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Throw a pebble and... a cat from the window and you will hear just one thump in
the courtyard, possibly preceded by a squeaking meow. Theoretically. The air friction will
most likely slow down the furry pet a little while it desperately attempts to adjust the
position before the inevitable. Prior to discovering the celebrated relation for the motion
of a mass in a gravitational field one needs to consider a highly abstracted version of the
problem. An easy procedure for an apt high school student in the XXI century, but a
real challenge for those unaware of Newton’s Principia. Turning the stone and the cat
into point masses and letting them enjoy the fall in a vacuum, should do the trick and
reveal that neither the object’s mass, nor its shape affect the motion, the fact expressed
by Galileo nearly 400 years ago: All objects fall at the same rate in a vacuum.

There are at least three conclusions to infer from this example. First, an animal, though
very different in our perception from a dull stone, belongs to the same realm where the
fundamental laws of physics apply. Quantum theory, currently the most fundamental
description of matter, is as capable of explaining the formation of a covalent bonding of
carbon atoms in a diamond lattice as the properties of a hydrogen bond to which nucleic
acids and proteins owe their three-dimensional structure.

Secondly, questions about physical processes can be successfully addressed even with
theories that inherently have limited scopes. While certainly required for describing phe-
nomena on atomic scales, quantum mechanics (QM) looses its appeal when applied to a
large collection of particles such as a stone or a cat. Although an architect designing a
bridge might indirectly profit from QM through advancements in material science, he will
certainly succeed without being aware of all the intricacies of the Schrödinger equation
and the Hilbert space. Classical Newtonian mechanics, laws of which follow from the laws
of QM in the limit of macroscopic systems, is sufficient to describe tensions and loads of
a massive steel construction and the falling of cats.

The final observation regards inferring the underlying theoretical framework. When
skimming through an introductory physics course book, students often come to a (hope-
fully superficial) conclusion that physics has actually very little to do with the real world.
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Point masses, frictionless motion, approximations even to seemingly simple problems
(physical pendulum, three-body problem) do not have an immediate counterpart in real-
ity. Nonetheless, a significant idealization of a problem eases the discovery of fundamental
laws. A movement of a block involves friction, heat transfer, possible deformations. In most
of the cases, however, a good approximation can be obtained by omitting those effects
and trading them for frictionless dynamics of point masses. Naturally, a model is realistic
as long as it provides testable predictions but more importantly the idealized description
allows to discover a more general framework.

Formulation of classical mechanics using the Lagrangian formalism, although applica-
ble to a narrow class of systems without an approximation, gives insights into the structure
of the physics theory. For instance, the law of conservation of energy is a very deep and
far-reaching principle present in such diverse physical phenomena as electromagnetic ra-
diation, general relativity or quantum mechanics. A relatively straightforward algebra
reveals another deep result – the principle of least action. In fact, laws of motion of
particles in gravitational fields, laws of electricity and magnetism, motion of particles in
electric fields, all have a common basis: the principle of least action. Laws of thermody-
namics are simply statistical claims about large numbers of degrees of freedom, given that
those degrees of freedom are governed by the underlying principle of least action.

Although numerous details are deemed unimportant, simple models give particu-
larly valuable insights into the problem; especially if the mathematical representation
is tractable enough to allow for an informative and closed solution. Unfortunately, the
amount of analytically solvable models in physics is limited. The situation in biological
sciences seems even grimmer and the reasons for this are the following. For generations
natural sciences have been dominated by strong belief in the power of reductionism.
Rightly to be so. A long struggle to discover the nature of forces holding matter together
resulted in a solid theoretical framework followed by a surge of then unthinkable applica-
tions. Parallel to these ground-breaking discoveries biologists continued to be faced with
a multitude of new species, forms, animal behaviors and habits. A profound contribu-
tion of Darwin cleared the picture, although being developed almost the same year as
Maxwell’s equations (unfortunately) still continues to be the subject of many heated de-
bates. Only dawn of molecular biology and genetics in the twentieth century shed new
light on mechanisms reasoned a hundred years earlier. But then the problem became even
more clear. The quest to reveal fundamental principles in biology has become marred
by a staggering number of components constituting a living organism, the degree of in-
teraction between the elements and finally the huge number of states exhibited by such
an interacting network. Even a simple single-cell organism involves processes spanning
many orders of magnitude: from nanosecond timing of structural motion of bio-polymers,
to molecular clocks ticking at night-and-day intervals, or month or even year-long-lasting
states of biochemical switches. All of these factors make it difficult to view the system as a
collection of independent entities. But living organisms are subject to the laws of physics.
Is it then possible to explain their design from the first principles using the same tools as
in physics? Is it reasonable to assume that once we understand all the fundamental laws
governing micro-world, the macroscopic description will follow [Binder 2009]?

In order to survive in the environmental niche, even the smallest organism has to reli-
ably pass genetic information to the progeny, a multitude of intracellular processes needs
to be coordinated in order to proliferate, metabolize, respond to changes in nutrient con-
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centration or to sudden appearance of toxic compounds. On the other hand, colonization
or adaptation to new environmental conditions requires changes in the phenotype accessi-
ble only through genetic mutations, which give rise to new metabolic, sensory or physical
features. Some of the survival strategies involve genotypes capable of generating various
phenotypes optimal for different environments. Various regulatory mechanisms exploit
noise to randomize outcomes where variability is advantageous [McAdams & Arkin 1999].
In order to achieve all of these goals, regulation of biochemical processes evolved such that
the organism may profit from retaining stochasticity inherent in biochemical reactions,
while other structures evolve to suppress the noise which would disrupt precision of cel-
lular physiology.

Thermal fluctuations may easily alter the rates of chemical reactions, local concen-
trations of reactants or the composition of genetic code [Dronamraju 1999]. In a num-
ber of experiments, isogenic populations starting from the same initial conditions have
been propagated into cells with entirely different molecular makeup [Elowitz et al. 2002,
Blake et al. 2006, Spencer et al. 2009] or proliferated into phenotypically distinct cellular
entities with diversified biological functions [Balaban et al. 2004, Feinerman et al. 2008,
Chang et al. 2008] – a convincing demonstration of how random molecular events may
affect the macroscopic observable: the phenotype.

If molecular fluctuations are so abundant, it is truly remarkable that seemingly fragile
molecular structures inside living systems reliably hold genetic information even for thou-
sands of years, perform uncountable enzymatic reactions, protect the organisms against
the influence of harsh environments and give rise to countless life forms, shapes and be-
haviors. As might be expected, the composition (or design) of an organism successfully
populating a niche reflects the two tendencies mentioned earlier: flexibility allowing for
acquisition of new features and robustness facilitating reliable information processing. For
instance, sensing changes in the nutrient concentration in the environment of a simple
bacterial cell is prone to uncertainties due to thermal noise. Attaining a level of signal-to-
noise ratio that would allow for appropriate and possibly rapid cellular response requires a
specific architecture of molecular structures (a sensor) and corresponding biochemical re-
actions (a signaling and a regulatory network). On top of that, the number of biomolecules
involved in the response has to be such that the network itself is not activated by a sudden
fluctuation in the concentration of reactants.

Thus, recognizing how organisms may benefit from molecular fluctuations and when
these stochastic effects are suppressed gives valuable insights into how fundamental phys-
ical constraints shape physiology of biological systems in the course of evolution. For
instance, fluctuations are attenuated through the structure of biochemical networks (e.g.
cascade architecture of eukaryotic signaling networks [Thattai & van Oudenaarden 2002,
Hooshangi et al. 2005, Bruggeman et al. 2009]) or through properties of the stochastic
system itself (e.g. sequential processes described in more detail further in this chapter).
The evolution of structures capable of reducing molecular fluctuations confers fitness ad-
vantage for the organism. The design of these structures such as the number of levels in
the cascade or steps in the sequence, the number of molecules involved in the process re-
flects the direction that the evolutionary process has taken in order to overcome physical
constraints in processing of the extracellular signal or limitations in the speed of chemical
reactions.

Manifestation of stochastic phenomena in cellular processes has some practical im-
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plications for the modeling community too. Analysis of problems involving stochasticity
requires a more complex theoretical and computational apparatus than deterministic pro-
cesses. Therefore, it is of great importance to recognize deterministic regimes in biochem-
ical processes. Typically, for a large number of molecules the significance of molecular
fluctuations diminishes. The complexity of theoretical description reduces dramatically
and so does the computational cost. Large time scale separation confers a similar advan-
tage: very fast fluctuations may be averaged out by much slower downstream processes
effectively alleviating the need for a detailed stochastic description of the fast module.

The exposition in the following sections will focus on stochastic phenomena in a single
cell. To address that, we shall introduce the framework for the analysis of stochastic
events, namely the waiting-time or the first-passage time theory. We will draw parallels
to familiar macroscopic approaches by illustrating the limits of the stochastic theory for
a large number of molecules. By analyzing the effect of various waiting-time statistics in
protein synthesis and degradation we shall gain insights into the source of precise timing
in stochastic systems as well as the reason why a deterministic approximation works so
well in theoretical biology. In particular, we shall discuss the exponential regime of the
waiting times which allows for significant simplification of sequential and diffusion-limited
biochemical processes. The exponential approximation contributes to a largely unexplored
topic of the interface between stochastic and deterministic theoretical modeling in biology.

1.1 Stochasticity fundamentals

Biochemical transitions typically of interest for molecular systems biology involve macro-
molecules sized above 5nm; a so called mesoscopic level. Confront that with ≈ 0.3nm

– the effective diameter of a water molecule or an ion. An E.coli, a model prokaryotic
organism contains 2, 5 × 1010 (25 billion!) water molecules and as little as ≈ 4 million
proteins in a 2µm-long ellipsoid cell. An enormous disparity of time scales of atomic
interactions between small molecules (e.g. water, ions) and large bio-molecules (e.g. pro-
teins, nucleic acid chains, membrane lipids) permits statistical claims about the effective
forces exerted on the latter. Hence, the movement of biomolecules can be described much
simpler by introducing a stochastic term accounting for random collisions of a protein,
for instance, with much smaller molecules of the solvent. The complexity of the resulting
equations of motion (Einstein-Smoluchowski diffusion equation) is reduced dramatically
compared to the initial description accounting for the motion of all molecules, the solvent
and the solute. If diffusive encounters of molecules are much faster than the time required
to undergo a chemical transition, the spatial aspect of the problem can be discarded and
an even simpler model materializes. The complication remains, however. Thermal fluctu-
ations affecting the rates of chemical reactions remain in the form of probabilistic terms
similar to those in the synthesis-degradation problem. The effect of fluctuations becomes
particularly strong if the amount of molecules involved in a reaction is small. Here lies
a difficulty of stochastic modeling. The boundary between a system where fluctuations
in the species concentration are significant and a system in the macroscopic regime is
not immediately apparent. It depends on relative timescales of processes in a biochemical
network and the topology of the network, among other factors. Some of these issues we
explore in Chapter 3 where we analyze a generic bacterial signaling network. The num-
ber of molecules sufficient to overcome diffusion limitation and to assure signal responses
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Figure 1.1: Stochastic protein synthesis may leave individual cells with very few or none
of the product if bursts in protein synthesis are infrequent and small within a cell’s
generation. For the experimental evidence of this effect in E.coli see [Yu et al. 2006].

without large variability turns out to be around a few dozen.
Accounting for stochastic effects in biochemical processes requires an entirely dif-

ferent take compared to a much more familiar macroscopic description where variables
correspond to the amount (or the concentration) of chemical species. Since a fluctuat-
ing variable takes on many values with various probabilities, the theoretical description
should not only allow for computation of the mean but also account for the second mo-
ment. A complete description should even track the evolution of the whole probability
distribution, which prescribes how frequently values of the random variable (admissible
by a particular random process) occur. As we shall demonstrate further, the shape of the
steady-state probability distribution of the level of a biochemical product, a protein for
instance, can reveal valuable information about the underlying stochastic mechanism. It
may also imply physiologically meaningful behavior of cells.

In the recent decade in a number of settings, experimentalists have been able to mea-
sure distributions of protein concentration taken as snapshots over entire cell population
[Elowitz et al. 2002] as well as temporal changes of a fluctuating protein. Theoretical
arguments have been made regarding the equivalence (or lack thereof) between the two
averages [Tănase-Nicola & ten Wolde 2008]. According to the ergodic principle, these two
should be equivalent. However, the nature of the cellular system itself may prevent the
evolution of all degrees of freedom from reaching all possible states in the lifetime of
the organism. This may happen if fluctuations are slow (Fig. 1.1). Hence, not only the
stochastic model requires one to study the whole spectrum of fluctuations instead of the
mean, but also the knowledge of statistics of individual events is required to understand
the physics of intracellular processes. Since it is difficult to infer about the physiology of
the single cell based on statistical claims about population averages, we shall extend the
analysis of cellular stochastic processes with the study of temporal properties of random
events. We will scrutinize the steady-state distribution of waiting times between biochem-
ical events. Owing to advancements in single-cell, single-molecule experimental techniques
these type of theoretical studies are increasingly gaining solid experimental evidence.

There exist many equivalent approaches to model stochasticity at the mesoscopic level
(e.g. master, Langevin, Fokker-Planck equations). For reasons explained earlier, one par-
ticularly didactic way of looking at fluctuations is by considering waiting times. A generic
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X ∅
kp kd x

time

x(t)

time

production events
degradation events

(A) (B)

(C)
waiting time

for production

lifetime

Figure 1.2: Stochastic production-degradation model. (A) Schematic representation of
the model. Chemical species X is synthesized at the rate kp and degraded at the rate
kd · x, where x denotes the number of X molecules. The inverse of parameters k has an
intuitive interpretation; 1/kp is the mean interval between production events, 1/kd is the
mean lifetime of a single X molecule. (B) Sample stochastic time trajectory. Synthesis
and degradation events are drawn from the exponential waiting time distribution. (C)
Stochastic birth and death of individual molecules X.

birth-and-death model depicted in Fig. 1.2A includes only two stochastic processes. On
average, the synthesis generates kp elements of X per unit time. X can represent a species
of a bio-molecule like a protein or a messenger RNA, for instance. In the latter of the
two reactions every molecule X undergoes degradation. The average lifetime of such a
molecule (the time between its synthesis and degradation) equals τd = 1/kd time units.

If both, synthesis and degradation were taking place at exactly equal instances of
time, the amount of molecules X, denoted by lower-case x, would remain constant at any
given time (Fig. 1.3A). An instructive analogy would be a queue at the cash register. If
a next customer joins (synthesis) the waiting people precisely at the moment the first
person finishes paying (degradation), the length of the queue will not change. Unlike this
deterministic situation, intervals between subsequent synthesis and degradation events
are not fixed in a chemical system (nor in a real-life queue on a busy day in the super-
market). Precise timing of events is heavily influenced by thermal fluctuations affecting
the molecules’ relative position which in turn influences their propensity to overcome the
free energy barrier and undergo a chemical reaction.
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Figure 1.3: The effect of waiting time statistics on steady-state product distribution in a
linear birth and death process. (A-F) Every panel consists of three subplots: the top-left
contains a normalized histogram of intervals (waiting time distribution) in the synthesis
process with the mean of 5 events per unit time, the top-right contains an analogous
histogram for the life-time of a single molecule X – on average 1 event per unit time. The
bottom graph depicts a normalized histogram of the amount of X in steady-state (steady-
state X distribution). The solid curve in every panel depict the Poisson distribution – the
distribution resulting from exponentially distributed synthesis and degradation processes
(panel F).
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Since the length of intervals between synthesis events and the lifetime of single
molecules fluctuate, the steady-state number of X will change in time accordingly.
Figs 1.2B and C illustrate a sample time-course. But fluctuations of waiting times may
differ in origin and hence may have a different statistic. Processes such as mRNA or
protein degradation, assembly of protein initiation complex, enzymatic reactions, diffu-
sion, they all involve a series of steps to complete. While the average behavior can be
conveniently characterized by a model where the sequence of events is aggregated into a
single step with an effective mean completion time, higher moments are sensitive to the
model’s granularity. This is best illustrated in Fig. 1.3 where the steady-state X distribu-
tion has the same mean regardless of the production and the synthesis statistics, however
its standard deviation varies significantly. We shall see more examples of this in sections
below.

How does the statistics of waiting times for synthesis and degradation events affect
the magnitude and frequency of steady-state fluctuations of X? As explained earlier,
synchronized additions and subtractions of the product leave the level of X unchanged
(Fig. 1.3A). The moment the synthesis intervals are no longer equally-timed, the degra-
dation does not coincide with the production and the level of X fluctuates in the course
of time. The system becomes stochastic. Instead of a single value as in the deterministic
case, x may take a whole range with different probabilities. If the amount of X synthesized
balances the amount of X degraded during the same period, the system is said to be in
steady-state. Then, the distribution of x can be plotted in a straightforward manner by
creating a normalized histogram from equally-timed measurements of x. Clearly, along
with the increased randomness of waiting times, the amount of states reached by x rises
and the steady-state product distribution widens (Fig. 1.3A-C). One waiting-time distri-
bution is particularly privileged, however. Intervals between synthesis events drawn from
the exponential function (kp exp (−kpt)) result in the steady-state product distribution
independent of the type of the waiting-time distribution for the degradation (Fig. 1.3D-F)!
This phenomenon is known in queueing theory as insensitivity. Moreover, for all of these
cases the steady-state X distribution is Poissonian – the distribution being a seminal
result for the birth-and-death model with exponential waiting times.

The special status of the exponential waiting-time distribution becomes clear if one
attempts to characterize a stochastic process mathematically. A consistent description
resulting in the evolution equation – the master equation (a stochastic counterpart of the
ordinary differential equation), requires a so called Markovian assumption. The assump-
tion implies that the future evolution of a stochastic process depends solely on the current
state of the system and that no memory of previous events exists – the stochastic process
is memoryless. Take the synthesis of X, for example. Suppose that the last production
event took place one second ago. According to the memoryless assumption, the proba-
bility that the next event occurs after an additional two seconds, given that one second
of waiting has already passed, equals just the probability of an event taking place after
two seconds regardless of the amount of waiting before. Using a bus stop analogy: the
probability of a bus arriving after two minutes would be the same for newcomers as for
passengers already waiting at the bus stop. On average, one would wait for a bus for the
same amount of time, and it would not matter when during the period between two bus
departures one had arrived. It contradicts common sense; people arriving later after the
last bus departure feel that the bus should appear sooner. This is because real buses run
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(usually) according to a schedule and intervals between their departures obey a different
statistics!

The memoryless assumption constrains the type of the function from which the inter-
vals between events are drawn. It turns out that the only function satisfying this condition
is the exponential. This has far-reaching consequences. Any realization of a memoryless
stochastic process (a so called Markov chain) implies waiting times between events being
drawn from the exponential distribution (just like synthesis and degradation in Fig. 1.3F).
The time evolution of such a process has a tractable analytical representation in the form
of the master equation. In fact, stochastic processes as those depicted in Figs 1.3A-C
where uniform waiting time distribution are used have no closed analytical solutions.
Approximations are required which complicates the analysis and numerical simulations.

