (introduced by Plant and Craig (2008)
[114]); or a

• stochastic multicloud model (introduced by Khouider et al. (2010) [72]), see
Section 1.3.8.

Immediately testing new stochastic parameterization approaches in state-of-
the-art GCMs (e.g., EC-Earth [55], CAM [23]) is a large step, therefore, new param-
eterization approaches can be tested in less complex models, such as for example:

• mathematical multi-scale test models or ‘toy-models’; a well-known example
of a toy-model is the Lorenz ’96 set of equations [91]. It has two types of
variables: large-scale variables and small-scale variables and has been used
frequently as a testbed for new parameterization approaches, e.g., [6, 25, 81,
144]. To give an additional example of a two-layer idealized model with in-
teracting small-scale and large-scale variables, we refer to Harlim and Majda
(2013) [54]. Another test model that can be used to test parameterizations is
the Kac-Zwanzig heat bath [142]. Furthermore, differential equations of the
form dq

dt = S, where S is a source term with stochastic elements have been
explored by [134];

• single-column models; in single-column models (SCMs), parameterizations
can be tested in a simple environment: their interactions with the model
variables can be tested in one column [10]. The model variables are not
interacting with the large-scale variables in neighboring columns, because
they are not present in a SCM. External forcings such as horizontal diver-
gence and subsidence are not calculated as is done in multi-column models;
instead, they are prescribed. This creates a clean test environment, without



1.3. Stochastics 29

effects due to large-scale advection etc. Furthermore, testing in SCMs is com-
putationally inexpensive and errors can be found prior to implementation in
a GCM. Preferably, testing is done with the SCM variant of the GCM - i.e.,
an SCM which is similar to the GCM, using for example identical codes - but
without large-scale dynamics. Behavior of the parameterization in an SCM
- e.g., its responds to the large-scale variables and forcings - gives a good
indication of its behavior in a GCM;

• tropical circulation models; models in which the dynamics are confined to
the tropics. These models can for example be used to examine convectively
coupled equatorial waves. Often, they employ the β-plane approximation for
the Coriolis force; in which case, the models solve the anelastic hydrostatic
Euler equations on an equatorial β-plane [14];

• aqua-planet models: in these models, the entire surface of the planet is as-
sumed to be covered by water; and they often use prescribed sea-surface
temperatures (SSTs). An aqua-planet comparison study is described by [16]
and a stochastic parameterization of convection has been implemented in an
aqua-planet GCM by [116];

• GCMs of intermediate complexity usually use prescribed SSTs, have coarse
resolutions, and use simplified parameterizations. They can be run with or
without seasonal cycles or daily cycles, etc. Examples of intermediate com-
plexity GCMs are: AMIP-type models [47] or the SPEEDY model [101], which
is introduced in Chapter 5 of this thesis.

We have seen that stochastics can be implemented in GCMs in several ways.
In this thesis, the focus is on stochastic parameterization of moist convection. The
motivation is that moist convection is of major importance in Earth’s atmosphere
and climate and it has a major impact on model results. Furthermore, the process
has a random character, and therefore, when model grid resolutions get finer, this
randomness has to be represented somehow. Further confinements and choices
have to be made: we have to clarify what kind of stochastic processes we use and
how we will asses the stochastic parameterizations. The latter will become clear in
the core chapters of this thesis (Chapters 2, 3, 4, 5). The former can be clarified as
follows.

We build on the stochastic approach based on data-driven conditional Markov
chains originally introduced by Crommelin & Vanden-Eijnden (2008) [25]. This
Markov chain method for parameterization of subgrid processes has been shown
to adequately represent the effects of subgrid processes in the Lorenz ’96 model by
[25]. Therefore, since it already has proven itself in a simplified model, a natural
step is to extend it to the usage in parameterizations in more complicated models
with GCMs as a final goal. We will explain the several aspects of this stochastic
approach in the following sections.

Markov chains
If time correlation is desirable for the random numbers that are used in a stochas-
tic convection scheme, this can be attained by making random numbers in param-
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eterizations at time t+∆t dependent on the random numbers at time t. If the
probabilities only depend on time t and random numbers used before time t do
not affect these probabilities the stochastic process is Markovian. Markov pro-
cesses are computationally effective, because time correlation is present, without
the need of storing long sequences of random numbers. However, care should be
taken, because the effects of convection on the large-scale state are to some ex-
tent non-Markovian; and hence, using Markov models in the representations of
convection could lead to errors [26, 41]. As we will see, the Markov models that
are examined in this thesis are conditioned on the large-scale variables, such that
memory effects due to the interaction of convection with the large-scale state of the
atmosphere are included.

If only a finite number of states can be attained by the Markov process and
only at equidistant discrete time points, the Markov process is called a finite state
Markov chain [2, 52, 107] (Fig. 1.10). Discrete models with a finite number of states
have been examined frequently in the context of weather and climate modeling,
e.g., [25, 74, 93, 141]. The idea of using discrete stochastic models with only a
few states stems from statistical mechanics [93]. In statistical mechanics these
models have proven to be effective in modeling physical or chemical processes, e.g.,
the movement of molecules, that are too complicated to resolve explicitly [68, 83,
84]. This explains the choice of examining the use of discrete models with a finite
number of states in the representations of convection and clouds, as is done in this
thesis.

A finite state Markov chain is determined by its initial state distribution and
a transition probability matrix of size N ×N, where N is the number of attainable
states. The probability of a transition of a Markov chain Y (t) from state m to state
n is given by:

P(m,n)=Prob
(
Y (t+∆t)= n|Y (t)= m

)
(1.7)

In the next section, we will explain, how these transition probabilities are esti-
mated from data.

A Markov chain can be used to make a convection scheme stochastic in the

finite state Markov chain transition probability matrix
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Figure 1.10: Schematic illustration of a finite state Markov chain. The Markov chain α switches be-
tween N states and only at discrete times. The probabilities of switching from state i to state j, pi j ,
form a transition probability matrix.
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several ways described before; for example by modeling a suitable parameter with
a Markov chain, or by adding random numbers generated by a Markov chain to the
output of the convection scheme. The states of the Markov chain can be chosen to
be parameter values (Chapter 5), flux profiles (Chapter 2), or cloud types (Chapters
3, 4, 5), or some other model quantity.

Data-driven
In case a process is too complicated to derive laws and construct parameterizations
from first principles, data-driven methods can be used to construct parameteriza-
tions by inferring from data. As mentioned before, to make realistic convection
schemes, parameters should be estimated or at least be compared with observa-
tional data or with high-resolution LES data. Finite state Markov chains can be
estimated from data directly. Data-driven models are getting more and more atten-
tion since computing power is increasing and more data is available. Think of deep
learning algorithms, based on neural networks, that are trained with large data
sets with a specific aiming task, such as recognizing images. Data-inferred Markov
chains are also an example of a learning model, because the Markov chains are
trained with data with the aim of mimicking observed behavior afterwards. Since
convection is a complicated process for which it is unknown how to derive param-
eterizations from first principles, in particular for GCMs with resolutions close to
or in the Grey Zone, we will use data-inferred Markov chains to mimic convec-
tive behavior as observed in data and construct convection parameterizations. The
Markov chains are ‘trained with’ (i.e., inferred from) data of convection. A finite
state Markov chain is inferred from data by estimating its transition probability
matrix. For a matrix of size N × N, it means that N2 matrix entries have to be
estimated. The transition probability matrix entry P(m,n) in (1.7) is estimated as
in [25]:

p̂(m,n)= T(m,n)∑
n T(m,n)

, (1.8)

with T(m,n) counting transitions from m to n observed in a given training data
set:

T(m,n)=∑
t

1
(
Y (t+∆t)= n

)
1(Y (t)= m),

in which 1 is the indicator function: 1(A) = 1 if A is true and 1(A) = 0 if A is false,
and t runs over time instances in the training data set. It can be shown that the
estimator p̂(m,n) in (1.8) is the maximum likelihood estimator of P(m,n) [2].

For accurate estimation, enough data should be available, which depends on
the size of the matrix. When choosing the number of states of the Markov chain,
one has to take into account how much data is available. The lower the number of
states, the smaller the matrix, and the better its entries can be estimated. Further-
more, a Markov chain model with a smaller number of states is simpler and faster
when it is implemented in a convection scheme of a GCM (e.g., smaller matrices
are loaded faster). In this thesis, we will show how one can use data from high-
resolution convection resolving models, in particular LES, as well as observational
data to construct Markov chain models for stochastic parameterization of shallow
convection and deep convection.
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In the context of parameterization in weather and climate models, data-driven
models have been employed by many authors, amongst others: [6, 25, 34–37, 50,
61, 81, 144].

Conditional Markov chains
The occurrence and strength of moist convection depends on the large-scale phys-
ical state of the atmosphere. Some states are favourable for moist convection and
others prevent convection (e.g., an unstable versus stable atmosphere). This means
that if a Markov chain is used to mimic the process of convection, it can be im-
proved by taking the large-scale state of the atmosphere or a suitable indicator of
convection into account. This can be done by making probabilities depend on the
large-scale state X t of the atmosphere. Probabilities take the following form:

Pγ(m,n)=Prob
(
Y (t+∆t)= n|Y (t)= m, X (t)= γ)

. (1.9)

If a finite number of large-scale states is considered, then a conditional Markov
chain (CMC) is constructed by estimating a transition probability matrix for each
possible large-scale state [25]. In the training stage, the data is first classified
into different large-scale states and then for each large-scale state, a matrix is
estimated by counting transitions for each large-scale state (see again [25]:

Pγ(m,n)= Tγ(m,n)∑
n Tγ(m,n)

, (1.10)

in which:
Tγ(m,n)=∑

t
1
(
Y (t+∆t)= n

)
1(Y (t)= m)1(X (t)= γ).

In this thesis, we will condition the Markov chains on several indicators of convec-
tion.

Clustering
To be able to work with finite state conditional Markov chains, the subgrid-scale
state and the large-scale state need to be discretized into a finite number of states.
Therefore, we need a way to classify continuous quantities (e.g., the subgrid vari-
ables and the large-scale variables) into a finite number of classes/states. To give a
very simple example of classification, imagine a variable with values in the interval
[a,b] that we would like to classify into two classes. This can be done by choosing
a threshold, say c, to obtain two classes [a, c) and [c,b]. If more variables have to
be classified into more than two classes, one can choose several thresholds. In case
the training data is not uniformly distributed, choosing thresholds is difficult and
could result in classes to which no data is assigned and classes to which almost all
data is assigned. One way of classifying data less arbitrary and in some sense ‘op-
timal way’ is using clustering algorithms. Clustering, usually requires a distance
that has to be defined beforehand. A cluster algorithm that is very useful, easy to
use, and fast is k-means [92]. It clusters data into k classes, where k has to be cho-
sen beforehand. After clustering, the data set is represented by k cluster centers
(called centroids) that are positioned such that the total distance of the data points
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to their nearest-by centroid is minimized. Note that k-means converges to a locally
optimal solution, which is possibly not the global optimum. In this thesis we will
see that with k-means we are able to discretize the subgrid-scale state as well as
the large-scale state. Kwasniok (2012) [81] also works with clusters in the context
of data-driven stochastic parameterizations.

Cellular automata
In Markov chain models, time-correlation is present by construction. What about
spatial correlations? Moist convection is spatially organized at different scales
[95]. A convective updraft has a certain horizontal size which could be larger than
the horizontal size of individual vertical columns of a high-resolution model or the
resolution of the observational data could be so high that an updraft covers more
than one observational pixel. As mentioned before, cumulus clouds are usually
organized in ensembles: a large number of updrafts in a region of hundreds of kilo-
meters. Cumulus clouds can also be organized in streets or bands [78] or organized
in larger structures that span thousands of kilometers (e.g., the Madden-Julian
oscillation (MJO) [150]). Therefore, if a Markov chain is used in a GCM to pa-
rameterize convection ideally it should be sensitive to the convective state of the
neighboring GCM grid columns. By conditioning on the large-scale variables, as
is done with CMCs, spatial correlation is indirectly present, because large-scale
variables of neighboring grid columns are correlated. It is also possible to directly
include spatial correlation. By conditioning transition probabilities spatially, one
obtains cellular automata (CA). CA are well known thanks to Conway’s Game of
Life [46]. John Horton Conway introduced a mathematical system consisting of
a two-dimensional grid with cells that are either alive or dead and interact with
neighboring cells according to a small set of deterministic rules, showing totally
unexpected chaotic behavior and organization. Here, we will examine spatial cou-
pling of Markov chains by conditioning on the states of neighboring Markov chains.
Our CA also live on a two-dimensional grid and interact with neighboring cells, but
the cells will have more than two states and the rules that determine the evolution
of the cells are probabilistic: CA that are known as probabilistic cellular automata
(PCA) or stochastic cellular automata (SCA). Let a Markov chain Yi be positioned
on grid cell i with direct neighboring cells {i}, then the probability that it switches
from state m to state n is now given by:

Pγ,δ(m,n)=Prob
(
Yi(t+∆t)= n|Yi(t)= m, X i(t)= γ,Y{i} = δ

)
, (1.11)

and inference is done similar to the conditional Markov chain estimation in Eq.
(1.10), but additional matrices are estimated for each neighboring configuration
Y{i}. The number of neighboring configurations will often be impractically large
in which case a ‘reduction function’ can be used as an ad hoc solution to reduce
the number of neighboring states. A reduction function reduces the number of
neighboring configurations by assigning the same value to configurations that are
similar, e.g., if the configurations are the same after a rotation. In Chapter 3,
we build in spatial correlations on a size smaller than a GCM grid column: CA
will be used to capture spatial structures of convection inside the GCM grid col-
umn. The methodology could be extended to more general applications in weather
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and climate models, for example by constructing CA with spatial correlations in
between neighboring GCM grid columns. CA have been used before in weather
and climate models to stochastically represent unresolved processes [11] and espe-
cially for stochastic convection parameterization [9]. Also, in other scientific fields,
data-driven SCA have been explored earlier [99, 119]. In Chapter 3, we will use
data-driven SCA (stochastic rules, estimated from data) for convection parameter-
ization.

Multicloud models
In the atmosphere, several cloud types can be discerned: stratiform clouds, shal-
low convective clouds, deep convective clouds etc. Observations display a cycle
between different regimes of cloud types [65]. Shallow convection can lead to con-
vection with congestus clouds, and this in turn facilitates the formation of deep
convection. At the top of deep convective towers, stratiform clouds are formed,
spreading out horizontally. A type of Markovian model that implements this cy-
cle is the stochastic multicloud model of [72] for convection parameterization, in
which the states of the Markov chains are cloud types. The Markov chains are
positioned on a two-dimensional micro grid with a grid cell size smaller than the
GCM grid and switch between cloud types. In each GCM column, the cloud type
area fractions are computed by counting the relative frequencies of the states of
the Markov chains situated within the column. These area fractions are useful
in parameterizations of clouds and convection in GCMs. For example, the deep
convective area fraction can be used as a closure for the mass flux at cloud base,
and the sum of the cloud type area fractions can be used to determine the cloud
fraction. A schematic two-dimensional depiction of a multicloud model can be seen
in Fig. 5.1. The stochastic multicloud models developed in this thesis are based
on the framework of [72]. The main difference between the model of [72] and the
models described in this thesis is that, here, the transition probabilities between
the cloud types are directly estimated from data: in Chapter 3 estimation is done
with LES data and with observational data in Chapter 4.

Recently, several papers present work that elaborates on the multicloud model
of [73] using several cloud types (e.g., [1]) and the models have been made stochas-
tic (e.g., [30, 35–37, 42, 43, 72, 113]). Finally, a stochastic lattice gas model, which
is similar to a multicloud model, is presented by [116].

1.4 Research objectives and overview
The main objectives of this dissertation are to examine stochastic parameterization
of shallow and deep convection with high-resolution simulations; and with obser-
vations as well. In particular, the use of data-driven (conditional) Markov chains to
directly infer the probabilities in the stochastic schemes from high-resolution data
will be explored.

Moist convection is a process of major importance in Earth’s weather and cli-
mate system. Therefore, for reliable numerical weather and climate predictions, it
must be represented accurately in GCMs. With increasing resolutions, resolutions
that increase towards the Grey Zone, the large and intermittent fluctuations of the
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process should be present in the subgrid fluxes of GCMs as well. Traditional deter-
ministic parameterizations used in state-of-the-art GCMs, can no longer accurately
represent the process [86]. Stochastic parameterizations have been proposed to
capture this increased subgrid-scale variability. However, accurate stochastic pa-
rameterizations of convection are still missing, which means that new stochastic
parameterizations are needed. It has been shown that with the data-driven condi-
tional Markov chain approach, it is possible to accurately represent subgrid-scale
processes in the Lorenz ’96 model [25, 91]. Therefore, we examine the possible us-
age of this promising approach for stochastic parameterization of moist convection
in GCMs. Particular challenges are:

• Data; large data sets of moist convection are needed. This can be data ob-
tained from high-resolution convection-resolving models (e.g., LES or cloud
resolving model data) or observational data (e.g., rain radar data or satellite
data). Data sets should have a high spatial and temporal resolution (at least
every 10 minutes), giving detailed information of the convective processes.
The corresponding large-scale data sets should give an accurate description
of the large-scale atmospheric circumstances (e.g., CAPE values), not neces-
sarily at the same temporal resolution.

• Statistical inference; transition probabilities of the Markov chains have to be
estimated. For accurate estimation, for each entry in the transition probabil-
ity matrix enough transitions have to be observed in the ‘training’ data set.
Therefore, the number of small-scale and large-scale states should be small,
and the number of observations should be large. The limited size of the data
set constrains the number of states of the Markov chains that can be chosen
such that transition probabilities are accurately estimated.

• Finite number of subgrid-scale states; the subgrid-scale state is formed by
vertical profiles of turbulent heat, moisture and momentum fluxes (Reynolds
stresses), and is high-dimensional. We have to bring back this large num-
ber of combinations of vertical profiles to a finite number of representative
vertical profiles, which are the states of the Markov chains.

• Conditioning; in order to condition the Markov chains on the large-scale
resolved variables, the transition probabilities are made dependent on the
large-scale resolved variables. As is the case for the subgrid-scale state, only
a finite number of large-scale states can be considered. Choosing a suitable
function of the large-scale variables (e.g., CAPE, CIN, vertical integral of a
resolved variable), and considering a finite number of intervals or a finite
number of clusters (in particular, in case the dimension of the indicator of
convection is larger than one), is necessary to bring back the large number of
degrees of freedom to a finite number of large-scale states.

• Retaining correlations; heat, moisture and momentum fluxes are correlated
in space and time and correlate with each other. Parameterizations should
retain these correlations, in particular when random numbers are introduced
in the parameterizations.
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• Resolution dependency; subgrid fluxes, in particular associated with convec-
tion, are model grid resolution dependent. Fluctuations in the parameteriza-
tion outputs should have the correct amplitude and frequency, corresponding
to the horizontal grid size. Especially, in the Grey Zone, fluctuations of sub-
grid fluxes are important. Parameterizations should be scale-aware, i.e., able
to adapt to the horizontal resolution of the GCM.

• From scratch or adaptation of existing parameterizations; one can choose to
design, construct and implement a new convection parameterization scheme
starting from scratch. This approach has been explored in Chapter 2. How-
ever, in practice it can be advantageous to adapt an existing scheme, that has
proven its usability in the GCM already, as we will see in Chapter 4 and 5. In
the development of the GCM, the convection scheme has been adapted, tuned
to the model, and vice versa, the model has been adapted to the convection
scheme.

• Implementation in a GCM; after construction and testing (in for example
SCMs) of a new parameterization, the implementation in a GCM is the next
step to take. Coupling a new parameterization scheme to the resolved model
variables of a GCM can be complicated, and all subgrid fluxes, needed by
the particular GCM, have to be produced by the parameterization scheme.
Further, the code has to be adapted to the code of the GCM. For example, the
scheme has to be written in the programming language in which the GCM
code is written. Usually numerical weather and climate models are written
in FORTRAN. Translating code to FORTRAN code is of course not the most
difficult challenge, but one has to keep in mind that it’s a part of the process
of developing.

• Assessment of a new scheme; and last but not least, when the new (or adapted)
convection scheme is implemented in a GCM, the scheme and the GCM have
to be assessed. Does the scheme better represent convection? And are the
model results better? In Chapter 5 of this thesis, we will see ways to assess
a new convection scheme that has been implemented in a GCM.

The following chapters present work from four sub-projects:

• in Chapter 2, LES data of shallow cumulus convection is used to construct a
parameterization of shallow cumulus convection. Conditional Markov chains
mimic shallow cumulus convection as observed in BOMEX. Its states are
vertical profiles of heat and moisture fluxes. The parameterization is tested
in an SCM with BOMEX forcings. Also the Grey Zone is examined by looking
at subgrid fluxes at horizontal sub-domains of different sizes;

• in Chapter 3, LES data of deep convection is used to construct a data-driven
multicloud model using conditional Markov chains and SCA that mimic the
development of deep convection during one day. The focus lies on cloud area
fractions for several cloud types. Relative entropy is used to find the best
indicator of deep convection. CAPE and CIN values are clustered and the
model is tested in an SCM;
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• in Chapter 4, observational data from a rain radar is combined with large-
scale re-analysis data to construct a conditional Markov chain multicloud
model almost in the same way as is done in the Chapter 3. Cross-correlation
analysis of the observational high-resolution data combined with large-scale
re-analysis data is used to find the best indicator of deep convection;

• in Chapter 5, the conditional Markov chain multicloud model as described in
Chapter 4, is implemented in a GCM of intermediate complexity (SPEEDY).
Also a second conditional Markov chain model, similar to the model of [50], is
implemented. Convective area fractions are used as a stochastic closure for
the mass flux at cloud base.

Finally, Chapter 6 presents conclusions, a synthesis and an outlook for future re-
search.





Chapter II
Stochastic parameterization of

shallow convection

2.1 Abstract
In this paper, we report on the development of a methodology for stochastic param-
eterization of convective transport by shallow cumulus convection in weather and
climate models. We construct a parameterization based on Large-Eddy Simulation
(LES) data. These simulations resolve the turbulent fluxes of heat and moisture and
are based on a typical case of non-precipitating shallow cumulus convection above
sea in the trade-wind region. Using clustering, we determine a finite number of tur-
bulent flux pairs for heat and moisture that are representative for the pairs of flux
profiles observed in these simulations. In the stochastic parameterization scheme
proposed here, the convection scheme jumps randomly between these pre-computed
pairs of turbulent fluxes. The transition probabilities are estimated from the LES
data, and they are conditioned on the resolved-scale state in the model column.
Hence, the stochastic parameterization is formulated as a data-inferred conditional
Markov chain (CMC), where each state of the Markov chain corresponds to a pair
of turbulent heat and moisture fluxes. The CMC parameterization is designed to
emulate, in a statistical sense, the convective behavior observed in the LES data.
The CMC is tested in single-column model (SCM) experiments. The SCM is able to
reproduce the ensemble spread of the temperature and humidity that was observed
in the LES data. Furthermore, there is a good similarity between time series of the
fractions of the discretized fluxes produced by SCM and observed in LES.

2.2 Introduction
The effect of clouds and convection on the large-scale atmospheric state is one of
the major sources of uncertainty in weather and climate models. To resolve the
convective dynamics realistically, a numerical model resolution of at least 100 m
is required. Current operational numerical weather prediction (NWP) models are
still far too coarse to resolve convection: global NWP models are approaching O(10
km) resolutions while high-resolution limited-area models operate at O(1 km) res-
olution. The atmospheric components of coupled climate models currently use res-
olutions of O(100 km) or more because of the long simulation time spans for which
climate models are used. In all of these models, the effects of clouds and convection
in individual vertical model columns must therefore be represented through a pa-

This chapter has been published as Dorrestijn, J., Crommelin, D.T., Siebesma, A.P., Jonker, H.J.J., 2013:
Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data,
Theor. Comput. Fluid Dyn., 23, pp. 133–148. [36].
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rameterization, that is, the effect of these processes have to be taken into account
statistically in terms of the resolved mean state of the model column.

As pointed out in the seminal paper of Arakawa and Schubert (1974) [5], there
are two fundamental assumptions underlying all traditional convection parameter-
izations: (i) the horizontal model grid size is large enough for each model column
to contain a representative statistical ensemble of convective clouds, (ii) the cloud
ensemble is in quasi-equilibrium with the resolved large-scale variables. These as-
sumptions justify a deterministic convective parameterization: the resolved-scale
state determines a unique ensemble of convective clouds that is well sampled and
that produces unique convective transport and cloud properties.

With increasing model resolution, the above assumptions become problematic.
With decreasing grid size, the size of the ensemble of convective clouds in a model
column decreases, so that the ensemble is more likely to deviate significantly from
the theoretical distribution (see Plant and Craig 2008 [114]) and as a result it is
expected that the cloud ensemble will give a fluctuating response to the same mean
state. Furthermore, the life cycles of individual convective events become more
prominent, so that quasi-equilibrium is less likely to hold. Clearly, the one-to-
one correspondence between the resolved mean state and the convective response
breaks down and a traditional deterministic convection parameterization will not
be able to incorporate these fluctuations.

A promising strategy to tackle parameterization under conditions, where tra-
ditional approaches break down, is the use of stochastic methods [20, 74, 86–
88, 93, 109, 114, 136]. Rather than fixing the subgrid-scale response to a given
resolved-scale state (as in a deterministic parameterization), the response is ran-
domly sampled from a suitable probability distribution. This allows to account for
the randomness of underresolved convection in a small model column.

In this paper, we report on the development of a methodology for stochastic
parameterization of atmospheric moist convection. Our approach is based on the
stochastic method introduced by Crommelin and Vanden-Eijnden (2008) [25], and
has several key features. First of all, the stochastic process that represents the
convective response of the subgrid scales in a model column is made conditional on
the resolved-scale state in the same model column. Thus, the statistical properties
of the stochastic subgrid-scale response change if the resolved-scale state changes.
Secondly, the set of possible subgrid-scale responses is made finite (discrete), by
using finite Markov chains as a stochastic process. This gives the advantage of an
easy and straightforward computation and estimation. Thirdly, the properties of
the stochastic process (i.e., the Markov chain) are estimated from data, where the
data comes from high-resolution Large-Eddy Simulations (LES).

The Large-Eddy Simulations of moist convection are run at resolutions high
enough to resolve convection explicitly. The LES data and thus the Markov chains
are precomputed, i.e., they are determined before the stochastic parameterization
is put to use. The conditional Markov chain (CMC) parameterization is designed
to reproduce, in a statistical sense, the convective behavior observed in the LES
data. Thus, it can be seen as a statistical emulator of the high-resolution LES
model. Because of its high computational cost, the LES model can only cover the
horizontal domain of a few model columns of an operational NWP or climate model.
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Using a statistical emulator type parameterization, trained on LES data, allows
one to use realistic, LES-emulating convection at low computational cost.

Atmospheric moist convection can be distinguished in two categories. One cat-
egory is shallow convection characterized by fair weather cumulus that have a lim-
ited vertical extent of no more than three kilometers. As a result, precipitation
does play a minor role and for these clouds its feedback on the dynamics can be ne-
glected. Shallow cumulus convection plays an important role in the determination
of the vertical temperature and humidity profiles. Locally, it determines the verti-
cal transport; non-locally, it has strong influence on the planetary-scale circulation,
especially over the subtropical oceans where it enhances the moisture transport to-
ward the Intertropical Convergence Zone (ITCZ), thereby intensifying the Hadley
circulation. Despite their limited size they are the most abundant cloud type in
our climate system and their response to global warming forms one of the largest
sources of uncertainty in climate modeling. For a comprehensive introduction to
shallow convection, see Siebesma (1998) [126].