In the limit of large numbers of reactants the memorylessness is also reflected in
the Law of Mass Action. Consider a volume V in which a linear decay of N0 molecules
of species X takes place (X → ∅). The dependency of the continuous concentration
[x] = x/V on time is easily obtained as [N0] exp (−kd t) from which the inverse equation,
the time to reach a given concentration [x], follows:

tx =
1

kd
· log

[N0]

[x]
. (1.1)

In the stochastic description, the time to decay for a single molecule is distributed expo-
nentially with an average 1/kd, i.e. exp(−kd t). The probability for the first decay event
in an ensemble of N molecules, can be computed by multiplying probabilities:

Pr(T (1,N) > t) = Pr(1-st molecule out of N decays after t)
≡ Pr(all N molecules decay after time t)
= Pr(T 1 > t andT 2 > t and . . . andTN > t)

= Pr(T 1 > t) · Pr(T 2 > t) · . . . · Pr(TN > t)

= e−N kd t. (1.2)

The resulting probability for the first degradation is also exponentially distributed, but
with a smaller average, 1/(Nkd). By calculating the probability for the second, third and
k-th degradation one obtains the mean time after which x = N − k molecules are left in
the system, i.e. the stochastic equivalent of Eq. 1.1:

〈t〉x =
1

kd

N∑
i=(N−k)+1

1

i
. (1.3)

For large N these two equations (Eq. 1.1 and Eq. 1.3) are equivalent (Fig. 1.4).
The fact that the product of exponential functions is also an exponential greatly ben-

efits the computational procedure. In a decay example, one (lengthy) algorithm would
track the lifetime of every molecule. At the initial time zero, decay times would be drawn
from the exponential distribution with the mean kd for each of N particles. After ordering
these next-decay times, the sequence of single-molecule subtractions from the ensemble
would yield a sample time-dependent realization of the stochastic process. Such a trajec-
tory could be obtained in a much simpler way with help of Eq. 1.2. The time for the first
degradation event in a pool of N particles can be drawn from the exponential distribution



10 Chapter 1. Introduction

0 0.5 1 1.5 2
time

0

2

4

6

8

10

n
u
m

b
e
r 

o
f 
m

o
le

c
u
le

s
 X

sample stochastic
trajectories

stochastic mean
ODE

0 0.05 0.1
time

88

92

96

100

Figure 1.4: Comparison of the stochastic and the deterministic model of a decay reaction,
X → ∅. Initially, the system contains 10 (left panel) and 100 (right panel) molecules
of species X, each having the same average lifetime τX . Stochastic mean (empty circles)
is taken over 1000 trajectories simulated with the Gillespie algorithm. The discrepancy
between the continuous model (dashed line) and the stochastic mean is apparent only for
a small number of molecules (left panel).

with the decay constant N · kd. The exponential waiting time distribution guarantees the
memoryless property of the process, thus the time for the next degradation is given by the
same distribution but parameterized by (N − 1) · kd, and so forth (Fig. 1.5). Contrary to
the former scheme, the resulting algorithm does not scale with the number of molecules,
N ; in order to determine the time of the next decay reaction, only one random number
generation is required. Both of these approaches to numerically simulate chemical reac-
tions have been considered in the past and they form the basis of a next-reaction and a
direct method [Gillespie 2007, Gibson & Bruck 2000].

The above holds only for exponentials. Any other form of the waiting-time distribution
complicates significantly the scaling of the average first event time (the mean first-passage

�
�
��
�
�
��
�

����

��� ��� ��� ��� ��� Figure 1.5: A linear decay model with exponential
waiting times. One method to create a stochastic
trajectory is to draw the next decay time from the
exponential waiting time distribution, kd exp(−kdt).
When ordered, these times form a sequence of de-
cay events. Such an algorithm scales with the num-
ber of molecules. Alternatively, one can take the ad-
vantage of Eq. 1.2. First, the time of the first decay
is drawn from the exponential distribution with the
mean N ·kd, then the next decay time is parametrized
by (N − 1) · kd, and so forth.



1.2. First example 11

time) on N . As a result, the numerical simulation of such a system requires a much more
involved implementation and (usually) more computational time. We shall come back to
this point later.

Having in mind the severe constraint on the waiting time function imposed by the
memoryless assumption one can appreciate the insensitivity of the steady-state product
distribution to the type of the waiting time function describing degradation (Figs 1.3D-F).
This result extends significantly the amount of solvable models and has a few interest-
ing biologically relevant ramifications. Take mRNA or protein degradation, for instance.
Both of these processes proceed in a sequential manner: the poly-adenylated tail of mes-
senger RNA is removed step by step before the final degradation, attachment of ubiq-
uitin monomers to the protein seals its fate and makes it recognizable by proteasomes
[Pedraza & Paulsson 2008]. The waiting time statistics of sequential processes departs
significantly from the exponential (a peaked, Gamma-like distribution). The insensitivity
principle guarantees, however, that the steady-state distribution remains the same (Pois-
sonian) as long as the waiting time distribution of the synthesis process is exponential.

A lot of intuition about biological systems relies on the memoryless property. In the
following section we shall pursue some questions of central importance for understanding
the origin of exponential approximation, the relationship between the waiting time distri-
bution and steady-state properties such as the mean and noise. Turning to simple models
should ease the exposition.

1.2 First example

The model from Fig. 1.2 is the simplest biochemical network with stochastic synthesis and
degradation. In numerous biologically important cases, however, synthesis is affected by
additional processes which, if collected into a single constant production rate kp, would
reproduce correctly only the average. One of such examples is activation of a gene by
a transcription factor. It involves frequent association and dissociation events (a bio-
molecule makes contact with a site on DNA, forms a complex whose stability depends on
the affinity of the binding site, and unbinds) interrupted by long periods during which
the transcription factor engages in a long diffusive departure from the cognate DNA site.
As a consequence, synthesis takes place only during those periods when the activating
protein is bound; protein production occurs in bursts.

A coarse-grained model of such a switch-like product synthesis depicted in Fig. 1.6
omits details of association and dissociation events. At the microscopic level, these are
typically affected by diffusion, electrostatics, hydrodynamic interactions or conformational
changes of macromolecules. Nonetheless, this simplified description provides some valuable
insights into how bursts of synthesis, and fluctuations in waiting times in general, affect the
steady-state statistics. This relationship is largely unexplored for biochemical networks
as most studies on the consequences of stochasticity for biological systems have focused
on the noise in the steady-state level of molecular intermediates.

We assume that transitions between active and inactive states follow the exponen-
tial statistics and that production events in the active state occur at exponentially-
distributed intervals. This might not hold true in general. A more detailed description
could take into account a multi-step nature of gene activation: in order to render a gene
active, a few proteins have to assemble a complex. This is the case in higher organisms
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Figure 1.6: The simplest model of bursty production. (A) Synthesis of species X is mod-
ulated by a switch. (B) Accumulation of X in time (degradation is omitted here). Light
regions correspond to the OFF state, grey represent the active ON state. (C) Synthesis
of X takes place during the ON state only.

[Degenhardt et al. 2009] and hence switching from OFF to ON state has to be described
by a non-exponential (Erlang-type) peaked distribution (the topic explored in more detail
in Chapter 2). For simplicity we shall focus on a simpler case where waiting times of all
four transitions in Fig. 1.6 are described by the exponential distribution.

How is the overall waiting time distribution for the production events affected by the
switching between synthetic activity and silence periods? In other words, what kind of
probability distribution describes the statistics of product appearance given the silence
periods interrupting an otherwise constant synthetic streak? Note that we assumed the
lifetimes of the ON and OFF states and the intervals between production events in the
ON state to have exponential distribution.

In case of a large time scale separation between the ON-OFF switch and the synthesis,
i.e. many products are synthesized in the active state and the active state is compara-
bly long to the inactive period, mostly two types of intervals are abundant: short ones
corresponding to production events in the ON state, and long ones due to OFF periods
(Fig. 1.6). Hence, the resulting distribution must consist of two differently-parameterized
exponentials with weights depending on the time contribution from both states:

f(t) = w r1 e
−r1t + (1− w) r2 e

−r2t. (1.4)

This heuristically derived equation is in fact an exact solution of the network in Fig. 1.6
for all time scales. The (non-trivial) relation of r1, r2 and w to kinetic parameters of the
burst model in Fig. 1.6A can be found in the Appendix of Chapter 2.

We established that the stochastic production modulated by the ON-OFF results
in the double-exponential waiting-time distribution. The simple birth-and-death model
considered in Fig. 1.2 where synthesis events were spaced at exponentially distributed
intervals produced a Poisson distribution of the product in the steady-state. Finally, we
are able to address the question posed at the beginning of this chapter: how does this
steady-state distribution change once the synthesis takes a different form, in this case the
form of Eq. 1.4?
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Figure 1.7: Steady-state product distribution affected by bursts. Increasing the burst size
in the model from Fig. 1.6 induces a radical change of the steady-state distribution of X:
from single-peaked to bimodal.

Sample analytical solutions for steady-state product distribution are depicted in the
frequency plot in Fig. 1.7. All of the distributions have the same mean, whereas their
shape differs depending on the size of synthesis bursts and their significance. Notably, for
small burst size the distribution may take the bell-curve-like shape centered around the
mean or, when bursts increase in size, it may peak twice: around the base state (zero) and
the steady-state mean in the active state given by the ratio kp/kd. The existence of such a
bimodal distribution is in no way reflected in the macroscopic description; the stochastic
model reveals a whole new family of behaviors.

1.2.1 Physiological implications of bursts

Living organisms employ numerous strategies to strive in their environment. Sponta-
neous genetic mutations accompanied by the selection process lead to fixation of new,
more “successful” genotypes. However, the time scale of these changes is too long to ad-
just to changes in nutrient abundance taking place on an hourly basis, for instance. A
multitude of sensory networks capable of inducing and regulating gene expression have
evolved to cope with changing conditions. Even for bacterial sensing largely relying on
relatively simple two-component networks, a high number of such networks (typically
around few dozen per cell) and the fact that they operate in parallel with numerous
cross-talks have led some to postulate a rudimentary form of intelligence embedded in
the sensory network [Hellingwerf 2005]. Whether their complexity is sufficient to exhibit
neural network-like characteristics such as memory or learning is an intriguing concept
awaiting further theoretical and experimental evidence.

While the ability to “intelligently” process environmental inputs by bacterial sensory
machinery remains a hypothesis, the ability to reflect temporal pattern of extracellular
conditions in the structure of regulatory network has been recently demonstrated ex-
perimentally [Mitchell et al. 2009]. Two model organisms, E.coli and S.cerevisiae, used
in this study evolved to be capable of activating parts of its machinery in anticipation
of the sequence of stimuli. Random, unpredictable fluctuations in environmental condi-
tions pose a grander challenge for organisms, however. Likewise, rapid but infrequent (on
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Figure 1.8: Bimodal behavior of the steady-state product distribution may arise in a
nonlinear dynamical system as well as in a stochastic switch. (A) Spontaneous stochastic
switch, a “burster”, with constitutive production of P . If ON and OFF states are long
enough to establish their respective quasi steady-states, the system will “flip” between two
distinct states. (B) A classical mechanism leading to bimodality – a positive feedback.
Product M promotes its own synthesis by forming a dimer D which further induces the
active ON state. Dimerization introduces nonlinearity which may lead to bistability if
none of the processes acts too strongly [Isaacs et al. 2003].

cell’s generation scale) cues inducing irreversible lethal changes require a different type
of response system. One solution is to maintain a multitude of regulatory mechanisms
continuously prepared to face a vast array of environmental challenges. But even then, a
cell fully equipped with sensory networks activating appropriate genes may respond to a
change only if integration of the extracellular signal lasts long enough to average out noise
inherent in the sensing procedure. If the time required for gathering sufficient information
about the environment exceeds the generation time of a single cell, such a cell is never
capable of reacting properly, which compromises the fitness of the population as a whole.
Diversification of phenotypes may be a useful strategy to overcome this limitation.

Fitness advantage of a phenotypically heterogeneous population exposed to fluctuat-
ing conditions depends on the relative time scale of intracellular processes and changes in
environmental cues [Kussell & Leibler 2005]. The choice of the strategy arguably depends
on cells’ ability to gather information about the outside world. Cells switching their pheno-
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Figure 1.9: Population heterogeneity increases survival rate. In the simplest case, the
abundance of the protein dealing with environmental challenge (e.g. neutralizing a toxin)
has a bimodal distribution due to stochastic gene expression or due to feedback regula-
tion, a so-called feedback-based multistability [Smits et al. 2006]. The example of the latter
mechanism could be a positive feedback in the sporulation network of Bacillus subtilis.
More generally, bi- or multi-modality could refer to meta-states where gene expression
profiles of many genes undergo significant changes simultaneously [Chang et al. 2008]. Bi-
modality results in a stable, phenotypically heterogeneous population. Only individuals
“prepared” for the upcoming change in the environment survive. The initial heterogeneity
is recovered after few generations.

types with the same frequency as changes in the environment have a greater survival rate
as opposed to populations staying out of sync with the surroundings [Acar et al. 2008].
This observation hints at a possible choice of strategies aiming for adaptation. In envi-
ronments with rapid, irregular or extreme changes the cost of maintenance of elaborate
sensory networks may exceed the benefits of a higher survival rate. Additionally, the re-
sponse of the network to a rapid change may be unsatisfactorily slow thus promoting
a simpler solution. An isogenic (having the same set of genes) population could, for in-
stance, increase its fitness by generating subpopulations by stochastic modulation of gene
expression; each of these subpopulations performs sub-optimally in the “average” envi-
ronment but is able to survive critical changes – a strategy known as bet-hedging (for a
comprehensive review see [Davidson & Surette 2008]).

Bimodality in the gene product level as depicted in Fig. 1.8 is one of the elementary
mechanisms behind induction of population diversity in a population of isogenic cells.
Two peaks of the steady-state product distribution have been traditionally attributed to
bistability in the dynamical system resulting from some form of feedback regulation; a
so-called feedback-based multistability. A thorough review concerning this type of mech-
anisms can be found in [Smits et al. 2006]. Here, we discuss a different case where two
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distinct levels of a protein across the population emerge solely due to stochastic gene
regulation (Fig. 1.8) [Kepler & Elston 2001, To & Maheshri 2010]. Cellular heterogeneity
due to bursty protein production may arise only if the frequency of ON-OFF transitions
is comparable to (or slower than) the generation time of the cell (Fig. 1.1); fluctuations
are “slow” [Sigal et al. 2006]. Only them, extensive inactivity periods during protein syn-
thesis may leave some cells in the population lacking these molecules, while other cells
may contain the entire production burst [Yu et al. 2006].

The emergence of stochastic bet-hedging strategy in a bacterial population has been
recently observed in an elegant experiment [Beaumont et al. 2009]. After 15 rounds of
subjecting cells to two opposing environments, each favoring a different phenotype, a
genotype evolved capable of stochastic switching between the two conditions. Stochastic
gene expression has been also shown to confer fitness advantage in a population of yeast
cells exposed to antibiotic stress [Blake et al. 2006]. Due to bursts in the production of
the protein conferring resistance to an antibiotic, (at least) part of the population is in
the position to respond rapidly (Fig. 1.9). This translates to an overall increase in the
survival rate of the whole population. Survival upon antibiotic treatment in general has
been attributed to population heterogeneity stemming from stochastic switching between
two phenotypes with distinct survival rates, a phenomenon known as bacterial persis-
tence [Balaban et al. 2004, Kussell et al. 2005, Bishop et al. 2007]. Similarly, Sorger and
colleagues [Spencer et al. 2009] have demonstrated how cancer cells escape drug treat-
ment thanks to stochastically induced cell-to-cell variability. Studies like this should help
answering a long-standing question of why seemingly identical cells respond differently
to a drug? In a remarkable experiment of Cohen et al., levels and locations of approxi-
mately 1000 endogenous proteins have been tracked in individual cells after admitting a
chemotherapy drug [Cohen et al. 2008]. The presence of the drug evoked a higher vari-
ability in protein levels and in some cases concentrations exhibited a bimodal distribution.
The low and high levels in protein concentration corresponded to survival or death of a
cell. Thus, the presence of the environmental stress induced a stochastic strategy, which
allowed part of the cancer cell population to escape their deadly fate. Phenotypic diversity
in a clonal population is rarely a result of fluctuations in the expression of a single gene,
however. Cellular states with distinct functionalities (phenotypes) usually correspond to
transcription profiles differing in the expression of many genes. Slowly-decaying fluctua-
tions may promote reversible transitions between such meta-states implying various cell
fates as has been demonstrated for mammalian progenitor cells [Chang et al. 2008].

Diversification of the microbial population benefits its survival rate upon environmen-
tal changes but also allows these simple organisms to solve complex tasks. In one of such
systems, a population of Salmonella bacteria split stochastically into two subpopulations.
One of the phenotypes facilitates infection in the gut lumen by triggering the inflamma-
tion. By doing so it contributes for the “public good” of the whole bacterial invasion, how-
ever, these bacteria get eliminated by the host’s immune response [Ackermann et al. 2008].
This self-destructive cooperation elegantly illustrates the population benefit of phenotypic
noise and its role in bacterial pathogenesis. It is also an interesting contribution to re-
cent experimental studies on the evolution of cooperation by engineering simple bacterial
ecologies [Santorelli et al. 2008, Gore et al. 2009, Khare et al. 2009].
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1.3 Timing of biochemical reactions

Thermal fluctuations, diffusion in crowded cellular environment, small numbers of the
reactants, all of these affect rates of chemical reactions and contribute to the overall
stochasticity in biochemical processes. Such inherent randomness may be selected in an
evolving system if it increases the fitness of the organism [McAdams & Arkin 1999]. But
living organisms are not falling apart, nor is their functioning completely erratic. Quite
the contrary, their survival requires transfer of genetic information between generations,
protection of this information against damages, processing of intracellular and environ-
mental queues. Cellular events such as cell cycle, prediction of day-night rhythms, or
anticipation of sequential environmental changes [Mitchell et al. 2009] require temporal
synchronization between various processes.

Numerous mechanisms have evolved to achieve robust functioning despite bio-
chemical noise. Steep input-output relationship in sensory systems, ultrasensitivity,
arises in networks organized hierarchically [Hooshangi et al. 2005, Bruggeman et al. 2009,
Cluzel et al. 2000, Tănase-Nicola et al. 2006]. Arrangement of enzymatic reactions in cy-
cles helps to reduce the variance in the lifetime of molecules, hence increasing the timing
accuracy [Qian 2006, Li & Qian 2002]. Molecular ratchets consisting of many irreversible
steps give means to discriminate between states of similar free energies as in kinetic proof-
reading [Hopfield 1974, Salazar & Höfer 2009]. A ratchet formed by the state of DNA
methylation coupled to regulation of DNA replication increases temporal precision of the
cell cycle [Collier et al. 2007, Shen et al. 2008]. Irreversible path in protein evolution set-
tles new functionality of complex architectures and possibly restricts other potential paths
that could be explored under selection [Bridgham et al. 2009]. Redundancy in the struc-
ture of biochemical networks, motifs in feedback regulation [Legewie et al. 2008], feedback
loops or cascades, large numbers of molecules, all of these increase functional stability of
cellular processes [Alon 2006, Wagner 2007].

1.3.1 Sequential processes

For a single molecule noise, or variance scaled with the squared mean, in the time to
complete a biochemical transition (the waiting time) decreases if the transition is divided
into substeps [Li & Qian 2002, Pedraza & Paulsson 2008]. If the timing of all N processes
in the sequence is of similar duration, the resulting waiting time distribution becomes
narrower than the waiting time distribution of a single-step transition (Fig. 1.10). For a
simplified case where the rates of all intermediate reactions are equal, the noise depends
inversely on the length of the sequence.

A process with events drawn from a non-exponential waiting time distribution does
not have a straightforward counterpart in a macroscopic model described by ordinary dif-
ferential equations (ODEs). Macroscopic biochemical models assume exponential waiting
times, i.e. a Markov chain is the underlying stochastic description of chemical reactions
(see Eqs. 1.1 and 1.3). Divergence from the memoryless distribution has a major con-
sequence for the steady-state product distribution (Fig. 1.3) but also for the transient
as illustrated by the linear decay reaction in Fig. 1.11. If the lifetime of a molecule is
distributed according to a non-exponential function, in this case a Gamma distribution
arising due to a step-wise degradation, the decay proceeds much faster than in an equiva-
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dot indicates the mean of the distribution. As an example we consider a decay reaction of
species X. (Left) A single molecule X decays in a single transition with rate constant kd.
The corresponding waiting time distribution is an exponential with mean and noise equal
1. (Middle) A single molecule X decays in two substeps with rates kd1 and kd2, respectively.
Each substep has an exponential waiting time distribution. The overall distribution is a
result of a convolution of the two distributions of the substeps. In this case, both rates
equal 1, which results in the minimal noise and the narrowest distribution for such a
sequence. (Right) Time scales of the two processes differ (kd1 = 1 and kd2 = 0.1). Noise
approaches the value of the dominating step, i.e. the one with the larger mean.

lent process where the mean lifetime of the molecule is the same but the reaction consist
of only a single step.

The above discrepancy between the time evolution of one-step and multi-step decay
processes illustrates an important modeling issue. Very frequently, a description of bio-
chemical reactions involves “bundled” steps which in fact consist of a number of shorter
steps. Formation of a transcription initiation complex, mRNA or protein degradation,
signal transduction are just a few of such processes. As we have seen, a more detailed de-
scription accounting for these sub-steps has a significant effect on the steady-state noise
or the time evolution of the system. Notably, in the latter case a mere expansion of the
macroscopic model with additional linear reactions describing all the steps in the process
will not match the stochastic transient. Reaction rates in such an expanded model would
require intricate dependencies on state variables.

Timing of biochemical events becomes more precise if processes are aligned in a se-
quence. However, the time to complete such a sequence increases with the amount of
steps. Therefore, a gain in noise reduction may be offset by an extended duration of the
process and possibly a higher cost of production and maintenance of proteins that make
up the reaction chain. The simple exit time process from Fig. 1.12 provides an illustra-
tion of these tradeoffs. Molecules of species X are synthesized and degraded in first-order
reactions. Further action is triggered only if a certain amount of X is accumulated; thus,
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Figure 1.11: The effect of the peaked waiting time distribution on a decay reaction. (A)
Waiting time distributions for a Poisson process (exponential distribution - solid line), the
sum of two exponentially distributed random variables (gamma distribution with k = 2

steps - dotted), and the sum of five variables (gamma with k = 5 steps - dashed). All
distributions have the same mean equal to 1. (B) Stochastic dynamics of a decay reaction,
X → ∅. Waiting times for a decay of every X molecule are drawn from the exponential
distribution (solid line) and from a 5-step (k = 5) gamma distribution of the same mean
equal to 1 (dashed). Averages are taken over 100’000 trajectories. Additionally, three
arbitrary stochastic trajectories are drawn for the exponential case (light solid).

a sequence of synthesis events is required.

The higher the threshold in the exit time process, the longer the time to reach it; the
effect enhanced by the degradation which forces the build-up level down to the initial
zero value. The width of the exit time distribution becomes narrower with the increasing
threshold level only to widen again in the regime where the threshold is comparable to
or exceeds the steady-state mean of the synthesis-and-degradation. The narrowest exit
time distribution corresponds to the smallest variability coefficient, or noise; the timing
for this threshold value is the least stochastic.

An example of a biological process described by this model is the switching of the
rotation direction of the flagellar motor in bacteria such as E.coli. Microbes are typically
equipped with several independent motors. Their coordinated rotation is necessary to
propel attached flagella and to direct the organisms towards regions more abundant with
nutrients. How can a set of uncoupled motors can start their motion synchronously? One
plausible explanation could be the threshold mechanism and its timing properties. A
change in extracellular nutrient concentration gradient triggers a release of the activated
signaling protein (phosphorylated form of CheY) at the cell’s “nose” – a relatively small
region at one end of the cell (Fig. 4.3). Sequential build-up of these proteins at the motor
site is required to change the direction of the flagella rotation. As shown in Fig. 1.12, the
timing might be very precise if the activation threshold is placed slightly below the steady-
state concentration. Consequently, a simultaneous switch of the coordinated motion can
arise without any physical coupling of the motors (sic!)
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Figure 1.12: Reaching the threshold in a simple synthesis and degradation reaction. (A)
An illustration of a single stochastic trajectory crossing the threshold level of molecule X.
(B) Distributions and noise in the time to reach the threshold value of X. The steady-state
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1.3.2 Diffusion-limited reactions

Another wide class of processes giving rise to non-exponential waiting time distributions
is a diffusive encounter of two reacting molecules (Fig. 1.13). In fact, diffusion can be
perceived as a more general form of a sequential process where an infinite number of
possible diffusive trajectories (sequences of small jumps in space) overlap. For a pair of
initially separated molecules, the distribution of times to bind follows a peaked function
similar to the distribution arising in the chain of chemical reactions.

The peakedness, and hence the smaller noise of the waiting time distribution can
be further increased if many diffusing molecules perform the search simultaneously
(Fig. 1.14). The increased precision in timing could be advantageous for signaling sys-
tems. When a change in extracellular conditions takes place, the reception of the signal
by membrane sensors is proceeded by a race of a number of activated molecules (so called
response regulators) towards the center of the cell. If one of the regulators successfully
binds to a DNA site, gene expression can be altered in order to evoke appropriate physi-
ological response. Due to a narrow waiting time distribution resulting from simultaneous
diffusion of many molecules, the response will arguably vary only little among the cellular
population allowing for a higher survival rate in face of a possibly fatal environmental
change. However, mean and noise reduction is likely offset by the increased cost of protein
production resulting, an issue investigated in detail in Chapter 3.

Dealing with non-exponential waiting time distributions for diffusion processes is cum-
bersome for only the Laplace form of the function is known analytically in most cases.
Additionally, derivation of multi-particle distributions (according to Eq. A.13) requires
knowledge of the explicit time-domain solution which often can be obtained only by means
of numerical inversion. Many problems in biology, however, involve diffusive searches for
small, compared to the entire volume of the cell, targets such as DNA binding site or a
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Figure 1.13: An illustration of the waiting time pdf for a molecule reaching the x = 0

end of the 1D domain of length L; diffusion coefficient D = 1. Results for two initial
conditions are shown: the molecule initiates at the opposite end (x0 = L) to the target,
the molecule initiates at a random position inside the domain. Both panels show the same
functions but in different coordinates. An explicit solution, Eq. B.17, has been plotted
for x0 = L, and a numerical inverse Laplace transform [Stehfest 1970] of Eq. B.18 for a
random initial condition. Similar results are available for a three-dimensional spherical
domain. Dots mark the mean.

localized molecule. Such searches involve so many steps that the initial configuration has
only a minor effect on the duration of the search. The process becomes effectively mem-
oryless, and the waiting time distribution, although still peaked, is wide enough to allow
for the approximation with the exponential function [Dobrzyński 2008] (see Fig. 1.14 –
a single-particle waiting time distribution can be well approximated by an exponential
function). As a result, variability of the time to reach the target (the first-passage time)
increases and approaches that of the Poisson process (Fig. 1.15).

The memoryless approximation of search trajectories is a valuable simplification for
modeling and simulations of spatially resolved problems. In this regime, a diffusion-limited
reaction involving an encounter of two random walking biomolecules can be described by
a first-order transition where the waiting time follows a memoryless exponential function.
Costly computer simulations that are typically required to tackle problems involving
diffusion may be therefore superseded by a much simpler model quickly solvable by kinetic
Monte Carlo methods such as the Gillespie algorithm.

1.4 Organization of the thesis

The generic burst-generating mechanism discussed in Fig. 1.6 was used to study statis-
tics of intervals between syntheses of product X. In biological context, the ON/OFF
switch represents the simplest model of gene activation and X is the protein or messenger
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Figure 1.14: The effect of many random walkers (e.g. response regulators) on the first-
passage time (FPT) pdf. Molecules start simultaneously at the outer membrane, r0 =

Rcell; the first-passage occurs when the first out of N walker reaches the inner sphere of
radius a = 0.01Rcell. For a single walker, N = 1, the FPT pdf corresponds to that in
Fig. 3.8; the exponential approximation is indicated by black dots. Triangles denote the
mean of the distributions. Mean and noise (not shown) in the waiting time decrease with
the increasing amount of random walkers. (B) The mean first-passage time (MFPT) as
function of the number of molecules for different target sizes a. Solid lines denote the
exponential-like scaling 1/N , which holds for small target sizes. Circles are computed
using order statistics for the analytical result: numerical Laplace inversion of Eq. 3.5 to
obtain a single particle FPT pdf, substitution of f(t) into Eq. A.13, finally computation
of moments of f (1,N)(t).

RNA (mRNA), the intermediate synthesized during protein production. In Chapter 2 we
extend this picture and study how additional processes involved in protein synthesis influ-
ence the overall stochasticity of gene expression. We focus on a more realistic case, which
includes transcription elongation, a process consisting of a multitude of small steps. We
perform extensive computer simulations to demonstrate how transcription elongation can
attenuate or enhance fluctuations introduced upstream of this process. In order to quantify
our analysis we apply the first-passage time theory and introduce indexes for burst size,
duration and significance, which have a clear analytical representation for the generic burst
model. This chapter is based on published material [Dobrzyński & Bruggeman 2009].

Our focus on timing properties of stochastic events continues in Chapter 3. Here
we look closer into a spatially-resolved system: a two-component signaling network. This
relatively simple structure is responsible (among other tasks) for sensing changes in nu-
trient abundance outside of the cell and for inducing appropriate physiological responses
within the cell. The response involves diffusion-limited searches of spatially-fixed targets
by biomolecules. One of the main questions we set out to answer is how many molecules are
required to facilitate a quick and robust response. Once again we employ the first-passage
time theory and make use of the memoryless property of diffusion-limited reactions. Parts
of the background theory used in this chapter has been published in form of conference
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limited rate constant KD, i.e. τD = 1/KD = Vcell/4πD rin. Note that since noise is a
dimensionless quantity it is also independent of the diffusion constant D.

proceedings [Dobrzyński 2008].
Likewise, in Chapter 4 the analysis of the first-passage time distribution for a bi-

molecular reaction allows for a thorough comparison of spatial-stochastic computation
methods. These methods are used in order to obtain statistics of biochemical processes
involving diffusion. Higher moments and steady-state distributions of reactants are typi-
cally computed this way. We analyzed available methods which assume different underly-
ing physical models of the diffusion and identified sources of discrepancies in their results.
This chapter is based on published material [Dobrzyński et al. 2007].

Three appendices include mathematical definitions and derivations of essential equa-
tions discussed throughout the thesis. Appendix A covers basic concepts of the first-
passage time theory such as the first-passage time probability density function, com-
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putation of the first and the second moment of the distribution, and order statistics.
Appendix B focuses on the first-passage time theory in the context of diffusion-limited
reactions. Examples of derivations for one-dimensional geometries can be found there.
The methods presented there along with the order statistics from Appendix A are
used extensively in Chapter 3 to compute distributions and moments of first-passage
times for many diffusing molecules in a signaling network. Derivations specific to this
three-dimensional problem are included in Section 3.5 – Materials and Methods. Ap-
pendix C includes a detailed description of models and computational methods along
with algorithms applicable to modeling of spatial stochastic problems in biology.
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2.1 Abstract

Cells in isogenic populations may differ substantially in their molecular make up due to
the stochastic nature of molecular processes. Stochastic bursts in process activity have a
great potential for generating molecular noise. They are characterized by (short) periods
of high process activity followed by (long) periods of process silence causing different cells
to experience activity periods varying in size, duration and timing. We present an analyt-
ically solvable model of bursts in molecular networks, originally developed for the analysis
of telecommunication networks. We define general measures for model-independent char-
acterization of bursts (burst size, significance, and duration) from stochastic time series.
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Inspired by the discovery of bursts in mRNA and protein production by others, we use
those indices to investigate the role of stochastic motion of motor proteins along biopoly-
mer chains in determining burst properties. Collisions between neighboring motor proteins
can attenuate bursts introduced at the initiation site on the chain. Pausing of motor pro-
teins can give rise to bursts. We investigate how these effects are modulated by the length
of the biopolymer chain and the kinetic properties of motion. We discuss the consequences
of those results for transcription and translation.

2.2 Introduction

The stochasticity of molecular processes contributes to heterogeneity in populations
of isogenic cells. Cellular heterogeneity is manifested by differences in the copy num-
bers of molecules and in the timing and duration of processes. Recent advances in
single-cell measurement have facilitated the quantification of stochastic phenomena
[Elowitz et al. 2002, Ozbudak et al. 2002, Golding et al. 2005, Yu et al. 2006] (reviewed
in [Kaern et al. 2005, Kaufmann & van Oudenaarden 2007]). Together with models and
theory much insight has been obtained into the sources of noise and how particular net-
work designs contribute to noise suppression and amplification [Elf & Ehrenberg 2003,
Simpson et al. 2003, Paulsson 2004, Pedraza & Paulsson 2008].

Stochasticity of gene expression has been described by distributions of macromolecules
in a population of cells [Elowitz et al. 2002, Ozbudak et al. 2002]. Whether averaging over
a population captures the entire spectrum of molecular fluctuations a particular cell ex-
periences over one generation, depends on magnitudes and rates of fluctuations. If these
are slow but high in amplitude, the required averaging duration may extend over a gen-
eration span [Rosenfeld et al. 2005]. Then, a single cell may not even be able to reach
protein states accessible to other members, thus rendering cell-cell protein level distri-
butions uninformative with respect to behavior of genetic circuits [Sigal et al. 2006]. In
such cases, waiting times for individual birth and death events need to be monitored in
order to assess physiological constraints on a single-cell level. This stochastic nature of
waiting times will be our focus. Little analytical theory has been developed to deal with
this phenomenon despite its relevance for single cell behavior.

The waiting times in a first-order process with rate constant k follow an exponen-
tial distribution; the mean waiting time between events and its standard deviation are
equal to 1/k. The waiting time for an event is no longer exponentially distributed if it
is regulated by another process. This mechanism underlies bursts in synthetic activity.
The interrupted Poisson process (IPP) was introduced to study bursts in queuing and
telecommunication theory [Kuczura 1973]. In an IPP, a stochastic switch modulates a
process with exponentially distributed waiting times. Depending on the time scale sep-
aration between the process and the switch, multiple time scales may appear in waiting
times for production events.

Bursts have received ample attention in the biophysics literature [Kaern et al. 2005,
Pedraza & Paulsson 2008, Colquhoun & Hawkes 1982, Walczak et al. 2005,
van Zon et al. 2006, Mitarai et al. 2008]. These studies tend to focus predominantly on
the protein number distributions, but do not analyze the distributions for waiting times
in much depth. We show that such statistics are relevant for burst characterization and
the molecular mechanisms giving rise to bursts.
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Bursts have been experimentally observed for synthesis of mRNA and protein
[Golding et al. 2005, Yu et al. 2006, Raj et al. 2006, Cai et al. 2006, Chubb et al. 2006,
Newman et al. 2006, Bar-Even et al. 2006]. They are characterized by rapid productions
of a number of mRNA or protein molecules during short time intervals. Periods of syn-
thetic silence occur between bursts. Bursts may give rise to significant disturbances of cel-
lular physiology depending on burst size and the duration of synthetic silence and activity.
Even though the benefit of bursts needs to be analyzed further, they could be beneficial for
cells living in rapidly fluctuating environments [Acar et al. 2008]. Bursts may give rise to a
bimodal distribution of protein expression across cell populations [Friedman et al. 2006].
Thereby, two sub-populations could emerge having different adaptive potentials.

We apply the analytical theory of IPPs to a molecular mechanism for bursts. In order
to identify and characterize bursts we derive three new indices: burst size, duration, and
significance. We demonstrate how motor protein trafficking along biopolymer chains (such
as mRNA polymerase and DNA polymerase along DNA, ribosomes along mRNA, and
cargo-carrying dynein along microtubuli) can generate bursts depending on the length of
the biopolymer and stochasticity of initiation and motion. We show that motor proteins
can generate bursts by pausing or by memory of initiation bursts.

2.3 Results

2.3.1 Analytical expression of the waiting time distribution

In this section, we study a small network to gain insight into burst-generating mechanisms.
This will allow us to derive general indices for the characterization of burst properties.
These indices will be applied to characterize biological mechanisms.

The network consists of a source switching between an inactive OFF and an active
ON state according to a Poisson process (Fig. 2.1A). OFF and ONperiods are defined
on the level of the switch (see [Walczak et al. 2005, Mitarai et al. 2008] for the discussion
of mechanisms giving rise to genetic switches). In the active state, production of P ,
e.g. mRNA or protein, occurs at exponentially distributed intervals of length τini =

1/kini. The average ON period lasts for τon = 1/k−sw. Production periods are interrupted
by transitions to the OFF state. Each rate constant corresponds to the inverse of the
mean first passage time for a complex kinetic mechanism. We assume that it follows an
exponential waiting time distribution.

Product generation is bursty if it occurs many times during one ON state. In addition,
the duration of the OFF state (τoff = 1/k+

sw) should be longer than or comparable to
the ON period. Under these conditions, waiting times display two time scales (Fig. 2.1B).
Since our interest is the statistics of intervals between production, the degradation of P
does not play a role.

The mechanism discussed here specifies an interrupted Poisson process (IPP) inves-
tigated in the field of queuing theory [Kuczura 1973]. An IPP is a Poisson process for
event occurrence (arrivals) modulated by a random switch. In this framework a gene that
switches between an ON and OFF state as function of a transcription factor would be
considered the source. Arrivals would, for instance, correspond to initiations of transcrip-
tion giving rise to elongating RNA polymerases. The IPP theory provides the probability
density function (PDF) for waiting times between production events, fX(t), with the
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Figure 2.1: Bursts generated by the minimal model. (A) The network consists of a switch-
ing source and a Poissonian product generator. Full arrows denote reactions. Product P
is synthesized only in the ON state. k+

sw, k−sw, kini and kdeg denote the ON switching,
OFF switching, production, and degradation rate constant, respectively. (B) Simulation of
bursty accumulation of P . Two time scales correspond to uninterrupted and interrupted
production events. Bars denote OFF (white) and ON (grey) state. (C) Waiting times
for non-bursty production events (vertical lines). On average, 1 P is produced during
the ON state. The resulting intervals between production events correlate weakly with
OFF and ON states.

stochastic variable X as the waiting time with value t. It is instructive to realize that
the PDF can become larger than 1 (it is not a probability) and that

∫∞
0
fX(t)dt = 1.

The probability of an interval between consecutive events being within [t, t + dt] equals
fX(t) dt. The PDF of an IPP is a weighted sum of two exponential distributions,

fX(t) = P [X ∈ (t, t+ dt)]/dt = w1r1e
−r1t + w2r2e

−r2t,

r1,2 =
(
K ±

√
K2 − 4kinik

+
sw

)
/2, r1 > r2, (2.1)

where K = k+
sw+k−sw+kini, and the weight factors w1 = 1−w2 = (kini − r2) / (r1 − r2) ∈

(0, 1); derived in Section 2.5.1 of Materials and Methods. The PDF can reveal the presence
of two times scales in a stochastic time series (Fig. 2.2, first row).

The length of intervals between production events follows from the superposition of
two independent processes: production during a single ON state, and periods of synthetic
inactivity. The latter may result from multiple switches between ON and OFF states
without producing any P . This is the case if the mean number of productions per ON state
is small, i.e. kini ≈ k−sw (Fig. 2.1C). Accordingly, synthetic activity and silence periods (at
the level of P production) do not strictly overlap with ON and OFF states of the switch.

Characteristic time scales of the fast and the slow process appear in Eq. 2.1 as rates r1

and r2. Weight factors w1 and w2 are the probabilities to observe the short period (mean
duration 1/r1) and the long period (mean 1/r2) between P productions, respectively. For
large time scale separation, i.e. when k+

sw and k−sw are much smaller than kini (last column
in Fig. 2.2), the rates become r1 ≈ kini and r2 ≈ k+

sw. In this regime, the expected burst
size, βe, equals the number of initiations per ON state, i.e. kini/k−sw.

The point of time scale separation we refer to as τX (Fig. 2.2). At this interval the
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Figure 2.2: Theoretical analysis of the minimal burst model (Fig. 2.1). Columns corre-
spond to different parameterizations. First row: the waiting time PDF for a pure Poisson
process and for two IPPs with different burst characteristics (Eq. 2.1). The vertical dashed
lines indicate the threshold of time scale separation τX . Second row: sequence size function
(Eq. 2.4). The Φ evaluated at τX yields the burst size β (horizontal dotted lines).

probability to observe a waiting time resulting from the fast and the slow process is
identical (two terms of Eq. 2.1 are equal). Two time scales are observable if kini > k+

sw −
k−sw; only then τX > 0 (Eq. 2.18 in Materials and Methods).