The second category is that of deep convection by cumulus towers that reach
heights up to 15 kilometers. Deep convection occurs especially in the tropics in the
ITCZ where they provide extra kinetic energy to the Hadley circulation through
the net latent heat release as a result of the precipitation. The dynamics of these
deep convective clouds is, mainly through the interaction between the precipitation
and the cloud dynamics, a far more complex phenomenon than shallow convection.

In this paper, we will concentrate on shallow cumulus convection, for several
reasons. As already mentioned, its dynamics is conceptually simpler than that of
deep cumulus convection, because precipitation feedback can be neglected. Fur-
thermore, due to its smaller spatial extent, Large-Eddy Simulations are able to
resolve the dynamics of shallow convection numerically on domains large enough
to contain a representative ensemble of convective clouds. As a result, we can
create a numerical data set that can be coarse-grained from resolutions that fully
resolve the dynamics, through resolutions that partly resolve dynamics and that
will require a stochastic parameterization, all the way to coarse resolutions for
which deterministic statistical parameterizations are sufficient. The focus will be
on coarse-grained resolutions of a few kilometers, the so-called Grey Zone or terra
incognita, see [48, 60, 147, 149] at which individual shallow clouds cannot be re-
solved but on the other hand, at which a statistical approach is also not possible.
We will explore how to use the stochastic approach from [25] to parameterize the
vertical convective transport of heat and moisture in a realistic way, taking into
account the variability of the transport.

Designing a CMC type parameterization for shallow convection poses several
challenges that were not encountered in [25], because of the relative simplicity
of the test model used there. In [25], the Lorenz 96 (L96) model [91] was used for
testing and demonstrating the CMC parameterization approach. In the L96 model,
both the resolved-scale state and the subgrid-scale response at each grid point are
scalar quantities. For shallow convection, the situation is much more complicated:

1. The resolved-scale state consists of five functions (vertical profiles) in each
model column (wind velocities, temperature and humidity). Conditioning on
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the resolved-scale state, a key element of the CMC approach, is therefore
highly nontrivial.

2. The subgrid-scale variables consist of two vertical profiles, the heat and mois-
ture turbulent fluxes. These fluxes are strongly correlated, and must be
treated as such in the CMC parameterization.

In [25], discretizing the subgrid-scale response was rather easy, because in the
L96 model, the response is a single scalar. Here, we are facing the challenge of
summarizing the infinite variety of possible heat and moisture fluxes in a hand-
ful (finite) number of states; in other words, we have to discretize an infinite-
dimensional function space. To achieve this, we use a clustering method, where
each cluster centroid represents a heat and moisture flux pair (thereby taking care
of the observed correlations between the heat and moisture fluxes).

This paper is organized as follows. In Section 2.3, we introduce the variables
and equations that are used in weather and climate models. We describe our ap-
proach of parameterizing convection by conditional Markov chains. In Section 2.4,
we describe the high-resolution data obtained from LES. We divide the LES domain
into subdomains of smaller size to obtain highly intermittent turbulent fluxes for
which the use of stochastic parameterization is necessary. In Section 2.5, we de-
scribe in detail how to construct a CMC, and in Section 2.6, results are given and
the CMC is tested in a single-column model (SCM) setting. Finally, in Section 2.7,
we summarize and discuss our findings and make some suggestions concerning
future work.

2.3 Problem formulation and strategy
The prognostic equations for heat and moisture in large-scale models are most
conveniently written in terms of the liquid water potential temperature θl and the
total water specific humidity qt which can be written as:

θl = θ−
L

cpπ
ql , (2.1)

qt = qv + ql (2.2)

where θ is the potential temperature, L is the latent heat of vaporization, cp is
the specific heat of dry air at constant pressure, ql is the liquid water content and
qv the water vapor specific humidity. We also introduced the Exner function π,
the ratio of absolute and potential temperature. In the absence of precipitation
θl and qt are conserved for moist adiabatic processes and the grid box averaged
prognostic equations for climate and numerical weather prediction models can be
written, using the Boussinesq approximation, as:

∂θl

∂t
=−

∂w′θ′l
∂z

−v ·∇θl −w
∂θl

∂z
+ ∂θl

∂t rad
(2.3)

∂qt

∂t
=−∂w′q′

t
∂z

−v ·∇qt −w
∂qt

∂z
(2.4)
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where v denotes the horizontal velocity vector, w the vertical velocity and the last
term of the heat equation denotes the tendency due to radiation. Overbars denote
a spatial average over the grid box and primes denote deviations from this aver-
age. The first term on the right hand side represents the turbulent flux divergence
which needs to be parameterized. The second and the third terms denote horizon-
tal and vertical advection which are resolved by the model. Since the horizontal
turbulent flux divergences are much smaller than the vertical turbulent flux diver-
gence at the resolution of large scale models they are omitted in (2.3) and (2.4). For
shallow convection the cloud fraction is usually small, therefore the tendency due
to radiation can be simply prescribed by a clear sky cooling profile.

We can now schematically formulate our parameterization problem for φ ∈
{θl , qt} as:

∂φ

∂t
= ∂φ

∂t convection
+ ∂φ

∂t forcing
(2.5)

which states that the overall tendencies of heat and moisture can be broken down
in a forcing term given by model resolved advection and radiative cooling on the
one hand and a turbulent flux divergence term as a result of convection that needs
parameterization on the other hand. More precisely we are searching for a pa-
rameterization of the turbulent flux in terms of the mean state and the forcing by
means of a function f φ such that:

w′φ′(z)= f φ(z;θl , qt,Fφ), φ ∈ {θl , qt}. (2.6)

where Fφ is a short-hand notation for the forcing term of φ. This is in line with the
definition of parameterization of Jakob (2010) [63].

Since the 1960s, researchers have proposed various ways to parameterize con-
vective processes in a model column (see e.g., [3] for an overview). Arguably the
most widely used class of convection parameterization schemes at present is that of
mass-flux parameterizations. In these schemes, the shapes of the turbulent fluxes
are determined by an entraining plume model, a mass flux closure at cloud base,
and several parameters depending on the resolved-scale variables. A straightfor-
ward way of designing a stochastic parameterization is to “stochasticize” one of
the parameters of an existing deterministic scheme (e.g., [114]). The stochastic
approach explored in this paper is different: we do not rely on physical concepts
such as entraining plumes or mass-flux profiles, but instead we infer the turbulent
fluxes entirely from pre-computed LES data, thereby bypassing all existing ideas
about convection parameterization. We compute the (time-dependent) vertical tur-
bulent flux profiles w′θ′l and w′q′

t from the LES data, and cluster these profiles in
Nα different groups. We emphasize that each of the Nα cluster centroids repre-
sents a flux profile pair, i.e., each centroid is associated with both a heat flux and
a moisture flux. They are denoted by ( f θl

α (z), f qt
α (z)), α = 1, ..., Nα (thus, α is the

cluster centroid index). Once the clusters and their centroids are determined, the
timeseries of LES flux profiles (w′θ′l ,w

′q′
t)(z, t) can be mapped to a timeseries α(t)

for the centroid index.
The key element of our parameterization approach is to infer a Markov chain

stochastic process from the LES timeseries α(t), and to use this Markov chain to



44 2. Stochastic parameterization of shallow convection

Table 2.1: A description of the LES data set

Domain size # grid points Initialization time (hh:mm:ss)

25.6×25.6×3.2 km3 512×512×80; J = 1,024 04 : 00 : 00

Grid size Field experiment # sampling time instances
50×50×40 m3 BOMEX N = 240

Spatial averaging size Length scales LES and sampling time step
1.6×1.6 km2; K = 256 L = 25.6 km; l = 1.6 km;

∆x = 50 m
∆tLES ≈ 6 s and ∆t = 60 s

emulate the temporal behavior of the LES turbulent fluxes. As time evolves, the
Markov chain makes random transitions between different values of α, in accor-
dance with transition probabilities that are estimated from the LES timeseries.
The Markov chain generated timeseries of α is mapped to a timeseries of turbulent
fluxes by using the cluster centroids:(

w′θ′l(z, t),w′q′
t(z, t)

)CMC = (
f θl
α(t)(z), f qt

α(t)(z)
)
. (2.7)

The occurrence of convection depends in part on the resolved-scale state in the
atmospheric model column. To account for this, the Markov chain transition prob-
abilities are conditioned on the resolved-scale state. This conditioning is achieved
by clustering the vertical profiles of θl and qt into Nµ clusters. The timeseries
of the LES resolved variable profiles can be mapped to a timeseries µ(t) for the
resolved-scale state cluster index. Then, we let the transition probabilities for α
depend on the cluster index µ in which the resolved-scale state is. Thus, the tran-
sition probabilities are encoded by Nµ different stochastic matrices, each of size
Nα×Nα.

2.4 Large-Eddy Simulations, turbulent fluxes and the Grey
Zone

To produce high-resolution data we use the Dutch Atmospheric LES (DALES), a
non-hydrostatic atmospheric high-resolution model that is able to resolve clouds
and convection, see Heus et al. (2010) [56]. The horizontal and vertical grid point
distance is on the order of tens of meters, while the horizontal size of the domain
with doubly periodic boundaries is on the order of tens of kilometers and the verti-
cal size is on the order of a few kilometers. The time step is on the order of a few
seconds. The prognostic variables are u, v, w, θl and qt. The equations of motions
are based on the Navier-Stokes equations which are simplified using the Boussi-
nesq approximation. The model calculates the liquid water content of all grid boxes
to compute clouds. DALES has been used for numerous studies on clouds and con-
vection, both shallow convection and deep convection, see [56].

As we focus on shallow cumulus convection, we run DALES based on a non-
precipitating shallow cumulus case as observed during the undisturbed phase of
the Barbados Oceanographic and Meteorological Experiment (BOMEX) [58]. Dur-
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ing this phase, a typical steady state was observed for a period of five days where
the large-scale drying and heating due to subsidence is balanced by radiative cool-
ing and convective redistribution of the surface latent and sensible heat fluxes.
This steady state can be well reproduced by LES and has been extensively de-
scribed in literature [127] [128]. For the details of the initial profiles and the pre-
scribed large-scale forcings, we strictly follow the case setup such as described in
Siebesma [127].

As already discussed in the introduction, stochastic approaches to parameter-
ization are particularly relevant for model resolutions in the Grey Zone. In this
zone, model resolution is too low to resolve convection explicitly, but too high to
rely on quasi-equilibrium to hold. Therefore we consider three different length
scales in the context of our LES model. The first is the horizontal size L×L of
the entire LES domain, where we have chosen L = 25.6 km, see Table 2.1. For
model resolutions of size L (or larger), deterministic parameterizations based on
traditional equilibrium assumptions can be sufficiently adequate for shallow con-
vection. The second length scale is ∆x, the model resolution of the LES model
itself. Obviously, convection is explicitly resolved at this resolution (which we put
at ∆x = 50 m). Finally, the Grey Zone length scale(s) lies in between L and ∆x.
To focus on this intermediate range, we divide the LES domain horizontally into
subdomains, and we investigate the turbulent fluxes on these subdomains. This
coarse-graining technique is similar to the one introduced by Shutts and Palmer
[125].

We divide the whole LES domain of size L×L horizontally into K square sub-
domains of size l× l, such that we can consider them as model columns of an atmo-
spheric model with a resolution in or near the Grey Zone (Fig. 2.1). Each subdo-
main contains J grid point values at every vertical level, which is determined by
the spatial resolution of the LES. The values J and K and the length scales ∆x, l
and L are related as follows:

J = ( l
∆x

)2, K = (L
l

)2. (2.8)

We choose l = 1.6 km, so we have K = 256 subdomains that each contain J = 1,024
LES gridpoints.

The turbulent fluxes calculated over the subdomains do not simply add up to
the turbulent flux calculated over the entire LES domain, because the fluxes are
determined using deviations from different averages. To clarify this, we define the
following averages over the k-th subdomain and over the entire domain:

φ
lk := J−1 ∑

j
φ j,k, (2.9)

φ
L

:= (JK)−1 ∑
j,k
φ j,k = K−1 ∑

k
φ

lk , (2.10)

where φ ∈ {w,θl , qt}. For the k-th subdomain, one can calculate the turbulent flux
relative to the subdomain average φ

lk , or relative to the entire domain average φ
L

.
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Figure 2.1: A depiction of the three length scales discussed in Section 2.4. At the length scale L of
the entire LES domain, deterministic parameterizations relying on equilibrium assumptions can still
be adequate. At the length scale ∆x of the LES model resolution, convection is explicitly resolved. In
the Grey Zone, with model resolutions of size l, in between L and ∆x, stochastic parameterizations are
needed.

The first case gives:

w′φ′ lk = J−1 ∑
j

(w j,k −wlk )(φ j,k −φlk ), φ ∈ {θl , qt}, (2.11)

and is related to the second as follows:

J−1 ∑
j

(w j,k−wL)(φ j,k−φL
)= w′φ′ lk +(wlk −wL)(φ

lk −φL
), φ ∈ {θl , qt}. (2.12)

For the turbulent flux over the whole domain we have:

w′φ′L = K−1 ∑
k

w′φ′ lk +K−1 ∑
k

(wlk −wL)(φ
lk −φL

), φ ∈ {θl , qt}. (2.13)

As is clear, it is not equal to the sum of the subdomain fluxes obtained with (2.11).
There is an additional term (the second term on the right-hand side), which is the
contribution of the fluxes that are resolved at scale l but not at scale L. In the Grey
Zone the two contributions are of the same order, by definition of the Grey Zone.
Remark that in this paper we will calculate the turbulent fluxes on the subdomains
with Eq. (2.11) and not with Eq. (2.12).

With Eq. (2.13), we can decompose for every length scale ∆x ≤ l ≤ L, the turbu-
lent flux on the whole LES domain of size L in a resolved part and an unresolved
part. This decomposition is shown in Fig. 2.2. For this figure, we used two LES
data sets for the BOMEX case: our standard data set with ∆x = 50 m resolution
and L = 25.6 km domain length, and an additional data set with ∆x = 12.5 m and
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Figure 2.2: A decomposition of the turbulent flux −w′θ′l
L

of the whole LES domain of horizontal size
25.6×25.6 km2 in a resolved part and an unresolved part according to Eq. (2.13) as a function of sub-
domain length l (at height 1,000 m). In the Grey Zone these parts are of the same order. The standard
deviation of the unresolved fluxes is shown as a function of the subdomain length. The standard de-
viation is non-negligible up to l = 10 km. This indicates that for length scales larger than 10 km the
column contains enough convective clouds to use a deterministic parameterization for the unresolved
turbulent fluxes. For smaller length scales, stochastic parameterizations are more appropriate.
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L = 6.4 km. Including the second data set enables us to cover a wider range of
length scales in Fig. 2.2 (without the large computational cost of simulating a
25.6×25.6 km2 domain at 12.5 m resolution. The Grey Zone is clearly visible (see
also Honnert 2011 [60]). The standard deviation of the unresolved flux gives an in-
dication of the difficulty of constructing a parameterization for it. In the Grey Zone,
this standard deviation is clearly large. Furthermore, we observe that for larger
length scales the standard deviation decreases as the subdomain size increases;
however, it is still substantial until a horizontal domain size of around 10×10 km2.
This indicates that stochastic parameterizations are appropriate not only in the
Grey Zone, but also for larger length scales up to about 10 km. Using the same
argument, we could derive that also for length scales equal to or smaller than 50
m stochastic parameterizations are appropriate; however, because for these length
scales convection is almost resolved, the unresolved fluxes are small compared to
the resolved fluxes, and therefore, the argument is not valid.

In Fig. 2.3, we display time series of the turbulent response to the prescribed
large-scale cooling in the middle of the cloud layer (z = 1,000 m) for one of the sub-
domains of horizontal size 1.6×1.6 km2 and for the whole domain of horizontal size
25.6×25.6 km2. In the left panel, we plot the heating/cooling in Kelvin per day:
on the whole domain, the turbulent heating is in equilibrium with the large-scale
cooling, while in the subdomain, we see large fluctuations. In the right panel, we
plot the corresponding heat fluxes for the whole domain and for the subdomain at
the same height. It is not difficult to imagine that it is much easier to construct a
parameterization for the flux on the whole domain than for the highly intermittent
flux on the subdomain. Deterministic parameterizations can be used to calculate
the flux in a model column if the resolution is low enough, see [130]. However, if
we desire a parameterization that can produce fluxes such that besides the correct
mean value of the flux, also the variability (in time) is captured for models with a
resolution in the Grey Zone, we need a new kind of parameterization scheme. Be-
low we explore the characteristics of a new stochastic method based on conditional
Markov chains. From now on, we will focus on turbulent flux profiles and resolved-
scale variable profiles on the subdomains of size 1.6×1.6×3.2 km3. The resolution
of LES will be ∆x = 50 m. Further, we will omit the lk upperscript in the w′φ′ lk .

2.5 Construction of the CMC
To construct a CMC, we perform three calculations:

1. Cluster the pairs of turbulent heat and moisture flux profiles to obtain Nα

different flux centroids (i.e., pairs of representative heat and moisture flux
profiles) that determine the flux states, indexed by α ∈ {1, ..., Nα};

2. Cluster the vertical profiles of the resolved-scale variables to form the resolved-
scale states, indexed by µ ∈ {1, ..., Nµ};

3. Count transitions between different flux states to obtain a transition proba-
bility matrix for every µ.

Below, we describe these steps in more detail.
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Figure 2.3: (a) At height 1,000 m the turbulent heating in the whole LES domain of horizontal size

25.6×25.6 km2 (dashed line), i.e., −∂w′θ′l
L

/∂z, is in quasi-equilibrium with the large-scale cooling (dash-
dotted line), while this is not the case for the turbulent heating in a subdomain of horizontal size 1.6×1.6

km2 (solid line), i.e., −∂w′θ′l
lk /∂z. (b) The fluctuations of the corresponding turbulent heat flux, w′θ′l

lk ,

in the subdomain (solid line) are much larger than the turbulent heat flux, w′θ′l
L

, in the whole domain
(dashed line).
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Clustering the turbulent flux profiles
We need to find a finite number of functions that can represent the variability of the
turbulent heat and moisture flux profiles observed in LES. We use clustering of the
observed profiles to obtain such functions [45]. To take into account correlations
between the heat and moisture fluxes, both fluxes are clustered simultaneously.
The resulting cluster centroids are the representative pairs of heat and moisture
flux profiles that we seek.

For clustering, one needs to choose a clustering method and one has to define
a distance function that has to be minimized. We use the k-means++ algorithm, a
partitional center-based clustering method introduced by Arthur (2007) [7]. Apart
from the initialization, the algorithm of k-means++ is the same as the k-means
algorithm first described by Macqueen (1967) [92]. The k-means++ algorithm is
summarized in the Appendix. It minimizes the cost function defined as the sum
over all distances d between data points and their closest centroids. In the present
context, a data point of the algorithm is an equal-time pair of heat and moisture
flux vertical profiles as observed in the LES data set. The number of clusters Nα

has to be chosen a priori. In Section 2.7, we will briefly discuss how to make this
choice.

The method is computationally inexpensive; it conserves the mean of the data;
and it produces smooth (pairs of) functions as centroids. We observe convergence
to a local minimum after a finite number O(20) of iterations. This local minimum
does not have to be a global minimum because the optimization problem is non-
convex. For the present study this is not a problem, as long as the centroids can
represent the variability of observed LES fluxes. A drawback of k-means++ is that
the standard deviation of the clustered data is smaller than the standard deviation
of the original data. In Section 2.6, we will say more about this.

As distance function d, we choose the following Euclidean distance between two
pairs of vertical profiles g = (

g1(z), g2(z)
)

and h = (
h1(z),h2(z)

)
:

d(g,h)=
√∑

z
c1

(
g1(z)−h1(z)

)2 + c2
(
g2(z)−h2(z)

)2. (2.14)

The summation over z is the summation over all 80 vertical levels. The weight
factors ci are included to non-dimensionalize the contributions from the two differ-

ent fluxes (heat and moisture). We choose them to be ci = 〈
√∑

z
(
g i(z)−hi(z)

)2〉,
i ∈ {1,2}, that is, the average distance between the vertical profiles and their clos-
est centroids. Remark that these averages may change every iteration step in the
cluster algorithm.

In Fig. 2.4, we display the centroids calculated using the k-means++ cluster
algorithm with Nα = 10. The shaded areas show, for every height, percentile in-
tervals of the observed LES flux profiles, giving an indiction of the distribution of
the LES fluxes. The centroids cover the range (variability) of the LES flux profiles
quite well. The percentile intervals show that the turbulent fluxes are mostly close
to 0, with infrequent, large fluctuations. Remark that the surface fluxes for the
BOMEX case are fixed at 8.0 ·10−3 K m/s for the heat flux and 5.2 ·10−5 m/s for the
moisture flux. We have numbered the centroids such that α = 1 corresponds to a
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Figure 2.4: The ten centroids (i.e., pairs of turbulent (a) heat and (b) moisture flux profiles) calculated
using the k-means++ clustering algorithm with Nα = 10. The shading indicates for every height the
percentage of (a) heat and (b) moisture flux profiles passing through that interval. The centroids cover
the range of possible heat and moisture flux profiles that are produced in LES on 1.6×1.6×3.2 km3

subdomains.

clear atmosphere, a higher centroid and flux-state number corresponds to a more
convectively active atmosphere and α = 10 corresponds to the most convectively
active atmosphere.

Jumping briefly forward to Fig. 2.9a, one can see for every α the time series of
the observed fraction of LES subdomains that are in this flux state. We see that
60 to 70 % of the subdomains are in flux-state number 1, around 20 % in flux-state
number 2, and lower percentages for higher flux-state numbers. We will discuss
this in Section 2.6.3.

Conditioning on the resolved-scale state
We employ the same clustering method (k-means++) and the same distance func-
tion (2.14) to construct Nµ different clusters of the resolved-scale variables. The
resolved-scale variables we choose to condition on are the entire vertical profiles of
θ and qt, and to retain correlation, we cluster pairs of heat and moisture profiles.
Other choices are possible: one can choose any combination of the resolved-scale
variables u,v,w,θl and qt, at any number of vertical levels. We found that condi-
tioning the Markov chain on the combination of the entire vertical profiles of θl and
qt gives the best results. In Section 2.6.1, we discuss how to choose the number of
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clusters Nµ.
The whole idea behind conditioning the Markov chain on the resolved-scale

state is that the probability of switching between flux states depends on the resolved-
scale state. For example, a small difference in temperature can influence the prob-
ability that a thermal becomes a cloud or not. Rather than choosing these proba-
bilities ad hoc, we estimate them systematically from the LES data. In the next
section, we describe this in more detail.

Estimation of the transition probability matrices
Once the clustering of the turbulent fluxes and the resolved-scale states is com-
pleted, the LES data can be mapped to timeseries (αLES

k (t),µLES
k (t)) for the cluster

indices. Thus, αLES
k (t)= m means that the LES fluxes in the kth subdomain at time

t belong to cluster m, and similarly for the resolved-scale state index µLES
k (t). From

these timeseries, we can estimate the transition probabilities for α, conditioned on
µ. This is done in a straightforward way, by counting transitions and normalizing
in an appropriate way afterwards.

More specifically, we need to estimate the probabilities:

P(i)
nm =Prob[αLES

k (t+∆t)= m |αLES
k (t)= n,µLES

k (t)= i] (2.15)

We do so using the following estimator (as in [25]):

P̂(i)
nm = T(i)

nm∑
m T(i)

nm
, (2.16)

where:
T(i)

nm =∑
k

∑
t

1[αLES
k (t+∆t)= m]1[αLES

k (t)= n]1[µLES
k (t)= i] . (2.17)

The time t runs over the time points t1 to tN−1, and k runs from 1 to K so that all
subdomains contribute to the estimation of the probabilities. The function 1[.] is
the indicator function, satisfying 1[α = m] = 1 if α = m and 1[α = m] = 0 if α 6= m.
Thus, T(i)

nm counts the number of transitions from (n, i) to (m, ·).
In total, we obtain Nµ matrices P̂(i) of size Nα×Nα, one stochastic matrix for

every µ. This set of matrices can be used to emulate the time evolution of the
turbulent fluxes of the LES model. Comparing with the CMC described in [25], we
have omitted the conditioning on µ at the next time point t+∆t. In this way, we
reduce the number of used matrices without huge loss of accuracy. See also [106].

Numerical integration with the CMC parameterization
Using the CMC for parameterization during the numerical time integration of an
atmosphere model proceeds as follows. Let (u,v,w,θl , qt)k(z, t) be the resolved-scale
state in model column k at time t, and let αCMC

k (t) be the flux cluster index for the
same model column at time t.

1. Determine to which cluster µk the resolved-scale state in column k belongs.
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Figure 2.5: (a) Discretized turbulent fluxes (states) observed in one LES subdomain of horizontal size
1.6×1.6 km2 with Nα = 10. This discretization is part of the CMC construction algorithm, see Sect.
2.5.1 (b) Turbulent flux states produced by CMC (in Experiment 1) using the observed resolved-scale
states of the same LES subdomain.

2. Update the resolved-scale state by integrating it, using (2.3) and (2.4), from
t to t+∆t. During this step, the turbulent fluxes in column k are fixed at
(w′θ′l(z),w′q′

t(z))= ( f θl
n (z), f qt

n (z)) with n =αCMC
k (t).

3. Update the fluxes in column k using the stochastic matrix P̂(i) with i = µk,
i.e., sample m randomly from the probability distribution P̂(i)

nm for m, with n =
αCMC

k (t). Now αCMC
k (t+∆t)= m. Repeat this step for all k, using independent

sampling for different k.

In the first step, the resolved-scale state centroids and the distance function d
(2.14) are needed. For step 2, the flux state centroids ( f θl

n (z), f qt
n (z)) are required.

The stochastic matrices P̂(i) are used in the 3rd step.

2.6 Results
We construct and test the CMC parameterization using the LES data shown in
Table 2.1. To construct the CMC we perform the three calculations mentioned
at the start of Section 2.5: we determine Nα = 10 turbulent flux centroids (Fig.
2.4), we consider Nµ = 10 resolved-scale states determined by the vertical profiles
of θl and qt, and compute the ten transition probability matrices P̂(i). We test
the CMC in three different experiments. In the first experiment we let the CMC
produce the turbulent fluxes while using the LES time series µLES

k (t) as input.
Thus, the CMC-produced flux profiles do not feed back onto resolved-scale state.
In the second experiment, this feedback is present, by performing integrations in a
single-column model (SCM) setting. The third experiment is similar to the second
experiment: only the initial profiles are chosen in a different way.

Experiment 1: statistics of the CMC
In this experiment we use the resolved-scale state time series µLES

k (t) obtained
from the LES data to “drive” the CMC. The result is the CMC-generated time series
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αCMC
k (t) with k = 1, ...,K = 256 and t = t1, ..., tN , N = 240. These can be compared to

the LES time series αLES
k (t). For an example of a flux state sequence produced by

LES and by CMC, see Fig. 2.5.
The CMC sequences αCMC

k (t) can be mapped to sequences for the turbulent

fluxes by using the flux centroids ( f θl
α (z), f qt

α (z)). In Fig. 2.6, we display the mean
and the standard deviation of the vertical profiles of the heat and moisture fluxes
observed in the LES data and produced by CMC. There is a small discrepancy for
both the mean value and the standard deviation of the heat and moisture flux. The
reason for the discrepancy in the mean is that the turbulent flux states with a low
probability are less frequently visited in the CMC sequence than in the LES se-
quence. The reason for this is not entirely clear and may be a subtle effect of the
switching between different transition matrices in the CMC. The decrease in stan-
dard deviation is easier to understand: by replacing data with their corresponding
cluster centroids, it can be proven using the Cauchy-Schwarz inequality that the
standard deviation decreases. This problem could be solved by using a moment-
preserving clustering method, see [139]. We will not pursue this here.