The mean waiting time determined from Eq. 2.1 corresponds to the macroscopic esti-
mate (Eqs 2.12 in Materials and Methods),

〈t〉 =

∫ ∞
0

t fX(t)dt =
w1

r1
+
w2

r2
= τini

(
τon

τon + τoff

)−1

(2.2)

The inverse of this equation equals the mean arrival rate, kini 〈ON〉. It has the interpreta-
tion of the expected burst size divided by the duration of a single switch cycle. The noise
in the waiting time is given by

η2
t = VAR/AVG2 = σ2

t /〈t〉2 = 1 + 2βe 〈OFF〉2. (2.3)

The second term expresses the deviation of IPP from a Poisson process. It is small if
either the ON state is short-lived (βe decreases) or silence periods are negligible.

2.3.2 Measures for characterization of bursts

The size of a burst and the burst duration are relevant burst properties. For biological
applications they need to be determined on the basis of a stochastic time series as the
mechanism underlying bursts is typically unknown.

The burst size β is defined as the mean number of production events not interrupted
by a long inactivity period. Inactivity periods (interruptions) occur as often as bursts.
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The total number of production events divided by the number of interruptions yields the
burst size. In order to determine the time scale of interruptions and hence their number,
we define a sequence size function Φ(ϑ),

Φ(ϑ) =
# total events

# intervals longer thanϑ
=

na
naP [X > ϑ]

=
1

1− FX(ϑ)
(2.4)

where FX(ϑ) is the cumulated distribution function (CDF), i.e. FX(ϑ) =
∫ ϑ

0
fX(t)dt. For

a given threshold ϑ, the function yields the sequence size such that events are grouped
into sequences interrupted by intervals longer than ϑ. Due to the time scale separation,
there is a specific interval ϑb for which Φ(ϑ) equals the burst size β. The value of ϑb can
be determined on the basis of the functional dependence of Φ(ϑ) as illustrated in Fig. 2.3.

Figure 2.3: Cartoon of a sequence size function Φ. (Top) time series of production events.
Horizontal bars denote intervals longer than thresholds ϑA,B,C,D. (Bottom) For a given
ϑ, Φ is constructed by dividing the total number of intervals by the number of intervals
longer than ϑ. Time scale separation introduces a regime where ϑ is longer than intervals
within bursts but shorter than interruptions between them; a plateau appears. The point
of time scale separation τX lies in the middle of two inflection points τ1,2 determined from
the second derivative of Φ. The value of Φ at τX is the burst size β.

As a measure for burst size β we evaluate the sequence size function at the interval
of time scale separation, τX , which has a straightforward interpretation for the minimal
burster from Fig. 2.1. This point lies in the middle of two intervals τ1 and τ2 (τ1 < τ2);
they correspond to the change of Φ(ϑ) from convex to concave to convex as function of
ϑ, respectively (Eqs 2.19–2.21).

The burst size β is greater than the expected burst size βe as the latter excludes the
possibility of an ON state without a production event. Both measures are approximately
equal for a large time scale separation: β = βe+O(log kini), if kini � k+

sw and k−sw ≈ k+
sw.

Fig. 2.2 illustrates the PDF and Φ(ϑ) for different parameter regimes of the minimal



2.3. Results 31

Figure 2.4: Canonical model of macromolecular trafficking along a biopolymer. In the
ON state of the switch, proteins initiate elongation with a rate constant kini. Elongation
occurs with a rate constant kel. “O” and “U” denote occupied and unoccupied state of
the site, respectively. Motors leave the chain with a rate constant kter and accumulate a
product P . The product is degraded with a rate constant kdeg.

model. Bursts become more pronounced for high kini over k−sw ratios (increased time scale
separation). The behavior of the sequence size function for non-exponential waiting times
is explored in Section 2.5.5. In short, a gamma-distributed waiting time for the OFF to
ON transition increases the time scale separation. The applicability of the indices is not
affected.

Once the burst size is known, the duration of a burst, τβ , can be obtained by multi-
plying β by the mean waiting time within a burst (1/r1 in the minimal model). Whether
the interval is part of a burst can be deduced using the threshold of time scale separation,
τX (determined on the basis of the waiting time PDF). In addition to burst size, burst
significance is important. Bursts loose significance if the interruption period becomes
comparable to intervals within a burst. To quantify this we introduce a dimensionless
significance coefficient ξ = 1− τ1/τ2, ξ ∈ (0, 1).

We use all three measures, β, τβ , and ξ to analyze stochastic time series for more
complex schemes. The advantage is that the indices are mechanism-independent. In addi-
tion to their unbiased nature, they have a clear mechanistic interpretation for the minimal
burster. This property facilitates interpretation of yet unidentified mechanisms giving rise
to bursts.

2.3.3 Motor-protein traffic jams along biopolymer chains

Bursts have been observed experimentally for single-cell synthesis of mRNA and protein
[Golding et al. 2005, Yu et al. 2006, Raj et al. 2006, Cai et al. 2006, Chubb et al. 2006]
(review [Kaufmann & van Oudenaarden 2007]). For such cases, free energy driven motion
of a catalytic motor protein along a biopolymer template is required. Here, we investigate
the role of the stochasticity in the initiation of motion and in the motion itself for the
observation of bursts at the end of the chain. We will consider different lengths of the
polymer and kinetics of initiation and transport.

Fig. 2.4 shows a canonical 1-D macromolecular trafficking model. It contains the
switching source, as described in the previous section, followed by sites on the polymer.
Each site can be occupied by a single motor, moving forward only, with the elongation
rate constant kel (sites per time).

Evidently, motors cannot pass each other and shall collide. We also consider the motor
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Figure 2.5: Mean site occupancy: (A) at the beginning (solid line) and at the end (dashed)
of a 100-site polymer (k+

sw = k−sw = 1 [1/T ], kini = 100k−sw); error bars, standard deviation,
(B) along 1 to 100-site polymers (dotted), numbers indicate the length, circles mark mean
occupancy at the polymer’s end; parameters as in (A), and kel = kini.

occupying more than one site (Section 2.5.7.2). Previously we discussed conditions for
bursts to emerge at the start of the polymer. Whether bursts are preserved at the end of
the chain depends on the characteristics of the stochastic motion.

In Fig. 2.5A we consider a polymer of length 100 sites, preceded by a bursty switch
with 100 initiations per ON state, on average. We plot the mean occupancy of sites
at the beginning and at the end of the polymer as function of a dimensionless ratio,
kel/kini. If a motor protein travels many sites between initiations during a single ON state
(kel/kini � 1), its progression is not hampered by collisions. A traffic jam arises at the
beginning of the chain if the number of traversed sites during consecutive initiations is
small (kel/kini � 1). This results in high mean site occupancy at the initial segment of
the polymer. Congestion weakens at the end of the polymer because motors have less
partners ahead of them. As shown in Fig. 2.5B, the net occupancy gradient along the
chain increases with the polymer length.

If collisions are significant, the time scale separation generated at the initiation stage is
disrupted. The frequency of P production becomes exclusively determined by the motor
protein progression at the end of the chain. The effect intensifies as the length of the
polymer increases as illustrated in Fig. 2.6A.

Due to collisions, the rate at which motors leave the polymer becomes smaller than
kini. The mean interval between productions (the inverse of the macroscopic flux) be-
comes longer for longer chains (panel B). Additionally, the standard deviation becomes
comparable to the mean waiting time. The process becomes exponentially distributed and
the memory of the state of the switch is lost entirely.

Motor protein collisions disrupt inactivity periods of initiation bursts. As a result,
intervals between production events become comparable. In this regime, the burst size β
measured at the end of a long polymer is seemingly larger than for a short one (panel C).
Therefore, it is necessary to aid the measurement of bursts with the significance index, ξ.
As the length of the polymer increases, the significance of bursts diminishes (panel D).
Below, we introduce a mechanism that can recover bursts at the output even if no bursts
occur at the input.
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Figure 2.6: Analysis of the canonical model of macromolecular trafficking. Gillespie sim-
ulations of at least 1e5 events, k+

sw = k−sw = 1 [1/T ], kel = kini = 100k−sw. The dashed line
in all panels marks the minimal burst model (no elongation). (A) The waiting time PDF
for 10 and 1000-site polymers. Circles, the mean waiting time. (B) The mean waiting time
and its standard deviation, (C) burst size, and (D) burst significance for different chain
lengths.

Figure 2.7: Model of macromolecular trafficking with pausing motor proteins. Proteins
initiate motion with a fixed rate constant kini. A site can be unoccupied (symbol ’U’),
occupied (’O’) by a motor, or occupied by a motor in a paused state (’S’). Motors can
pause at a rate k+

p at every site. The lifetime of the paused state is 1/k−p . Other parameters
are the same as in Fig. 2.4.

2.3.4 Pausing of motor proteins can generate bursts

We shall consider a polymer without a switching source that modulates initiation.
Initiation takes place at a fixed rate constant kini. Such a model has only one time
scale, thereby no bursts at initiation can occur. We consider motor protein pausing
along the chain as a potential burst-generating mechanism. At every site, a motor can
switch at a rate k+

p to a paused state that lasts 1/k−p (Fig. 2.7). This mechanism is
known to occur for RNA polymerase [Yin et al. 1999, Artsimovitch & Landick 2000,
Bar-Nahum et al. 2005, Greive & von Hippel 2005, Hatoum & Roberts 2008] and
ribosomes [Hayes & Sauer 2003, Sunohara et al. 2004, Buchan & Stansfield 2007,
Galburt et al. 2007, Wen et al. 2008].

Pausing of a single motor causes congestion due to its collision with consecutive motors
during its dwell time. This allows for the build up of a burst packet. The packet can survive
until the end of the chain only if the pausing frequency is low for a given chain length
L. If this is not the case, there is a high probability that proteins within the potential
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burst will also pause and thus divide the packet (Fig. 2.8A, curves for k+
p = 100 [1/T ]).

Another requirement for bursting concerns the lifetime of the paused state. If too short,
compared to the initiation rate kini and the elongation rate kel, the consecutive proteins
will not catch up (Fig. 2.8A, curves for k−p = 100 [1/T ]). Time scale separation in the
waiting times at the end of the chain, and hence bursts, appear only when motors do
not pause too frequently during the elongation, and when the paused state is sufficiently
long-lived (Fig. 2.8A, solid curve for k+

p = k−p = 1 [1/T ]).
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Figure 2.8: The effect of chain length and pausing parameters on waiting time statistics for
the model with pausing. Data obtained from Gillespie simulations of 1e6 events. Common
parameters: kini = 100 [1/T ], kel = kter = kini. (A) The appearance of the time scale
separation due to the pausing of proteins. Chain length: 100 sites. Bursts arise when (i)
k+
p allows for only few pauses during the elongation and (ii) 1/k−p is long enough for many

initiations to occur (solid line). Circles, the mean waiting time. (B) Waiting time PDF for
chain lengths 50 and 500 sites. The lifetime of the paused state is fixed: 1/k−p = 100 [T ].
At a pausing rate constant k+

p = 0.01 [1/T ], the increase in the chain length increases
the probability of multiple pauses during the progression: bursts disappear (dotted line).
Reduction of k+

p to 0.001 [1/T ] recovers bursts (dashed line). Circles, 〈t〉. (C) The mean
waiting time and its standard deviation as function of chain length. Lines: k+

p = k−p =

0.01 [1/T ]. Symbols at L = 500 correspond to the dashed line in (B): k+
p = 0.001 [1/T ].

(D) Sequence size function for polymers as in B. Circles, β.

The length of the biopolymer chain affects the statistics of bursts as well. The addition
of sites increases the probability that a single motor pauses a number of times during
its progression. Thereby, such a motor destroys the burst it was part of. The effect is
equivalent to an increase in k+

p at a fixed L. As a result, the waiting times lack the short
time scale originating from frequent product initiation. Instead, they are dominated by the
lifetime of the paused state. The mean waiting time 〈t〉 and its standard deviation increase
with increasing L, and the time scale separation becomes less pronounced (Figs. 2.8B and
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C). Since burst size β decreases, bursts tend to disappear for longer chains. They can
always be recovered by decreasing the probability of a single motor protein to pause
many times during its progression. As an illustration we shall change the pausing rate
for the longest chain considered, L = 500. If we set k+

p 10 times smaller than the value
used for L = 50, the time scale separation is recovered and β increases (Figs. 2.8B and
D, dashed line). This indicates that pausing may prevent or promote bursts depending
on the properties of the biopolymer.

2.3.5 Aggregative behavior of multiple burst-generators

Statistics of bursts change when they arise from the simultaneous activity of a number
of independent burst-generating mechanisms. In biological terms, this superposition may
describe the transcription of an mRNA from independent copies of a gene or the transla-
tion of protein from a number of mRNAs. Here we focus on the extension of the simple
model of bursts to a superposition of many independent interrupted Poisson processes.
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Figure 2.9: Superposition of independent bursters (k+
sw = 0.1 [1/T ], k−sw = 1 [1/T ], kini =

k−sw). (A) Analytical waiting time PDF as a function of the number of burst sources. The
curve becomes almost exponential for 8 sources. (B) Analytical sequence size function for
1 to 20 sources. The two roots of its second derivative (solid circles and triangles) vanish
for more than 8 sources. (Inset) burst significance as function of the number of sources.

We choose parameters such that a single burster initiates 1 product per ON state
(k+
sw = 0.1 [1/T ], k−sw = 1 [1/T ], kini = k−sw). The resulting burst size is small, β ≈ 2.3.

The waiting time PDF almost completely looses its double-exponential character for more
than 8 sources (Fig. 2.9A). Although the burst size increases for many sources (panel B),
their significance ξ diminishes until the sequence size function Φ becomes always convex
and ξ can no longer be evaluated (inset of panel B). This indicates that clustering of
events into bursts no longer occurs: waiting times follow a single-exponential distribution.
Analytical results for the pooled mechanism, the PDF and the Poissonian behavior in
the limit of many independent IPPs, can be found in Section 2.5.6. These results are
particularly insightful for the conditions for bursts in the protein level. A burst of a few
mRNA transcripts does not necessarily cause a protein burst. It depends on temporal
correlation between translation that occurs independently on each transcript.
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2.4 Discussion

For most applications the exact burst-generating mechanism is not known or too complex
to handle analytically. To overcome this problem we defined three measures for the char-
acterization of bursts: burst size, duration, and significance. We stress the usefulness of the
significance measure, as large bursts can arise at a negligible time scale separation. The
indices have a transparent interpretation for the system in Fig. 2.1 and allow for model-
independent analysis of more complicated mechanisms. Additionally, we offer a rigorous
method to obtain the indices from stochastic time series. We applied those measures to
investigate the influence of the stochastic motion of motor proteins along a biopolymer
on bursts of product release at the end of the chain, e.g. of protein, cargo-vesicles or
mRNA. Our study was inspired by the experimental discovery of bursts in transcrip-
tion and translation [Golding et al. 2005, Yu et al. 2006, Raj et al. 2006, Cai et al. 2006,
Chubb et al. 2006]. We found that bursts at the input of the chain tend to be smoothed
out by longer chains due to congestion of motor proteins. Due to collisions time scales
within and between bursts become comparable causing the burst size to be larger but of
less significance. Hence, the stationary output flux decreases with the length of the chain.
At a fixed initiation rate, bursts can emerge due to pausing of motor proteins.

We discussed two mechanisms that could give rise to bursts in production. Bursty tran-
scription initiation was the first one. The second considered motor protein pausing as a
source of bursts. How to distinguish these two mechanisms experimentally and how can ex-
isting data be interpreted in this light? We shall consider this in more detail for transcrip-
tion. Promising mechanisms for initiation-induced bursts in mRNA production are genes
controlled by strong repressors occasionally leaving the promotor to allow a few RNA
polymerases to initiate transcription as suggested in [Golding et al. 2005, Yu et al. 2006].
On average, every τini minutes an RNA polymerase initiates elongation if the gene is in
the ON state, i.e. in the presence of an activating transcription factor or in the absence
of a repressor. During this time, polymerase traverses kel τini nucleotides. If no significant
congestion occurs along the DNA, the mean waiting time 〈t〉 for polymerases at the end
of the chain is proportional to τini (Eq. 2.2); the time scale of initiation bursts (if present)
is preserved at the end of the chain. If motors collide during their progression this re-
lationship is destroyed. Fig. 2.10 illustrates this for switch parameters corresponding to
measurements by Golding et al. [Golding et al. 2005]; τon = 6, τoff = 37 min. This fig-
ure displays the dependency of 〈t〉 on the initiation time τini for the minimal, canonical
trafficking, and detailed model (with initiation switch and pausing). Assuming that the
experimental system studied by Golding et al. is in the regime where collisions do not
disrupt the proportionality between 〈t〉 and τini, their measured waiting time within a
burst corresponds to τini = 2.5 min. For these parameters, Fig. 2.10 indicates that most
of the control on the waiting time is exerted by the initiation; pausing properties do not
affect 〈t〉. The calculated burst size (3.6) is close to the experimental result (≈ 2.2).

How would pausing of RNA polymerases and altered initiation rates (different genes)
change this picture? In Fig. 2.10, we investigate this using realistic pausing parameters.
The panel for burst size shows that initiation bursts are reduced by pausing. Spontaneous
collisions and hence deviation of 〈t〉 from linear dependence (Eq. 2.2) occur only at high
initiation rates. The discrepancy is larger if pausing is considered. Therefore, pausing is a
more plausible mechanism for such deviations in real biological systems where τini exceeds
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Figure 2.10: Detailed model of elongation: mean waiting time 〈t〉 for mRNA produc-
tion as function of initiation intervals τini = 1/kini. The gene consists of 1000 nu-
cleotides, RNA polymerase occupies 50 nt [Voliotis et al. 2008]. Parameters of the ini-
tiation switch are τon = 6 and τoff = 37 min [Golding et al. 2005]. Elongation occurs
at 50 nt/s [Greive & von Hippel 2005]. Means were obtained from Gillespie simulations
of at least 1e4 events. Solid line without symbols denotes the mean, and the dashed line
one standard deviation plus the mean for the minimal burst model (no elongation). The
vertical line indicates the mean waiting time of mRNA in the experiment of Golding
et al. [Golding et al. 2005]. Deviation from the solid line results from collisions of RNA
polymerases.

0.1 min. This makes pausing a potent target for regulation, e.g. by NusA and NusG, in
accordance to recent experiments [Artsimovitch & Landick 2000, Bar-Nahum et al. 2005,
Greive & von Hippel 2005, Hatoum & Roberts 2008]. Voliotis et al. [Voliotis et al. 2008]
have postulated collision-induced bursts caused by backtracking of RNA polymerases.
Fig. 2.10 offers a convenient method to determine whether collisions induced by pausing
or spontaneous are additional controlling processes besides initiation.

Which genes are likely to generate bursts? Strong repressors could induce bursts ac-
cording to bursty initiation as described above. In experimental studies this mechanism
yielded a small burst size [Golding et al. 2005, Yu et al. 2006]. If the lifetime of mRNAs
and proteins is shorter than the OFF period, transient bursts (“puffs”) are produced.
Savageau’s demand principle [Savageau 1998] predicts that infrequently used genes are
regulated by repressors to prevent them from accumulating mutations. Such systems
should be susceptible to bursts, e.g. repressor-regulated operons of prokaryotic signaling
networks.

Highly-activated genes under the control of an activating transcription factor can give
rise to bursts by the pausing mechanism (Fig. 2.8). Such systems are predominantly in
the ON state (e.g. by way of enhancer dependence) and have an approximately con-
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stant and high initiation rate. This should make them prone to bursts induced by paus-
ing. Such a mechanism has not been experimentally observed so far. E. coli ’s rrn genes
(coding for ribosomal RNA) would be likely candidates; for they are among the genes
with highest expression activity [Bremer et al. 2003]. In mammalian systems, poised and
paused polymerases occur often and could underlie the experimentally observed bursts
[Chubb et al. 2006, Wolf et al. 1995, Price 2008].

Typically, products are not synthesized in a single macromolecular process. We showed
that if bursts are generated independently, the resultant burst tends to loose significance
with an increasing number of sources. Hence, mRNA bursts are more likely to occur than
protein bursts, as protein is typically produced from a few transcripts simultaneously.
Depending on the significance and size of the burst generated by a single catalytic process,
this rules out significance of bursts in, for instance, metabolism where the copy number
of catalytic proteins is thousands.

Bursts are a powerful mechanism to generate cellular heterogeneity. Key processes such
as transcription and translation are particularly prone to generate bursts. How biological
systems manage to function reliably in the presence of bursts, whether they actively
suppress them or control their characteristics remains to be experimentally shown. Exact
burst properties and their functional consequences depend on the relative times scales of
initiation, elongation, and termination processes. The analytical theory we presented gives
insight into generic burst properties. The proposed burst indices allow for quantitative
studies of specific systems and their comparison.
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2.5 Materials and methods

2.5.1 Statistics of the arrival process

We are interested in intervals between product arrivals for the interrupted Poisson process
(IPP). The statistic is independent of the degradation rate kdeg. Derivation of the waiting
time probability density function is in fact a first-passage time problem [Redner 2001]. The
original derivation of the pdf for the IPP process was obtained by Kuczura [Kuczura 1973,
Milne 1982]. Here we obtain the same result using a much simpler approach.

An interval t between two arrivals is the time to release the (n+ 1)th product at time
t given that the nth product arrived at the initial time t = 0. In other words, we are
looking for a probability density of the occurrence of the first event in the infinitesimal
interval (t, t+ ∆t), if we set the initial time t = 0 at the moment of the previous arrival.

We denote the probability that there were k arrivals in time interval (0, t], given that
an arrival occurred at t = 0 as pk, ε (t). Variable ε = {0, 1} describes whether at the
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Figure 2.11: Scheme of discrete states in the IPP. A single box represents a state
pk, ε (t) where the switch is in the ON (ε = 1) or OFF state (ε = 0). Index k denotes the
number of arrivals in time interval (0, t), given that an arrival occurred at t = 0.

particular time t the switch is in the OFF or ON state, respectively. The following set of
master equations governs the evolution of the system between discrete states (Fig. 2.11):

d

dt
p0, 1 (t) = k+

sw p0, 0 (t)−
(
kini + k−sw

)
p0, 1 (t)

d

dt
pk, 1 (t) = k+

sw pk, 0 (t)−
(
kini + k−sw

)
pk, 1 (t) + kini pk−1, 1 (t) , k = 1, 2 . . .

d

dt
pk, 0 (t) = −k+

sw pk, 0 (t) + k−sw pk, 1 (t) , k = 0, 1 . . . (2.5)

with the initial condition p0, 1 (t = 0) = 1.
The first-passage probability includes all incoming fluxes due to transitions that drive

the system from the initial condition to state p1, 1 (t) for the first time:

f1,1(t) = kini p0, 1 (t) (2.6)

Note, we do not add the flux k+
sw p1, 0 (t). The system visits the state p1, 1 (t) prior to

arriving at the state p1, 0 (t).
Solving the problem, requires only two master equations for k = 0, which is a simple

homogeneous system of linear ODEs. The solution, obtained in a standard manner, is the
sum of two exponentials since there are only two variables (eigenvalues).

We take a different approach to illustrate the usage of the Laplace transform and its
asymptotic properties. The Laplace transform allows to obtain a set of algebraic equations:

sp̃0, 1 (s)− p0,1(t = 0) = k+
sw p̃0, 0 (s)−

(
kini + k−sw

)
p̃0, 1 (s)

sp̃0, 0 (s)− p0,0(t = 0) = k−sw p̃0, 1 (s)− k+
sw p̃0, 0 (s)

f̃1,1(s) = kini p̃0, 1 (s) (2.7)

Solving for p̃0, 1 (s), we obtain:

f̃1,1(s) =
kini (s+ k+

sw)

s
(
s+ k+

sw + k−sw + kini
)

+ k+
swkini

(2.8)

where f̃1,1(s) is the Laplace transform of the the first-passage time probability density.
The inverse transform of 2.8 allows to obtain an explicit expression in the time domain,
i.e. f1,1(t).
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Before we spell the final result we need to realize again how the first-passage time
pdf, we are about to calculate, relates to the waiting time pdf we are interested in. The
former gives the normalized frequency histogram of times t of the first occurrence of the
state p1,1(t) given that initially the system was in state p0,1(t = 0). It is exactly the same
histogram when intervals between successive arrivals are registered.

The waiting time pdf fX(t) ≡ f1,1(t) for the duration of the interarrival time X to be
within (t, t+ ∆t) is a weighted sum of two exponential functions. Its CDF FX(t) and the
density function itself are:

FX(t) = Pr[X ≤ t] = w1

(
1− e−r1t

)
+ w2

(
1− e−r2t

)
(2.9a)

fX(t) =
Pr[t < X < t+ ∆t]

∆t
=
dFX(t)

dt
= w1 r1 e

−r1t + w2 r2 e
−r2t (2.9b)

where rates r1,2 and weights w1,2 are:

r1,2 =
1

2

(
k+
sw + k−sw + kini ±

√
(k+
sw + k−sw + kini)2 − 4kinik

+
sw

)
, r1 > r2 (2.10a)

w1 =
kini − r2

r1 − r2
, w1 ∈ (0, 1) (2.10b)

w2 = 1− w1 (2.10c)

2.5.2 The limit of a large time scale separation

It is instructive to calculate the behavior of the coefficients r1,2 and w1 for large time scale
separation between the switching rates and the rate of production for the simple model.
We assume that the rate constant kini is much larger than k+

sw and k−sw. If we substitute
kini = 1/ε, and expand around small ε, parameters of the interarrival time pdf obtained
in the previous section amount to:

r1 = k−sw + kini +
k−sw k

+
sw

kini
+O(

1

k2
ini

) (2.11a)

r2 = k+
sw −

k−sw k
+
sw

kini
+O(

1

k2
ini

) (2.11b)

w1 = 1− k−sw
kini

+O(
1

k2
ini

) (2.11c)

2.5.3 Moments of the first-passage time pdf

The mean, variance and noise in the arrival process can be obtained from the coefficients
of Taylor-expanded first passage time pdf in Laplace domain, f̃1,1(s) (Eqs. 2.8 and A.6):

〈t〉 =

∫ ∞
0

t fX(t) dt =
w1

r1
+
w2

r2
=
k+
sw + k−sw
k+
sw

· 1

kini
, (2.12a)

σ2
t = 〈t〉2 +

2 k−sw

k+
sw

2
kini

, (2.12b)

η2
t =

σ2
t

〈t〉2 = 1 +
1

〈t〉2 ·
2 k−sw

k+
sw

2
kini

= 1 +
2 k−sw kini

(k+
sw + k−sw)2

. (2.12c)
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Figure 2.12: Plot of the analytical waiting time distribution fX(t) (Equation 2.9) for
different initiation rate constants kini. Empty circles denote the average interarrival time,
X’s denote the point of time scale separation, τX . Inset: mean and standard deviation in
interarrival times. Note: a power-law function, axα, is a straight line in log-log coordinates;
if k+

sw equals k−sw, both mean (Eq. 2.12a) and standard deviation (Eq. 2.12b) depend as
1/kini. The nonlinear behavior of variance for kini � k−sw indicates departure of the IPP
from the pure Poisson process.

The inverse of 〈t〉, the mean arrival rate has a simple interpretation. It is the probability
of the ON state, k+

sw/(k
+
sw + k−sw), times the initiation rate kini.

For a pure Poisson process the expression for variance (Equation 2.12b) consists of
the first term only. The second term exceeds the first one for large values of the initiation
rate constant kini, since it is only linearly proportional to 1/kini. In this case the double-
exponential character of the interarrival time distribution is very pronounced (Fig. 2.12).

Changing the ON and OFF switching rate constants such that the average 〈ON〉 re-
mains the same, does not affect the mean interarrival time. However, higher moments
change. If the rate of switching between the two states increases (while the ratio
k+
sw/k

−
sw = const), noise, and similarly variance, approaches values characteristic of a

pure Poisson process.

2.5.4 Quantitative characterization of bursts

The burst size β is an important quantity from a practical point of view. It also provides
information about the burst duration, τβ , if the mean interarrival time within a burst is
known. The latter is simply r1, the inverse of the rate describing the fast exponential in
the interarrival time distribution (Eq. 2.9). We estimate β by evaluating the sequence size
function Φ(ϑ) at the point of the time scale separation τX . Further in this paragraph, we
shall derive that for the minimal model this point lies in the middle of the concave region.
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This region is precisely where the count of events greater than t suddenly levels off as the
threshold interval ϑ increases. The behavior is clearly apparent in the Fig. 2 in the main
text, for large time scale separation.

2.5.4.1 Burst size

If the process under study is a pure IPP, relatively simple analytical expressions can be
found. The intersection of the two exponentials describes where the separation between
two characteristic time scales occurs. For the minimal burst-generating model it equals:

τX =
1

r1 − r2
log

(
r1

r2
· w1

w2

)
. (2.13)

The value of the sequence size function evaluated at threshold interval equal to τX is
what we consider the burst size β:

β ≡ Φ(τX) =

[
w1

(
r2

r1
· w2

w1

) r1
r1−r2

+ w2

(
r2

r1
· w2

w1

) r2
r1−r2

]−1

. (2.14)

In order to obtain the behavior for large kini we need to substitute parameters
r1,2, w1,2 with Eqs. 2.10, and expand around small ε = 1/kini. We therefore obtain the
leading order of the burst size:

β ≡ Φ(τX) = kini/k
−
sw +O(log kini) (2.15)

An example of the leading order behavior for numerical parameters is given in Fig. 2.13.
The term kini/k

−
sw has a simple interpretation: it is the average number of initiations per

ON state assuming that production events occur during every active state. We shall refer
to it as the expected burst size, βe.
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Figure 2.13: Sample time traces of production events obtained from Gillespie simulations.
Kinetic parameters are the same as those used in Fig. 2.12 for plotting four interarrival
time distributions (k+

sw = k−sw = 1 [1/T ]). Next to the plots we provide numerical values
of: rates r1, r2 and weight w1 (Eqs. 2.10), the burst significance ξ (Eq. 2.22), and the
sequence size function Φ evaluated at the time scale separation point, τX (Eq. 2.13),
which estimates the burst size β (Eq. 2.14). In the minimal model waiting times for a
production event are drawn from the exponential distribution (63% of the intervals are
shorter than the mean). Hence, even for a small number of initiations per ON state some
events are clustered; short intervals are more frequent. Clusters consisting of many arrivals
appear as kini increases. Note that ξ is larger than 1 in the upper panel, which implies
that this measure cannot be applied in this case. Negativity of the first of the roots of Φ

is the culprit. Section 2.5.4.5 explains this issue in more detail.

2.5.4.2 Burst duration

The burst duration, τβ , is the burst size multiplied by the mean interarrival time within a
burst. A measure describing the cutoff between intervals belonging to a burst and those
which are assumed to be interruptions, is given by τX (Equation 2.13). In order to compute
the mean of the fast time scale one needs to average over those intervals which are shorter
than τX . For the simple model it comes down to averaging over part of the interarrival
time pdf and normalizing it to 1:

〈τini〉 =
1

FX(τX)

∫ τX

0

t · fX(t)dt. (2.16)

In the first order expansion, the above amounts to 1/r1, the inverse of the fast time scale
in Eq. 2.9. For large kini the above reduces to 1/kini, which is the mean time between
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production events during the ON state. Therefore, in this limit burst duration amounts
to:

τβ = β · 〈τini〉 →
kini

k−sw
· 1

kini
= τon. (2.17)

2.5.4.3 The existence of time scale separation

If we substitute coefficients r1,2, w1,2 in the equation for τX with expressions given in
Eq. 2.10, we obtain a simple condition for τX > 0 expressed in terms of kinetic parameters:

k+
sw − k−sw < kini. (2.18)

For τX ≤ 0, the interarrival time distribution fX(t) is still double-exponential on a
physically unrealistic domain where time is negative. Intervals that occur in reality are
drawn from the slow single-exponential waiting times distribution, and the production
(arrival) process is purely Poissonian. For τX = 0, the sequence size function equals 1.

2.5.4.4 Concave region of the sequence size function

In the next step, we show the relation between τX and roots of the second derivative of
Φ(ϑ), τ1 and τ2. The roots equal:

τ1,2 =
1

r1 − r2
log

 1

2 r2
2

w1

w2

r2
1 − 4r1r2 + r2

2︸ ︷︷ ︸
A

∓ (r1 − r2)
√
r2
1 − 6r1r2 + r2

2︸ ︷︷ ︸
B




=
1

r1 − r2
log

[
1

2 r2
2

w1

w2
(A∓ B)

]
. (2.19)

The mean of the two roots:

τ1 + τ2
2

=
1

2

1

r1 − r2
log

[
1

4 r4
2

w2
1

w2
2

(
A2 − B2

)]
, (2.20)

where A2 − B2 = 4 r2
1 r

2
2. A straightforward algebraic calculation recovers the Eq. 2.13.

Thus, we showed that the separation between time scales in the interarrival time distri-
bution given by τX is analogical to the localization of the plateau in the sequence size
function, i.e.:

τX =
τ1 + τ2

2
. (2.21)

The estimation of τX from the sequence size function is of practical use when the arrival
process is not purely an IPP. In such cases the analytical form of function fX(t) (and
likewise FX(t)) is difficult to determine. Nevertheless, one can always perform numerical
analysis of Φ(ϑ), i.e. compute derivatives and find its roots.

2.5.4.5 Burst significance

In order to fully characterize a burst we need an additional measure which could quantify
how the period of activity distinguishes itself from the inactive state. The scaled distance
between the two roots τ1,2 calculated in the previous section provides such information:

ξ =
τ2 − τ1
τ2

, ξ ∈ (0, 1). (2.22)
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Burst significance as defined here is greater than 0 only if the two roots exist. A
relatively simple inequality in terms of kinetic parameters of the simple model can be
obtained: (

k+
sw + k−sw + kini

)2 − 8 kini k
+
sw > 0. (2.23)

However, this condition for existence of τ1,2 does not assure that both roots are pos-
itive. Even if condition 2.18 for τX > 0 is fulfilled, there is a possibility that the smaller
root, τ1, is still below zero. In that case burst significance is larger than 1 which violates
our definition of ξ.

An example behavior of all of the quantities we have defined so far is shown in Fig. 2.14.
For very mixed time scales (kini comparable to the switching rates) burst significance
displays a non-robust behavior. It decreases very rapidly from 1 to 0 on a small range of
kini, while the burst size increases only slightly. Once the kini rises above the non-concave
region of the Φ′′(ϑ), two positive roots exists, and the significance remains below 1.

2.5.4.6 How to analyze bursts?

We propose the following procedure for analyzing the stochastic waiting time sequence:
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1. create a normalized histogram, preferably using logarithmic binning, in order to
obtain the interarrival time pdf ; a sample MATLAB code can be downloaded from
http://projects.cwi.nl/sic/bursts2008/,

2. compute the sequence size function Φ(ϑ); a sample MATLAB code therein,

3. compute the second derivative of Φ(ϑ) and localize its zeros to obtain roots τ1,2,

4. if two positive roots exist, compute the burst significance ξ, and find the value of
the sequence size function at τX = (τ1 + τ2)/2,

5. finally, in order to obtain burst duration, τβ , compute the mean interarrival time
within a burst by averaging over intervals lower than τX .

2.5.5 Non-exponential waiting time distribution for the switch

In the simple burst model analyzed in Section 2.5.1 we assumed the exponential distri-
bution of waiting times for switching between ON and OFF states. In principle, such
transitions result from the sum of many elementary processes, each of them having the
exponential waiting time distribution. Thus, the resulting waiting times for the total pro-
cess are convoluted, peaked gamma-like distributions (it is a gamma distribution if each
of the elementary processes has the same mean). The assumption that waiting times for
the whole transition are exponentially distributed is justified only if one of the elementary
processes occurs on a much longer time scale than the rest of them. In that case, this
particular process accounts for the majority of the area under the peaked distribution.

In Fig. 2.15 we investigate the effect of the number of elementary (irreversible) steps
in the OFF to ON transition on the waiting time distribution of P production and the
sequence size function. We compare it to the original IPP process. In all cases we fix
the total mean time to complete this transition, i.e. if a transition consists of two steps,
the mean waiting time for each of them is half of the time for the total transition. A
close inspection of the waiting time pdf in panel A shows a more pronounced time scale
separation between short and long intervals for the increasing number of elementary steps.
An intuitive explanation of this effect is the following. A sharp distribution of waiting
times for the OFF to ON transition results in a peaked distribution of the duration of
the inactive state (where no P production takes place). This causes a contraction of the
rightmost part of the waiting time pdf in the panel A.

The shape of the sequence size function confirms a more pronounced time scale sep-
aration for the increasing number of elementary transitions; the plateau becomes flatter
(panel B). The burst size decreases slightly and, more importantly, the significance of
bursts increases. Both effects are direct consequences of the narrower distribution of in-
activity periods. Compared to the minimal IPP model, duration of inactivity periods is
centered around the mean value. It is much less probable that two ON states are sepa-
rated by a very short inactive period and then cluster to form one larger burst (the effect
likely to occur in case of exponentially distributed waiting times and weak time scale
separation). Hence, the burst size decreases to the expected value of kini/k−sw. Finally,
since bursts are separated by inactivity periods drawn from a sharper distribution, their
significance increases.

http://projects.cwi.nl/sic/bursts2008/
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Figure 2.15: The effect of a sharp waiting time distribution for the OFF to ON transition
in the minimal burst-generating model. We vary the number of component steps in the
transition, while the total mean waiting time to switch from the OFF to ON state is fixed
to 1[T ]. (A) Gamma functions used for the waiting time distribution in the transition. All
functions have the same mean, equal 1. (B) The results for the product waiting time pdf
were obtained from the analytical expression (curve for the IPP), the numerical inverse
of the Laplace transform (curve for 2 steps) and from the Gillespie simulation of 1e6
P production events (curve for 5 and 10 steps). The pdf is plotted using logarithmic
binning. (C) The sequence size function was obtained by a straightforward data analysis
in MATLAB. The mean burst size (D), burst significance (E), and the analytical mean and
variance (depicted as error bars) (F) as function of the number of steps in the OFF to
ON transition. The mean and variance were obtained by calculating moments of the
Laplace transform of the respective expressions.

It can be checked by a straightforward calculation, that the mean waiting time in such
a process is independent of the number of elementary steps in the OFF to ON transition
(panel C). At the same time, the variance in the waiting time, and hence the noise (defined
as variance over the mean squared), decreases.
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2.5.6 Interarrival time CDF in a pool of unsynchronized IPPs

The explicit expression for the interarrival time CDF in the superposition of N inde-
pendent IPPs [Kamoun & All 1994] is obtained by substituting Equations 2.9 into Equa-
tion A.27:

F
(S)
X (t) = 1−

(
w1e

−r1t + w2e
−r2t

)(w1r2e
−r1t + w2r1e

−r2t

w1r2 + w2r1

)N−1

(2.24)

The increase in the number of sources causes the overall rate of product arrival in the
pooled process to be proportional to N . Therefore, taking the limit N → ∞ of function
F

(S)
X requires scaling of time by N [Kamoun & All 1994]:

lim
N→∞

F
(S)
X

(
t

N

)
= 1− e−Λt (2.25)

As a result, the waiting time probability density function f (S)
X for large number of sources

becomes exponential:

lim
N→∞

f
(S)
X (t) =

d

dt

(
1− e−Λt

)
= Λe−Λt (2.26)

Where Λ is the average arrival rate in the pooled process, i.e. 〈t〉(S) (cf. Eq. A.26).
The burst size in the pooled process becomes:

β = Φ(τX) =
1

1− F (S)
X (τX)

= eΛ·τX (2.27)

An important conclusion may be drawn based on the above results. The burst sig-
nificance approaches zero, because Φ becomes a single-exponential without two inflection
points. At the same time, the burst size goes to infinity. The overall interarrival time
distribution becomes that of a Poisson process.