The choice of the number of flux centroids Nα and the number of resolved-scale
state clusters Nµ influences the performance of the CMC. The smaller Nα the more
reduction of the standard deviation of the fluxes. The larger Nα the larger the
Nα × Nα transition matrices of the Markov chain, requiring more data for their
estimation. The number Nµ is equal to the number of matrices one has to estimate,
so the higher Nµ the more matrices one has to estimate. Nµ = 1 produces the most
accurate mean fluxes and standard deviations, however for Nµ = 1 the Markov
chain is not conditioned on the resolved-scale state, giving poor results in the SCM
test (Section 2.6.2). Better results in the SCM test are obtained with Nµ > 4. We
find the values Nα = 10 and Nµ = 10 to be a reasonable compromise between these
different considerations.

With this test using resolved-scale states that we observed in LES, we showed
that the CMC is able to produce flux profiles with approximately the right statis-
tics. However, in an NWP or climate model the turbulent fluxes interact with the
resolved-scale state as in Eq. (2.3) and Eq. (2.4) which is not the case in this test.
Therefore, to make a step forward towards this interactive model, we will test the
CMC by implementing it in an SCM setting.

Experiment 2: implementation in an SCM setting
We test the CMC, described in the first paragraph of Section 2.6, in an SCM set-
ting. An SCM is a one-dimensional model in which the tendencies of the prognostic
variables are only calculated for one column, considered as a column of an NWP
or climate model. We will calculate the tendencies of θl and qt using the CMC to
generate turbulent fluxes. The governing equations for θl and qt are analogous to
Eq. (2.3) and Eq. (2.4):

∂θl

∂t
=−

∂w′θ′l
∂z

−wLSS
∂θl

∂z
+ ∂θl

∂t rad
, (2.18)
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Figure 2.6: Mean vertical profile of the turbulent (a) heat and (b) moisture fluxes observed in LES
subdomains of 1.6×1.6×3.2 km3 (solid) and produced by CMC (dashed) in the first experiment. (c, d)
The corresponding standard deviations.

and:

∂qt

∂t
=−∂w′q′

t
∂z

−FLSHA −wLSS
∂qt

∂z
, (2.19)

in which the large-scale subsidence, w = wLSS, is a negative vertical wind velocity
over the whole domain that was determined for BOMEX. The large-scale forcing for
θl and qt are radiative cooling ( ∂θl

∂t rad) and large-scale horizontal advection (FLSHA),
respectively.

We set the initial profiles of θl and qt equal to the average profiles observed
in the K = 256 LES subdomains at time t1. The CMC does not provide w′φ′(t1)
because to determine the turbulent flux profiles it uses the turbulent flux profiles
at the time instance before. Therefore, we choose one of the Nα = 10 flux profiles
at random with a probability given by the invariant distribution of the fluxes for
the given resolved-scale state. For other time instances the CMC can produce flux
profiles w′φ′, which are used to determine the time evolution with Eq. (2.18) and
Eq. (2.19).

We calculate the time evolution of θl and qt for 256 runs of the SCM. We com-
pare these time evolutions to the original time evolution of the LES variables. First
by looking at the entire vertical profiles observed in LES at time t240 and produced
by the SCM (with implemented CMC) after four hours of integration. Then by cal-
culating probability density functions (PDFs) of θl and qt at several heights. In
Fig. 2.7 we see the vertical profiles of θl and qt of 256 LES subdomains and 256 in-
dependent SCM realizations after four hours of integration. At heights 800; 1,000;
1,400 and 1,600 m we take a closer look by plotting the PDFs of the 256 values of
θl and qt of LES and SCM in Fig. 2.8. Here we also plot the results of an SCM
experiment in which we use an unconditioned Markov chain (MC), i.e., Nµ = 1: we
clearly see that the conditional Markov chain performs better.

At t1 the profiles of the SCM are equal for all the 256 realizations, because we
chose them to be equal, but after four hours of integration, the ensemble spread for
θl and qt resembles the spread of the profiles produced by LES.
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Figure 2.7: Superimposed vertical profiles of θl and qt of (a, b) 256 LES subdomains and (c, d) 256
independent SCM-CMC realizations after four hours of integration in the second experiment
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Figure 2.8: PDFs of θl and qt at heights (a, e) 800, (b, f) 1,000, (c, g) 1,400 and (d, h) 1,600 m of
256 LES subdomains (solid line) and 256 independent SCM realizations after four hours of integration
using CMC (dashed line) and MC (dash-dotted line) in the second experiment
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Figure 2.9: Time series of the fractions of the ten flux states (a) observed in the 256 LES subdomains
and (b) produced in the 256 SCM-CMC realizations in the third experiment.

Experiment 3: implementation in an SCM setting with different ini-
tial conditions
We perform another experiment with the SCM. Now, we run the SCM-CMC again
256 times, but with initial profiles of θl and qt of the k-th run set equal to the
profiles of the k-th subdomain observed in the LES data at time t1. For both LES
and the SCM, we count the fraction of realizations that are in flux state 1 to 10 as
a function of time and plot the time series in Fig. 2.9. The figure is inspired by a
similar figure in Khouider et al. (2010) [72]. We see a good similarity between the
fractions produced by the SCM and observed in the LES. The equilibrium value
of the fractions and the random fluctuations around it are well reproduced by the
SCM. Remark that it takes a few hours of calculation on a supercomputer to pro-
duce the LES time series, while the time series of the SCM with the implemented
CMC can be calculated on a laptop within one minute. What is not well visible in
Fig. 2.9 is that the fractions of the least probable flux states (e.g., α = 10) are not
very well reproduced by the SCM. In the SCM-CMC simulation, these fractions are
too low compared to the fractions observed in LES, as was already mentioned in
Section 2.6.1.

As a final remark, we recall that we use the entire vertical profiles of θl and
qt to condition the Markov chain on. When conditioning on the values of θl and
qt at only a few vertical levels, then after four hours of integrating SMC-CMC the
profiles of θl and qt were correct at these levels but (highly) inaccurate at other
levels (results not shown).

2.7 Discussion and outlook
In this study, we considered the parameterization of shallow cumulus convection
by data-inferred stochastic processes. The vertical turbulent fluxes of heat and
moisture in an atmospheric model column were modeled with a stochastic process
that is conditioned on the resolved-scale state in the same column. We adopted
the approach from Crommelin and Vanden-Eijnden (2008) [25], in which the condi-
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tional stochastic processes, representing the feedback from unresolved scales, are
chosen to be conditional Markov chains whose properties are estimated from data
of high-resolution simulations. This approach has not been applied to convection
parameterization before. We used LES at convection-resolving resolutions to sim-
ulate shallow convection in a realistic manner. The data from these simulations
were used to estimate (“train”) the CMC.

Modeling convective turbulent fluxes with a finite-state Markov chain requires
discretization of the space of possible fluxes. This was achieved by using a cluster-
ing method, in which the LES-generated heat and moisture fluxes were clustered
simultaneously in order to capture the correlation between the two fluxes. The
resulting cluster centroids each represent both a heat and a moisture flux profile.
The CMC emulates the convective behavior of LES by randomly jumping between
the centroids, according to transition probabilities estimated from the LES data.

We demonstrated in Section 2.6 that the CMC was able to reproduce the mean
vertical profile of the LES-generated fluxes and the vertical profile of their stan-
dard deviations. Tests in an SCM setting showed that the CMC was able to produce
realistic fluxes, as well as an ensemble spread comparable to the spread observed
in the LES data. Also, the time series of the fractions of different flux states were
very similar in SCM-CMC and LES. Altogether, the CMC was well able to mimic
the turbulent heat and moisture processes corresponding to shallow cumulus con-
vection in the LES model. The CMC can be regarded as a statistical emulator of
the high-resolution LES model.

The added value of this present stochastic parameterization is not so much that
it is capable of reproducing the observed mean state, but more so that it is able to
reproduce the fluctuations at scales in the Grey Zone of the relevant process, in
this case shallow cumulus convection. A crucial ingredient is that the constructed
Markov chain is conditional on the resolved-scale state. This way it is possible to
have the correct temporal evolution of the states of the subgrid domains, albeit in
a stochastic way, reflecting the life cycle of the clouds that are present in such a
subdomain. The relevance of these fluctuations for the larger scales depends on
whether they will cascade up to larger scales. These effects have not been investi-
gated within the present study.

In order to do so one may need to take into account spatial correlations through
not only conditioning the transition probability on the state of the subdomain of
interest but also on the state of the neighboring subdomains. This way one could
construct a data-driven cellular automaton that would be able to create spatial
mesoscale structures, assuming that such structures are present in the data set on
which the system is trained. However this is beyond the scope of the present study.

The main purpose of this paper is to simply demonstrate that the CMC that
has recently been introduced and applied to the L96 model [25], which is a low-
dimensional toy model, can actually successfully be applied to complex realistic
high-dimensional atmospheric processes such as shallow cumulus convection.

We also demonstrated that the range of scales where stochastic parameteriza-
tions are required goes beyond the Grey Zone (see Fig. 2.2). For the present case
of rather unorganized shallow cumulus convection, the Grey Zone ranges from 50
to 800 m. The range where stochastic parameterizations are required on the other



2.8. Acknowledgment 59

hand extends to scales up to 10 km, at which there are still significant fluctuations
of the turbulent fluxes amongst the various subdomains that are subjected to the
same large-scale forcing.

Finally, one might ask how one can make the present CMC more general ap-
plicable. After all in the present study the CMC has been trained to reproduce a
specific realization of shallow cumulus convection (BOMEX) and will hence only be
able to reproduce this realization with all its variability. Of course the aim is to de-
velop a stochastic parameterization that will be able to reproduce moist convection
more generally under a range of different conditions. We see various possibilities
of using the present CMC to “stochasticize” existing moist convection parameteri-
zations that operate on a wide scale of conditions. One possibility is to apply the
present CMC technique on a multicloud model such as put forward by Khouider
et al. (2010) [72] to infer the transition probabilities from data, rather than base
them on physical intuition. Alternatively one can apply this technique to more
conventional moist convection mass flux parameterizations. One can use LES data
(or real observations if available) to find parameters in the parameterizations that
will strongly fluctuate when diagnosed on smaller subdomains and train the CMC
in order to stochasticize the fluctuating parameters. One obvious candidate is the
cloud base mass flux which is a rather constant parameter at coarse resolution but
that will start to fluctuate wildly if the subdomains reach scales on the order of the
size of the clouds that constitute the moist convection.
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Appendix
The k-means++ algorithm:
Given data consisting of data points that have to be clustered into a finite number
of clusters each represented by a cluster centroid. Let a distance between a data
point and its nearest centroid be defined.

1. Choose a data point uniformly at random from the set of data points, this will
be the first centroid.

2. Select a new data point at random from the set of data points with probability
proportional to the squared distance to its nearest centroid, this will be the
next centroid.

3. Repeat step 2 until the number of desired centroids has been reached.

4. Assign every data point to its closest centroid to form clusters.

5. In every cluster take the mean of its data points to form new centroids.
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6. Repeat step 4 and step 5 till the centroids do not change anymore.



Chapter III
Stochastic parameterization of

deep convection

3.1 Abstract
Stochastic subgrid models have been proposed to capture the missing variability
and correct systematic medium-term errors in general circulation models. In par-
ticular, the poor representation of subgrid-scale deep convection is a persistent prob-
lem which stochastic parameterizations are attempting to correct. In this paper,
we construct such a subgrid model using data derived from Large-Eddy Simula-
tions (LESs) of deep convection. We use a data-driven stochastic parameterization
methodology to construct a stochastic model describing a finite number of cloud
states. Our model emulates, in a computationally inexpensive manner, the deep
convection-resolving LES. Transitions between the cloud states are modeled with
Markov chains. By conditioning the Markov chains on large-scale variables, we ob-
tain a conditional Markov chain, which reproduces the time evolution of the cloud
fractions. Furthermore, we show that the variability and spatial distribution of
cloud types produced by the Markov chains becomes more faithful to the LES data
when local spatial coupling is introduced in the subgrid Markov chains. Such spa-
tially coupled Markov chains are equivalent to stochastic cellular automata.

3.2 Introduction
General circulation models (GCMs) are unable to capture the medium-term vari-
ability in the tropical atmosphere. Lin et al. [85] made a comprehensive study
of the tropical wave spectra determined from the Intergovernmental Panel on Cli-
mate Change (IPCC) GCMs and showed that none were able to reproduce the ob-
served power spectrum [143] of convectively coupled Kelvin waves, two day waves,
westward inertio-gravity waves and, least of all, the Madden-Julian oscillation
[150]. These are the waves that modulate weather on intraseasonal time scales
in the tropics and are increasingly seen to affect two-week weather forecasts in the
middle latitudes [150].

One bias that [85] identify in these GCMs is “the persistence of equatorial pre-
cipitation”, which occurs at the subgrid scales. In the parlance of dynamical sys-
tems, the subgrid dynamical models quickly attain their equilibrium values and
remain there too long. Palmer [109] used simple arguments from dynamical sys-
tems to show how the reduction of a chaotic dynamical system to a smaller number

This chapter has been published as Dorrestijn, J., Crommelin, D.T., Biello, J.A., Böing, S.J., 2013: A
data-driven multi-cloud model for stochastic parametrization of deep convection, Phil. Trans. R. Soc.
A, 371, pp. 20120374[34]
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of degrees of freedom can suppress the chaos. While this has the obvious effect of
suppressing the variability, he argued that it can have the, even more insidious,
effect of driving systematic errors in the mean state. A stochastic parameteriza-
tion of the unresolved convection introduces variability in the GCM description of
these processes, and these parameterizations are increasingly being seen as the
next generation of subgrid models [11, 42, 72, 108, 109, 114, 124].

Khouider et al. [72] created a stochastic multicloud model based on the de-
terministic multicloud model of [73]. The deterministic multicloud model was de-
rived to correspond to the observed behavior of tropical waves [97], where a focus
on three cloud types is needed to capture the observed structure of convectively
coupled waves. Furthermore, the deterministic model was calibrated so that the
dynamics of the waves matched those of the tropical wave spectrum [143]. When
implemented in a GCM, it has been shown to capture much of the convectively
coupled equatorial wave [75] activity.

In the stochastic model [72], convection is modeled on a two-dimensional micro-
lattice by letting the local convective state at each lattice site switch randomly be-
tween four possible states (three cloud types, and clear sky) with a given probabil-
ity. At the macroscopic level, the area fractions of these four states evolve randomly
over time. The fractions effectively determine the feedback from the micro-scale to
the macro-scale. Even in the setting of a single column [72], it was shown that
the stochastic multicloud model has a large degree of variability. When coupled to
a one-dimensional dynamical core [42], it produces a large degree of gravity wave
variability.

Crommelin & Vanden-Eijnden [25] proposed a data-driven stochastic parame-
terization methodology, where the stochastic processes driving the parameteriza-
tion are systematically inferred from data (e.g., from high-resolution models). This
method was used by [36] on data from a Large-Eddy Simulation (LES) of shallow
convection. This approach leads to a model with random jumps between a finite
number of possible subgrid-scale states, where both the discrete states as well as
the switching probabilities are estimated from data. Furthermore, the switching
probabilities are dependent (conditional) on the macroscopic, resolved-scale state
of the atmosphere.

For the shallow convection parameterization in [36], vertical turbulent fluxes
of heat and moisture were collected from the LES data and discretized using a
clustering method. By contrast, the discrete states used in [72] are cloud types
(congestus clouds, deep convective clouds, stratiform clouds, and clear sky) rather
than flux states. The states and switching probabilities used in [72] are based on
physical intuition and observations; they are not inferred from data.

The objective of the current study is to determine a stochastic multicloud pa-
rameterization approaches as in [72] using a data-driven approach from [25, 36].
Much as in [72], we use pre-specified cloud types as a basis for discretizing the
subgrid-scale states, and study their (time-evolving) fractions on macroscopic do-
mains. The precise discretization, as well as the switching probabilities and the
conditioning on the resolved-scale state, are all inferred from LES data, as in [25]
and in [36].

Specifically, we use eight hours of simulation of the development of tropical con-
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vection based on an idealization of observed conditions in northwest Brazil [146].
Simulated cloud top and rain water path are stored to classify states on the LES
(horizontal) grid nodes. We use five states: (i) clear sky and the four cloud types
(ii) shallow cumulus, (iii) congestus, (iv) deep and (v) stratiform. Strictly speaking,
clear sky is not a cloud type, but from now on we will refer to five cloud types.
At the beginning of the simulation, only clear sky is present. Gradually, shallow
cumulus develops, followed by (raining) congestus clouds. After about 5 h, deep
convective towers with heavy precipitation develop. The deep convective towers
turn into passive stratiform decks that spread and dissolve.

The paper is organized as follows. In Section 3.3, we discuss how we model tran-
sitions between cloud types with Markov chains (MCs), and how these MCs can be
made conditional on the environment, or on the cloud types at neighboring lattice
sites. We describe the LES data and specify the cloud classification in Section 3.4.
The stochastic multicloud model is described in Section 3.5. In Sections 3.6-3.8, we
infer the transition probabilities of the MCs and assess their ability to reproduce
(emulate) the cloud filling fractions from the LES data. In Section 3.6, we use a
MC without conditioning, in Section 3.7 a MC conditioned on the environment, and
in Section 3.8 a MC conditioned on cloud types at neighboring lattice sites. Then,
we discuss implementation of the multicloud model into a simple single-column
model (SCM) (Section 3.9), again calculating cloud filling fractions. Finally, con-
clusions about our multicloud model, how stochastics can change dynamics and its
implications for climate models are given in Section 3.10.

3.3 Modeling cloud type transitions with Markov chains
A central element in the stochastic parameterization approach used here and in
recent studies [25, 36, 72] is discretization of the subgrid-scale (e.g., convective)
states. Here, each grid point at the microscopic level can be in only one of five
possible states. Let us denote by Yi(t) ∈ {1,2,3,4,5} the state at time t at grid point
i. The time evolution of Yi(t) is modeled as a MC, so Yi(t) changes randomly in
accordance with a set of transition probabilities. In the most basic form, these
probabilities are simply:

p(α,β)=Prob(Yi(t+∆t)=β |Yi(t)=α) . (3.1)

However, in this basic formulation, the probability of, for example, a congestus
state at grid point i turning into a deep convective state is independent of the en-
vironment (macroscopic state) for i. To include such dependency, in recent studies
[25, 36, 72], the transition probabilities are conditioned on the macroscopic state.
If we denote by X i(t) a variable that is representative of the environment of i
(e.g., convectively available potential energy (CAPE), convective inhibition (CIN),
or mid-troposphere relative humidity (RH)), the transition probabilities of such a
conditional MC (CMC) are:

pγ(α,β)=Prob(Yi(t+∆t)=β |Yi(t)=α, X i(t)= γ) . (3.2)

As can be seen, the transition probabilities in (3.1) and (3.2) are not explicitly de-
pendent on the convective states of neighboring grid points. If i and j are neigh-
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boring grid points, Yi and Y j are completely uncoupled in case of (3.1). They are
coupled indirectly via X i and X j in case of (3.2), because X i and X j are coupled
at the macroscopic level. Since i and j are neighboring grid points, X i and X j will
be strongly correlated. In this paper, we also explore explicit conditioning on the
neighborhood, as this is likely to improve the spatial correlation of the parame-
terized convection patterns. We do this by considering the conditional transition
probabilities:

pδ(α,β)=Prob(Yi(t+∆t)=β |Yi(t)=α, Y{i}(t)= δ) , (3.3)

and:
pγ,δ(α,β)=Prob(Yi(t+∆t)=β |Yi(t)=α, X i(t)= γ, Y{i}(t)= δ) , (3.4)

where {i} denotes the neighborhood of i (e.g., the eight direct neighbors on the
lattice). We note that by conditioning the MC on neighboring states, as in (3.3),
the MC effectively becomes a stochastic cellular automaton (SCA). A schematic
overview of the generalizations of the Markov chains is shown in Fig. 3.1.
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Figure 3.1: A Markov chain (MC) can be conditioned on the macroscopic state to obtain a CMC (eq.
(3.2)) or on the state of the nearest neighbors to obtain a SCA (eq. (3.3)).

Each grid point on the microlattice has a state that evolves randomly according
to the same set of transition probabilities, e.g., (3.2). At the macroscopic level,
square blocks of microlattice sites are grouped together, and we study the filling
fractions (or area fractions) of the various convective states. For each block, we
have:

σα(t)= n−1
n∑

i=1
1(Yi(t)=α) , (3.5)

where n is the number of microlattice sites in the macroscopic block, and 1(.) is the
indicator function. The filling fractions are time-dependent and random, and must
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sum up to one for each macroscopic block:
∑
ασα(t) = 1, for all t. By matching the

size of the macroscopic blocks to the (horizontal) size of GCM model grid boxes, the
filling fractions can be used as input for parameterizing vertical transport due to
convection.

Figure 3.2: (a,c,e) Histograms of the cloud top at different time instances of the simulation. (b,d,f) Three
snapshots of the LES field for which all columns are assigned to one of the five cloud types.
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3.4 Large-Eddy Simulation
We use the Dutch Atmospheric LES (DALES) model to produce high-resolution
data. DALES is a non-hydrostatic model that resolves atmospheric convection ex-
plicitly by solving the spatially filtered Navier-stokes equations under the anelastic
approximation. The model has an ice microphysics scheme, but does not account
for latent heat release due to freezing. For further details about DALES we refer to
[56]. The simulation is based on an idealization of observed conditions [146] during
the tropical convection experiment TRMM-LBA carried out in northwest Brazil in
1998/1999. There is no horizontal shear, and surface heat and moisture fluxes are
held constant throughout the simulation. At the start of the eight-hour simulation,
the entire LES domain consists of clear sky. Convection develops gradually, first
shallow convection, eventually (after about five hours) also deep convection. We
emphasize that it is a non-stationary case of the development of deep convection.
The simulation and the resulting data are described in more detail by [17].

The horizontal size of the LES domain is 57.6×57.6 km2 and the vertical extent
is 25 km. The horizontal grid spacing is 150 m and the vertical spacing increases
exponentially from 40 m near the surface to 200 m at the upper levels. For every
column, we store the simulated cloud top height, rain water path (the vertically
integrated rain water content), CAPE and CIN. We also store liquid water potential
temperature θl and total water specific humidity qt at two model levels, one in the
boundary (subcloud) layer at 413 m, the other in the lower free troposphere at
2,345 m. These variables are defined by:

θl = θ−
L

cpπ
ql and qt = qv + ql , (3.6)

with θ the potential temperature, L the latent heat of vaporization, cp the specific
heat of dry air at constant pressure, ql the non-raining liquid water content and qv
the water vapor specific humidity. Furthermore, π is the Exner function, the ratio
of absolute and potential temperature. In the absence of precipitation, θl and qt are
conserved for moist adiabatic processes. We store the data at time intervals of one
minute during eight hours, resulting in 480 time slices of the variables mentioned
above in each of the 384×384 LES model columns. Below, we discuss how these
variables are used for classification of each model column state into five cloud types.

Classification of cloud types
In the vein of [96] and [72], we consider five cloud types: clear sky, shallow cumulus,
congestus, deep convection and stratiform. Fig. 3.2 (a,c,e) shows histograms of the
cloud top height. At t = 480, we see three categories (clear sky, low clouds and
high clouds), which can be well distinguished with thresholds at 200 and 5,000 m.
Furthermore, to distinguish the heavily raining deep convective towers from their
passive, modestly raining stratiform remnants, we use the rain water path divided
by the cloud top height. We call this the column rain fraction:

CRF := rain water path
cloud top

. (3.7)
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Figure 3.3: Classification of cloud types using cloud top and CRF.

By dividing by the cloud top height we obtain a measure of the rain intensity, from
which the vertical extent of raining cloud has been factored out. The CRF makes
it easier to identify stratiform clouds, which have high cloud top and low, but not
always negligible rain water path. Furthermore, we can use the same threshold of
the CRF, 10−5 kg m−3, to distinguish deep from stratiform as well as non-raining
shallow cumulus from raining congestus clouds. In Fig. 3.3, we plot the CRF
against the cloud top height and indicate four cloud types with different symbols.
The clear sky group is not shown because its CRF is not well defined. In Table 3.1,
we summarize the cloud classification.

We can now assign the state of each LES column, at every time step, to one
of the five cloud types. Fig. 3.2 (b,d,f) shows snapshots of the LES domain with
all columns assigned to one of the cloud types. At t = 100, we see clear sky sites
combined with shallow cumulus clouds and some congestus clouds. At t = 300,
deep towers start to develop. At t = 480, we see larger deep towers and dissolving
stratiform decks.

3.5 The stochastic multicloud model
With the LES data discretized according to Table 3.1, we can choose the size of the
macroscopic blocks and calculate the filling fractions σα(t) on each of these blocks
using (3.5). In what follows, the LES blocks always consist of 32×32 microscopic
lattice sites (so that n = 322), unless explicitly stated otherwise. The corresponding
physical size of these blocks is 4.8 km by 4.8 km. The entire LES domain is covered
by 122 of such (non-overlapping) blocks. In Fig. 3.4a we show the time evolution
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Table 3.1: Classification of the clouds. CRF defined in (3.7).

Cloud type cloud top [m] rain [kg m−3]
Clear sky n/a n/a
Shallow cumulus 200≤ h < 5,000 CRF ≤ 10−5

Congestus 200≤ h < 5,000 CRF > 10−5

Deep h ≥ 5,000 CRF > 10−5

Stratiform h ≥ 5,000 CRF ≤ 10−5

of the means and standard deviations of the filling fractions, taken over the 122

different blocks. We emphasize that these are the filling fractions as computed
directly from the LES data.

With the stochastic multicloud model, we aim to emulate the time evolution of
the LES filling fractions. This is done by evolving the state (cloud type) of each
microlattice site as a MC. The states on the microlattice sites can be grouped again
in macroscopic blocks (of any desired size), leading to emulated filling fractions. As
already mentioned, the number of MCs grouped together in the multicloud model
in one macroscopic block will be 1,024; except for the creation of plots in Fig. 3.7b,
3.8b and 3.11b where we use blocks of 64 MCs.

The transition probabilities that characterize the MC are of the form (3.1), (3.2),
(3.3) or (3.4). Their numerical values are estimated from the LES data. We use a
time step ∆t of one minute, matching the saving time step of the LES data. We
assess the performance of the various forms (3.1) - (3.4) in the following sections.
The choice of the macroscopic environment variable X i(t), used in (3.2) and (3.4),
are discussed there as well.

Eventually, the multicloud model has to provide not just filling fractions, but
vertical profiles for heating and moistening that can be used for parameterization
purposes in a GCM. In Section 3.9.2, we explain how we deal with heating and
moistening in a single-column model experiment.