2.5.7 Progression of motor proteins along the polymer

2.5.7.1 The effect of collisions on fX(t)

Exclusive elongation The simple model of bursts exhibits a double-exponential inter-
arrival time distribution (Fig. 2.16, empty circles) as described earlier in Section 2.5.1. As
described in the main article, elongation steps are modeled as forward reactions. Only one
motor can occupy a single node which is equivalent to having either concentration 0 or 1

on each node. The addition of elongation has essentially no effect on the product waiting
time statistics, if collisions of motor proteins are very infrequent (Fig. 2.16, green dotted
line). Due to the elongation traffic, the maximum throughput of the chain reduces as
compared to the case without bumping. New proteins cannot begin progression because
the sites at the beginning are still not cleared due to collisions (Fig. 2.17, upper plot). As
a result, high frequencies (short interarrival times) modulated by kini disappear from the
distribution (Fig. 2.16, blue dashed and cyan dotted-dashed lines). The effect is weaker
if the elongation rate kel is faster than the rate of initiation kini. This corresponds to
infrequent collisions as the progression is so fast that the motion of newly added motors
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Figure 2.16: The effect of bumping on the interarrival time distribution for a fixed length
of the polymer. Results of Gillespie simulations (1e6 events) for the elongation model with
bumping and the initiation switch. Chain is 100 sites long, switching rate constants are
k+
sw = k−sw = 1 [1/T ]. Initiation rate constant for all elongation models is kini = 100k−sw,

which implies a bursty switch. The simple model of bursts (without elongation) exhibits a
double-exponential distribution (empty circles). Elongation with multiple motors allowed
to occupy a single node, and thus progression without bumping, has no effect on the
distribution, if kel is of the order of kini (red solid curve). If node occupancy is exclusive
(motors collide during progression) high frequencies, i.e. short interarrival times are re-
moved from the distribution. The effect is weak if the elongation (kel) is much faster than
the initiation (kini).

is not inhibited by the molecules ahead of them (Fig. 2.16, green dotted line). The oc-
cupancy along the polymer as function of the elongation rate constant, kel, for a bursty
switch is shown in Fig. 2.17. A familiar phase-transition-like behavior as function of the
order parameter kel is noticeable at the first, most congested node. A sudden drop of the
occupancy coinciding with increase of dispersion occurs in the middle of the parameter
range [Roussel & Zhu 2006].

Non-exclusive elongation It is also instructive to analyze the behavior of the inter-
arrival time distribution density in case of non-exclusive elongation, i.e. nodes can be
occupied by multiple motors and no collisions can occur. In case of absence of the switch,
the initiation occurs at a constant rate. The macroscopic flux at the end of the chain is
exactly the same as the input flux at the beginning (progression can be freely initiated
independent of the occupation of the first site). Similarly, variance does not depend on
the chain length. The interarrival time is just a single-exponential and the waiting time
to travel the chain of L nodes is given by the Erlang distribution (mean: L/kini; variance:
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Figure 2.17: The steady-state average occupation at the beginning, in the middle, and at
the end of the chain as function of the elongation rate constant kel. Error bars indicate
standard deviation. Results were obtained from Gillespie simulations (1e6 events) for
the elongation model with bumping and the initiation switch. Chain is 100 sites long,
switching rate constants are k+

sw = k−sw = 1 [1/T ]. The initiation rate constant, kini =

100k−sw, establishes a very bursty switch. The elongation rate constant kel is given in units
of the initiation rate constant kini.

L/k2
ini).

Adding the switch (as in the simple burst model) at the beginning of the chain changes
the statistics significantly. There is no concentration gradient as in the case of exclusive
progression, and the macroscopic flux is the same throughout the polymer. Although the
mean interarrival time is not affected by the chain length, higher moments are. The expla-
nation for the latter is the following. Since nodes are allowed to be occupied by multiple
motors, a significant concentration may build up along the chain if the elongation rate
constant is smaller than that of the initiation. The elongation rate is in fact the rate at
which the concentration of the node is degraded. This remains constant for every node.
If the lifetime of the OFF state is shorter than the time to reduce the site’s concentra-
tion significantly, the effect of the silence period is barely noticeable at the end of the
polymer. The resulting interarrival distribution approximates single-exponential waiting
times. Conversely, if the elongation is of the order of the initiation (no significant node oc-
cupation arises), and the OFF period is comparable to the elongation (node’s occupation
can be degraded efficiently), two time scales in the interarrival times due to the switch
modulation are preserved despite elongation steps. Red solid curve in Fig. 2.16 represents
the simulation with such parameters and no accountability for collisions. It overlaps with
results obtained for the the simple burst model alone (empty circles, therein).
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Figure 2.18: The effect of the size Lmot of the motor protein on the interarrival time
frequency, average and standard deviation in the interarrival time and in the product level.
Results of Gillespie simulations for polymer chain of length 100 sites (k+

sw = k−sw = 1 [1/T ],
kini = 100k−sw, kel = kini/100, k+

p = k−p = kel/100).

2.5.7.2 The effect of the size of the motor protein on fX(t)

So far we considered the progression of motor proteins which occupy only one site at a
time. A more realistic case involves motors of larger size which can block few sites. The
effect of sizes Lmot = 1 . . . 20 on the interarrival times is shown in Fig. 2.18A. The arrivals
cannot occur more frequently than the time required for a single motor to travel its own
length. Therefore, as the number of sites occupied by a motor increases, fast frequencies
vanish from the interarrival time distribution. The duration of intervals within a burst
approaches the duration of the interruptions between bursts. The time scale separation
weakens compared to the case where Lmot = 1. The effect is visible in Fig. 2.18B. Stan-
dard deviation in the waiting times approaches mean for larger Lmot, which indicates
an approach to a pure Poisson with a single-exponential waiting times distribution. As a
result of a smaller flux at the end of the chain, caused by less frequent arrivals, the mean
and noise in the product level decrease (Fig. 2.18C).
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3.1 Abstract

Two-component signal transduction is the prevailing extracellular sensing mechanism of
prokaryotes. Remarkably, two-component networks mediate versatile responses to envi-
ronmental changes, despite their simple design. We address how two-component systems
give rise to fast and robust responses at the level of a single cell. Using detailed random-
walk simulations we study how signaling proteins find their molecular targets inside single
cells. We derive intuitive analytical approximations for the mean and noise of the response
time. We demonstrate that tens of signaling molecules per cell reduce the response time
such that additional molecules hardly improve signaling speed. Our analysis indicates
that optimal response times are realized when the number of response regulators exceeds
the number of sensors. This suggests an advantage for operon designs where the regulator
is transcribed earlier on the polycistronic transcript than the sensor. We test those ob-
servations using a large bioinformatic screen of prokaryotic genomes. Model calculations
indicate that experimentally determined values for RNA polymerase and ribosome pro-
cessivities are sufficient to bring about the optimal ratio of response regulator over sensor
abundance. We discuss the drawbacks of the two-component design in cells larger than
prokaryotes, which may explain their ubiquitous use in the microorganisms and much less
so in eukaryotes. The theoretical approach we propose relies on the fact that diffusion of
molecules towards small targets within a cell can be approximated by a first order reac-
tion with an exponential waiting time. This demonstrates how similar spatially resolved
problems can be addressed without performing costly simulations.

3.2 Introduction

Unicellulars respond by adaptive mechanisms to continuous random fluctuations in the en-
vironment. Environmental sensing relies often on two-component (2C) signaling networks
[Hoch & Silhavy 1995]; E.coli has 21 of such systems [Keseler et al. 2009]. Many stresses
have instantaneous negative influences on cellular physiology suggesting that the response
time of homeostatic signaling is minimized during evolution. Then, swift mutants would
be favored by natural selection as sluggish responses reduce physiological performance.
Whereas slowly responding cells may degenerate into states they cannot readily escape
from due to cascading effects. This causes a cell to shift a large part of its resources
to a stress response, too many of its other vital functions may become affected. Heat
shock proteins can for instance already comprise 25% of all proteins in E.coli. Reduction
of response times can be achieved by constitutive response systems. Indeed, free radical
removal systems are on stand-by [Imlay 2003] as are many others [Fischer & Sauer 2005].
Likewise, the ability to quickly turn off the stress response is often beneficial to cells
[Shalem et al. 2008]. The osmotic stress response exemplifies this: a sudden removal of
excess salt would cause adapted cells to explode. Thus, many potential hazardous con-
sequences of stress are reduced if cells are able to rapidly regulate their compensatory
functions.

Many constraints apply to homeostatic adaptive systems. Stress adaptation may suffer
from molecular noise distorting the signaling mechanism. Isogenic populations of cells have
been shown to display a large heterogeneity in protein and mRNA levels with coefficients of
variation as high as 60% [Elowitz et al. 2002, Rosenfeld et al. 2005, Newman et al. 2006].
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Part of it derives from external noise and fluctuating reaction rates (thermal noise)
[van Kampen 1997].

Noise in sensing and information transfer is manifested in the response time and the
magnitude of the molecular response. Response time dispersion is further magnified by
the stochasticity inherent to the diffusive motion of signaling proteins. This randomness
affects the target search times of signaling molecules. We will use such search times as
proxies for the response times of signaling processes. There have been many reports de-
scribing the diffusive search of a macromolecule for its target [Wunderlich & Mirny 2008,
Halford & Marko 2004, Berg & von Hippel 1985]. Many of those theoretical studies
can presently be experimentally scrutinized with single-cell monitoring techniques
[Elowitz et al. 2002, Elf et al. 2007, Cai et al. 2006, Ozbudak et al. 2002, Yu et al. 2006].
Therefore, not only fast signaling is an essential prerequisite for cellular function but also
the precision and reliability of the signaling network.

The prokaryotic strategies for stress responses turn out not to be very diverse.
Across the Bacteria domain, extracellular signal detection is performed by two-
component (2C) signaling networks composed of receptors (RE) and response reg-
ulators (RR) [Ulrich et al. 2005]. Their design and function is remarkably simple
[Hoch & Silhavy 1995]. Diffusing response regulators have to find two molecular targets
by way of a diffusive search. They need to find membrane-embedded receptors to be-
come phosphorylated and subsequently the regulatory sequences on the chromosome to
regulate transcription (Fig. 3.1). The number of target promoters for a specific regu-
lator may vary between a few and several hundreds. The ubiquitous occurrence of 2C
signaling systems suggests that their design is very favorable for dealing with information
transfer and that they can cope with numerous performance-reducing factors, such as
noise [Batchelor & Goulian 2003, Shinar et al. 2007]. Here we focus on the design of 2C
signaling systems and their stochastic response characteristics.

Throughout this work we will assume that the actual phosphorylation and dephospho-
rylation events occur much faster than diffusive search processes. We assumed diffusion-
limited kinetics to be able to draw general conclusions as all two-component signaling
systems are confronted with the same search problems. As a consequence, the response
time we predict will always underestimate the signaling time, especially if any of the
two component signaling reactions are reaction-limited (i.e. sensor autophosphorylation,
sensor-regulation phosphotransfer, regulator dephosphorylation, and DNA-regulatory site
binding). The (de-) phosphorylation times can be obtained from the mean first-passage
time of the catalytic scheme of the corresponding reactions [Qian 2008]. These reaction
times can simply be added to the diffusive search times [van Zon & ten Wolde 2005a].
Therefore, this simplification does not limit the applicability of our results.

3.3 Results

3.3.1 Approximating the search of a single sensor by a first-order
process

A single response regulator starting randomly in the cytosol finds any point on the mem-
brane in 0.013 s, which derives from R2

cell/(15DRR) (Eq. 3.8, Materials and Methods).
For this estimation, we took realistic parameters for a prokaryote, e.g. E. coli, with a cell
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Figure 3.1: Two-component signaling system. Initially, response regulators (RRs)
are non-phosphorylated and randomly distributed in the cytosol where they search for
active sensors. The sensor or membrane receptor (RE) has a signal-recognition domain
linked to an autokinase domain. The majority of such systems have membrane-embedded
sensors with cytoplasmic DNA-binding response regulators (76%, Tab. S1). Upon signal
(S) binding, the sensor autophosphorylates itself on a dedicated histidine residue at the
expense of ATP hydrolysis. Subsequently, when a RR finds a RE, the RE-phosphoryl
group can be transferred onto an aspartate group of the regulatory domain of the RR
giving rise to a phosphorylated RR. Generally, unphoshorylated regulator domains inhibit
the output domain of the response regulator. This inhibition is relieved upon aspartyl-
phosphate formation in the RR to allow its output domain to carry out its function, which
is typically DNA binding and transcription regulation [Stock et al. 2000].

radius Rcell = 1µm and a diffusion coefficient DRR = 5µm2/s. This time only captures
the time to reach the membrane. In reality, the membrane coverage for a single sensor
type rarely exceeds 0.02 %; taking into account 50 sensors of 2.5nm radius each and a
cell radius of 1µm.

The mean diffusion time of a regulator to a single sensor in the membrane is given by
the narrow escape limit [Schuss et al. 2007, Berg & Purcell 1977],

τRE =
Vcell

4DRRRr
. (3.1)

(The reaction radius Rr is the sum of the radii of a RE and RR.) The reciprocal of τ is a
rate constant. For E.coli parameters this search takes ≈ 42 seconds, which is about 3000

times longer than finding any point on the membrane! During that time the RR traverses
the entire cell many times before it hits the sensor.

Due to the inherent stochasticity of diffusion the search duration follows a probability
distribution rather than a single number. In Fig. 3.2A we compare the probability density
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Figure 3.2:Normalized log-log histograms of search times. First-passage time prob-
ability density functions to reach the target by a single response regulator (RR). (A) RR
diffuses from a random position in the cytosol until it hits a membrane-bound receptor.
Reaction radius is twice the radius of a protein, Rr = 5nm. Dashed line: exponential ap-
proximation parameterized with the search time in a narrow escape limit (Eq. 3.1). Solid
line: explicit 3D random walk simulation (∆t = 10−8 s, DRR = 5µm2/s, 1000 runs). This
distribution has two regions. The left-most part scales as a power-law due to initial con-
figurations for which the RR is localized near the target. The region on the right follows
an exponential. (B) RR initiates at the membrane sensor and binds to a DNA site in the
center. The site is modeled as a sphere; the reaction radius is 5nm. Solid line, an exact
analytical solution of Smoluchowski diffusion equation (Eq. 2.24 in SI); dashed curve,
an exponential approximation parameterized by KD (Eq. 3.2). There is a minimal time
required to cover the distance from the membrane to DNA, hence the left region of the
exact result where it starts at zero.

of simulated search times with the exponential approximation parameterized with the
mean from Eq. 3.1. In this parameter regime – targets much smaller than the cell radius –
the discrepancy occurs at very short times for regulators starting close to the sensor, and
covers a negligible area of the probability density (less than 1%). Since binding to a small
target is a rare event [Grigoriev et al. 2002], the search process is effectively memoryless:
the search time is independent of the regulator’s initial position. Hence the validity of
the approximation of the waiting-time distribution by an exponential function (a Poisson
process). As the dimensions of the cell no longer matter, stochastic simulations that only
consider reactions suffice. We shall see further that this approximation holds also for
membrane coverage larger than typically found in prokaryotes, i.e. larger than 0.05%.

3.3.2 The promoter search can be approximated by a first-order
process too

We consider a single activated response regulator starting at the membrane-bound re-
ceptor searching for a single gene regulatory site. The search time distribution is peaked
as the radius of the cell always needs to be traveled (Fig. 3.2B, solid line). As with the
sensor search, the promoter search also operates in a regime where diffusive trajectories
are independent of the initial position. Hence, the search time distribution can be approx-
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imated by an exponential (dashed curve) parameterized by a mean search time (Eq. 2.25
in SI, [Redner 2001]),

τDNA =
Vcell

4πDRRRr

(
1− Rr

Rcell

)
+
R2
r −R2

cell

6DRR
. (3.2)

The Smoluchowski rate constant for a diffusion-limited association, 4πRrDRR ≡ KD

(units of volume per time) appears here. In the limit of a small target (Rr � Rcell) the
first term, V/KD ≡ τD dominates (Fig. S2). Taking parameters for E.coli we calculate
≈ 13 seconds for a single RR to find its DNA target.

In summary, both searches have a waiting-time probability density that can be satis-
factorily approximated by an exponential. This is due to the fact that the size of the target
sites is much smaller than the cell radius - compare the 2.5nm radius of the receptor or
the promoter to the 1µm radius of the entire cell. This property allows for a substantial
simplification of the theoretical analysis and simulation of diffusion in 2C signaling.

It takes the response regulator on average ≈ 42 seconds to reach the membrane-bound
receptor from a random position in the cytosol and ≈ 13 seconds to find a DNA promoter
site from the membrane (Fig. 3.2). The signaling time can be approximated as the sum
of these two assuming the process is diffusion-limited. This response time of 55 seconds
is comparable to the time required to transcribe an average mRNA and to translate
it into a protein (≈ 45 s for an average 350-amino-acid-long protein transcribed at 50
nt/s and translated at 15 aa/s). As transcription and translation are continuously being
optimized and involve many different genes, each with different selection pressures, it is
likely that signaling speed cannot be enhanced by optimization of these two processes.
Instead, natural selection will sift out those 2C signaling networks that are organized such
that the search process is fast and reliable.

3.3.3 Clustering of sensors affects the search time for sensors

The response time can be reduced by increasing the number of sensors. The distribution
of the sensors on the membrane affects the sensor search as well. Placing 100 sensors in
a single cluster reduces the mean first-passage time by a factor of ≈ 5 relative to the
search for a single sensor (Fig. 3.3A). An additional reduction is achieved by scattering
those 100 sensors uniformly on the membrane (no clusters). Compared to a single sensor,
a total 100-fold reduction follows. The search time is now about 30 times shorter than the
time to reach the membrane, which was 0.013 s (see Eq. 3.8 in Materials and Methods).
This occurs already at 0.02% coverage of the membrane with receptors and this is still
considering only a single RR that engages in the sensor search! In the regime where a few
sensors (NRE ≈ 100 and RRE = 2.5nm, Rr = 5nm) occupy the membrane, the search
time scales as the inverse of the number of receptors (Fig. 3.3A and Eq. 2.31 in SI), which
illustrates that the search process remains memoryless.

In Fig. 3.3B, we vary the number of response regulators and keep the number of sensors
fixed at 100 per cell. Another ≈ 100-fold reduction in search time can be obtained when
the number of receptors is increased to 100 per cell and all 100 sensors occupy a single
cluster. If the cluster size decreases to 1 (i.e. cluster size 1 corresponds to single receptors),
the search time reduces by another factor of 100 to yield the search time of ≈ 0.004 s.
Thus, NRE isolated receptors and NRR response regulators give rise to a reduction of the
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Figure 3.3: Clustering and regulatoprs affect the mean search time. The mean
first-passage time for RRs to find the sensors for different clustering and total number
of RR molecules. Symbols: numerical simulations, D = 5µm2/s, at least 1000 runs.
Lines: analytical approximations. (A) The search time for a single RR to sensor molecules
(1 to 100) placed in clusters of different sizes. E.g. a triangle for 100 receptors in 10
clusters denotes a simulation where 10 uniformly distributed membrane clusters contain
10 receptors each. (B) The time for RRs (1 to 100) to find 100 sensors placed in uniformly
distributed clusters of size 1 to 100.

response time of NRE×NRR relative to the time for a single receptor and regulator. This
dependency holds true as long as the search trajectory is memoryless.

The observation that the search time is shorter for receptors that are scattered
over the membrane agrees with earlier analyses of the influence of receptor partition-
ing on the membrane in the context of external signal reception [Berg & Purcell 1977,
Shoup & Szabo 1982, Zwanzig 1990]. In case of bacterial chemotaxis, the membrane re-
ceptor molecules are found in large clusters. This may benefit output signal amplification
through cooperative interactions between receptors. There are no indications that this
holds for 2C systems in general. Many of them may have their sensors randomly dis-
tributed over the membrane, which may indicate optimization for a fast response rather
than signal sensitization and amplification.