3.6 Markov chains
We start by using the simplest form (3.1), i.e., the form where the Markov chain
is not conditioned on macroscopic environment variables or on neighbor states.
The transition probabilities determine a single 5×5 stochastic matrix in which the
entry at the k-th row and l-th column is the probability that a site that is in state
k will switch to state l in the next minute. We count transitions in the LES data to
estimate the transition probability matrix, resulting in:

M̂=


0.95 0.04 0.00 0.00 0.00
0.14 0.84 0.02 0.00 0.00
0.02 0.06 0.90 0.02 0.00
0.01 0.00 0.03 0.94 0.03
0.10 0.03 0.00 0.01 0.86
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Note that in this matrix we display probabilities rounded up to two decimal places,
while we keep calculating with higher precision. We use all data of the entire simu-
lation to estimate transition probabilities. In this case we do not take into account
the strong dependence of the transitions on time. The reader is reminded that the
case we consider is a non-stationary case of the development of deep convection.
Next, we will test the skills of this Markov chain.

Filling fractions of the Markov chain
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Figure 3.4: (a) Mean filling fractions observed in the LES data using n = 322 micro lattice sites per
macroscopic block (solid) plus and minus the standard deviations over the 122 macroscopic blocks
(dashed) and (b) reproduced mean filling fractions using 1,024 MCs (solid) plus and minus the stan-
dard deviation of 144 realizations (dashed).

Fig. 3.4 shows cloud filling fractions observed in the LES data and reproduced
by the MC. The MC filling fractions converge quickly to the filling fractions that
correspond to the invariant distribution of the transition matrix. These fractions
are, therefore, accurate in the sense that they are in agreement with the time aver-
ages of the fractions observed in the LES data. However, the standard deviations
are too small and the overall time evolution of the LES cloud fractions is not cap-
tured at all.

From the results in Fig. 3.4, we can conclude that a MC governed by (3.1)
is not capable of emulating the LES cloud fractions satisfactorily. A longer time
step (20 minutes) for the MC did not improve any of these deficiencies (results not
shown). Rather, the shortcomings are due to the insensitivity of the MC to both
the macroscopic environment and the neighbor states. A natural way to improve
on this is to include dependency on environment or neighbors. Thus, in the next
sections we generalize the MC (3.1) by:

1. conditioning on the macroscopic state (environment), leading to the CMC
form (3.2), or

2. coupling to neighboring cells, leading to the SCA form (3.3).
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In the most general form (3.4), both environment and neighboring states are in-
cluded. A schematic overview of these generalizations was shown in Fig. 3.1.

3.7 Conditional Markov chains
In this section, we explore conditioning of the MCs on a function of some large-
scale variables that could be resolved in a GCM. Large-scale variables such as
CAPE, CIN, middle troposphere RH, or (moist) convergence are considered to be
potential indicators of convective behavior. In Section 3.7.1, we discuss how mu-
tual information can be used as an objective measure to quantify how good these
indicators are.

For now, to explain our method we choose to condition on the CAPE and the
CIN. These functions of large-scale variables have been used before in [74] and [72].
A reversibly lifted adiabatic parcel, using the mean thermodynamic properties at
the 200-400 m level, is used to calculate the CAPE and the CIN in every LES model
column. In the present context, CAPE and CIN mostly indicate the evolution of the
surface properties, rather than the state of the free troposphere. CAPE and CIN
are affected both by the gradual moistening and heating by surface fluxes and by
the presence of cold pools [138]. The values depend on the choice of variable used
to construct the adiabats, in our case θl . Although the CAPE values reported here,
maximum values of around 4,500 J/kg, are higher than what we had expected,
seasonally averaged values as high as 7,000 J/kg have been reported over tropical
land masses by [120].

As before, we divide the whole LES domain in 122 macroscopic blocks (subdo-
mains) and calculate spatial averages of CAPE and CIN on these subdomains. We
thereby obtain 122 paths in the CAPE-CIN space, each 480 minutes long. An even
larger part of the CAPE-CIN space could be sampled by combining data from sev-
eral LES runs with different initial profiles for temperature and humidity; we will
not explore this here.

After obtaining the paths in the CAPE-CIN space, we cluster the CAPE-CIN
data points in K clusters using the K-means++ algorithm [7, 45, 92]. While clus-
tering the CAPE-CIN space, we use the Euclidean distance with different rescaling
factors for CAPE and CIN. The rescaling factors are such that the mean contribu-
tion to the distance to the centroids is equal for CAPE and CIN. The clustering al-
gorithm also works for all other (combinations of) large-scale variables, with other
scaling factors. The number of clusters K has to be chosen beforehand. It should
be as small as possible, because for every cluster a 5×5 transition matrix has to be
estimated. We refer to [36] and [81] where clustering has been used to construct
CMCs.

In Fig. 3.5, we show the result of the clustering using K = 20. For K = 20,
we will show that the CMCs are able to reproduce the correct filling fractions (see
Section 3.7.2). All 122 paths start at CIN ≈ 80 J/kg and CAPE ≈ 2400 J/kg. Then,
CAPE increases and CIN decreases almost uniformly in the domain. When deep
convection sets in, the domain starts to become very inhomogeneous, resulting in
CAPE and CIN values that differ substantially over the subdomains. After the
CAPE-CIN space is divided into K regions, the paths in the CAPE-CIN space can
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be mapped to paths in the space of cluster centroids. To sum up: first we calculate
the (time-evolving) subdomain averages of CAPE and CIN from the LES data, then
we cluster these CAPE-CIN averages. To determine the environment state X i(t)
for micro lattice site i we use the discretized (clustered) CAPE-CIN state of the
subdomain to which site i belongs. Thus, X i(t) effectively takes values in the set
of cluster indices: X i(t) ∈ {1,2, ...,K}. Using this X i(t) in the manner of (3.2) to
condition the transition probabilities implies that we have a transition probability
matrix associated with each CAPE-CIN cluster.

These transition probability matrices are estimated by counting transitions in
the LES data (see also [25]). To estimate the probability pγ(α,β) defined in (3.2)
we use the estimator:

p̂γ(α,β)= Tγ(α,β)∑
βTγ(α,β)

, (3.8)

where Tγ(α,β) is the number of cloud type transitions α→ β observed in the LES
data with X i(t)= γ. Thus,

Tγ(α,β)=∑
t,i

1(Yi(t+∆t)=β)1(Yi(t)=α)1(X i(t)= γ) (3.9)

Figure 3.5: Clustered paths forming K = 20 regions in the CAPE-CIN space. The red dots are cluster
centroids.

Mutual information between environment and cloud type
Large-scale variables such as CAPE, CIN or middle troposphere RH are consid-
ered to be potential indicators of convective behavior. Below we discuss how mu-
tual information can be used as an objective measure to quantify how good these
indicators are.

Suppose we have two discrete random variables with a joint probability mass
function pJ (x, y) and marginal probability mass function p(x) and p(y). Then, the
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Large-scale variable(s) Information
RH at 2,345 m & CIN 0.0992

RH at 2,345 m & w at 413 m 0.0948
CAPE & CIN 0.0946

CAPE & w at 413 m 0.0897
CIN & w at 413 m 0.0809

CIN 0.0757
RH at 2,345 m & CAPE 0.0710

w at 413 m 0.0697
CAPE 0.0589

RH at 2,345 m 0.0590
u at 15,843 m 0.0290

Table 3.2: Mutual information between large-scale variables and cloud type at 4.8×4.8 km2 subdomains.

mutual information is the relative entropy or Kullback-Leibler distance between
the joint distribution pJ and the product distribution pP (x, y) = p(x)p(y). It is
given by:

I(pJ , pP )=∑
x,y

pJ (x, y) log
(

pJ (x, y)
pP (x, y)

)
where the sum is over all values of x and y. I(pJ , pP ) quantifies how much ad-
ditional information pJ contains relative to pP . For more details about mutual
information and other information-theoretic concepts we refer to [24].

In our case, x and y are the environment state X i(t) and the cloud type Yi(t)
at the same location, respectively. The mutual information between their joint
distribution and the product of their marginal distributions quantifies how good
an indicator X i(t) is for Yi(t), and thus how useful it is to condition the MC for Yi
on X i. In [99], similar use is made of mutual information to select useful indicators
for stochastic cellular automata. We note that in our case, the joint and marginal
distributions are non-stationary; therefore we calculate the mutual information
separately for every time t of the LES data set.

In Fig. 3.6, we show three time series for mutual information between the
large-scale variables and the cloud type. In the beginning of the simulation, the
mutual information is zero. The reason is that clouds have not evolved yet, and
therefore the large-scale variables do not give information about the presence of
a cloud. The mutual information is first calculated for every time instance and
then the average is calculated over the last two hours (the phase in which deep
convection is developed) to obtain a single value for the mutual information such
that we can compare different choices of the large-scale variables. In Table 3.2,
we list the time-averaged mutual information using various (clustered) quantities
for X i. To give an interpretation to the value of (mutual) information in nats, we
mention that the mutual information between the cloud type and the cloud type
itself is 1.1486 (this would be the best possible score).
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The result in Table 3.2 shows that the combination of CAPE and CIN gives
significantly more information about cloud type than either of them alone. We see
that both the vertical velocity field (w) and the CAPE/CIN fields contain informa-
tion on the state of convection. Both of them may be used to reproduce some of the
time-dependent behavior of convective organization in low wind shear (e.g., cold
pools). Here we choose for CAPE and CIN to obtain the best filling fractions. A
more detailed study of the physical mechanisms behind the organization of deep
convection in the present case is given in [17].

As a final remark, we have included the mutual information of u at 15,843 m
in Table 3.2 as a consistency check: u at 15,843 m is mainly determined by upward
propagating gravity waves that can have a remote origin, and we do not expect it
to be a good indicator of the state of convection and cloud type. The low value of
the mutual information confirms this intuition.
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Figure 3.6: Time series of the mutual information between the large-scale variable at time t and cloud
type at time t for different large-scale variables.

Filling fractions of the CMC
Fig. 3.7 shows filling fractions produced by CMCs that are conditioned on CAPE
and CIN with K = 20 clusters. The left panel shows the means and standard de-
viations of the fractions over 144 macroscopic blocks using 1,024 CMCs per block.
The time evolution of the means is in good agreement with the LES results, as can
be seen by comparing with Fig. 3.4a. With a smaller number of clusters (K = 10)
the agreement was unsatisfactory (results not shown). Further, the standard devi-
ations are too small compared to the LES results. They can be increased by using
a smaller number of CMCs (because fractions determined by a smaller number of
Markov chains are more likely to deviate from the expected values). In Fig. 3.7b,
we show the means and standard deviations using only 64 CMCs per macroscopic
block. As expected, by using only 64 instead of 1,024 CMCs, the standard devia-
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tions are larger and therefore in better agreement with the LES fractions. In Fig.
3.8, we show cloud filling fractions on a single macroscopic block; in Fig. 3.8a, the
fractions of the LES data on a block of size n = 1,024; in Fig. 3.8b, the fractions
as produced by the multicloud model using 64 CMCs (conditioned on CAPE-CIN).
We see that by using CAPE and CIN to condition the CMCs, the time-evolution of
the filling fractions is captured. This is not solely because CAPE and CIN are indi-
cators of convection: in the first part of the simulation, CAPE increases (and CIN
decreases) steadily with time, so that conditioning on CAPE and CIN is similar to
conditioning on time. However, this only holds true for the first part of the 8 h of
simulation. In the last hours, CAPE no longer increases in all LES subdomains.
Instead, we observe a decrease of CAPE in part of the subdomains.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Time [min]

C
M

C
F

ra
ct

io
ns

b[d
]

(a)

clear
shallow
congestus
deep
stratiform

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Time [min]

C
M

C
F

ra
ct

io
ns

b[d
]

(b)

clear
shallow
congestus
deep
stratiform

Figure 3.7: (a) Mean filling fractions produced by 1,024 CMCs with K = 20 clusters of CAPE and CIN
(solid) plus and minus the standard deviation (dashed). The CMC is driven by LES observed values of
CAPE and CIN. (b) Same as left but with 64 CMCs.
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Figure 3.8: (a) Filling fractions observed in a single macroscopic block of n = 322 LES columns. (b)
Filling fractions using 64 CMCs, where each CMC is conditioned on CAPE and CIN with K = 20.
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3.8 Stochastic cellular automaton
In Section 3.7.2, it was shown that conditioning of the MC on the macroscopic en-
vironment strongly improves the behavior of the filling fraction means, cf. Fig. 3.4
and Fig. 3.7. However, the variances of the CMC filling fractions are too small, and
can only be brought in better agreement with the variances of the LES filling frac-
tions by reducing the number of CMCs per macroscopic block. In this section, we
investigate whether coupling to neighboring sites on the micro lattice can improve
the emulated variances, without reducing the number of Markov chains. Thus, we
study use of the forms (3.3) and (3.4) for the MC. We expect that, by coupling to
neighboring sites, the spatial correlations of the cloud type patterns will be better
captured, thereby increasing the variance.

As mentioned earlier, by conditioning the MC for lattice site i on the state of
the neighboring sites, as in (3.3), the MC becomes a SCA. Cellular automata (CA)
have been used for parameterization purposes by [8, 11, 124]. In these studies, the
CA have deterministic rules, not stochastic ones, and they are chosen by intuition
rather than inferred from data. Also, in those studies [8, 11, 124], the cells of the
CA can take on two states, not five as is the case here.

First, we estimate the SCA transition probabilities (3.3) from the LES data. As
before, Yi(t) is the cloud type at site i at time t, Yi(t) ∈ {1,2,3,4,5}. Use of (3.3)
implies that in principle, for every state δ of the combined neighboring sites Y{i},
there is a different transition probability matrix. This reflects, for example, that
the probability of a clear sky site turning into a shallow cumulus site may increase
as the number of neighboring shallow cumulus sites increases.

For the neighborhood of site i, denoted {i}, we choose the eight sites directly
surrounding site i in the micro lattice (see Fig. 3.1). As each site can take on five
different values, there are 58 different configurations, i.e., 58 possible values of δ.
This is too much to be practical, therefore we reduce the number of possibilities
by conditioning not on Y{i}(t) directly, but on a simple reduction function f that
depends on Y{i}(t). Thus, we use:

pδ(α,β)=Prob(Yi(t+∆t)=β |Yi(t)=α, f (Y{i}(t))= δ) (3.10)

rather than (3.3) itself.
Let us denote by |CL|i the number of clear sky sites directly surrounding i,

and similarly by |SH|i, |CO|i, |DE|i and |ST|i the number of surrounding shallow,
congestus, deep and stratiform sites. These numbers are time-dependent. Clearly,
|CL|i +|SH|i +|CO|i +|DE|i +|ST|i = 8 for all i and at all times. As the function f
we now choose:

f (Y{i}(t))= 1∗|SH|i +2∗|CO|i +3∗|DE|i +4∗|ST|i . (3.11)

The reason for choosing this particular reduction function is that it is a measure of
the degree to which the direct environment is convectively active: the more neigh-
boring sites in a state of convection the larger the value of f . Furthermore, a
neighboring site with cloud type congestus increases f more than a neighboring
site with cloud type shallow. The function increases even more if there is a neigh-
boring deep site. The choice of the factor 4 for stratiform is somewhat debatable,
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but the coefficient has to be larger than 3 to indicate the presence of stratiform in-
stead of some other cloud type. Further the value has to be as small as possible to
reduce the number of states (and therefore matrices) as much as possible. One can
use information theory to perform a systematic search for functions that give the
most information about the transitions (see [99] for some ideas on this), however
we will not pursue this here. Estimating the probabilities (3.10) is straightforward,
using an estimator analogous to (3.8)-(3.9).

We obtain 33 different transition matrices of size 5×5, because 0 ≤ f ≤ 32. For
each site, the state of the neighborhood is determined by counting the numbers
of different cloud types surrounding it, and computing the corresponding value of
f i(t) as in (3.11). This value determines which transition matrix is used at lattice
site i at time t.

We initialize the SCA-multicloud model using 384×384 cells all in a clear sky
state, corresponding to the initial condition observed in the LES data. As time
evolves, some cells switch to shallow cumulus and clusters of shallow cumulus
cells appear. Later on, the SCA correctly produces congestus sites in the shallow
cumulus clusters. At about 250 minutes after initialization, similar to LES, deep
convective sites appear. These turn into stratiform decks. Eventually, the patterns
of the SCA are clear sky areas with some shallow cumulus and areas of a mixture
congestus, deep and stratiform. This mixture is not observed in the LES data, but
the fractions turn out to be correct. First we show the patterns produced by the
SCA in Fig. 3.9a.

Figure 3.9: Patterns formed (a) by SCA at t = 480 and (b) by CSCA additionally conditioned on CAPE
using K = 5 clusters.

Fig. 3.10a shows filling fractions (mean and standard deviation) for the SCA,
using (3.10)-(3.11). The standard deviation is taken over macroscopic blocks of size
n = 1,024. Both the time evolution and the magnitude of the standard deviations
are in much better agreement with the LES data (Fig. 3.4a) than those produced
by the CMC (Fig. 3.7). The time evolution of the means are reasonable, but not
as good as those of the CMC. Therefore, as a final step of refinement, we combine
CMC and SCA by conditioning the MC both on the macroscopic state X i(t) and on
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Figure 3.10: (a) Mean filling fractions of the SCA (solid) plus and minus the standard deviation calcu-
lated over blocks of 1,024 cells (dashed) and (b) the same for a CSCA conditioned on CAPE using K = 5
clusters.

the neighboring states Y{i}(t). We refer to this combination as CSCA (conditional
SCA). To our best knowledge, a (stochastic) cellular automaton conditioned on an
“external”, time-evolving field (X , in our case) has not been studied before.

The filling fractions of the CSCA are shown in Fig. 3.10b. As before, we used
the function (3.11) rather than Y{i}(t) to condition the CSCA on the neighboring
sites. Thus, the transition probabilities are as in (3.4), but with Y{i}(t) replaced by
the function (3.11). For conditioning on the macroscopic state X i(t) we used CAPE,
clustered with five centroids. The patterns are similar to the patterns of the SCA;
compare the panels of Fig. 3.9. The time evolution of the filling fraction means
is in better agreement with the LES data than was the case with the SCA. We
anticipate that further improvement is possible, e.g., with search techniques as in
[99], and with methods to reduce the parameter space as in [81]. We leave this for
future study.

3.9 Single-column model
In the tests performed in the previous sections, there was no interaction between
the large-scale variables and the CMC or CSCA. Therefore, to take a step forward
towards implementation in a GCM, we test the multicloud model in an SCM ex-
periment. The SCM can be thought of as representative for the behavior of a sin-
gle GCM vertical model column. We use one macroscopic block, containing 1,024
CMCs, to represent the GCM model column. These CMCs are conditioned on CAPE
and CIN, as in Section 3.7. We choose suitable large-scale variables and use LES
data to precalculate their tendencies. The tendencies are assumed to depend lin-
early on the filling fractions determined by the multicloud model. Thus, the large-
scale variables and the cloud filling fractions are coupled to each other, and both
evolve over time. Inspired by [72] we take four prognostic variables: X1 = qlow

t ,
X2 = qhigh

t , X3 = θlow
l and X4 = θ

high
l , with qt and θl as defined in (3.6). The low

level is at 413 m and the higher level is at 2,345 m in the atmosphere. These are
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the variables that we are going to resolve in our SCM.
We use the CMCs, conditioned on CAPE and CIN, to calculate the filling frac-

tions of each cloud type. Therefore, we have to express CAPE and CIN in terms of
the prognostic variables X = (X1, . . . , X4)T .

CAPE* and CIN*
We assume that CAPE is a linear combination of X . We compute the coefficients
by doing a least square fit with the CAPE values from the LES data and the values
of X , also from the LES data. We write

CAPE*=λX , (3.12)

where λ= (λ0, . . . ,λ4) are the coefficients and where we add the constant term X0 =
1. We solve:

min
λ

(
(CAPE−λX )2

)
and find that the linear CAPE* is almost completely determined by qt and θl at
the low atmosphere level. The correlation coefficient of CAPE and CAPE* is 0.97,
so we can use CAPE* as a proxy for CAPE. In general, this is not the case, but free
tropospheric properties change relatively slowly in the LES data. For CIN we do a
linear fit of the logarithm of CIN. We write:

CIN*= eµX . (3.13)

Here µ = (µ0, . . .µ4) are the coefficients for CIN*. For CIN and CIN* we find a
correlation coefficient of 0.77, so we can use CIN* instead of CIN.

Large-scale tendencies Ẋ
In a GCM, a parameterization should deliver entire vertical heating and moisten-
ing profiles. In our SCM experiment, we only have four prognostic variables and
therefore we use LES data to determine the influence of the cloud filling fractions σ
on these four prognostic variables X . Below, we propose a method of using data to
calculate the heating and moistening (i.e., the tendencies Ẋ ); whether this method
will work for a large number of variables remains to be explored.

In [36] this was done for shallow cumulus convection by clustering vertical heat
and moisture fluxes observed in LES data. Here we will use a least-squares fitting
method that we already used to calculate the CAPE* and CIN*. Every cloud type
has influence on θl and qt at the low and higher atmosphere level. This means
that:

Ẋm =
4∑

α=0
σαFα

m,

where Ẋm is the tendency of Xm (1 ≤ m ≤ 4) and Fα
m is the influence of cloud type

α on prognostic variable Xm. We assume that Fα
m is a linear combination of the

prognostic variables X :
Fα

m =∑
n
ναmn Xn.
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We now have:
Ẋm =σνm X , (3.14)

where σ is the 1×5 filling fraction vector, νm is a 5×5-matrix that has to be esti-
mated separately for every prognostic variable Xm, and X is the 5×1 prognostic
variables vector. For every prognostic variable Xm we estimate νm by least-square
fitting. This is done as follows. Our aim is to calculate for every 1≤ m ≤ 4:

min
νm

∑
t

(Ẋm −σνm X )2, 1≤ t < 480. (3.15)

In every subdomain of LES we observe the prognostic variables X , tendencies
Ẋm and the LES filling fractions σ. This is the case for 479 time instances (at the
last time instance t = 480 the tendencies are not estimated). We can write (3.15) in
the form y = Zν. Then, the least square fit gives ν̂ = ZT y(ZT Z)−1. This gives the
best least square estimate of the 25 entries in the 5×5 matrix νm.

Integration of the single-column model
We integrate Eq. 3.14, to obtain the evolution of the prognostic variables X1, . . . , X4.
As initial condition we take σ = (1,0,0,0,0). This means that each CMC starts in
state 1 (corresponding to clear sky). The initial conditions for X are the average ini-
tial values observed in the LES data. The CMCs produce the filling fractions σ and
the ν are pre-calculated in Section 3.9.2. We recall that the CMCs are conditioned
on CAPE* and CIN*.

Filling fractions of the SCM
We test the stochastic multicloud model in the SCM. In Fig. 3.11, we show filling
fractions for SCM using 1,024 CMCs. To increase the standard deviation, we do
a second experiment using only 64 CMCs. To calculate the standard deviation in
every experiment, we use 122 independent runs of the SCM. In this way we can
compare the standard deviation to the standard deviation that we observed in the
122 LES blocks (each consisting of 1,024 LES columns). Comparing Fig. 3.4a to
Fig. 3.11, we see that the SCM-CMC is capable of reproducing the time-evolution
of the filling fractions from the LES data . This is a remarkable result because the
SCM is not using any LES data during the integration. Recall that the SCM has
been constructed from LES data prior to integration.

Using a smaller number of MCs (64 instead of 1,024) increases the variance
of the filling fractions in the SCM test, as can be seen in Fig. 3.11b. We expect
that further improvement of the evolution of the standard deviations in the SCM
is possible by using the SCA or the CSCA instead of CMC, but we did not perform
these experiments here.

A ten day run of the SCM
We have seen that the multicloud model produces correct filling fractions and that
it can be used to enhance variability in the SCM. We integrate the SCM over a
longer time period. Although the SCM-CMC has not been trained on a longer
period, there are no practical restrictions on performing longer time integrations.



80 3. Stochastic parameterization of deep convection

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Time [min]

S
C

M
F

ra
ct

io
ns

l[g
]

fa)

clear
shallow
congestus
deep
stratiform

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Time [min]

S
C

M
F

ra
ct

io
ns

[p
]

fb)

clear
shallow
congestus
deep
stratiform

Figure 3.11: (a) Mean filling fractions produced in the SCM using 1,024 CMCs conditioned on CAPE*
and CIN* (solid) plus and minus the standard deviations (dashed) and (b) the same using 64 CMCs.

As in [72], we integrate the SCM for ten days. Here, using the SCM, we do not
aim to represent a realistic simulation of deep convection (as is the case for LES).
Rather, we are interested in the long-term behavior of the SCM as a dynamical
system, seen as coarse extrapolation. We investigate whether or not the multicloud
model can enhance variability in the SCM. In Fig. 3.12, we plot time series for the
prognostic variable X4 in the single-column model integrated over ten days with a
time step of one minute. The graphs for the other X i are similar. For both runs,
with 2,500 CMCs and 64 CMCs, we see a cycle of around eight hours. This cycle
is not caused by diurnal variations in the surface fluxes, because the CMCs have
been trained on data from an LES run with fixed surface fluxes. We note that the
trajectory depends strongly on the number of MCs used. With a large number of
MCs, the system behaves very regularly. For smaller n, the multicloud model is
more stochastic, and the SCM-CMC model displays more variability.

3.10 Discussion and conclusion
In this paper, we combined, for the first time, the data-driven approach to stochas-
tic parameterization from [25] and [36] with the stochastic multicloud model ap-
proach proposed in [72]. We used data from a convection-resolving LES model to
infer a multicloud model similar to the one studied in [72]. The aim was to for-
mulate a stochastic model that was able to emulate the coarse-grained convective
behavior of the LES. Data for cloud top height and column rain fraction from the
LES were used to determine five cloud types: clear sky, shallow cumulus, conges-
tus, deep and stratiform. The coarse-grained convective behavior of the LES was
represented through the filling fractions, or area fractions, of the five cloud types
on (horizontal) macroscopic blocks of 322 LES gridpoints.

The stochastic model (MC) makes random transitions between cloud types at
each gridpoint, in accordance with transitions probabilities that are estimated from
the LES data. A straightforward MC was not able to reproduce the correct evolu-
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Figure 3.12: Time series for X4 = θhigh
l in the single-column model integrated over ten days.

tion of the filling fractions corresponding to the five cloud types. Therefore, we
explored two ways of improving the skills of the MC. First, by conditioning the
Markov chain on large-scale variables, obtaining a CMC; second, by conditioning
on the neighboring cells, obtaining a SCA.

The CMC conditioned on a combination of CAPE and CIN was well capable of
reproducing the time evolution of the cloud fractions observed in the LES data. The
standard deviations of the filling fractions were not very well reproduced by the
CMCs. They were too small and not similar to the standard deviations observed
in the LES data. The absence of direct spatial coupling between cloud types in
neighboring cells in the CMC made it difficult to capture the time-varying spatial
patterns seen in the LES data. Therefore the enhanced variability due to these
patterns could not be captured by the CMCs.

The average filling fractions of the SCA were not as good as the CMC average
filling fractions. Nevertheless, the SCA showed a much better evolution of the
standard deviation of the filling fractions. By including spatial coupling, spatial
and temporal patterns emerged, resulting in more realistic variability. We showed
that further improvement can be achieved by additional conditioning on the large-
scale variables; however, this comes at the cost of a more complicated model.

A point of discussion is that the CMCs in the multicloud model have been
trained on LES data of rather specific idealized (atmospheric) conditions. Clearly,
not all possible large-scale states were sampled in this data set. Dividing the LES
domain into subdomains, as was done here (as well as in [36]), enlarges the sam-
ple of large-scale states. The large-scale states are defined as subdomain averages,
so that the variability between the subdomains helps to increase the sample vari-
ance. As already mentioned in Section 3.7, one can increase the sample variance
even more by using data from multiple LES runs with different initial conditions.