3.3.4 Two-component signaling-induced gene activation proves
swift, robust and efficient

The overall mean search time equals the sum of the two mean search durations; the over-
all waiting-time distribution is the convolution of two exponentials describing the two
sequential searches. The resulting distribution will necessarily become peaked (Fig. S5);
regulators first have to find sensors before they can regulate genes and therefore instanta-
neous gene activation is ruled out. The noise in the total search time, its variance divided
by the squared mean, 〈δ2τs〉/〈τs〉2, is smaller than the noise in either of the two first-
order search process (they each have a noise of 1 as they can be approximated by an
exponential). The minimal noise in the search time equals 1/2 when both searches have
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the same mean. Thus, the response in a two-step design is timed more precisely despite
strong fluctuations due to diffusion-limited searches.

The response time distribution becomes even narrower when more response regulators
are considered (Fig. S6). Since the overall search time distribution is not an exponential,
the mean signaling time is no longer inversely proportional to the number of regulators.
The analytical expression for the mean and the noise of the overall signaling times can still
be obtained (Ch. 3 in SI) [Yuste et al. 2001]. To provide more intuitive insight, we shall
discuss a simplified version of the expression of the mean response time, which retains the
major qualities of the explicit solution (Eq. 3.7 in SI). We assume that the waiting-time
distribution of total search with NRR regulators and NRE sensors, τs, is approximated
by an exponential. Therefore,

τs =
1

NRR

(
Vcell

4DRRRr
· 1

NRE
+

Vcell
4πDRRRr

)
. (3.3)

A reduction in τs can either result from increasing the number of receptors, the number
of response regulators or both.

A cell has limited resources and is packed with proteins (the average distance between
proteins in the cytoplasm is the size of a protein) [Ellis 2001]. The membrane hosts nu-
merous macromolecules as well and the space for a receptor species of a specific signaling
pathway is limited. In addition, there exist constraints on energy expenditure for pro-
tein production [Dekel & Alon 2005]. The following questions then become relevant. How
many signaling molecules are sufficient for swift transduction of the external signal to a
gene regulatory sequence? Should an optimal cell invest in an equal number of sensors
and response regulators?

Fig. 3.4 addresses these issues. It shows that the search time can take up to a minute
if very few molecules are involved. A performance below 2 seconds is achieved already
with ≈ 40 molecules (Fig. 3.4A and C). More molecules will lead to a faster target search,
but the energetic burden of producing additional proteins (linear with protein number)
will start to exceed the benefit of search time reduction (scales with the inverse of the
total number of molecules). We shall come back to this point later when we discuss
signaling designs in eukaryotes. As some 2C networks have cytosolic sensors (≈ 11%,
Tab. S1) we also consider such a signaling design. As expected, it takes less time for the
first phosphorylated RR to reach the promoter site as compared to the 2C system with
membrane-binding REs (Fig. 3.4B).

Intuitively one might expect that the shortest search times are achieved when the
number of diffusing and membrane-embedded molecules (i.e. RRs and REs) is approxi-
mately equal. However, Fig. 3.4A reveals a clear bias; both for membrane-embedded and
cytosolic sensors. The shortest response time is achieved with ≈ 10% more diffusive regu-
lators than sensors. This bias remains fixed even if the total number of molecules changes
(Fig. 3.4D). Can cells achieve this ratio, and can it be controlled given the inevitable noise
in gene expression? This we will address below.

3.3.5 Contribution of diffusion and molecule copy number noise
to noise in response time

The biased ratio of regulators over receptors to achieve the shortest search time will
inevitably suffer from fluctuations. They may persist longer than the time scale of envi-
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Figure 3.4: The mean search time as a function of the number of receptors and
response regulators. Computed with the explicit analytical equation 3.7 SI. (A) Phase
plot. Dashed lines: isoclines for the total number of RR+RE = 5, 10, 20, 50. The minimal
search times follow the staircase-shaped curve. It lies below the diagonal, which reflects a
bias favoring RRs. (B) The mean search time for 50 signaling molecules in total evaluated
for receptors scattered randomly on the membrane (solid line), grouped in one membrane
cluster (dotted) or placed randomly in the cytosol (dash-dotted). Numerical simulations
(circles) obtained from 1000 runs with DRR = 5µm2/s, Rcell = 1µm, Rr = 5nm. Fig. S7
illustrates the effect of additional reaction times on the mean search time. (C) The shortest
search time as a function of the total number of 2C proteins for two cell sizes. (D) Bias
in the ratio of RRs and REs as a function of the total number 2C proteins. For small
numbers, the percentage fluctuates strongly due to discreteness of molecular count. The
running average is plotted to indicate the trend.

ronmental changes if the proteins are stable [Sigal et al. 2006]. Hence, signaling speed may
be significantly affected by fluctuations. Note, that the flatness of the curves in Fig. 3.4B
and C already hints at robustness of the mean search time to changes in component levels
once the total number of molecules exceeds ≈ 25.

On top of diffusion noise copy number fluctuations contribute a second (independent)
determinant to the variance in overall signaling response time, σ2

s = σ2
D + σ2

N . The first
term denotes fluctuations in search time resulting from diffusion for a fixed number of
signaling components (Fig. S11 and Eq. 3.7 in SI). The second term reflects the fluctu-
ations in the mean search time due to noise in the molecular copy number. This can be
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expressed in terms of the noise in the levels of sensors and response regulators as,

σ2
N = (∂τs/∂NRR)

2
σ2
RR + (∂τs/∂NRE)

2
σ2
RE

+ 2 · ∂τs/∂NRR · ∂τs/∂NRE · COVRR,RE . (3.4)

The terms σ2
RR and σ2

RE represent variance in the level of response regulators and
sensors, respectively; both stem from noise in gene expression. The covariance term,
COVRR,RE , quantifies the correlation between fluctuations of REs and RRs. Copy num-
ber fluctuations result from noisy transcription, translation and degradation of mRNA
and protein. Correlations may arise when the genes for RR and RE are regulated by
the same operon or else through some global regulatory mechanism. For a given gene
expression scheme, all three terms can be obtained by linear noise approximation (LNA)
[Elf & Ehrenberg 2003, Paulsson 2004]. In the following section, we shall investigate
Eq. 3.4. Our aim will be to find constraints on protein levels, the sensor/regulator ra-
tio and their fluctuations depending on the operon organization of cognate 2C signaling
components.

3.3.6 Demand for fast and robust signaling can constrain operon
organization

The fluctuations in the copy numbers of sensors and response regulators are partially
determined by their gene organization on the genome. Both genes may lie at distant
stretches of DNA and regulated independently from separate promoters. Then fluctua-
tions in the level of response regulators (σRR) do not have a direct effect on the level of
sensors and the covariance COVRR,RE from Eq. 3.4 equals zero. Coordinated co-regulation
occurs when the genes are on one operon. In addition, correlations depend on whether
sensor and regulator genes share a single ribosome binding site (RBS) or not and, in
case of separate RBS’s, their relative affinity for the translation machinery. Uncorrelated
protein fluctuations resulting from disruptions of such operon ordering have been shown
to be detrimental to the sensitivity of the chemotaxis network [Løvdok et al. 2007] and
sporulation efficiency in B. subtilis [Iber 2006].

Analysis of 934 microbial genomes, using the MiST database [Ulrich & Zhulin 2007],
revealed that out of all receptors containing a trans-membrane domain, 66% of them is
chromosomally adjacent to DNA-binding regulators (Tab. S1). One-fourth of such pairs
is transcribed onto a single dicistronic mRNA transcript, which may include one or two
ribosome binding sites (RBSs), the latter being almost ten times more frequent (Tab. S4).
Single or two-RBS designs differ in the ability to constrain the ratio RR/RE. In the case of
two RBSs, the level of both proteins may vary more strongly depending on the difference
between the strength of the RBSs (assuming similar protein lifetimes). The ratio RR/RE
is to a large extent fixed if ribosomes bind only to one RBS in front of the first cistron.

We consider three different operon designs of 2C networks (also analyzed by Swain
[Swain 2004] for another purpose). They differ in copy number fluctuations. 2C proteins
regulated by independent promoters (Fig. 3.5A) do not exhibit correlated fluctuations
other than those induced by extrinsic noise, hence the covariance in Eq. 3.4 equals zero.
The other two configurations, a dicistronic mRNA with 1 or 2 RBSs, result in an increased
σ2
N due to correlated fluctuations (Fig. 3.5B and C). The highest values occur for a

dicistronic mRNA with a single RBS.
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A: RR & RE separate B: isolated, 2 RBS C: isolated, 1 RBS

occurrence in genome 34%(a) 53% 6%

number of P1 / cell 23 23 20
number of P2 / cell 17 17 20

response time, τs [s] 1.75 1.75 1.78
ηD 2 = (σD / τs)2 0.35 0.35 0.37
ηN 2 = (σN / τs)2 0.009 0.010 0.015

correlation (P1, P2) 0 0.24 0.60
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Figure 3.5: Models of gene expression. (A) expression of both genes is controlled by
different promoters, (B) both genes are transcribed onto a single dicistronic mRNA with
one ribosome binding site (RBS) for each cistron, (C) a dicistronic mRNA has only one
RBS. The table includes sample numerical results for all three gene expression schemes. A
non-zero correlation, COVP1,P2

/ (σP1 · σP2), between P1 and P2 arise when both proteins
are produced from a single dicistronic mRNA. Parameters used: mp = md = 1min−1,
pd = pd1 = pd2 = 1/60min−1; (A and B) pp1 = 23/60min−1, pp2 = 17/60min−1; (C)
pp1 = pp2 = 20/60min−1.

How much does the search time suffer from these noise strengths? In the regime where
the search time achieves a 1-2 second performance, noise in copy numbers accounts for
≈ 10% of the total variability through σ2

N/τ
2
s ; the majority still derives from diffusion

(Table in Fig. 3.5). Thus, even for the strongest correlations in protein number noise, the
reliability of the search process is compromised only slightly. Remarkably, as correlations
constrain fluctuations of 2C proteins to the diagonal region of the phase plot, Fig. 3.4,
they are beneficial for maintaining robust short search times.

How can genes transcribed onto a polycistronic mRNA establish a bias in the pro-
tein numbers they code for? This can occur when either transcription or translation
terminates prematurely giving rise to either an unfinished mRNA transcript or protein,
respectively. Depending on the probability for a polymerase or a ribosome to dissociate
before reaching the end of the gene (this is termed processivity), genes placed close to
the transcription start site or RBS tend to accumulate more product (known as polarity)
[Lengeler et al. 1999, Schäferjohann et al. 1996]. If the mRNA transcript hosts two RBSs,
processivity affects the protein ratio only at the level of transcription. A single-RBS ar-
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rangement suffers from processivity also during translation; premature termination may
occur not only during mRNA synthesis, but during protein production as well (Fig. 3.6A
and B).

1 RBS at gene 1 2 RBSs: at gene 1 & 2

fraction in genome 9% 80%

gene order RR ➞ RE RE ➞ RR RR ➞ RE RE ➞ RR

fraction in genome 84% 16% 59% 41%

length of gene 1 [nt] 711 ± 117 1674 ± 561 723 ± 141 1653 ± 513

length of gene 2 [nt] 1410 ± 219 792 ± 285 1401 ± 240 849 ± 318

mRNA1 / mRNA2 2.02 ± 0.22 1.49 ± 0.21 2.02 ± 0.24 1.53 ± 0.24

P1 / P2 4.08 2.22 2.02 1.53

PRR / PRE 2.63 (72% PRR) 1.26 (56% PRR)

overall PRR / PRE 1.33 (57% PRR)

C
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Figure 3.6: Incomplete transcription affects mRNA and protein level. mRNA
with a single (A) and two RBSs (B). (C) Bias in steady-state mRNA and protein ratios
for response regulators and receptors in 2C networks due to incomplete transcription and
translation. Lengths of adjacent response regulators and receptors with trans-membrane
domains are obtained from the MiST database [Ulrich & Zhulin 2007] (Table S4). RBS
were predicted using GeneMarkS [Besemer et al. 2001] and RBS finder [Suzek et al. 2001].
mRNA1/mRNA2 = (1−p)N2 is the ratio of the number of finished mRNA transcripts of
the first and the second gene; it depends only on N2, length of the second gene, and on p,
processivity of RNA polymerase - probability of falling off per nucleotide (Section 3.5.10 in
Materials and Methods). Similarly, P1/P2 is the ratio of the first over the second protein.
We assume p independent of the sequence and equal to 0.0005 [Jülicher & Bruinsma 1998]
for transcription and translation. Following the ± sign is the standard deviation.

Our theoretical results suggest a bias in the number of molecules in favor of response
regulators in order to attain the shortest search time. This bias can result from unpro-
ductive transcription or translation events (RNA polymerase or ribosome falling off the
template). This mechanism favors RRs, as predicted, if they are first on the polycistronic
transcript. Bioinformatic analysis of 8488 pairs of adjacent genes of 2C proteins mildly
supports this claim. In 60% of the cases the response regulators with DNA-binding do-
mains are located before trans-membrane receptors on the transcript (Tab. S2). Using
gene lengths for both RR-RE orderings in 1- and 2-RBS configurations, and taking into
account their occurrence in genome, we computed mRNA and protein ratios resulting only
from incomplete transcription and translation (Fig. 3.6C). The overall RR:RE ratio equals
1.33 (57% of RRs) and is consistent with our prediction of the optimal bias of signaling
proteins yielding the shortest search time (Fig. 3.4). It would be erroneous, however, to
attribute this bias to the requirement of short search times only as there are certainly
more factors at play. Compared to response regulators, the longevity of receptors is likely
higher because it is more difficult for proteases to access proteins embedded in the mem-
brane. On the other hand, a reverse gene ordering favoring receptors would enhance signal
transduction when not all receptors are activated instantly upon signal appearance, which
requires more REs. Additionally, placing RR genes downstream of those coding for re-
ceptors offsets a net 5’-3’ directionality of mRNA degradation [Selinger et al. 2003] which
arguably results in a longer time window for translation of the second cistron. Interplay
of these effects is likely to be the reason behind the bias found in the bioinformatics data.



3.4. Discussion 65

3.4 Discussion

Many microorganisms experience their environment through 2C signaling
[Stock et al. 2000]. These systems act as sensors and induce measures to cope with
environmental changes and stresses. E.coli houses at least twenty of such systems
[Keseler et al. 2009, Ulrich & Zhulin 2007]. We determined the response time of 2C
signaling by considering the time for the first molecule to reach the DNA regulatory site.

A more detailed description, however, needs to account for the lifetime of the RR-
DNA complex compared to the transcription initiation rate. As a result, gene activation
(or inhibition) may require multiple attempts of RR binding. For ≈ 40 molecules, the
time to phosphorylate half of the inactive RR pool by membrane receptors is below 2
seconds and only weakly affected by fluctuations in the number of components (Fig. S8;
the same holds for the dephosphorylation half-time – the time to switch the signaling off).
The equilibrium concentration of phosphorylated RRs ensues almost instantaneously, for
the time to traverse the cell of the E.coli size is as short as 0.2s. The lifetime of their
phosphorylated form may range from minutes to hours [Stock et al. 2000]. During that
time, many association events will take place before the change in transcription follows.
The probability of transcription initiation, Pini = kini/(kdiss + kini), depends on the
initiation rate, kini, and the dissociation rate of the RR, kdiss. The average number of
RR associations before transcription starts is 1/Pini. This number corresponds roughly
to the kth binding of the response regulator. Given the high probability of the RR in the
vicinity of the target site to rebind before the second RR arrives, transcription initiation
may still be induced by the first regulator that reached the promoter site.

The description of the promoter search omits any contribution of one-dimensional
sliding of response regulators along the DNA. Sliding has been addressed by a number of
theoretical studies [Wunderlich & Mirny 2008, Halford & Marko 2004, Berg et al. 1981]
and recently also experimentally [Elf et al. 2007]. Its occurrence does not affect the mem-
oryless character of the signaling process, but it does influence the mean. According to
Eq. 3.2, a single lac repressor dimer (D = 3µm2s−1, Rrep = 2.5nm) reaches the pro-
moter (RDNA = 2.5nm) in ≈ 20 seconds (RE.coli = 1µm) by means of free 3D diffusion
only. The mean first-passage time reported by Elf and colleagues [Elf et al. 2007] ranges
from 65 to 360 seconds. They measure an effective diffusion coefficient (including the
effect of non-specific binding to DNA and subsequent 1D sliding along DNA segments)
of 0.4µm2s−1. Substituting this to Eq. 3.2, yields the search time of 165 seconds, which
is consistent with experimental findings. This time corresponds to the time for a single
molecule to find the site. For N diffusing molecules this time is divided by N . Although
excluded in our exposition, the model can be straightforwardly extended to incorporate
sliding by adjusting the average.

We predict that tens of 2C signaling molecules are sufficient to give rise to a fast
and robust response; adding more proteins does not reduce the time significantly and the
influence of fluctuations in those molecule numbers is only minor (Fig. 3.4C). Only for
a few systems are the concentrations of 2C signal transduction proteins known. Sensors
typically fall in the nanomolar regime, which means for E. coli tens of molecules per
cell (1nM ≈ 1molecule cell−1)1 [Weiss et al. 1992, Cai & Inouye 2002, Shen et al. 2008].

1Personal communication with Prof. Dr. K Hellingwerf: UhpB (25nM ; RE), UhpA (2500nM ; RR),
ArcA 25µM .
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Our analysis considered a single target gene and the complete absence of low affinity bind-
ing on the DNA that compete for binding response regulator. Taking this into account,
we would predict a higher response regulator than sensor concentration in the presence of
low-affinity sites and multiple gene targets. In fact, this appears to be the case.2 When we
assume that the residence time of response regulators on competing sites is long compared
to the duration of target finding, we predict a linear dependence between the number of
extra sites and response regulators required to find the target gene within a given time
(Fig. S10).

The analysis of models of gene expression indicates that diffusion accounts for ≈ 85%

of the noise in search time (Fig. 3.5). Copy number noise is responsible for the remain-
der. However, transcription and translation dynamics that we have assumed does not
display bursts. Burst-like transcription rates have been measured for a large number
of genes [Golding et al. 2005, Bar-Even et al. 2006, Cai et al. 2006]. In prokaryotes, such
bursts have been most convincingly shown for repressed genes. Bursty expression of two-
component proteins might severely impair signaling performance especially if both com-
ponents are regulated on separate operons and fluctuations due to bursts extend over
cellular generation time [Rosenfeld et al. 2005, Sigal et al. 2006] In the extreme case a
single cell might receive either a receptor or a regulator during its lifetime, thus inhibiting
the signaling function entirely. One solution to avoid such uncorrelated fluctuations is
to express the receptor and the regulator from a single operon. In 66% of cases trans-
membrane receptors are neighboring DNA-binding regulators (Tab. S1). This might indi-
cate evolutionary pressure to minimize detrimental copy number noise in two-component
transduction systems by grouping functionally related proteins.

We discussed the effect of diffusion on signaling for a cell of the size of a typical prokary-
ote (RE.coli ≈ 1µm). A few dozens of molecules suffice to sense the extracellular stimulus,
diffuse, and affect gene regulation in little more than 1 second. How many molecules would
be required to retain the same efficiency using a 2C design for a larger volume, say a typ-
ical eukaryotic cell? Signaling networks that involve SMADs [Clarke & Liu 2008], STATs
[Swameye et al. 2003] and nuclear receptors [Carlberg & Dunlop 2006] have a network
design similar to 2C networks; they are much more linear and involve much less com-
ponents than for instance MAPK signaling. Our theory predicts that in order to attain
search times < 2 s in a cell of radius 10µm at least 10’000 RR and REs are necessary
(Fig. 3.7). The abundance of receptors in some eukaryotic signaling pathways is of that
order [Clarke & Liu 2008, Kholodenko et al. 1999]. More importantly, the vast majority
of eukaryotic signaling pathways utilize more elaborate schemes than a simplistic two-
step architecture. Eukaryotic signal transduction is usually arranged in networks allowing
for more regulatory checkpoints and a possibility of crosstalk between other signaling
pathways.