We focused on a setting in which shear in the horizontal plane and spatially
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varying terrain type have not been considered. In the case of a unidirectional
shear with varying strength, the transition probabilities of the SCA may have to
depend on the neighboring cells in an anisotropic way. The question of how strong
this sensitivity is, has not been addressed here. With varying terrain, a possible
solution is conditioning on several types of terrain.

We showed how the LES data can be used to produce heating and moistening
rates. We tested the multicloud model in a simple SCM experiment. Using the
CMCs, the LES filling fractions were faithfully reproduced by the SCM. The de-
gree to which the multicloud model was stochastic had a large influence on the
variability of the SCM.
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Chapter IV
A multicloud model inferred from

observational data

4.1 Abstract
Observational data of rainfall from a rain radar in Darwin, Australia, are com-
bined with data defining the large-scale dynamic and thermodynamic state of the
atmosphere around Darwin to develop a multicloud model based on a stochas-
tic method using conditional Markov chains. The authors assign the radar data
to clear sky, moderate congestus, strong congestus, deep convective, or stratiform
clouds and estimate transition probabilities used by Markov chains that switch be-
tween the cloud types and yield cloud type area fractions. Cross-correlation analysis
shows that the mean vertical velocity is an important indicator of deep convection.
Further, it is shown that, if conditioned on the mean vertical velocity, the Markov
chains produce fractions comparable to the observations. The stochastic nature of
the approach turns out to be essential for the correct production of area fractions.
The stochastic multicloud model can easily be coupled to existing moist convection
parameterization schemes used in general circulation models.

4.2 The cumulus parameterization problem
The representation of clouds and convection is of major importance for numerical
weather and climate prediction. Moist convection, also called cumulus convection,
transports heat, moisture and momentum vertically in the atmosphere, it influ-
ences dynamical, thermodynamical and radiative processes and it has an impact
on the large-scale global circulation. In general circulation models (GCMs), moist
convection can not be explicitly resolved since the scale of the involved processes is
too small, therefore the subgrid processes have to be represented by parameteriza-
tions, which are formulations of the statistical effects of the unresolved variables
on the resolved variables. We refer to [3] for an overview of the the cumulus param-
eterization problem. Formulating moist convection parameterizations is a difficult
problem: it introduces uncertainties in model predictions (e.g., [117]) and although
models do agree that the cloud feedback is positive or neutral, they do not agree
on the strength of the cloud feedback, e.g., [40]. It has been shown by [85] that the
intraseasonal variability of precipitation is generally too small in models and that
convectively coupled tropical waves are not well simulated.

An important issue considering cumulus parameterizations is that it is still not

This chapter has been published as Jesse Dorrestijn, Daan T. Crommelin, A. Pier Siebesma, Harmen J.
J. Jonker, and Christian Jakob, 2015: Stochastic Parameterization of Convective Area Fractions with a
Multicloud Model Inferred from Observational Data. J. Atmos. Sci., 72, 854–869.[35]
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known which large-scale resolved variables are most strongly related to moist con-
vection, and on which variables the closures of the parameterizations should be
based. In general we have the choice between dynamical (e.g., vertical velocity)
or thermodynamical (e.g., the convective available potential energy (CAPE), rela-
tive humidity (RH)) variables, which have been studied in a recent paper by [29].
Another important issue is that if parameterizations are chosen to be determin-
istic functions of the resolved variables, the subgrid response of moist convection
to large-scale variations can not cover the variety of responses that is possible in
reality, as deterministic parameterizations can only provide the expected value of
the response of moist convection in a grid box. In view that GCMs resolutions are
getting finer and finer, this issue becomes more important, because with smaller
grid boxes the fluctuations around expected subgrid responses become larger. [109]
pointed out that neglecting subgrid variability can result in model errors and that
this can be corrected by using stochastic parameterizations to represent subgrid
processes. This has for example been shown by [20] who improved the skill of nu-
merical weather prediction (NWP) with the European Centre for Medium-Range
Weather Forecasts’s system by introducing stochastic elements in the physical pa-
rameterization tendency. Their pioneering work gave impulse to develop more so-
phisticated stochastic schemes.

Instead of perturbing all subgrid processes at once, it is possible to improve
GCMs by introducing stochastic elements only in the deep convection parameter-
ization, e.g., [9, 86, 88, 114, 136], or in the shallow convection parameterization,
e.g., [123].

Rather than relying on physical intuition or deriving parameterizations from
first principles, stochastic parameterizations can be inferred directly from data.
[25] showed that Markov chains, with only a few states, for which the transition
probabilities had been estimated from data, could represent the subgrid terms in
the Lorenz ’96 [91] model quite well, better than the determinstic parameteriza-
tions and the stochastic parameterizations, based on autoregressive processes, of
[144]. The data-driven Markov chain model inspired [81] to develop a similar model
based on cluster-weighted Markov chains. In [36] the Markov chain model of [25]
was used to study stochastic parameterization of shallow convection and in [34] for
deep convection.

A promising class of moist convection parameterizations based on the idea of
evolving an ensemble of several (convective) cloud types, inspired by [96] and [65],
is formed by multicloud models, e.g., [43, 72, 73, 94, 113]. The clouds follow a life
cycle starting from clear sky to congestus clouds, to deep cumulus towers with strat-
iform anvil clouds as a remnant of the towers spreading over large areas, finally
dissolving and come full circle at clear sky. In the multicloud model of [34] also
shallow cumulus clouds are included.

In the present paper we use high-resolution (∼ 2.5×2.5 km2) observational data
of rainfall in combination with data defining the large-scale (∼ 150×150 km2) dy-
namical and thermodynamical state of the atmosphere to infer such a stochastic
multicloud model. The large-scale data are NWP analysis variable estimates im-
proved with observations. The model is similar to the multicloud model of [34] in
which Large-Eddy Simulation (LES) data was used to infer the model, as opposed
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to the observational data of this study. The multicloud model produces area frac-
tions for several cloud types which can be used as stochastic parameterizations in
the deep convection and cloud schemes of GCMs. We also determine which large-
scale variables are strongly related to deep convection.

In a late stage of the present study we became aware of work on stochastic pa-
rameterization of deep convection that is similar to our work [50]. Their stochastic
models inferred from large-scale observational data also yield convective area frac-
tions.

Our paper is organized as follows. In Section 4.3 we explain how we use Markov
chains as a foundation for our multicloud model. Then, in Section 4.4 we give a de-
scription of the observational data, explain how we classified the data into cloud
categories and how we dealt with advection while estimating transition probabili-
ties between cloud states. In Section 4.5 we assess the skill of large-scale variables
as indicators for deep convection. In Section 4.6 we construct our model, give ex-
pected area fractions and standard deviations and we discuss scale adaptivity, i.e.,
the ability to adapt to the size of a GCM grid box. We give results in Section 4.7
by comparing area fractions from the model with the observations and looking at
their autocorrelation functions. In Section 4.8 we discuss the possibilities of imple-
mentation of the stochastic model in a convection parameterization of a GCM and
make some concluding remarks.

4.3 Markov chains
The multicloud model we use in this study consists of Markov chains positioned on
the nodes of a two-dimensional micro-grid. This model set-up has been used before
in [34, 72, 113]. The state of each Markov chain at time t is denoted Yn(t), where
n is the micro-grid index. Each Yn can take on five different values, corresponding
to the following categories: clear sky, moderate congestus, strong congestus, deep
convective and stratiform. The choice of these specific categories will be discussed
in Section 4.4. We will refer to these categories as cloud types. As time evolves, the
Markov chains can switch, or “make a transition”, between states every ∆t = 10
minutes. All the Markov chains on the micro-grid together determine the area
fractions σm for the various cloud types:

σm(t)= 1
N

N∑
n=1

1[Yn(t)= m], (4.1)

in which 1 is the indicator function (1[A] = 1 if A is true, 0 otherwise), N is the
number of micro-grid nodes, and m ∈ {1, . . . ,5} the cloud type. We use radar data to
estimate the transition probabilities, needed in the Markov chain model.

When used in a GCM, each GCM column contains N Markov chains that can
switch to a different state every ten minutes, resulting in time-evolving area frac-
tions σm for each cloud type and for each GCM column. These area fractions can
be used in the convection and cloud schemes of a GCM. For example, the deep con-
vective area fractions, σ4, can serve as a mass flux closure at cloud base for a deep
convection parameterization scheme:

Mb = ρσ4 wcb, (4.2)
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in which ρ is the density and wcb is the vertical velocity in a deep convective up-
draft at cloud base [4, 100]. More examples of possible applications in GCMs are
given in Section 4.8.

As mentioned before, we use Markov chains with five possible states, so that
the transition probabilities form a 5×5 transition matrix. Since these transition
probabilities depend strongly on the large-scale state of the atmosphere, we make
these probabilities conditional on functions of large-scale variables (i.e., the vari-
ables that are normally resolved by GCMs). These functions are called indicators
of deep convection. In Section 4.5 we discuss appropriate indicators. The frame-
work of conditional Markov chains (CMCs) for parameterization was introduced by
[25].

For now, we consider a discretized indicator X , such that the possible states of
X correspond to a finite number Γ of large-scale states. So, for each γ ∈ {1, . . . ,Γ} we
estimate a 5×5 transition probability matrix. The probability of CMCs switching
from state α to state β given the large-scale state γ can be estimated as follows (see
also [25]):

Prob(Yn(t+∆t)=β|Yn(t)=α, X (t)= γ)= (4.3)

Tγ(α,β)∑
βTγ(α,β)

where:
Tγ(α,β)=∑

t,n
1[Yn(t+∆t)=β]1[Yn(t)=α]1[Xn(t)= γ]

counts the number of transitions observed in the data from cloud type α to β given
that the large-scale state is γ. The indices n and t run over space and time covered
in the training data set which is used to estimate the transition probabilities. We
remark that we do not condition the Markov chains on X (t+∆t), which reduces the
number of matrices to estimate significantly. For the estimation of the transition
matrices we use data sets corresponding to two different scales: data sets that
are formed by high-resolution observations of rainfall at a scale that is equal to
or smaller than the micro-grid scale of the CMCs and data sets that represent the
large-scale atmospheric state at the grid scale of a GCM. In the next section we
introduce the high-resolution observation data sets.

4.4 The radar data
The microscale data consists of observational data of precipitation obtained from
the Darwin C-Band Polarimetric (CPOL) Radar in Darwin, North-Australia. This
data is described in detail in [79]. In the same article it is explained how the radar
data can be used to calculate cloud top height (CTH) and rain rates. For two time
periods, 10 November 2005-15 April 2006 and 20 January 2007-18 April 2007, we
have integer valued CTH and rain rate observations at ten-minute timesteps, for
a circular area with radius 150 km and resolution of 2.5 × 2.5 km2. In Fig. 4.1 we
show a snapshot of the CTH and the rain rates at one time instance. The fields
are rather noisy at the outer ring of the radar domain and the radar does not give
observations in the center of the radar domain, which is known as the “cone of



4.4. The radar data 87

Figure 4.1: (a) A snapshot of the cloud top height derived from Darwin radar observations and (b) the
corresponding rain rate.

silence” and is due to the 42◦ maximum elevation angle [98]. Therefore, we only
use pixels in between 25 km and 97.5 km from the center of the domain. This
forms an annular shaped subdomain consisting of 4,720 pixels of 2.5 × 2.5 km2

corresponding to an area size of approximately 172 × 172 km2. Fig. 4.2 contains
histograms of the CTH and the rain rates, showing the distribution of these quan-
tities. We consider CTH below 1.5 km as clear sky to avoid the influence of radar
ground clutter. There is a bi-modal distribution of CTH, with a minimum at around
4 km, which is close to the freezing level at 5 km. To classify our cloud types, we
use thresholds for CTH to distinguish high clouds, low clouds and clear sky. The
bi-modal distribution in the cloud top histogram suggests a CTH threshold to dis-
tinguish low and high clouds (e.g., congestus and deep convective clouds) of around
4 or 5 km. Congestus clouds have been observed up to 9.5 km in the atmosphere
[65]. We adopt the approach of [79], who developed a more objective identification
of congestus and deep convective clouds, taking the value 6.5 km as a threshold.
Further, we employ a rain rate threshold to make a distinction between clouds with
intense precipitation and those with little or no precipitation. This enables us to
make a distinction between deep convective clouds and stratiform clouds as well as
a distinction between strong and moderate congestus. The rain rate histogram in
Fig. 4.2b, shows an approximately exponential distribution, so it is impossible to
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Figure 4.2: Histograms of (a) the cloud top height and (b) the rain rate observed with the Darwin radar
in the periods November 2005 - April 2006 and January-April 2007.

argue for an obvious rain rate threshold. In the literature thresholds for partition-
ing convective and stratiform precipitation vary between 10 and 25 mm h−1, and
there are several methods for partitioning which are described in [82]. We choose
a threshold of 12 mm h−1 to distinguish between deep convective and stratiform
clouds and a threshold of 3 mm h−1 to distinguish between moderate and strong
congestus. Combining these thresholds results in the following five cloud types:
(1) clear sky, (2) moderate congestus, (3) strong congestus, (4) deep convective and
(5) stratiform. In Table 4.1 we summarize the classification into cloud types. Note
that, although desired, shallow cumulus clouds are not included in the model, for
the obvious reason that the rain radar does not observe non-precipitating clouds.

After classification, we have two-dimensional fields with discrete values (inte-
gers from 1 to 5). In Fig. 4.3 we give an example of a classified field, which is the
classified field corresponding to the CTH and rain rate fields shown in Fig. 4.1.
After the classification the observed area fractions, σm, can be calculated according
to (4.1), with Yn the observed cloud type and N = 4,720 the number of radar pixels
in the annular domain. The observed area fractions are strongly time-dependent,
with σ1 (clear sky) varying between 0% and 100%, σ2 (moderate congestus) be-
tween 0% and 55%, σ3 (strong congestus) between 0% and 2.5%, σ4 (deep convec-
tive) ranging from 0 to about 10% and σ5 (stratiform) ranging from 0 to about 99%.
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Table 4.1: Cloud type classification using thresholds for the cloud top height and the rain rate.

CTH [km]
rain rate [mm h−1]

≤ 12 > 12
≥ 6.5 stratiform (m = 5) deep convective (m = 4)

≤ 3 > 3
∈ [1.5,6.5) moderate congestus (m = 2) strong congestus (m = 3)

< 1.5 clear (m = 1)

Figure 4.3: Example of radar data assigned to the categories clear sky, moderate congestus, strong
congestus, deep convective and stratiform, corresponding to the CTH and rain rate snapshots of Fig.
4.1.

The observed fractions are depicted in Fig. 4.10 (discussed in Section 4.7) for a
time period of five days for all cloud types, and the deep convective area fraction
also in Fig. 4.7a (discussed in Section 4.7) for a longer period of three months.

Besides calculating observed area fractions for the different cloud types, the
classified data are used to estimate transition probabilities between the cloud types
for the CMCs, using (4.3). This is a key step in creating the multicloud model. To
give an idea of the observed transition probabilities, not yet conditioned on the
large-scale variables, we give the estimated transition matrix:

M̂=


0.8987 0.0668 0.0006 0.0011 0.0329
0.4147 0.4707 0.0033 0.0026 0.1086
0.2563 0.2686 0.2177 0.0545 0.2029
0.1757 0.0284 0.0124 0.4295 0.3540
0.1185 0.0779 0.0010 0.0091 0.7935


The probability of a transition from cloud type m to cloud type n can be found
in the nth column of row m. For example, the probability that a deep convective
pixel will be assigned to stratiform ten minutes later, is 0.3540. The probability
that a deep site is again a deep site ten minutes later, is 0.4295, much larger than
the expected deep convective area fraction (at most 0.03 as can be seen Fig. 4.6,
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discussed later in this paper). This is comparable to the deep to deep transition
probability of 0.5602 estimated from the LES data set of [34]. Most remarkable is
that the stratiform decks in the LES data tend to dissolve faster than observed in
the radar data. The transition probability for stratiform to stratiform is estimated
0.2266 in LES , as opposed to 0.7935 observed in the radar data. Some evidence
for the life cycle can be seen in the transition matrix, a deep convective cloud likely
turns into stratiform, which turns into clear sky. Some entries are artefacts of the
estimation method, for example the probability of clear sky turning into stratiform
is 0.0329, but in reality the stratiform cloud spreads out from the top of a deep
cumulus cloud.

For correct estimation of cloud type transition probabilities, we have to take
into account that clouds are advecting horizontally through the domain. To do
this, we translate the advected clouds in a radar image back to their position in
the previous image. In this way, we minimize transitions that are only a result of
advection. The advection, with zonal wind u and the meridional wind v, is assumed
to be a function of height and time only. We calculate this translation separately
for every cloud type (as they are located at different heights in the atmosphere).
Let Zm(xi, yj, t) = 1[Y (xi, yj, t) = m], with Y (xi, yj, t) the discretized radar pixel at
location (xi, yj) at time t and (xi, yj) running over all Ni j = 4,720 pixels in the
annular shaped subdomain. We calculate for every cloud type m and for every
time interval [t, t+∆t] the optimal horizontal displacements um∆t and vm∆t which
maximize the correlation

1
Ni j

∑
i j

Zm(xi, yi, t)Zm(xi +um∆t, yj +vm∆t, t+∆t).

By applying the Correlation Theorem (e.g., [115]), fast Fourier transforms can be
used to reduce the calculation time for finding the displacements. At the bound-
aries at the outer edge and in the center of the radar domain, clouds flow into
and out of the domain. We also have to account for this during the estimation of
cloud type transition probabilities. More specifically, we do not count transitions of
“clouds” (including clear sky) that are inside the radar domain at time t, but which
are outside the domain at the previous time step t−∆t or at the next time step
t+∆t, due to advection. Without corrections, the estimated probability transition
matrix is significantly different: for example the probability that a pixel assigned
to the deep convective cloud type is deep convective ten minutes later would be
estimated at 0.29 instead of 0.43.

The focus in this paper will primarily be on the deep convective area fractions,
when we determine the large-scale variable on which to condition the CMC (Section
4.5) and when we test the CMC (Section 4.8). Although the other fractions can have
applications in GCMs, the deep convective area fractions are the most important.
Describing the convective transport by deep convection accurately is crucial for a
GCM to work properly. Conditioning each individual cloud type on different large-
scale variables could improve the model, in particular for the strong congestus
clouds, that precede deep convection.
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4.5 The large-scale data
We have data available that defines the large-scale dynamic and thermodynamic
state of the atmosphere around Darwin for the time periods November 2005-April
2006 and January 2007-April 2007 for which we also have the radar data. The
large-scale fields are averages over six-hour intervals and have a vertical resolu-
tion of 40 pressure levels, from ground level to about 20 km altitude. The data has
been prepared by [29] who used a variational analysis method to improve NWP
analysis large-scale variable estimates by constraining the moisture budgets with
observational rain data from the CPOL radar. The large-scale data is also used
in [28]; [113] and [50]. Here, we use the data to investigate which large-scale
variables are suitable indicators for the convective state of the atmosphere and
compare our findings with the results of [29]. Then, we will use the large-scale
data accordingly for conditioning the multicloud CMC model. As in [29], we con-
sider thermodynamical and dynamical variables. In particular, we will consider
the following well-known indicators: CAPE, the mean vertical velocity 〈ω〉, and
RH. CAPE is a measure for the stability of the atmosphere and is formally defined
as follows:

CAPE := Rd

∫ pLFC

pNB

(Tv,p −Tv)dlnp ,

in which Tv,p is the virtual temperature of an undiluted parcel, Tv is the virtual
temperature of the environment, Rd is the gas constant of dry air, pNB the level
of neutral buoyancy and pLFC the level of free convection (e.g., [126]). The mean
vertical velocity we define as:

〈ω〉 := 1
p0 − p∗

∫ p0

p∗
ω(p)dp,

in which ω is the large-scale vertical velocity in hPa h−1, p0 the pressure at the
surface, and p∗ is pressure level 340 hPa, chosen because the resulting 〈ω〉 gives
the highest correlation with deep convective area fractions (as calculated with (4.4)
that is given below). We find that the vertical integral over ω gives higher corre-
lations than ω at a single pressure level. Further, the relative humidity is chosen
at pressure level 640 hPa, also because it gives the highest correlation with deep
convective area fractions. To assess how well an indicator correlates with deep
convection, we calculate the time-lagged cross-correlation function (CCF) of the
indicator and the deep convective area fraction.

Given the timeseries of the deep convective area fraction σ4(t) and the time-
series of the indicator X (t), the normalized CCF of X (t) and σ4(t) is:

CCF(τ)=
∫ ∞

−∞
X̃ (t+τ)σ̃4(t)dt (4.4)

with X̃ (t) = X (t)−µX
σX

(i.e., the indicator normalized by subtracting its mean µX and
dividing by its standard deviation σX ), σ̃4 defined analogously, and τ the time lag
of X w.r.t. σ4. As such, the CCF lies in between -1 and 1. If the maximum value of
the CCF is attained at positive time lag τ, the indicator X (t) tends to follow rather
than precede deep convection.
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Figure 4.4: Cross-correlation functions (CCFs) of the deep convective area fraction with -〈ω〉, CAPE and
RH at 640 hPa for the 2005/2006 data set.

In Fig. 4.4 we plot the CCFs of the indicators −〈ω〉, CAPE and RH with the
observed deep convective area fraction for the 2005/2006 period. The figure for the
2007 period is similar (not included). Before calculating the CCF, we linearly inter-
polate X to get its values every ten minutes instead of every six hours, because the
sequences X and σ̃4 must have the same length. We see that 〈ω〉 has a larger cor-
relation at zero time lag than CAPE and RH. Moreover, also for negative time lags
of a few hours this correlation is higher. In this respect 〈ω〉 is the best indicator of
deep convection. We note that the maximum correlation of 〈ω〉 with σ4 is attained
at a positive time lag. This may seem to indicate that 〈ω〉 is an effect rather than
a cause of deep convection. However, this is a subtle issue, as 〈ω〉 may also both be
a trigger (i.e., cause) of deep convection and be reinforced by it, so that separating
cause and effect becomes difficult. In [113] a related discussion can be found. For
large-scale moisture and temperature advection we found correlations comparable
to the correlation for 〈ω〉 (not included in Fig. 4).

In order to use an indicator for constructing the CMC according to (4.3), it
must be discretized into a finite number of states. If only one indicator is used,
which is the case in this paper, a finite number (Γ) of intervals can be chosen,
defined by thresholds. If a combination of several indicators is used, one can choose
thresholds for each indicator separately, or use a clustering method as in [34, 36]
and [81]. To give an example, in Fig. 4.5 we show a histogram of 〈ω〉 discretized
using 25 intervals. These intervals have been found by using a cluster method,
k-means [45, 92], which minimizes the distance between the 〈ω〉-values and the
centers of the intervals. Using equidistant intervals is also an option, however,
since the 〈ω〉-values are not distributed uniformly, we prefer the non-equidistant
intervals found by k-means. Interval number 25, corresponds to negative 〈ω〉 or
strongly positive large-scale vertical velocity (illustrated by the arrow), which is
favorable for deep convection, and we will later see in Fig. 4.6 that the averaged
observed deep convective and stratiform area fractions are large (around 3% and
90%, respectively) for interval number 25.
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Figure 4.5: Histogram of the 25 intervals of -〈ω〉, found by clustering the linearly interpolated 〈ω〉
values. The first and last (25th) intervals are open on one side. Because ω is a velocity in terms of
pressure, positive 〈ω〉 corresponds to downward mean large-scale motion and negative 〈ω〉 to upward
mean motion (as illustrated by the arrows).

4.6 A description of the multicloud model
Having classified the radar data into cloud types, and having identified (and dis-
cretized) a suitable large-scale indicator, 〈ω〉, we estimate the transition probability
matrices of the CMC using (4.3). We take the period from 10 November 2005 until
15 April 2006 as the training data set, and we set Γ= 25. So, we have to estimate
25 matrices each of size 5×5, giving 625 parameters in total. This may seem a
large number, however the training data set is very large, containing O(108) obser-
vations of transitions (radar images at ten-minute intervals during 157 days, with
4,720 pixels in each image).

In Section 4.7 we will validate the CMCs with the test data set, but since we
have estimated transition matrices, we can already get some insight into the statis-
tical properties of the cloud type area fractions generated by the CMC as compared
to the observed area fractions in the training data set.

In Fig. 4.6, we plot the expected fractions and the standard deviation for both
the observations and the CMC as a function of the 〈ω〉-intervals seen before in Fig.
4.5. The expected values of the CMC correspond to the invariant distribution of the
transition matrix for each 〈ω〉-interval. The CMC expected values are almost equal
to the observational expectations for all cloud types, the small differences can be
ascribed to the way we corrected for horizontal advection (as described before in
Section 4.4).

We see in Fig. 4.6a that the expected deep convective area fractions increase
with increasing 〈ω〉-interval (corresponding to increasing upward mean vertical
velocities) and has its maximum of around 0.03 for interval number 24. Further,
the strong congestus fractions in Fig. 4.6b, increase with increasing 〈ω〉-interval,
however, for interval number larger than 22, the fraction decreases rapidly, while
expected deep and stratiform cloud fractions keep increasing. The expected strati-
form fractions increase with increasing 〈ω〉-interval up to very high expected values
of 90%. The expected value of moderate congestus is around 15% for downward
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Figure 4.6: Observational mean cloud type area fractions as a function of the 〈ω〉-intervals for the
2005/2006 training period (solid line with circles) plus and minus the standard deviation (dash-dotted
line) and the CMC expected cloud type area fractions (solid line) plus and minus the standard deviation
while using N = 100 CMCs (dashed line). Note the different scaling on the y-axis.

mean motion, increases slightly with increasing 〈ω〉-interval number. For 〈ω〉-
interval numbers above 22, the expected value of moderate congestus decreases
which is caused by the stratiform decks that are dominating the radar domain
(for this 〈ω〉-interval numbers). Expected clear sky fractions decrease rapidly as a
function of the 〈ω〉-interval.

The standard deviation of the observational deep convective area fractions tends
to increase with increasing 〈ω〉-interval number, so it tends to increase if the ex-
pected value increases and for high values of the 〈ω〉-interval number the standard
deviation is almost equal to the expected value. The standard deviation of the
observational strong congestus area fractions depends on the expected values as
well. The standard deviation of the observational stratiform area fractions tends
to increase as a function of the 〈ω〉-interval, but decreases if the expected values
become very large because of the upper bound of 100%. For moderate congestus,
the standard deviation ranges between 0.5 and 1 times the expected values. The
standard deviation of the observed clear sky area fraction is around 10−20%, in-
dependently of the 〈ω〉-interval number, with an exception of interval number 25
for which the standard deviation is only 2.4%.

The standard deviation of a cloud type area fraction σm that is produced by N
CMCs is defined as: √

E
[
(σm −E[σm])2

]
,
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in which E is the expectation. One can derive that this is equal to
√

N−1 p(1− p),
in which p =E[σm] is the expected value of the fraction. Note that E[σm] is depen-
dent on 〈ω〉. So, the theoretical standard deviation depends only on the expected
value of the fraction and the number of CMCs used to calculate the cloud type area
fractions. We choose a value of N = 100 such that the standard deviation of the
deep convective area fractions is comparable to the standard deviation of the ob-
served deep convective area fractions in the training data set. This implies that
the standard deviation of the fractions produced by the CMCs is too small for cloud
types with larger observed standard deviations (clear sky, moderate congestus and
stratiform) and too large for the strong congestus cloud type (which has a small
observed standard deviation).

For the observational deep convective area fractions the normalized standard
deviation, the standard deviation divided by the mean, is decreasing with increas-
ing mean, with values decreasing from 5 down to about 1. So, we agree with the
conclusion of [29] that noise (or stochastic behavior) decreases as a function of in-
creasing forcing. This is also the case for the observational strong congestus area
fractions, with a normalized standard deviation ranging from 1 (for relatively high
fractions) up to 3 (for relatively low fractions).

Scale adaptivity
Ideally a parameterization of deep convection should be adaptive to the size of the
GCM grid box, see [4]. By construction of the multicloud model, our parameteri-
zation of deep convection is indeed scale adaptive. The value N of the number of
CMCs can be adapted to the horizontal grid spacing of the GCM. For a large size of
the GCM grid box, a large number of clouds fit into the model column and therefore
a large number of CMCs should be taken to calculate the cloud type area fractions.
For very large GCM grids, the number of CMCs becomes very large and hence the
σm tend to a deterministic limit (equal to the expected values associated with the
large-scale interval number). For smaller grid box sizes, the number of CMCs is
smaller and as a result, the area fractions generated by the multicloud model will
be “more stochastic”, fluctuating significantly around their expected values. It is
difficult to say to which horizontal size a CMC corresponds exactly. The size corre-
sponding to a CMC is equal to the typical horizontal size of the cloud type under
consideration. Therefore, the horizontal size is larger than the area of a radar data
pixel (2.5×2.5 km2), which explains that producing area fractions with CMCs while
using a number smaller than the number of radar pixels in the radar domain gives
better results in Section 4.7, N = 100 versus N = 4,720. We emphasize that the
value of N = 100 is found during the training phase and not during the the testing
phase of the model.

4.7 Results
To assess how well the multicloud model reproduces the convective behavior ob-
served in the radar data set, we first consider the cloud type area fractions. Then,
we will look at autocorrelation functions (ACFs) of the fractions and 〈ω〉.
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Figure 4.7: (a) Deep convective area fractions observed in Darwin (b,c) two realizations of deep convec-
tive area fractions produced by N = 100 CMCs conditioned on 〈ω〉 and (d) the corresponding histograms
comparing the CMC fractions (averaged over 100 realizations) with the observed fractions (binned into
intervals) on a logarithmic y-axis.

Area fractions
As mentioned, the radar data can be used to calculate observed area fractions of
each cloud type. We use 〈ω〉 as indicator and take N = 100 CMCs. Then, we train
the CMCs as explained in Section 4.6 using the training data set 2005/2006. We
assess the model by driving the CMCs with 〈ω〉 as observed in the other data set
(from 2007). Thus, different data sets are used for training and evaluation.

In Fig. 4.7a we show the deep convective area fractions as observed in the Dar-
win radar test data set (2007). It can be seen that the deep convective events are
very intermittent in the radar data, with periods of enhanced deep convection, pe-
riods with less wide-spread convective events and the deep convective area fraction
is exactly zero in 52 % of the ten minute intervals. In Fig. 4.7b and 4.7c we give two
realizations of the deep convective area fractions as reproduced by the CMCs. The
CMC fractions display similar intermittent behavior, with maximum values that
are slightly too high compared to the observations. The CMC fractions have dis-
crete values, namely σ4 ∈ {0,0.01,0.02,0.03, . . .}, because N = 100 CMCs are used.
To further assess the quality of the deep convective fractions, we calculate his-
tograms of the deep convective area fractions (Fig. 4.7d). Since the CMC fractions
are integer multiples of 0.01, we bin the Darwin observed fractions into intervals
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Figure 4.8: Deep convective area fractions produced by N = 100 CMCs conditioned on CAPE and (b) the
corresponding histograms in which the CMC fractions (averaged over 100 realizations) are compared to
the observed fractions (binned into intervals) on a logarithmic y-axis.

of length 0.01, apart from the first interval which is [0,0.005). Because high values
of the deep convective fractions are rare, we plot the histograms on a logarithmic
y-axis. We observe that the observational fractions decrease exponentially, as is
expected since rain rates tend to decrease exponentially (see Fig. 4.2). The CMC
fractions follow the exponential decrease well and the values are only slightly off.

We repeat the computations with CAPE as indicator instead of 〈ω〉. In Fig.
4.8a we show the resulting CMC deep convective area fractions (compare to Fig.
4.7a). We observe that the fractions are also intermittent, but high fraction values
are too rare. Further, although periods of enhanced convection and of less con-
vective events are visible, they are not comparable with the observations. In the
histograms with a logarithmic y-axis (Fig. 4.8b) it is indeed visible that fractions
larger than 0.04 are too rare, although a fraction of 8% is reached in one of the
100 realizations. We conclude that in the present setting CAPE is less suitable as
indicator for deep convection than 〈ω〉.

As our third experiment, we use 〈ω〉 again as indicator and keep everything as
in the first experiment except for taking N = 692 = 4,761 which is (close to) the
number of radar pixels used to train the CMCs. We observe (Fig. 4.9) that high
values of the deep convective area fractions are not reached anymore, values are
not higher than 0.04. Because N is much larger than before, the fractions are
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Figure 4.9: Deep convective area fractions produced by N = 692 CMCs conditioned on 〈ω〉 and (b) the
corresponding histograms of the binned CMC fractions averaged over 100 realizations compared to the
binned observed fractions on a logarithmic y-axis.

rather close to the (deterministic) expectation values. This means that, although
the number of CMCs is equal to the number of radar lattice sites, the CMC frac-
tions show lower maxima. We note that in our current set-up the CMCs on the 2D
micro lattice sites are independent of their lattice neighbors, which is not the case
for the sites in the radar data. This is the underlying cause of the lower CMC max-
ima. Introducing local interactions between neighboring CMCs can improve this,
but it makes the estimation of the CMCs much more complicated, see [34] and [71].

As a final experiment we take again N = 100 CMCs and 〈ω〉 as indicator, but
we interchange the roles of training data set and test data set. Thus, we train the
CMCs with the 2007 data set and validate using fractions for the 2005/2006 pe-
riod. The deep convective area fractions in the 2005/2006 radar data reach higher
maxima than in the 2007 data set, with an overall maximum of about 10 percent
(not shown). The fractions of the CMCs are less likely to attain these highest peak
values. Notwithstanding this issue, the distribution of the CMC fractions is still
comparable to that of the observed fractions.

For a more detailed look at the fractions, in Fig. 4.10 we show the area fractions
of all five cloud types corresponding to the first experiment (with N = 100 and 〈ω〉
as indicator) for a much shorter period of five days. The timing of the deep convec-
tive events produced by the CMCs is almost correct, although there is a small time
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Figure 4.10: Area fractions of (a) deep convective, (b) strong congestus, (c) stratiform, (d) moderate
congestus and (e) clear sky observed in Darwin (dashed line), produced by 100 CMCs (solid line) condi-
tioned on 〈ω〉 and the corresponding expected area fractions of the CMCs (dash-dotted line) for a period
of five days. Note the different scaling on the y-axis.

lag visible in Fig. 4.10a. Furthermore, it is clear that the deep convective fractions
of the CMC show maximum values of the peaks in agreement with the observa-
tions, which is not the case for the expected values of the CMC. The conclusion
is that the stochastic fluctuations of the multicloud model fractions are needed in
order to produce the correct maximum values of the deep convection area fraction
peaks. The stochastic nature of the approach is essential for production of the cor-
rect area fractions. A day-night cycle can be seen in the deep convective fractions,
owing to the presence of land in the radar domain. This cycle is also present in the
CMC fractions.

The strong congestus fractions in Fig. 4.10b are small, so the CMC fractions,
being integer multiples of 0.01, have difficulties attaining the observational frac-
tions. So, N = 100 seems to be too small for the strong congestus area fractions. In
Fig. 4.10c, we see stratiform area fractions. The CMC fractions follow the obser-
vations correctly (in a time sense), but the local maxima tend to be too low. The
stochastic part of the fractions is not as prominent as for the deep convective area
fractions. The observational moderate congestus fractions in Fig. 4.10d are diffi-
cult to follow for the CMCs: the value zero is never attained for the CMC fractions.
A conclusion is that 〈ω〉 is not such a good indicator of moderate congestus clouds.
These depend probably more on boundary layer processes. The clear sky fractions
(Fig. 4.10e) of the CMC follow the observations quite well, but the minimum values
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Figure 4.11: Normalized ACFs of the observational area fractions (solid lines with stars), the CMC
area fractions with N = 100 conditioned on 〈ω〉 (solid lines) and on CAPE (dashed lines), the ACF
corresponding to 692 CMCs conditioned on 〈ω〉 (dotted lines) for the cloud types (a) deep convective (b)
strong congestus (c) stratiform (d) moderate congestus and (e) clear sky. Also the ACF of 〈ω〉 is shown
(dash-dotted lines).

are not small enough. The clear sky fractions are important, as 1−σ1 is the cloud
cover observed by the radar, which is a usable quantity in GCMs, however, keep in
mind that the radar is not able to detect all clouds.

Autocorrelation functions
As a final assessment in this paper, we inspect ACFs of the cloud type area fractions
and 〈ω〉. The ACF of the cloud type area fraction σm is:

ACF(τ)=
∫ ∞

−∞
σ̃m(t+τ)σ̃m(t)dt, (4.5)

which is the CCF of σ̃m with itself, cf. (4). Recall that σ̃m is the normalized σm.
The ACF of 〈ω〉 is defined analogously. A main advantage of using Markov chains
instead of drawing samples that are uncorrelated in time from the observed distri-
bution of cloud types is that a Markov process should be better capable of captur-
ing the observed ACF. In Fig. 4.11 we show normalized ACFs of the observed area
fractions (solid line with stars), the CMC area fractions with N = 100 conditioned
on 〈ω〉 (solid line) and on CAPE (dashed line) and the ACF corresponding to 692

CMCs conditioned on 〈ω〉 (dotted line), for (a) deep convective (b) strong conges-
tus (c) stratiform (d) moderate congestus and (e) clear sky. Also the ACF of 〈ω〉 is
shown (dash-dotted line). In (a) we see that apparently, the ACF of the deep con-
vective area fractions produced by N = 100 CMCs decreases too rapidly initially.
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Without the correction for advection as explained in Section 4.4 the ACF decreases
even more rapidly (not shown). The rapid initial decrease indicates that the prob-
ability of a transition from deep to deep is estimated too low. We see that the daily
cycle is well captured in the case that we conditioned on 〈ω〉. When CAPE is used
as indicator the ACF decreases more rapidly than when conditioned on 〈ω〉 and it
can be seen that the daily cycle is not captured. The ACF for the observational
data set of 2005/2006 is similar to the ACF for the 2007 data set (not shown). We
note that for a large number of CMCs, close to the deterministic limit, the ACF
follows the ACF of 〈ω〉 almost perfectly. In (b), we see that in order for the CMCs
to follow the observational strong congestus ACFs, the N = 69×69 performs better
than the N = 102. In (c) and (e) we see ACFs of the CMC, that are comparable
to the observational ACF, only if conditioned on 〈ω〉, not if conditioned on CAPE.
The presence of a daily cycle in the fractions is clearly visible if conditioned on 〈ω〉
except for strong congestus fractions produced with N = 100 CMCs. Considering
all ACFs, we conclude that the ACFs for CMCs conditioned on 〈ω〉 are better than
if conditioned on CAPE (except for moderate congestus). For N = 100, the ACF
of deep convection is better than for N = 692, while this is not the case for strong
congestus and moderate congestus. For stratiform and clear sky, the number of
CMCs does not strongly influence the ACFs. The deep convective, strong conges-
tus and moderate congestus fractions are small and intermittent for the CMC with
N = 100, which results in non-smooth ACFs.

4.8 Discussion and conclusion
In this study we constructed a stochastic multicloud model from observational
radar data in Darwin, Australia, combined with large-scale data representing the
atmosphere around Darwin. The multicloud model consists of CMCs switching
between different cloud types (moderate congestus , strong congestus, deep con-
vective and stratiform clouds and clear sky), a model set-up similar to [72] and
[34]. The model is able to reproduce cloud type area fractions comparable to the
observational fractions (especially for the deep convective area fractions, on which
we focussed primary). The vertically averaged large-scale vertical velocity 〈ω〉 was
found to be a good indicator, whereas CAPE or RH were found to be less suitable
indicators. This is in agreement with the findings of [29].

The number N of CMCs used to form cloud type area fractions was shown to be
an important parameter of the model: for moderate values of N the model shows
significant stochastic fluctuations and the model is able to produce area fractions
comparable with the observational fractions. For large values of N the model is
more deterministic and unable to reproduce fractions well. The stochastic nature
of the model is essential for making the fractions comparable to the observations.
Further, by changing N the multicloud model can be adapted to the horizontal
scale if implemented in a GCM, providing a way to make the parameterization
scale-adaptive. This makes the model suitable for GCMs using non-uniform grids.
Further, the model can be used as a start for GCMs reaching grid sizes that fall in
the Grey Zone, i.e., for grid sizes so small that subgrid convective flux terms are of
the same order as the resolved flux terms (e.g., [36, 149]).
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In the Grey Zone, besides the problem that the fluxes are partly resolved partly
unresolved, the unresolved fluxes have a large standard deviation [36]. The stochas-
tic multicloud model can produce stochastic fluctuations, resulting in a large stan-
dard deviation for the unresolved fluxes, that are difficult (or impossible) to produce
with a deterministic model. Another advantage of using a multicloud model with a
life cycle is that it will produce cloud type area fractions that are compatible with
each other in case of large fluctuations. If the horizontal grid size is large the life
cycle is not very important and a large number of Markov chains N can be used
such that the model becomes effectively a deterministic model (expected area frac-
tions can be used instead). Still, even then the multicloud model can be useful since
the expected area fractions (that depend on the large-scale state) are directly in-
ferred from observational data and can be used in the cumulus parameterizations.
With this deterministic version of the multicloud model, we have a tool to examine
directly the influence of the stochastic aspect of the model in a GCM. Obviously, for
grid resolutions for which moist convection can explicitly be resolved our model is
not useful. However, it will take a long time before global climate models can do
runs with such fine resolutions.

The horizontal size to which a CMC corresponds is not clearly determined. In
principle it corresponds to the horizontal size of the cloud type under considera-
tion, which is different for all cloud types. Using a different number of CMCs for
each cloud type is an option, but it is complicated and lies out of the scope of this
research. During the training process, we arrived at a value of N = 100. This value
was chosen because of the comparable standard deviations between model and ob-
servations. If local interaction is introduced for the CMCs, then a larger number
of CMCs can be chosen while keeping a sufficiently large standard deviation (see
[34]).

The fractions produced by the multicloud model depend on the thresholds of
Table 4.1 that are used for the classification of the clouds in the radar data. If
for example the threshold for rain rate is put from 12 mm h−1 to 25 mm h−1, the
observed cloud type area fractions change. The fractions produced by the CMCs
constructed using the higher threshold also change. The CMC expected area frac-
tions are then close to the new observational means and the same holds for the
standard deviations. We conclude that the multicloud model is sensitive to the
thresholds in the same way as the classification is sensitive to it.

The interaction of deep convection and the mean vertical velocity is a two-way
interaction. If deep convection is triggered, it initiates a feedback system. It causes
convergence of air, which in turn changes the mean vertical velocity. This conver-
gence of air will cause more deep convection. In Fig. 4.4, we see that 〈ω〉 and the
deep convective area fraction attain maximum cross-correlation for positive time
lag, suggesting that 〈ω〉 can be seen more as an effect than a cause of deep convec-
tion. However, this correlation is already high for negative time lag and at time lag
zero the deep convective area fraction correlates well with 〈ω〉, better than with
CAPE or RH. Therefore, we argue that 〈ω〉 can be used to condition the Markov
chains. In a GCM the deep convective area fractions are only used as a closure
of the mass flux at cloud base as described in (4.2) in Section 4.3. In addition to
the closure, every parameterization of deep convection further consists of a trigger
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function, usually based on instability and/or humidity criteria, as well as a cloud
model, which performs the parcel ascent in the vertical. Consequently, convection
will only be initiated when the trigger function permits it and its vertical extent
will be determined by the cloud model. The deep convective area fractions con-
structed by our multicloud model determine the strength of the deep convection
only if the other conditions are met. By conditioning on 〈ω〉 the observed feed-back
system will be present in the GCM, but through the trigger function and cloud
model deep convection will stop when relative humidity is too low, or when insta-
bility is not longer present in the atmosphere.

As the multicloud model was able to reproduce the cloud type area fractions
quite well, a natural step is to test this model in a GCM. We are currently testing
the multicloud model in a GCM of intermediate complexity (e.g., with prescribed
sea-surface temperatures) and we will report on this in a separate paper. We use
the deep convective area fractions σ4 as a closure for the mass flux at cloud base.
The strong congestus area fractions σ3, which also represents convection, can be
added with a different updraft velocity, and the same can be done with the moder-
ate congestus fractions σ2. As an alternative to using a parcel ascend cloud model
it is possible to define vertical heat and moisture tendency profiles corresponding
to each cloud type (e.g., [72]) or explicitly inferring vertical heat and moisture ten-
dency profiles from data as in [36]. Another possible application of the model in a
GCM is that

∑
m>1σm, or 1−σ1, can be used in the parameterization of cloud cover.

The main weakness of our model is that there is no spatial dependence between
the CMCs other than through the large-scale state. In the atmosphere clouds are
often organized into spatial structures, but with our model it is not possible to
produce such spatial organization inside a grid box of a GCM. As mentioned, if
spatial organization inside a grid box is desired, then introducing local spatial de-
pendencies between the CMCs is a possibility. This is however, a difficult task and
increases the complexity of the model (see [34]). The absence of local dependencies
results in too small standard deviations for the CMC fractions when N is chosen
to be equal to the number of radar sites. The area fraction of N CMCs converges
fast to the expected value for increasing N, much faster than the fractions formed
by radar pixels in the domain for which there is large dependence between neigh-
boring pixels. Further, the peak values of the observational fractions of stratiform,
moderate congestus and clear sky are difficult to produce while keeping N such
that the peak values of the deep convective area fractions are good. The standard
deviation for stratiform, moderate congestus and clear sky are too small and we
noticed that the ACFs of the area fractions produced with N = 100 CMCs decrease
too much initially (except for stratiform and clear sky).

How representative is our model? We showed that by training the CMCs with
observational data from a five-month period in Darwin, the multicloud model was
able to adequately produce fractions for a different three-month period at the same
location. This indicates that the model works for a large range of large-scale at-
mospheric conditions and that a time series of five months is long enough to train
the model for Darwin. In the experiment where we interchanged training and test
data set we found that even training on a three-month period is enough to produce
adequate fractions for the five-month period. We conclude that the time series
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is long enough to make a representative parameterization of deep convective and
cloud area fractions for Darwin itself.

The main advantage of using observational radar data over LES data is that a
longer time period can be covered. The LES data set of the study of [34] was six
hours as opposed to the ∼eight-months period of the radar data. A simulation of
eight months for a domain of the size of the radar domain is not yet computation-
ally possible. Darwin is located in a tropical region where deep convection occurs
frequently in the monsoon period, therefore it is representative for deep convec-
tion in the tropics. [50] show that only a small adaptation has to be performed
to use their stochastic parameterizations of deep convection, also conditioned on
ω, at a different location than where they have been trained. This supports that
also our multicloud model could be used more globally. However, since convec-
tion is (in part) location dependent, e.g., the presence of land or sea, our model
could be improved by using observations from multiple locations. Note that even
in state-of-the-art GCMs, mass flux at cloud base closures are functions of large-
scale variables only and are not specifically adapted to the location on the globe.

To summarize the strengths of our approach: realistic observational data is
used to estimate the model; the CMC cloud type area fractions were shown to
be comparable to the observations, which is notable, because we used different
data sets for training and validation. Furthermore, we saw that the model can be
adapted to the scale of the GCM, giving larger fluctuations when a smaller number
of Markov chains is used to produce area fractions. Due to the conditioning, mem-
ory effects are build in that are often absent in conventional stochastic convection
schemes. Implementation in a GCM for assessing the model in a dynamical envi-
ronment is possible and it can be improved by using additional data from different
locations.
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Chapter V
Stochastic convection parameterization

in a GCM

5.1 Abstract
Conditional Markov Chain (CMC) models have proven to be promising building
blocks for stochastic convection parameterizations. In this paper, it is demonstrated
how two different CMC models can be used as mass flux closures in convection pa-
rameterizations. More specifically, the CMC models provide a stochastic estimate of
the convective area fraction that is directly proportional to the cloud base mass flux.
Since, in one of the models, the number of CMCs decreases with increasing resolu-
tion, this approach makes convection parameterizations scale-aware and introduces
stochastic fluctuations that increase with resolution in a realistic way. Both CMC
models are implemented in a GCM of intermediate complexity. It is shown that with
the CMC models, trained with observational data, it is possible to improve both the
subgrid-scale variability and the autocorrelation function of the cloud base mass
flux as well as the distribution of the daily accumulated precipitation in the tropics.
Hovmöller diagrams and wave-number frequency diagrams of the equatorial pre-
cipitation indicate that, in this specific GCM, convectively coupled equatorial waves
are more sensitive to the mean cloud base mass flux than to stochastic fluctuations.
A smaller mean mass flux tends to increase the power of the simulated MJO and to
diminish equatorial Kelvin waves.

5.2 Introduction
Deep convection is an atmospheric process of major importance in Earth’s weather
and climate system. Locally, it transports heat, moisture, and momentum verti-
cally in the atmosphere [3]. Globally, it affects the large-scale circulation [118].
Further, deep convection largely determines precipitation in the tropics. Of spe-
cific interest is its coupling to equatorial waves (e.g., equatorial Kelvin waves,
Rossby waves, and the MJO) that largely determine the variability of precipita-
tion [76, 143]. Most GCMs do not resolve deep convection. Instead, this process is
represented by parameterizations, assuming for example a cumulus ensemble that
is in quasi-equilibrium with the large-scale forcing [5].

Availability of larger computational resources allows GCMs to be run at finer
resolutions. At horizontal grid resolutions below ∼ 100 km, and especially in the
Grey Zone (1-10 km), where convection becomes partially resolved, the quasi-equili-
brium assumption breaks down. As a result, the assumption that there is a unique

This chapter has been published as: Jesse Dorrestijn, Daan T. Crommelin, A. Pier Siebesma, Harmen
J.J. Jonker, and Frank Selten, 2016: Stochastic Convection Parameterization with Markov Chains in
an Intermediate-Complexity GCM. J. Atmos. Sci., 73, 1367–1382 [37]
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relation between the cumulus ensemble and the large-scale conditions is not rea-
sonable anymore, because the ensemble in the GCM grid column is too small, and
life cycles of individual cumulus clouds cause large fluctuations in the convective
response and associated subgrid fluxes. Therefore, convection parameterizations
should become scale-aware [4] and stochastic ingredients are required in absence
of quasi-equilibrium at increasing resolutions (e.g., [109, 114]). Stochastic physics
have been introduced in GCMs for various reasons: to more realistically represent
the subgrid-scale variability [86], but also to enlarge the model spread in ensemble
prediction systems (e.g., [9, 20, 136]).

The stochastic subgrid-process parameterization approach used in this paper
has been introduced by [25]. The main idea behind this approach is to repre-
sent subgrid processes of an atmosphere or ocean model by stochastic processes of
which the properties are inferred from high-resolution data prior to implementa-
tion. More specifically, the processes are represented by finite state Markov chains
with transition probability matrices that are estimated from data and are con-
ditioned on the resolved model variables. In [25], the conditional Markov chains
(CMCs) were shown to adequately represent subgrid-scale variables in the Lorenz
’96 model [91]. Using the same CMC approach in a GCM to parameterize convec-
tion, is a challenging task.

In a GCM, both the large-scale and the subgrid-scale state are not single scalars
as is the case in the Lorenz ’96 model, but instead are formed by various vertical
profiles of resolved and subgrid variables respectively. Another difficulty is the
availability of high-resolution data of convection. As explained by [25], Markov
chains can be inferred from high-resolution convection resolving model data as
well as observational data. Inferring CMCs from high-resolution model data has
been explored by [34, 36].

Inspired by the stochastic multicloud model of [72], [35] constructed a stochas-
tic multicloud model on a two-dimensional square lattice, using CMCs inferred
from observational data. The model was inferred from an extensive data set, con-
sisting of a combination of high-resolution data of deep convection [79] and large-
scale re-analysis data improved with observational data [29]. The high-resolution
(2.5×2.5 km2) data originated from a rain radar located in the tropics (Darwin,
Australia) and was available every ten minutes for several months in a region of
size ∼ 1.5◦×1.5◦. Thresholds for the cloud top height and the rain rate were used for
classification into a finite number of convective or stratiform cloud types [34, 72].
Observations of cloud type transitions were used to estimate the transition prob-
abilities of the CMCs. When conditioned on the large-scale vertical velocity and
choosing 100 CMCs, the cloud type area fractions of the scheme were compara-
ble to the observational fractions in the radar domain. By varying the number of
CMCs, the multicloud model could be adapted to the size of a GCM column, thereby
making the parameterization scale-aware.

In [50], a similar data-driven stochastic scheme has been developed. Observa-
tional data sets from Darwin and Kwajalein were used to construct parameteriza-
tions of the convective area fraction σc, also conditioned on the large-scale vertical
velocity. The convective area fraction was obtained by sampling directly from the
area fraction distribution that was estimated from the data before, conditioned on



5.3. The Dor15 scheme 107

the large-scale state. Introducing time-correlation was explored as well by using
CMCs. The scheme was able to adequately reproduce observational time series of
σc.

Testing the schemes in a dynamical environment, in which the CMCs are in-
teracting with the resolved model variables in a GCM, is a necessary step in the
development of the CMC-based schemes for the usage in state-of-the-art GCMs.
Therefore, in the present paper, we show results of the implementation of the
stochastic multicloud model of [35], referred to as Dor15, and a scheme similar to
the CMC scheme of [50], referred to as Gott15, in a GCM of intermediate complex-
ity; the climate model SPEEDY (Simplified Parametrizations, primitivE-Equation
DYnamics) [77, 101].

The stochastic schemes produce σc which serves as a closure for the cloud base
mass flux Mb in the convection parameterization scheme. So, SPEEDY’s tradi-
tional deterministic convection scheme, a simplified Tiedtke mass flux scheme
[137], is made stochastic by using σc as stochastic input for the determination
of Mb. This is a crucial step in the coupling of the stochastic schemes to the con-
vection scheme of SPEEDY. The coupling of a stochastic scheme to the convection
scheme of a NWP model, via σc and Mb, has been successfully applied earlier by
[9].

Our paper is organized as follows. In Section 5.3, we describe the Dor15 scheme,
followed by a description of the Gott15 scheme in Section 5.4. Then, we explain how
we implement the schemes in SPEEDY in Section 5.5. We specify the observational
data sets in Section 5.6, and we present model results in Section 5.7. A discussion
follows in Section 5.8.

Figure 5.1: Illustration of the stochastic multicloud model (the Dor15 scheme). The thick black lines
indicate the GCM grid of which we see four columns from a top view. Inside the four columns, the thin
black lines form the two-dimensional micro grid of the multicloud model. Here, each GCM grid column
contains N = 25 nodes, with a CMC on each node, switching between the five cloud types. A snapshot
from the discretized radar data from Darwin is included to point out that the transition probabilities of
the CMCs are estimated from observational data.

5.3 The Dor15 scheme
The stochastic multicloud model consists of a two-dimensional square lattice with
N nodes, with at each node a CMC, denoted Yn (1 ≤ n ≤ N), that switches, every
ten min, between the following states: clear sky (1), moderate congestus (2), strong
congestus (3), deep convective cloud (4) and stratiform cloud (5). We refer to these
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states as cloud types. In Fig. 5.1, we illustrate how the multicloud square lattice,
or “micro grid”, can be embedded in a GCM grid. In the figure, we see four GCM
columns with N = 25 CMCs for each column. The value N = 25 has only been
chosen for the sake of illustration and results will be presented for N = 100 and
N = 500.

The transition probabilities of the CMCs depend on the large-scale state of the
atmosphere: they are conditioned on the vertical velocity averaged over the lower
part of the troposphere defined by:

〈ω〉 := 1
p0 − p∗

∫ p0

p∗
ω(p)dp,

in which ω is the large-scale vertical velocity in hPa h−1, p0 is the pressure at the
surface, and p∗ is the pressure level at 340 hPa. We condition the CMCs on 〈ω〉,
because in [35] this variable was shown to have the largest correlation with deep
convection, see [29, 113] for similar findings. Since the CMCs have five states, the
transition probability matrices are of size 5×5 and since we bin all possible values
of 〈ω〉 into 25 intervals, we obtain 25 matrices; for each interval there is a different
5×5 matrix.

In a GCM grid column, the N CMCs yield area fractions σm for each cloud type
1≤ m ≤ 5 which are defined by:

σm = 1
N

N∑
n=1

1[Yn = m], (5.1)

in which 1[·] is the indicator function (1[Yn = m] = 1 if Yn = m and 1[Yn = m] = 0
if Yn 6= m). Previous studies based on observational data [35, 50] show that the
expectation value of σ4 is an increasing function of 〈ω〉, with a maximum of around
0.03 for 〈ω〉 ≈ 15 hPa h−1.

Ideally, one would like to choose N such that the size of the micro-grid cells
corresponds to the typical size of a convective updraft area L2

conv. This implies that
N should be the ratio between the GCM horizontal grid size area ∆X2 and L2

conv,
i.e., N ≈ ∆X2/L2

conv. The parameter N is a scaling parameter enabling the Dor15
scheme to adapt to the GCM grid resolution and determines the magnitude of the
stochastic fluctuations of the area fractions σm. The larger N, the smaller the devi-
ations from the expectation values, to which the fractions converge if N →∞. This
gives a deterministic version of the model. Previous off-line studies [35] showed
that for N = 100 the temporal fluctuations of the deep convective fractions resem-
ble the observational fluctuations on an area of size 170×170 km2, and therefore,
L2

conv ≈ 172 km2. The value N = 100 is ideal for usage in a GCM with grid size
∆X2 = 1702 km2. We test the multicloud model in SPEEDY for the relatively small
value N = 100, referred to as Dor15-100, to be able to assess the impact of stochas-
tic fluctuations. As an extra sensitivity test, we do an additional experiment with
N = 500, referred to as Dor15-500, which is a more appropriate value for SPEEDY.

For the implementation in SPEEDY we use the sum of the strong congestus
and deep convective area fractions to estimate the convective area fraction:

σc =σ4 +σ3, (5.2)
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that is used in the closure for Mb in the convection scheme, explained in detail in
Section 5.5.

More information about multicloud models can be found in e.g., [1, 32, 34, 35,
43, 72, 73, 94, 113].

5.4 The Gott15 scheme
In the Gott15 scheme, the CMCs switch between σc values instead of cloud types,
and only one CMC is used for each GCM column (by contrast, the multicloud model
has N CMCs in each GCM column). Thus, the scheme is less complex than the mul-
ticloud model, but it is not scale-aware. The fluctuations of σc can not be adapted
to the GCM resolution. We will now describe in detail how we construct the Gott15
scheme.

Again, we use the discretized Darwin radar data set. The deep convective area
fractions σ4 are added to the strong congestus area fractions σ3 forming σc. We
cluster the fractions with k-means [45, 92], using K = 10 cluster centroids. This
results in ten possible σc values, which are the states of the CMCs. We use the
observational σc to estimate transition probability matrices of size 10 × 10. As
in Dor15, the CMCs are conditioned on the 25 intervals of 〈ω〉, so we estimate 25
matrices; for each interval of 〈ω〉 there is a different 10×10 matrix. The transition
probabilities of the CMC correspond to a time step of ten min, since observational
fractions are available every ten min, and to an area size of ∼ 1.5◦×1.5◦, which is
the size of the radar domain.

The Gott15 scheme is implemented in SPEEDY in the same way as the mul-
ticloud model: σc is used as a closure for Mb. We stress that the main difference
between the Gott15 scheme and the Dor15 scheme is that the Gott15 scheme does
not make use of a multicloud model, instead its CMCs make transitions between
σc values.

5.5 Implementation in SPEEDY
SPEEDY is a GCM of intermediate complexity: only the most important processes
are incorporated in the model, they are represented in a simplified way, and the
GCM’s resolution is coarse [77]. It is a hydrostatic spectral model that solves the
primitive equations on the entire globe. The prognostic variables are vorticity, hor-
izontal divergence, absolute temperature, surface pressure, and specific humidity.
The time integration is performed by a leapfrog scheme and the time step in the
standard version of SPEEDY is 40 minutes. In our version, the horizontal reso-
lution is T30, referring to a triangular truncation at total wavenumber 30. The
prognostic model fields are expanded into series of spherical harmonical functions
of total wavenumber 30 and smaller. Along latitude circles these functions corre-
spond to cosine and sine functions with maximum zonal wavenumber 30. This cor-
responds to a size of ∼ 3.75◦×3.75◦ for each of the 96×48= 4608 vertical columns.
In the vertical, the model has eight pressure levels. SSTs are prescribed by using
observational climatological fields, while land skin temperatures are prognosed
using a soil model. SPEEDY has a seasonal cycle, but no daily cycle. Simplified
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parameterizations are used to represent short-wave and long-wave radiation, deep
convection, clouds, surface heat and moisture fluxes, large-scale condensation and
vertical diffusion (representing, e.g., shallow convection). Precipitation is the sum
of the large-scale and convective precipitation. The large-scale precipitation is de-
rived from a large-scale condensation scheme and the convective precipitation is
derived from the deep convection scheme.

The reason why we choose such a simplified GCM is that it provides a perfect
playground to explore new stochastic concepts in convection parameterizations and
the impact on the representation of intraseasonal variability caused by equatorial
waves. In that respect this explorative study should be considered as a natural
intermediate step from recent off-line studies [35, 50] toward an implementation
into the state-of-the-art GCMs.

The relaxation closure (CTRL)
The deep convection scheme is a simplified Tiedtke mass flux scheme [137]. Con-
vection in a grid column is triggered if the atmosphere is conditionally unstable
with respect to the lowest model level and if the relative humidity in the two low-
est model levels exceeds a critical value (see the online SPEEDY manual by [102]).
In the standard version of SPEEDY, the cloud base mass flux Mb is estimated by
a relaxation closure. This closure determines a value of Mb such that the convec-
tion scheme relaxes back to a prescribed relative humidity threshold in six hours.
The control experiments are done using this relaxation closure and are referred
to as CTRL. In the vertical, the mass, heat and moisture fluxes are modified by a
prescribed entrainment profile, while detrainment is assumed only to occur at the
highest level where the convection scheme is active by depositing the convective
updraft mass, heat and moisture into the environment.

Implementation of the stochastic schemes
The stochastic schemes are implemented by replacing the standard relaxation clo-
sure for Mb, which can instead be estimated by using the definition:

Mb = ρwcσc, (5.3)

with a typical prescribed value of the updraft momentum at cloud base, ρwc = 1
kg m−2 s−1 [100]. For the multicloud model, we will also test the influence of this
particular choice by varying this updraft momentum. In one experiment, we set
ρwc at 0.5 kg m−2 s−1 while using N = 100, referred to as Dor15-100w0.5, and
later we choose other values of ρwc.

When the multicloud model is used, we evolve N = 100 or N = 500 CMCs in
every vertical column of SPEEDY, yielding cloud type area fractions σm for each
cloud type at every model time step. The convective area fraction σc is calculated
with (5.2) and used in (5.3). Note that we also evolve the CMCs for columns without
deep convection (in case the trigger function did not activate convection), to be sure
that the Markov chains do not have to spin up when convection is activated. Since
the transition probabilities of the CMCs correspond to a time step of ten min, we
set the time step of SPEEDY at ten minutes for all runs.
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Figure 5.2: Typical time series of Mb in kg m−2 s−1 (a) observed in Darwin (σc observations used as a
proxy for Mb , assuming ρwc = 1 kg m−2 s−1), and produced by SPEEDY at 130◦E-13◦S for (b) CTRL,
(c) Dor15-100, (d) Dor15-500 (e) Dor15-100w0.5 and (f) Gott15. An inactive trigger function is indicated
by a red dot at the horizontal axis.

In each vertical column, the input of the CMCs is the large-scale vertical veloc-
ity 〈ω〉. The value 〈ω〉 is assigned to one of the 25 interval numbers and the CMCs
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Figure 5.3: Histograms showing the relative frequency of occurrence of the non-zero Mb , the mean Mb
and the standard deviation for (a) the Darwin observations (using σc as a proxy), and for SPEEDY (one
year of model data between 15◦N-15◦S) using (b) CTRL (c) Dor15-100 (d) Dor15-500 (e) Dor15-100w0.5
and (f) Gott15.

will all use the same transition probability matrix that corresponds to this interval
number. Given its cloud type, each CMC will switch to another cloud type (or does
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not change cloud type), and after that, the new area fractions σm are calculated
using (5.1). In the present study, we only use σ4 and σ3. In [35], the possible usage
of the other cloud type area fractions is described.

When the Gott15 scheme is used, we evolve only 1 CMC in every column of
SPEEDY, which directly yields σc. The value of 〈ω〉 in a model column determines
which transition probability matrix is used by the CMC.

5.6 Observations
We will compare the model behavior of SPEEDY with observations. We will use
two observational data sets. The first data set is the Darwin radar data set. We
will compare Mb at time step level (ten minutes) of the two stochastic schemes and
CTRL with Mb observed in Darwin. We emphasize that we do not have observa-
tions of Mb, however, since we use σc of the stochastic schemes directly as Mb in
(5.3), we will also use the observational σc as a proxy for the observational Mb by
assuming again that ρwc is equal to 1 kg m−2 s−1.

The second observational data set is the daily accumulated precipitation GPI
data set (1◦×1◦) [62]. Since SPEEDY has a resolution of ∼ 3.75◦×3.75◦, we average
the observational precipitation values over blocks of this size.

5.7 Results
We run SPEEDY several times for 11 years with different closures for Mb. In order
to avoid spin-up effects, data from the first year are excluded. We store variables
(e.g., Mb and precipitation values) at every time step and for all vertical columns
around the equator between 15◦N and 15◦S, which are eight vertical columns for
each longitude.

Mb at time-step level
To get a first impression of the convective behavior of SPEEDY with the several
closures, we show Mb at time-step level for two weeks for a vertical column located
at ∼ 130◦E-13◦S in Fig. 5.2. We choose this particular grid column, because it is
closest to Darwin, Australia, for which we can show the time series of Mb using
σc as a proxy in Fig. 5.2a. The time series should be compared in a statistical
sense. The goal is not to give an identical reproduction of the time series observed
in Darwin, instead we show “typical” time series of the several closures during the
rain season.

In Fig. 5.2b, we see that the mass flux of CTRL is non-zero for specific time
intervals, only when the trigger function is active (an inactive trigger function is
indicated by a red dot at the horizontal axis). If the trigger function allows for
convection, the mass flux is always close to 0.03 kg m−2 s−1; CTRL has small vari-
ability. Further, there are periods when the trigger function switches convection on
and off too rapidly, for example from day 2 till day 5. The too intermittent behavior
of CTRL is due to the trigger function.

In Fig. 5.2c, we clearly see the discrete character of Dor15-100: only values
that are integer multiples of 1/100 = 0.01 are attained, because N = 100 CMCs
are used to calculate σc. If only one CMC is in a convective state (state 3 or 4),
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σc = 1/100 = 0.01, if two CMCs are in a convective state, then σc = 2/100 = 0.02,
etc. The mass flux fluctuates between 0 and 0.07 kg m−2 s−1, in this period of this
particular realization, which suggests that the variability has improved compared
to CTRL. Note that a zero mass flux can be the result of an inactive trigger function
or a convective area fraction σc equal to zero. For example, from day 2 till day 5
the zero Mb is a result of an inactive trigger function. The character of the time
series is too intermittent compared to the series observed in Darwin, which can not
be exclusively attributed to the trigger function.

In Fig. 5.2d, we see the mass flux produced by Dor15-500. Mass flux values
higher than 0.04 kg m−2 s−1 are rare. Deviations from the expectation values are
expected to be smaller compared to the N = 100 experiment. By increasing N even
more, the time series start to resemble the series of CTRL. However, note that for
the deterministic limit N →∞, the closure still differs from the standard relaxation
closure, and therefore, convergence of the stochastic closure to CTRL should not be
expected.

In Fig. 5.2e, we see that Dor15-100w0.5 produces lower Mb values than Dor-
15-100 and that the values are multiples of 0.005. Lower mass fluxes imply that
convective instabilities are less quickly removed, leading to prolonged periods of
convective activity. As opposed to Dor-15-100 the trigger function is active for al-
most the entire period: it is only inactive around day 12.

Finally, the Gott15 scheme (Fig. 5.2f) produces Mb time series that are similar
to the series as observed in Darwin. The highest value of Mb lies between 0.07 and
0.08 kg m−2 s−1. The general shape of the convective peaks looks quite realistic for
this scheme. It less intermittent than the multicloud and CTRL time series.

Clearly, compared to CTRL, the two stochastic schemes (Dor15 and Gott15) are
better reproducing the fluctuations as observed in Darwin.

The distribution of Mb
In Fig. 5.3, the distributions of Mb are visualized by showing histograms of the
relative frequency of occurrence of the non-zero Mb, and the corresponding mean
and standard deviation observed in Darwin (Fig. 5.3a) and for model data be-
tween 15◦N-15◦S based on the different closures (Fig. 5.3b-f). The y-axes are scaled
logarithmically, to make the tails of the distributions better visible. The Darwin
histogram corresponds to a distribution that is approximately exponential with a
maximum Mb of around 0.10 kg m−2 s−1.

In Fig. 5.3b, we see that the mass flux of CTRL has a peak value at 0.03 kg m−2

s−1 and that the relative frequencies are rapidly decreasing to zero for larger mass
fluxes. The maximum value lies below 0.05 kg m−2 s−1. The mean mass flux of
CTRL is larger than the mean mass flux observed in Darwin and the standard de-
viation is smaller. This is also the case if we evaluate the model data near Darwin
instead of the entire tropical belt.

The mass flux of Dor15-100 (Fig. 5.3c) can attain values up to 0.10 kg m−2 s−1.
The discrete character of the scheme is visible, with only integer multiples of 0.01
kg m−2 s−1. The mean flux is close to the mean flux of CTRL and its standard devi-
ation is slightly larger. Dor15-500 (Fig. 5.3d) displays a histogram that resembles
the histogram of CTRL, except that a higher maximum mass flux is possible. The
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histogram looks smoother than the histogram of Dor15-100, since integer multiples
of 0.002 kg m−2 s−1 can be attained. The mean mass flux is lower than the mean
mass flux of Dor15-100 and it has a smaller standard deviation. Dor15-100w0.5
produces lower Mb than Dor15-100 and the histogram suggests that Mb is approx-
imately exponentially distributed.

Gott15 (Fig. 5.3f) attains ten different mass flux values, which are exactly the
values of the ten cluster centroids. Its maximum mass flux is around 0.07 kg m−2

s−1; higher maximum values can be obtained, for example, by using a larger num-
ber of cluster centroids. This last option would, however, need reconstruction of the
Gott15 scheme through a revised estimation of the transition matrices. The rela-
tive frequency of the bins of Gott15 seems to decrease approximately exponentially.
The mean and standard deviation are close to the observational values.

We conclude that, compared to CTRL, the stochastic schemes (Dor15 and Gott15)
produce mass flux distributions that are more similar to the Darwin distribution.
However, the discrete character of the stochastic schemes is not very realistic.
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Figure 5.4: (a) The autocorrelation function of Mb for Darwin observations and for SPEEDY (15◦N-
15◦S) with CTRL, Dor15-100, Dor15-500, Dor15-100w0.5 and the Gott15 scheme (b) the PDFs of the
non-zero daily accumulated precipitation for GPI and for SPEEDY (15◦N-15◦S) with the same closures.
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Figure 5.5: Mean equatorial precipitation (ten-year averaged) for (a) the GPI observations (3.75◦×3.75◦)
and SPEEDY (3.75◦×3.75◦) with (b) CTRL (c) Dor15-100 (d) Dor15-500 (e) Dor15-100w0.5, (f) Gott15.

Autocorrelation functions
Deep convection is correlated in time and probabilities of the occurrence and strength
of convection depend strongly on earlier time instances. This is one of the reasons
why we choose to parameterize convection with Markov chain models; to be able
to capture this correlation. How well the several closures reproduce observational
correlations, can be assessed by calculating autocorrelation functions (ACFs) [35].

In Fig. 5.4a, we plot ACFs of Mb averaged over 15◦N-15◦S for one year of model
data with the Gott15 scheme, the multicloud model (N = 100 and N = 500) and
CTRL and compare them to the ACF of Mb observed in Darwin. Compared to the
observations, the ACFs of all models except Gott15 decrease too rapidly initially
due to the intermittent character and too slow thereafter. In contrast, the ACF
of Gott15 is close to the observational ACF and the discrepancies can be partly
contributed to the absence of a daily cycle in SPEEDY. The absence of a daily cycle
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in SPEEDY contributes to a slower decay of the ACFs and the absence of a peak
after one day.

Precipitation
The daily accumulated precipitation is an important output of GCMs. We will as-
sess the different mass-flux closures by comparing the model’s precipitation output
with observations. In Fig. 5.4b, we show the PDFs of the non-zero daily accumu-
lated precipitation for ten years of data between 15◦N-15◦S. Note the logarithmic
scale of the y-axis. We see that the PDF produced while using Gott15 is very close
to the PDF of the GPI observations (1◦×1◦) for precipitation values less than 50
mm day−1 and that higher values are too frequent. Its PDF is not so close to the
GPI observations that are averaged over blocks of size 3.75◦×3.75◦, only for precip-
itation values below 20 mm day−1 there is a good fit. Gott15 has been trained with
data corresponding to an area of ∼ 1.5◦×1.5◦ which may explain why it is closer to
GPI 1◦×1◦ than to GPI 3.75◦×3.75◦.

The PDFs of Dor15-100, Dor15-500 and CTRL are similar, but not close to the
observational PDFs. Above 45 mm day−1 the PDFs decrease with the correct slope
compared to GPI (3.75◦×3.75◦). The PDF of Dor15-100w0.5 differs from the PDF
of Dor15-100, but it is still not close to the observational PDFs. For values higher
than 50 mm day−1, the PDF is close to the PDF of Gott15. In Section 5.7.6, we will
further examine the impact of ρwc.

In Fig. 5.5, we show ten year averaged equatorial precipitation. The general
patterns produced by SPEEDY (Fig. 5.5b-f) are somewhat similar to the GPI ob-
servations (Fig. 5.5a): a narrow ITCZ in the North East Pacific Ocean and a wide
one over the Maritime Continent. However, there are some major errors: for exam-
ple, the precipitation in CTRL, Dor15-100 and Dor15-500 in the North East Pacific
Ocean is double as high as in GPI. Also SPEEDY’s spatial patterns in the Indian
Ocean differ significantly from the patterns in GPI.

Dor15-100 (Fig. 5.5c) and Dor15-500 (Fig. 5.5d) do hardly change the precipi-
tation patterns of CTRL (Fig. 5.5b). So, the schemes, based on different closures,
produce similar ten-year average precipitation. This can be explained by realizing
that precipitation scales with mass flux at cloud base. Inspection of Fig. 5.3b-d
shows that the different closures give similar mean mass flux values of 0.02 kg
m−2 s−1. Dor15-100w0.5 and Gott15 produce significantly lower mean mass flux
values, which explains the reduction of the intensity of the precipitation patterns
(Fig. 5.5e-f). These schemes do not improve the patterns in general. Only the ITCZ
in the North East Pacific Ocean seems to improve. Precipitation in the warm pool
(140◦E) is still too intense and too localized compared to the observations. We con-
clude that, the intensity of Mb, rather than the variability of Mb, seems to have a
major impact on mean precipitation in SPEEDY.

Equatorial waves
At the equator, the Coriolis force vanishes, and it increases north and south of the
equator. This results in dynamics that are typical for the tropics. The governing
equations of atmosphere and ocean admit solutions that describe waves traveling
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Figure 5.6: Hovmöller diagrams [150] of the daily precipitation (mm day−1) averaged over 15◦N-15◦S
for (a) the GPI observations (1◦×1◦) from June 2000 to May 2001, and a typical year of SPEEDY with (b)
CTRL, (c) Dor15-100, (d) Dor15-500 (e) Dor15-100w0.5 and (f) Gott15. Note that the diagrams should
be compared in terms of general patterns, e.g., equatorial Kelvin waves are better visible in (b) than in
(e).

along the equator. It is possible to discern atmospheric waves in satellite observa-
tions of precipitation, because of their tendency to couple to deep convection.

A distinction can be made between waves that are mainly symmetrical with
respect to the equator, e.g., equatorial Kelvin waves traveling eastward with 15 m
s−1 (or ∼ 360◦ month−1), equatorial Rossby waves (ER) traveling westward, west-
ward inertio-gravity (WIG) waves, eastward inertio-gravity (EIG) waves, and the
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Figure 5.7: Zonal-wavenumber frequency diagrams [85, 143] of the symmetric part of the equatorial
precipitation (15◦N-15◦S) divided by the background spectrum for (a) the GPI observations, (b) CTRL
(c) Dor15-100, (d) Dor15-500, (e) Dor15-100w0.5 and (f) Gott15.

MJO traveling eastward with 5 m s−1 (or ∼ 120◦ month−1), and waves with an anti-
symmetric structure with respect to the equator, e.g., mixed Rossby-gravity (MRG).
For a comprehensive treatise on equatorial waves, we refer to [143]. State-of-the-
art GCMs should be able to reproduce these waves. Producing realistic equatorial
waves (especially the MJO), is one of the major challenges for weather and climate
modelers [13, 76].

Exactly as in [150], we show in Fig. 5.6 longitude-time plots, also known as
Hovmöller diagrams, of the equatorial daily precipitation averaged over 15◦N-15◦S
for one year of GPI observations and for the SPEEDY experiments. Hovmöller
diagrams are useful to get a first insight in the model’s ability to produce equatorial
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waves.
The eastward moving Kelvin waves are clearly visible for CTRL, Dor15-100 and

Dor15-500 (Fig. 5.6b-d). In the observations (Fig. 5.6a), these Kelvin waves are
visible, but not as prominent. The Hovmöller diagrams of the multicloud model
and CTRL are in general very similar. The multicloud model seems to produce
slightly larger coherent structures of heavy rainfall, which are visible as tiny red
blobs, for example in January at 90◦E and 150◦E in Fig. 5.6d. The MJO events
in the GPI observations, for example in February (60◦E-180◦E), are prominent and
are missing in CTRL, Dor15-100 and Dor15-500. In the Hovmöller diagram of the
Gott15 scheme (Fig. 5.6f), large convective events are present (e.g., the red blobs
between 120◦E-180◦E ), considerably more than in CTRL. We even see, that MJO-
like waves are present between 60◦E-180◦E in January. These MJO-like waves are,
however, not as strong as in GPI, which indicates that the representation of spatial
organization of convection is still inadequate.

The Hovmöller diagram of Dor15-100w0.5, with ρwc = 0.5 kg m−2 s−1, differs
from the Hovmöller diagram of CTRL: the Kelvin waves are less prominent and
structures of heavy rainfall can be seen (mainly between 60◦E-180◦E) that are
similar to the structures of Gott15. Also the MJO-like waves are present (60◦E-
180◦E Jul.-Aug.), but are even weaker than for Gott15.

To further examine the model’s ability to produce equatorial waves and investi-
gate intraseasonal variability, we calculate Wheeler-Kiladis diagrams [143] of the
equatorial precipitation. We focus on the symmetric part of the precipitation, since
we are mostly interested in equatorial Kelvin waves and the MJO, the waves with
the largest contributions to intraseasonal variance in precipitation. We calculate
zonal-wavenumber frequency diagrams of the symmetric part of the equatorial pre-
cipitation (15◦N-15◦S) divided by the background spectrum, for which we apply
smoothing with a 1-2-1 filter.

In Fig. 5.7, we plot the diagrams for the GPI observations [85], and the SPEEDY
experiments. Note, first of all, that all the SPEEDY model results differ signifi-
cantly from the GPI diagram. This is, besides the differences in the power of the
waves, caused by the different background spectra by which the spectra are di-
vided. In the observations (Fig. 5.7a), we clearly see the MJO peak (around zonal
wavenumber 1-5 with a period between 32 and 96 days) and the Kelvin waves for
positive wavenumbers. Further, we see the ER and the WIG less prominently. The
diagrams of CTRL, Dor15-100 and Dor15-500 (Fig. 5.7b-d) are very similar to each
other and show too prominent Kelvin waves while the MJO is essentially miss-
ing in these diagrams. These are typical model misrepresentations that occur in
many state-of-the-art GCMs [85]. Our multicloud scheme is not able to improve the
MJO. Successful MJO-like simulation with similar stochastic multicloud models is
possible as demonstrated by [32].

In the diagram of the Gott15 (Fig. 5.7f), we see an MJO peak and the Kelvin
waves are less prominent as in CTRL. The tropical depressions (TD-type) are too
prominent. For Dor15-100w0.5 (Fig. 5.7e), the Kelvin waves slightly diminish in
comparison to Dor15-100, the TD-type are even more prominent than in Gott15,
and the MJO peak is missing.
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The updraft momentum at cloud base
In the implementation of the stochastic schemes in SPEEDY, Mb was calculated
by multiplying σc by ρwc = 1 kg m−2 s−1 in (5.3). We find that changing ρwc has a
major impact on the model behavior. If we lower ρwc, then the equatorial Kelvin
waves get less prominent and the MJO strength increases. Also the time-averaged
equatorial precipitation changes (Fig. 5.5e) as compared to CTRL (Fig. 5.5b). To
examine the influence of ρwc, we do additional runs with Dor15-100 with ρwc
values ranging between 0 ≤ ρwc ≤ 1.5 kg m−2 s−1 and calculate the power of the
equatorial Kelvin waves and MJO as a function of ρwc. We define the power of the
equatorial Kelvin waves and the MJO as the average powers of the corresponding
wave regions in the Wheeler-Kiladis diagram as defined in Fig. 6 of [143].

Fig. 5.8a displays the result of 12 independent 11 year runs of SPEEDY using
the Dor15-100 scheme with different values of ρwc. We see that ρwc has indeed an
impact on the power of the equatorial Kelvin waves and the MJO. The equatorial
Kelvin waves tend to have less power for smaller ρwc values. The GPI observa-
tional power is 0.08, so the figure suggests that the equatorial Kelvin wave power
is only correct when ρwc ≈ 0.45 kg m−2 s−1. The MJO power tends to increase
for smaller updraft momentum values, but never reaches the MJO observational
power 0.14. Note that for ρwc = 0, the convection scheme is essentially switched
off, and all precipitation is formed by large-scale precipitation. The relative con-
tributions of the large-scale and convective precipitation as a function of ρwc is
plotted in Fig. 5.8b. The general idea we get, is that equatorial Kelvin waves are
more prominent for schemes with a larger mean Mb and consequently a larger
contribution of convective precipitation, and MJO-like features are more promi-
nent for schemes with a smaller mean Mb and consequently a larger contribution
of large-scale precipitation. The ratio between convective and large-scale precip-
itation seems to play a role in the type and the scale of organization of tropical
convection in the model. [33] similarly find that the strength of stratiform heat-
ing affects the formation of MJO-like or equatorial Kelvin wave structures in an
aqua-planet GCM.

With this novel method of calculating the power of the MJO and equatorial
Kelvin waves, it is possible to express the model’s ability to simulate these waves
in a single scalar. This enables modelers, to directly tune parameters for optimal
simulation of these waves. Note, however, that even if the powers are exactly equal
to the observational powers, it is not yet sufficient to conclude that the model sim-
ulates the waves perfectly. Other requirements have to be fulfilled as well [150].
The power only gives an impression. For example, CTRL gives a too high equato-
rial Kelvin wave power, 0.12, and a too low MJO power, 0.02, which is consistent
with the patterns found in the Hovmöller-diagrams (Fig. 5.6a-b).

5.8 Discussion
We have implemented two different stochastic parameterizations for the convective
area fraction σc in the convection scheme of the intermediate complexity GCM
SPEEDY and evaluated the impact in the tropics.

In both stochastic parameterizations σc is estimated with CMCs of which the
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Figure 5.8: (a) The average power of the equatorial Kelvin waves (line with stars) and the MJO (line
with circles) in the Wheeler-Kiladis diagram of SPEEDY, using Dor15-100, as a function of ρwc . Com-
pare with the GPI Kelvin (red solid line) and MJO (blue dashed line) average power (b) the relative
contributions of the large-scale and convective precipitation as a function of ρwc .

transition probabilities are conditioned on the large-scale vertical velocity 〈ω〉, as
this is the large-scale variable that displays the largest correlation with the occur-
rence of deep convection [35]. Note that a closure based on 〈ω〉 effectively resem-
bles a moist convergence closure, but due to the stochastic aspects our closures are
not so hardwired as the more traditional deterministic moist convergence closures
(e.g., [80, 137]). Although it is difficult to disentangle convergence and convection
in terms of causality, there is no reason not to use the large-scale vertical velocity
to condition the transition probabilities of the CMCs.

On a local grid point level both stochastic schemes produce mass-flux time se-
ries that are more realistic than the series produced by the standard CTRL version
(Fig. 5.2). This is also reflected in a broader and more realistic frequency of oc-
currence distribution of the cloud base mass flux (Fig. 5.3). Gott15 and to a lesser
extend Dor15 also improve the daily accumulated tropical precipitation compared
to CTRL (Fig 5.4b). Substantial improvement of the temporal autocorrelation func-
tion for Mb is only observed for Gott15 (Fig. 5.4a).

Wheeler-Kiladis diagrams show that the equatorial Kelvin waves are too promi-
nent in SPEEDY for CTRL and that the MJO is missing entirely. Gott15 signifi-
cantly improves the representation of both the MJO and the equatorial Kelvin
waves. Dor15 is only able to improve on this issue by strongly reducing ρwc.
By increasing the relaxation time-scale of the relaxation closure in CTRL, similar
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changes are to be expected [44]. For Dor15 it seems that changing the mean Mb
has a larger impact on the representation of the equatorial waves than changing
the magnitude of stochastic fluctuations of Mb on a time step level.

How much of the model errors are due to the convection schemes and how much
due to the large-scale forcings of SPEEDY? The range of 〈ω〉 values produced by
SPEEDY compares well with the range observed around Darwin. The time series
of Mb in Fig. 5.2c and Fig. 5.2f compare well with time series produced by the
same schemes using observed 〈ω〉 values [35, 50]. In addition, the large range
in different mass flux behavior displayed in Fig. 5.2b-f suggests that most of the
discrepancies between the Darwin time series and the model time series are due
to the convection parameterizations and not the large-scale forcings of SPEEDY.
The too intermittent character of for example the Dor15-100 scheme is due to the
scheme itself and not to SPEEDY.

An advantage of the Dor15 scheme over the Gott15 scheme is that it can be
adapted to the scale of the GCM grid column, which makes it more universal in us-
age. We have, however, seen that the results for the Gott15 scheme are better than
for the more involved Dor15 scheme. The main difference between the two methods
is that the Gott15 scheme has been trained with the macroscopic data, i.e., aver-
aged σc over the entire radar domain, while the Dor15 scheme has been trained
on a finer scale: individual radar pixels. The Gott15 scheme works with only one
CMC that directly yields σc corresponding to the size of the radar domain, while
the Dor15 scheme works with N CMCs for which each CMC corresponds to the size
of a convective updraft and σc is calculated later with (5.1) and (5.2). The main rea-
son why Gott15 performs better, is that it implicitly inferred spatial interactions
between neighboring radar pixels, which are not captured by the independently
evolving CMCs of Dor15. This could also be the reason that the Gott15 scheme is
less intermittent than the multicloud schemes (Fig. 5.2) and has a more realistic
ACF (Fig. 5.4a).

Including local interactions between neighboring cells in the Dor15 model could
improve its performance, but lies beyond the scope of this paper. Including spatial
interactions makes the model more complicated, because for every configuration
of the neighboring cells a different transition probability matrix is needed. For
successful inclusion of spatial interaction we refer to [9] in which a cellular au-
tomata approach (deterministic and stochastic) is applied to make convection in-
teract spatially between different grid boxes of a NWP model, leading to a more
realistic representation of convective organization. Further, in [34] locally inter-
acting CMCs have been inferred from LES data and in [71] the multicloud model
of [72] is extended by including spatial dependencies.

The Dor15 multicloud model is inspired by the multicloud model of [72]. The
models are similar because in both models CMCs are positioned on a micro grid
and randomly switch cloud type with probabilities that depend on the large-scale
forcing. The main difference between the models is that the transition probabili-
ties of the Dor15 scheme are estimated from data while the transition probabilities
used in [72] are derived by choosing typical time scales of formation of clouds, con-
version between cloud types and decay of clouds which are based on physical in-
tuition. Furthermore, in the multicloud model of [72] probabilities are conditioned
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Table 5.1: Computational costs (seconds per model day) of SPEEDY with the several closures compared
to CTRL. The third column shows the number of random numbers that has to be generated each model
day. The last column shows the number of random numbers that has to be generated for each model
column (4,608 columns) each time step (ten minutes). Calculations are performed on a PC with 7.7-GB
memory and a 2.5-GHz processor.

Scheme Computational costs No. random numbers No. random numbers
(seconds per model
day)

per day per column per time
step

CTRL 3.4 0 0
Dor15-100 5.0 6.6 ·107 100
Dor15-500 11.5 3.3 ·108 500
Gott15 3.4 6.6 ·105 1

on CAPE and middle troposphere dryness instead of large-scale vertical velocity
for Dor15. In [72], a stochastic coarse-grained birth-death system is derived for the
multicloud model, such that each GCM column only uses one CMC, which makes
the method very effective. Further, the model of [72] is scale-aware because the
number of lattice sites in the the micro grid can be adapted to the GCM grid box
size. We conclude that the beneficial properties of both methods could be combined
to obtain an even better model. Especially the inclusion of spatial dependencies as
in the extension in [71] is promising.

In some recent studies [1, 116], new convection parameterizations have been
implemented in aqua-planet GCMs. SPEEDY can also run in aqua-planet mode,
but for comparison to satellite observations, we have chosen to include land in the
experiments.

A final remark on computational costs of the new stochastic schemes. The mul-
ticloud scheme, for which N CMCs have to be evolved for each grid column (in-
cluding the generation of random numbers) increases the computational costs of
the convective scheme substantially, while the computational burden of Gott15 is
marginal. In Table 5.1, we list these computational costs. In GCMs with a large
number of grid columns, using a large number of CMCs (N > 100) for each column,
could become computationally problematic. [72] showed that the usage of birth-
death-like processes, with the same characteristics, is a solution to this problem.
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Chapter VI
Epilogue

“Every bit of reality,
always starts with a dream.”

Pete Philly

And . . . it was a dream of Edward Lorenz (1917-2008), mathematician and me-
teorologist, well-known as the inventor of chaos theory and the butterfly effect, to
include random numbers in the equations of weather and climate prediction mod-
els [90, 110].

Random numbers have been used; however, stochastic weather and climate
modeling is still in its infancy. This is reflected, for instance, in the fact that the
use of stochastics has not yet been fine-tuned to individual parts of the prediction
models. Scientists are now developing stochastic models and approaches for differ-
ent parts of the prediction models (e.g., the dynamical core, the physical tendencies,
the ocean, the atmosphere, the orography) such that random numbers are included
in a realistic way.

The presented work in this dissertation sheds new light on how and why stochas-
tic methods can and should be used for the representation of convection and clouds.
In particular, the use of parameterization methods based on conditional Markov
chains (CMCs) has been examined in detail. In each chapter, this has been done
in a different setting. Stochastic representations of shallow and deep convection
have been examined with a Large-Eddy Simulation (LES) model, and LES data
has been used to infer Markov-chain models. Besides simulations of convection
with LES, also observations from a rain radar have been used to examine deep
convection and its associated clouds and Markov-chain based parameterizations
have been inferred from the observations as well. Furthermore, it has been shown
that Markov-chain based models can indeed be used to improve the representation
of convection in a general circulation model (GCM) of intermediate complexity; the
climate model SPEEDY.

This chapter presents detailed conclusions, a synthesis and an outlook for fu-
ture studies.
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6.1 Conclusions
It has been demonstrated that the stochastic subgrid parameterization approach
of Crommelin & Vanden-Eijden (2008) [25], that had proven its usability in the
Lorenz ’96 model setting before, can also be used to construct parameterizations
of shallow cumulus convection. CMC models have been inferred directly from LES
data. In particular, the CMCs were able to stochastically produce vertical profiles
of turbulent fluxes; as observed in an LES data set obtained from a simulation
of shallow convection. The CMCs switched between a finite number of states and
were conditioned on a finite number of resolved-scale states. In order to do so,
discretizations of the subgrid-scale variables and the resolved-scale variables were
needed. It has been shown that these discretizations could be obtained by using
the clustering method k-means. Entire vertical profiles of the heat and moisture
fluxes could be clustered simultaneously to obtain a finite number of represen-
tative pairs of heat and moisture profiles. Also, the resolved-scale variables, in
particular: vertical profiles of heat and moisture, have been clustered in a simi-
lar way. Transition probabilities of the CMCs have been estimated from the LES
data. The parameterization has been demonstrated to adequately produce fluxes
in a single-column model (SCM) in which the turbulent fluxes, produced by the
Markov chains, counterbalanced the large-scale forcings. The CMCs outperformed
the Markov chains that were not conditioned on the large-scale variables; there-
fore, it could be concluded that conditioning on the large-scale variables improved
the Markov-chain model. The random fluctuations around the expectation values
of the heat and moisture fluxes could be captured quite well. However, a draw-
back of using a finite number of representative turbulent flux profiles was found
to be that the standard deviation of the fluxes decreased compared to the stan-
dard deviation of the LES fluxes. A moment-preserving clustering method could
solve this problem, but this was not further examined. Another drawback was that
this parameterization only works for atmospheric circumstances that are similar to
the atmosphere as observed in the field-experiment Barbados Oceanographic and
Meteorological Experiment (BOMEX). In theory, this particular approach could be
generalized to construct shallow convection parameterizations that can be used
globally. This would, however, be a very complex task. In order to do so, in future
studies, LES simulations could be done for a sufficiently large range of atmospheric
circumstances with shallow convection. It is questionable whether with this par-
ticular approach a sufficiently large set of representative vertical turbulent flux
profiles can be constructed that can be used to parameterize shallow convection in
a GCM.

Furthermore, it has been clearly demonstrated that stochastic convection pa-
rameterizations can be useful for a range of resolutions that is larger than the
Grey Zone. In the Grey Zone, the resolution is such that the resolved and unre-
solved tendencies of heat, moisture and momentum are of the same order, with as
a result strongly fluctuating unresolved fluxes. Therefore, stochastic methods are
useful in the Grey Zone. Fig. 2.2 showed that the standard deviation of the unre-
solved fluxes decreases slowly for coarser resolutions and that it is still significantly
large for horizontal model resolutions outside the Grey Zone. Therefore, stochas-
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tic methods could be useful for a much larger range of resolutions than the Grey
Zone resolutions. These results were obtained by coarse-graining (i.e., averaging)
LES model data over subdomains of increasing horizontal size and decomposing
fluxes into a resolved and unresolved part. In future studies, this could be done for
simulations of deep convection as well to better visualize the Grey Zone for deep
convection.

The work presented in Chapters 2 and 3, showed examples of the approach of
running a high-resolution or micro-scale model (e.g., LES) to infer Markov-chain
models that can be used as representations of unresolved processes (e.g., convec-
tion) of a larger-scale or macro-scale model (e.g., GCM). The particular implemen-
tation of the approach - e.g., using clustering techniques to obtain the states of
the Markov chains - could be applied to other multi-scale problems that are com-
mon in other fields as well. The approach in Chapters 2 and 3 can be fit into the
Heterogeneous Multi-scale Methods (HMM) [38] framework by taking the GCM as
the macroscopic model and LES as the microscopic model. The approach in this
dissertation is an example of serial coupling: the microscopic model outputs were
pre-computed and were used later in a macroscopic model. Concurrent coupling,
for which the micro and macroscopic models are run at the same time, would be
possible too and could be an interesting topic for future studies.

Although, the method of clustering entire vertical profiles of the turbulent heat
and moisture fluxes, as performed in Chapter 2, was successful for shallow convec-
tion parameterization, this particular approach was not used in Chapters 3-5. A
switch was made to the usage of multicloud models. In the multicloud models, the
states of the Markov chains were cloud types, which turned out to be a major sim-
plification compared to the vertical flux profiles. The multicloud models contained
a number of CMCs per GCM column, the CMCs switched between different cloud
types and produced cloud type area fractions. The transition probabilities could
be inferred from high-resolution model data and from observations as well. An
asset of the multicloud models compared to the flux profile method, was that the
cloud type area fractions could be implemented in convection parameterizations
in GCMs in a straightforward manner. For example, the convective area fraction
could be used in the closure for the mass flux at cloud base (Chapter 5). This would
be complicated to do with vertical flux profiles. Furthermore, the multicloud mod-
els could be inferred directly from observations of convective clouds (Chapter 4),
which would be complicated to do for vertical flux profiles.

Another important asset of the multicloud model was that it could be adapted
to the size of the GCM column; it was scale-adaptive. Each Markov chain corre-
sponded to a certain size, and therefore, the size of the GCM model column deter-
mined the number of Markov chains. A smaller number of CMCs per model column
resulted in stronger fluctuations around expectation values of the convective area
fraction. A key issue turned out to be the lack of spatial coupling between the
CMCs in the multicloud model. It caused the convective area fractions to be too
intermittent, and the number of CMCs used in each model column had to be low-
ered artificially in order to obtain the desired standard deviation of the convective
area fractions. Introducing spatial coupling between neighboring CMCs explicitly,
was a solution to this particular problem. In Chapter 3, it has been demonstrated
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that the CMCs in the multicloud model can be made dependent on the neighbor-
ing CMCs. This resulted in stochastic cellular automata that were able to produce
spatial organization on the micro grid. In case the spatial structures as observed
in LES were captured, also the standard deviation of the cloud type area fractions
could be simulated in a more realistic way than without spatial coupling. A key
issue was found to be the large number of neighboring configurations, which made
the estimation of the transition probabilities complicated. This problem was solved
by reducing the number of neighboring configurations by only counting the number
of cloud types and not the exact neighboring configuration (Chapter 3). Introduc-
ing spatial coupling between data-inferred CMCs inside a GCM grid box, is an
interesting field of almost unexplored research and it is a promising approach for
improving convection and cloud parameterizations in weather and climate models.

The main motivation to switch from using LES simulations to observations was
the limitation of the simulation time period. At the time that the deep convection
simulation was performed (2013), doing such simulations was computationally de-
manding, and therefore simulations were relatively short (∼8h). An LES simula-
tion of months, in which a large range of atmospheric circumstances was covered,
was not possible and therefore the step to the Darwin observations was made. A
first asset of using observations was the large time period of the data set. This
is expected to improve for LES simulations in the future, because computational
resources increase. Furthermore, also the horizontal size of the domain was much
larger for the radar observations (172×172 km2) than for LES (58×58 km2). This
is also expected to improve for LES simulations in the future. Another important
asset of observations of a rain radar was that it gave an accurate representation of
the atmosphere in the region, however, observations are subjected to measurement
errors. A drawback of using observations was that data was missing for some time
intervals and that the data sets were unstructured, while at the other hand the
LES data was well structured and no data points were missing. Furthermore, with
LES simulations almost all variables that were desired could be obtained, while for
the observations, only high-resolution data of cloud top and rain rate were avail-
able. It can be expected that in the future more variables are available. It can be
concluded that both sources of data have their own assets and drawbacks and that
for each particular situation, a choice can be made between the two, or a combina-
tion of the two sources is an option as well.

Using the Darwin radar data observations in combination with the large-scale
analysis data (prepared by Davies et al. (2013) [28]), it has been demonstrated that
the large-scale vertical velocity 〈ω〉 correlates strongly with deep convection. The
cross-correlation diagram (Fig. 4.4) showed that the correlation was the strongest
for a time lag of around three hours for 〈ω〉, which means that the time series of
〈ω〉 had to be shifted back three hours to obtain the highest correlation with the
time series of convection. This suggested that 〈ω〉 was only an effect of convec-
tion. However, since the correlation was already strong for zero time lag, 〈ω〉 could
be used for conditioning the Markov chains; and consequently it could be incorpo-
rated in deep convection schemes of GCMs. The correlation of CAPE turned out to
be much weaker and therefore, the choice of using 〈ω〉 as an indicator instead of
CAPE was justified. Concluding that CAPE is not a useful indicator of convection
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would be incorrect, of course it is a measure for the potential and strength of deep
convection. Using an instability measure for the initiation of convection and using
〈ω〉 to stochastically determine the intensity of convection through the mass flux at
cloud base, turned out to give realistic time series of the mass flux at cloud base in
SPEEDY.

The simulation of convectively coupled equatorial waves has an effect on the
medium range weather forecast global skill and is not confined to the skill of GCMs
in the tropics. Therefore, the correct simulation of these waves is of major im-
portance. With the assessment method described in Chapter 5 it was possible to
express the model’s skill to simulate a convectively coupled equatorial wave in a
single scalar. The expression of the power of the Madden-Julian oscillation (MJO)
and equatorial Kelvin waves in scalars, introduced in Chapter 5, was a novel idea.
It was found to be a powerful indicator of the GCM’s ability to simulate these large-
scale phenomena. This method that has been used to assess equatorial waves in
SPEEDY could also be used in state-of-the-art GCMs. In SPEEDY, the average
mass flux at cloud base was found to have an effect on the strength of the MJO and
the equatorial Kelvin waves. The MJO was weaker for larger mean values of the
mass flux at cloud base in which case the Kelvin waves were stronger. In SPEEDY,
the effect of stochastics in the convection scheme on the equatorial waves were
found to be minor, despite the improvement of the time series of the cloud base
mass flux at time step level. This could be a feature of SPEEDY, because it is a
GCM of intermediate complexity, and could be tested in state-of-the-art GCMs in
future studies.

6.2 Synthesis
In the presented chapters, convection parameterizations have been examined in
different settings and with different approaches. First of all, stochastic schemes
have been compared with deterministic schemes. The stochastic convection schemes
were found to give more realistic estimates of the fluctuations of the convective area
fraction, and consequently, of the cloud base mass flux around the expected values,
without corrupting the mean cloud base mass flux.

The main stochastic schemes that have been examined are (i) schemes that
stochastically determined the vertical profiles of the turbulent heat and moisture
flux, (ii) the multicloud models that stochastically determined the cloud type area
fractions of which for example the cloud base mass flux could be derived and (iii)
a scheme that directly determined the cloud base mass flux. All schemes were
Markov-chain based, the main difference lied in the states of the Markov chains.
In (i), the states of the Markov chains were pairs of entire vertical profiles of heat
and moisture fluxes, in (ii) the states were cloud types and in (iii) the states were
cloud base mass fluxes. The choice to make a step from (i), in Chapter 2, to the
multicloud model (ii), in Chapter 3-5, has been made because:

• (ii) was easier to construct from data than (i), because cloud types were easier
to determine than vertical flux profiles;

• (ii) was more generally applicable than (i): the vertical flux profiles were con-
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strained to the BOMEX case, while the convective area fractions generated
by the multicloud scheme could yield a larger range of vertical flux profiles
when used in a cloud or updraft parcel model; and

• (ii) was easier to implement in a GCM; cloud type area fractions could be used
directly in GCMs. For example, the deep convective area fraction could be
used in the closure for the mass flux at cloud base in GCMs with a mass flux
scheme, and the shallow convective area fraction analogously. Other cloud
type area fractions could be used in the determination of the cloud cover.

Furthermore, scheme (ii) had certain advantages over scheme (iii): it was scale-
adaptive, i.e., it could be adapted to the size of the GCM column, it could in theory
be used to produce 3 types of moist convective area fractions (shallow, congestus,
deep) that are entirely compatible with each other, spatial correlation between the
Markov chains could be introduced to capture spatial organization inside a grid
column. An advantage of (iii) compared to (ii) was that it only used one Markov
chain per GCM grid column and that it captured spatial organization inside a grid
column by construction (since it had been trained with data averaged over a large
area). In conclusion, (ii) was the most promising model compared to (i) and (iii),
because of the important advantages it had over the other schemes.

Conditioning of the Markov chains by making the transition probabilities de-
pendent on the large-scale variables has been examined in all chapters. A common
approach was the use of the clustering method k-means. The main differences
were the type of large-scale variables that were used to condition on, the number
of large-scale variables to condition on, and the number of clusters. Another dif-
ference was the way how these large-scale variables were found. It is possible to
condition on pairs of entire vertical profiles of heat and moisture (Chapter 2) or on
indicators of convection (Chapters 3-5). The main advantage of using an indicator
of convection is that it is a single scalar which is easier to cluster. Furthermore,
generally accepted indicators of convection such as CAPE have proven their usabil-
ity in models for decades, which is not the case for entire vertical profiles. The best
indicator can be found by using the method of relative entropy or by correlation
analysis. In Chapter 3, examination of the strongest indicator of deep convection
has been done by using the method of calculating the relative entropy between
deep convective area fractions and the large-scale indicator of convection, while on
the other hand in Chapter 4, examination of the strongest indicator of convection
has been done with correlation analysis. This choice has been made because, while
examining the radar observations, it was found that both methods gave the same
results in case only one indicator was assessed and in that case, correlation anal-
ysis was the easier approach. In case a combination of variables is assessed, the
method of clustering and relative entropy may be the better option. This could be
examined in more detail in future studies.

Clustering is an effective way of reducing the spaces of large-scale and small-
scale variables in a finite number of classes. Pairs of entire vertical profiles can be
clustered. Furthermore, combinations of large-scale variables can be clustered. An
advantage of clustering over binning is that by clustering, the data is divided over
classes in an optimal way (i.e., the clustering method aims to minimize the distance
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to the nearest centroids). For example if two variables are binned, some of the bins
could be empty, which would not be optimal. Furthermore, in case the indicator is
distributed non-uniformly, the clustering method will automatically use clusters of
unequal sizes. Of course, this can be done by hand, by choosing non-equidistant
thresholds, but this may be a difficult task. In case the small-scale variables are
cloud types, there are physical reasons to choose certain thresholds, in which case
a clustering method would be less effective.

By using Markov chains for determination of the cloud base mass flux, the con-
vection scheme turns into a prognostic scheme. This means that besides that the
large-scale variables, also the convective state of the previous time step determines
the outcomes of the convection scheme in a GCM column. This has to be kept in
mind when introducing Markov chains in the (non-prognostic) convection scheme
of a host GCM; if an improvement is found in the GCMs predictive skill, this may
not be due to the fact that the convection scheme is stochastic, but due to the
fact that the convection scheme has been turned into a prognostic scheme. With
a prognostic scheme, the effects of convection on the resolved model variables can
in theory be estimated more accurately, since it could capture the time-correlation
that is present in convection in a large area (Fig. 4.11).

Assessment of the new parameterizations of convection has been done in SCMs
and in a GCM of intermediate complexity. SCMs have been used in the past to
assess new parameterizations. At the moment GCMs of intermediate complexity
can be run many times without a large computational overhead, since computer
speed has increased drastically. Testing in a GCM has some advantages over test-
ing in an SCM. In a GCM, also if it is of intermediate complexity, a large range of
large-scale atmospheric circumstances can be covered, while in an SCM this range
is in general smaller. This means that the behavior of the new scheme can be
tested for a large range of atmospheric circumstances, a range that is similar to
the range of circumstances under which it has to work in a state-of-the-art GCM.
Furthermore, interaction of the new scheme with the GCM resolved variables can
be tested at scales that are larger than a single column. For example, the interac-
tion of convection with convectively coupled equatorial waves can be tested with a
GCM and not with an SCM. On the other hand, advantages of testing a new pa-
rameterization scheme in an SCM are that the scheme is tested in a constrained
environment without interactions with the resolved-scale flows; that it is compu-
tationally inexpensive; that it can be tested in the SCM version of the host GCM;
and that the range of atmospheric circumstances can be chosen to be limited, in the
case that the new parameterization scheme is only designed for a limited range of
atmospheric circumstances (e.g., the scheme in Chapter 2).

6.3 Outlook
Future studies should elaborate on the multicloud models presented in this disser-
tation, on multicloud models presented by other authors (e.g., [1, 30, 35, 37, 42, 43,
72, 73, 113]) and on multiplume models [104, 114]. Multicloud models have a large
potential to improve convection and cloud parameterizations, because the models
can be:
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• inferred directly from high-resolution model simulation data and from obser-
vations as well;

• made scale-adaptive by adapting the number of cells that form cloud type
area fractions;

• implemented in convection schemes of GCMs in a straightforward manner.
Shallow and deep convective area fractions can be used in the closures of the
cloud base mass flux. Moreover, the other cloud fractions could be used in the
cloud schemes (e.g., to determine the cloud cover in a model column);

• conditioned on the large-scale variables of the GCM, such that interaction
between the GCM and the multicloud model is possible;

• extended such that spatial interaction between cells in the micro-grid is present.

Almost the same list of assets could be made for the multiplume models, which are
similar to multicloud models.

A next step would be the examination of spatial coupling of the cells in the mul-
ticloud model [36, 71]. These stochastic cellular automata could be used to capture
spatial structures of convection and clouds inside GCM grid columns more realisti-
cally, resulting in more realistic cloud type area fractions and hence more realistic
time series of the mass flux at cloud base. More realistic convection schemes will
lead to more accurate weather and climate modeling and predictions.

Future studies with high-resolution simulations (e.g., LES, cloud resolving mod-
els) and observations (e.g., rain radar, satellite) can be used to improve existing
multicloud models. Data from different locations at Earth can be used to improve
its accuracy. It is also possible to combine studies with simulations and observa-
tions, for example: in the Darwin radar multicloud model, shallow cumulus clouds
are not included, these can be added by doing additional simulations with LES.

An important feature of the presented schemes in this dissertation, and possi-
bly the most important feature, is the usage of data (in particular: observations)
to directly infer probabilities of the stochastic schemes. Using the presented data-
driven techniques to construct future (stochastic) parameterizations is highly rec-
ommended.
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