Obtaining molecular copy number distributions across a spatial domain usually in-
volves intensive computations. Such simulations are only necessary when the waiting-time
distributions for the search processes involved are non-exponential. In the regime of small
targets waiting-time distributions become exponential. Such memoryless processes have a
number of interesting properties. Their duration does not depend on the cell’s shape and
internal organization. This decoupling makes search times less dependent on physiological

2Personal communication with Prof. Dr. K Hellingwerf: RR concentration in the presence of low-affinity
binding sites, 1− 10µM .
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Figure 3.7: The optimal search time as a function of the cell radius. The number of 2C
proteins required to maintain short signaling times increases for larger cells. The time
scales as r3 with the radius, hence is linear with the volume.

conditions and allows for more evolvable signaling systems. Moreover, the system can be
considered as effectively ideally stirred and the stochasticity can be described by analyt-
ical theories. This is, however, rarely done in current modeling efforts in computational
systems biology.
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3.5 Materials and Methods

This section includes an extensive discussion of analytical tools and computational meth-
ods. Analysis of three models of gene expression (Fig. 3.5) can be found in the Mathe-
matica file, under the address http://projects.cwi.nl/sic/2csignet/. Therein, the
reader can find steady-state solutions, computation of variance and covariance from linear
noise approximation, and the effect of diffusion and copy number noise on the total search
time.

http://projects.cwi.nl/sic/2csignet/
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Figure 3.8: Two estimates of the MFPT to the absorbing inner sphere as a function of its
radius rin: inverse of the Smoluchowski diffusion-limited rate constant τD = Vcell/4πDrin
(solid line), exact solution for a molecule starting at the outer boundary, τinner, Eq. 3.6
(dashed). A single molecule diffuses in a sphere of radius R (reflective boundary) with
diffusion constant D = 1L2/T . Insets: FPT pdf for two extreme trap sizes, rin = 0.01

and 0.8Rcell. Curves were obtained by numerical inversion of the Laplace transform of
the analytical flux at the absorbing target.

3.5.1 Evaluation for 3D: searching the inner sphere

The same procedure applied for d = 3 yields the FPT pdf to the inner sphere for a single
molecule starting at the outer membrane:

f̃(r0 = Rcell, s) =
rin
√

s
D

Rcell
√

s
D cosh

[
(rin −Rcell)

√
s
D

]
+ sinh

[
(rin −Rcell)

√
s
D

] , (3.5)

where rin is the radius of the inner sphere.3

The MFPT obtained by procedure given in Eq. A.6 reads:

τinner =
4
3πR

3
cell

4πDrin
+
r2
in − 3R2

cell

6D
=
Vcell
KD︸ ︷︷ ︸
τD

+
r2
in − 3R2

cell

6D︸ ︷︷ ︸
τcorr

. (3.6)

The first term, KD, is a Smoluchowski diffusion-limited reaction rate (Vcell is volume
of the system). In case of targets much smaller than the radius of the cell, this term
dominates the mean (Fig. 3.8). It is the regime where trajectories become so long that they
become insensitive to the initial conditions. The FPT pdf for a molecule searching a small

3In this derivation we implicitly assume that the diffusing molecule is a point object. The reaction
at the absorbing inner sphere takes place if the distance between the molecule and the target is smaller
than or equal rin. This distance can be perceived as a reaction radius. In that case it is a sum of the
molecule’s and the target’s radii.
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∞∞

A

Figure 3.9: Illustration of the single-species annihilation, A + B → 0, as a first-passage
problem. Molecule A, solid black, is fixed as a “trap”. A fixed concentration of molecules
B, empty circles, extend to infinity. They diffuse and annihilate upon collision. Reaction
rate k is then the flux to the target, i.e. the frequency of arrivals of molecules at the
absorbing molecule. In 3D this rate equals KD = 4πaD, where D is diffusion constant of
molecules B, a is the reaction radius, typically the sum of radii A and B.

target is approximately exponential. The memoryless property of diffusive trajectories is
also present in the reasoning behind the rate constant KD. It is the steady-state flux of
molecules to the spherical target. The target is immersed in an infinite sea of diffusing
molecules (Fig. 3.9). Hence, intervals between binding events are independent of initial
spatial configuration of molecules.

Note that it is incorrect to estimate the time needed to reach the target for a molecule
starting at the outer boundary similar to Eq. B.15, i.e. 〈t〉 = R2

cell/2dD. Such procedure
gives an average distance covered by a diffusing molecule, which in fact models a situation
where we look for the time to cross a (hyper-)sphere at distance Rcell.

3.5.2 Evaluation for 3D: searching the target on the membrane

Diffusive search times can be estimated using first passage time theory [Redner 2001,
Weiss 1967]. For instance, a macromolecule with a diffusion coefficient D (in µm2/s) that
starts in the middle of a cell (with radius Rµm) will reach any point on the membrane in
R2/(6D) seconds on average. The corresponding distribution of search times (a normalized
histogram, or a probability density function) is peaked and asymmetrical. The noise, η2

τ ,
(variance divided by the mean first passage time squared) of such a distribution equals
2/5. Such a process is therefore less noisy than a pure Poisson process (η2

τ = 1). This time
reduces to R2/(15D) when they start randomly in the cytosol.

3.5.2.1 Fully absorbing sphere

In this section we will evaluate first-passage properties for a domain where a particle
diffuses inside of a sphere. In order to calculate the first-passage time to any point on
that sphere, we shall solve a spherically symmetric Eq. B.14 with absorbing boundary
at R+ = R, and no inner sphere, i.e. R− → 0. The MFPT to the outer boundary for a
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particle initiating at any radial distance r0 equals:

〈t〉r0 =
R2 − r2

0

6D
. (3.7)

If the particle starts from a random r0, then the MFPT decreases:

〈t〉rnd =
3

R3

∫ R

0

〈t〉r0 r
2
0 dr0 =

R2

15D
=

2

5
〈t〉r0=0 . (3.8)

3.5.2.2 Partially absorbing sphere

If one is interested in the MFPT to a part of the sphere (reflecting boundary except for
an absorbing part of interest), radial symmetry is lost and problem becomes much more
mathematically involved. Singer and colleagues [Singer et al. 2006b, Singer et al. 2006a]
obtained a number of results for mean exit times from the center to a small opening on
a disk and a sphere :

2D : 〈t〉r0=0 =
R2

D

(
log

1

ε
+ log 2 +

1

4
+O(ε)

)
, (3.9)

3D : 〈t〉r0=0 =
4
3πR

3

4rabsD

(
1 +

rabs
R

log
R

rabs
+O

( a
R

))
, (3.10)

where ε is a fraction of disk’s perimeter occupied by the absorbing part, rabs is the radius
of a circular absorbing patch on a sphere. These results hold if the absorbing opening is
small compared to total perimeter or surface.

3.5.2.3 Many absorbing patches

In the main text we argue that the MFPT to many receptors (absorbing patches) decreases
if receptors are scattered on the sphere. The MFPT to any of NRE receptors scales with
the inverse of the number of receptors if (i) receptors are small compared to the total
surface, i.e. a diffusive trajectory to a single target is memoryless, (ii) distance between
them is large compared to their size, i.e. diffusive flux around a single target is not affected
by other receptors.

In order to better illustrate this effect we resort to a solution of the adjoint equation
for the mean first-passage time t [Redner 2001]:

D∇2t(~r) = −1 (3.11)

subject to the absorbing boundary condition t(~r) = 0, for ~r ∈ Ω. Solution of this Poisson
equation at point ~r is the mean first-passage time from that point to any of the absorbing
boundary points. A numerical integration for different configurations of absorbing areas
is shown in Fig. 3.10.

We assume that a cluster of receptors is simply a larger receptor of surface equal to
the sum of single receptors’ area, i.e. RCL = RRE

√
NRE/CL, where RCL and RRE are

radii of a cluster and a receptor, and NRE/CL is the number of receptors per cluster. A
full approximate expression for the mean first-passage time of a single response regulator
of radius RRR to NCL clusters containing NRE/CL receptors each, reads:

τRE =
Vcell

4D
(
RRE

√
NRE/CL +RRR

)
·NCL

(3.12)
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Figure 3.10: The mean first-passage time to a disk with absorbing outer boundary. Plots
obtained by numerical integration of adjoint equation for the mean first-passage time,
Eq. 3.11. Color coding corresponds to the MFPT from a point on a disk to the absorbing
area on a perimeter; blue - short, red - long MFPT. The MFPT for a molecule initiating
in the center is marked with a dot. (Left) A continuous absorbing region takes 10% of the
perimeter. (Middle) The same absorbing fraction of 10% is scattered uniformly into 36
parts. (Right) The absorbing boundary takes the whole perimeter. The MFPT from the
center is only slightly lower compared to the case in the middle panel.

The scaling with the number of clusters, 1/NCL, reflects the exponential approximation
which is only valid for a small cluster size. Once a waiting time distribution for binding of
a single response regulator to any of the clusters is assumed to be exponential, the mean
first-passage time for many receptors follows, τRE/NRR.

3.5.3 Round-trip: convolution

We concluded that due to the small size of the binding sites, the FPT pdf for search-
ing the membrane-bound sensor(s) and the subsequent search of the DNA site can be
approximated by the memoryless exponential distribution:

f(t) =
e−t/τ

τ
, (3.13)

where τ is the mean of this distribution: the mean first-passage time.
Eventually, we are interested in the mean and variance of the multi-particle FPT

pdf for the whole process: cytoplasm → sensor → DNA. By multi-particle we mean the
distribution for reaching DNA by the first out of NRR independently diffusing response
regulators. We assume that the first binding of a transcription factor is the one effecting
gene regulation.

As we shall see further in this section, the single-particle pdf for the two-step search is
not an exponential function. Hence, the mean for the superposition of many particles does
not simply scale as 1/NRR; it follows from order statistics shown in the next section. This
is why we need to obtain the full pdf for the full search process. Since the probability to
find the DNA site is the probability to bind the sensor and then search the DNA, the full
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FPT pdf follows from the convolution of individual pdfs (Fig. 1.10 in the Introduction),

fA(t) ∗ fB(t) =

∫ t

0

e−t
′/τ1

τ1
· e
−(t−t′)/τ2

τ2
dt′

=
e−t/τ1 − e−t/τ2

τ1 − τ2
. (3.14)

Moments of such a convolved distribution are:

〈tk〉 =

∫ ∞
0

tkfA(t) ∗ fB(t)dt =
k!

τ1 − τ2
(
τk+1
1 − τk+1

2

)
(3.15)

From that we obtain the first moment, which is simply the sum of the means τ1 + τ2.
Noise, defined as variance over squared mean is always smaller than 1, i.e. noise of the
pure Poisson process:

η2 =
〈∆t2〉
〈t〉2 =

τ2
1 + τ2

2

τ2
1 + τ2

2 + 2τ1τ2
. (3.16)

3.5.4 Moments of the first order statistics of a convoluted pdf

After substituting Eq. 3.14 into Eq. A.13 we obtain the explicit FPT pdf for the super-
position of N independent single-particle functions:

f (1,N)(t) = N
et/τ1 − et/τ2

τ2et/τ1 − τ1et/τ2
(
τ1e
−t/τ1 − τ2e−t/τ2
τ1 − τ2

)N
(3.17)

The mth moment of the first-passage time out of N particles for a two-step process
with exponential waiting times for each of the steps reads:

〈tm〉 = m

(
1

τ1
− 1

τ2

)−N N∑
n=0

(
N

k

)( 1
τ1

)N−n (
− 1
τ2

)n
(
n
τ1

+ N−n
τ2

)m (3.18)

3.5.5 Bias of the optimal search time

We use Eq. 3.18 to study the total search time (cytosol - receptor - promoter) as function
of the number of receptors and regulators. To achieve that, we shall substitute τ1 with
Eq. 3.12, and τ2 with Eq. 3.6. For typical E.coli parameters (Rcell = 1µm, DRR =

5µm2/s, rreact = RRE + RRR = RDNA + RRR = 0.005µm), τ1 = 42/NRE s and τ2 =

13.3 s. For a fixed number of REs and RRs the minimal search time is achieved when the
number of regulators exceeds slightly the number of receptors (Fig. 3.11, solid red line).
Here, we assumed that both steps of the search time are diffusion-limited. In reality, these
processes might be longer due to additional time required to undergo a chemical reaction
once a regulator and a sensor, or a regulator and the DNA-binding site are close to each
other. In order to account for that, one needs to add the reaction time to τ1 and τ2. In
Fig. 3.11 we study the effect of this increase on the optimal search time. Incrementing the
first search, τ1, shifts the optimum towards the 50/50 ratio of regulators and receptors.
Conversely, if DNA search τ2 lasts longer, the shortest search time is always achieved with
more regulators; their required count increases with τ2.
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Figure 3.11: Minimal search time and bias in protein ratio depend on search times for
single steps. The total number of receptors and regulators equals 50. Red solid line, purely
diffusion-limited case, Eq. 3.18 with the time to find receptors, τ1, equal to Eq. 3.12 and
the time to find the DNA site, τ2, equal to Eq. 3.6. In order to reflect the reaction
limitation, we increase τ1 and τ2.

3.5.6 Time to (de-)activate half of response regulators

A response regulator becomes activated (or deactivated) when it reaches a membrane
bound receptor. We assume that the waiting time pdf for a single RR to bind to clusters
of receptors is an exponential function with the mean given by Eq. 3.12. The mean time
for binding of half of RRs is the k-th passage problem, where k is NRR/2. Substituting
the exponential pdf into Eq. A.14 and computing the first moment yields the mean time
to activate first k regulators out of NRR:

τ
(k,NRE)
RE = τRE

(
HNRR −H(NRR−k)

)
, (3.19)

where HN is the harmonic number. Fig. 3.12 illustrates the solution. Similarly to the
mean first-passage time, half-(de-)activation time is only weakly affected by fluctuations
in the copy number, once the number of molecules exceeds ≈ 40. Scattering receptors
uniformly over the membrane is also decreasing the response time making the system
faster.

3.5.7 Diffusive flux at the promoter site

Our estimation of search times in the two-component signaling network assumes that it
is the first of the regulators that has an effect on gene expression either by activation
or repression. In reality this might not be the case implying that the activation time
resulting from our analysis is underestimated. As described in the main text, the number
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Figure 3.12: Time to (de-)activate half of the response regulator pool (ON/OFF time). It
equals to the time required for half of freely diffusing RRs to reach the membrane receptors
(Eq. 3.19). It is the same for inactive RRs yet to be phosphorylated at the membrane, and
for active RRs yet to be dephosphorylated at the membrane. Consistent with biological
evidence, the lifetime of an active RR is assumed to be much longer than the search time
[West & Stock 2001]. All receptors maintain their kinase (or phosphatase) activity during
the RR activation time. (A) Phase plot. The optimal number of RRs and REs yielding
the shortest search time is indicated in white. (B) ON/OFF time as function of the total
number of signaling components for scattered and clustered receptors. Additionally, two
curves for fixed number of receptors are shown in red and green. For a comparison, we
draw the times for the first RR to bind to any of the receptors (light black line).

of regulator bindings prior to alternation of gene expression can be estimated as 1/Pini,
the inverse of the transcription initiation probability. Pini = kini/(kd + kini) depends on
the transcription initiation rate constant, kini, and the life time of the regulator-promoter
complex, 1/kd. Whether 1/Pini indeed corresponds to the number of distinct regulators
binding to the promoter site before transcription initiates depends on the following. The
regulator which fails to change gene expression by unbinding before the transcription
commences, has a probability of rebinding before the next regulator arrives. Even for
the number of molecules as high as 100 the time between arrivals of consecutive distinct
regulators is as high as 0.2 seconds (3.13. Within that time the probability of rebinding is
very high for a diffusion-limited process and equals ≈ 90%. Therefore, the first regulator
is most likely to perform more binding attempts. Whether it succeeds depends on the
forward reaction rate constant, the aspect that we do not investigate here.

3.5.8 Relation between the number of regulators and the number
of DNA-binding sites

So far our analysis considered only a single DNA target for regulators. In reality the
number of targets may reach even hundreds. How many response regulators is required
to activate all of them within given time constraints? Our analytical framework provides
a rough estimate. We assume that all DNA targets are located in the center of the spher-
ical cell and have the same radius. A diffusive flux at the center due to phosphorylated
regulators will cause subsequent activations of these targets. The first regulator out of
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Figure 3.13: Time between bindings of successive regulators to the promoter (both
searches included). We substituted Eq. 3.14 into Eq. A.14, computed numerically the mean
for the kth-passage, and finally differences between kth and k−1st passage. Straight solid
line indicates a regime where intervals between subsequent bindings of phosphorylated
regulators are approximately equally timed akin to behavior of a steady state flux.

NRR induces activation of the first out of NDNA targets, the second regulator activates
the second target, and so forth. Activation implies binding which effectively removes the
regulator from available diffusing pool. It is a kth-passage problem and the question we are
addressing is the number of total regulators necessary to activate NDNA targets within
time τact. The number of receptors is fixed in this setting. Fig. 3.14 illustrates this for
two cases of receptor count, 10 and 50, and for two τact thresholds.

Here, we shall derive an approximate solution of results shown in Fig. 3.14. There are
NRR regulators which, after reaching the center of the cell, are sequestered on NDNA
target sites. The quantity we are looking for is the total number of regulators that allows
to bind all target sites within a time τact. In order to avoid computing the kth-passage
of a peaked waiting time distribution (Eq. 3.14) we make the following assumption. The
waiting time pdf for the whole search process is the exponential function with the mean
given by the sum of mean times for individual search processes, τT = τ1 + τ2. Now
the model is analogous to the first-order annihilation process of NRR molecules. The
corresponding mass-action law for the number of unbound regulators at time t reads,

NRR − k = NRRe
− t
τT , (3.20)

where k is the number of regulators that already reached the targets. We are interested
in the situation where k ≡ NDNA. Time t is our desired activation time threshold; we
shall denote it ϑ. A straightforward transformation shows that the number of regulators
is linearly dependent on the number of target sites,

NRR =
NDNA

1− e−
ϑ
τT

. (3.21)

This equation is a good approximation of the results in Fig. 3.14 for small values of τact.
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Figure 3.14: The number of regulators required to activateNDNA targets within activation
time τact. We substituted Eq. 3.14 into Eq. A.14, computed numerically the mean for
the kth-passage, where k corresponds to NDNA, and solved iteratively for the number of
regulators NRR required to obtain prescribed binding time, τact. The dependence is linear
and the slope, indicated along the lines, is the number of additional regulators required
to maintain τact below the threshold if one extra site is added.

The same result can be obtained by substituting the exponential function with the
mean τT into Eq. A.14. Then, the mean time for kth regulator to be sequestered (the
mean kth-passage) reads,

〈t〉(k,NRR) = τT (HNRR −HNRR−k) (3.22)

= τT

NRR∑
i=NRR−k+1

1

i
. (3.23)

In the continuous limit, the above is equivalent to,

t = τT log

(
NRR

NRR − k

)
, (3.24)

which can be easily transformed into Eq. 3.21 by taking t = ϑ and k = NDNA.

3.5.9 Two sources of stochasticity

The noise in the total search time, τs = τ1 +τ2, consists of two additive terms correspond-
ing to stochastic diffusion and noisy gene expression. For a fixed number of two-component
proteins only fluctuations in time due to diffusion are manifested; the search-time prob-
ability density function remains the same, so does the mean. Fluctuations in protein
production change the shape of the distribution and hence the mean (Fig. 3.15).
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are described by a peaked probability density function resulting from the convolution of
two approximately exponentially-distributed processes. Stochastic nature of the diffusion
process introduces fluctuations around the mean. (Right) Protein copy numbers fluctuate
due to noise in gene expression. As a result, the speed capacity of the two-component
network changes.

3.5.10 Processivity

We shall consider two adjacent genes A and B regulated by a single promoter. Due
to incomplete transcription, i.e. RNA polymerase falling off prematurely, a bias in the
number of fully completed mRNA transcripts for the two genes may arise. This ratio can
be calculated in the following way. Transcript A is finished if polymerase falls off either
on or after gene B. mRNA with gene B is obtained only if both genes are transcribed,
thus the polymerase may fall off only after gene B. The above can be formalized in the
equation:

mRNAA
mRNAB

=
probability to fall off on gene B + probability to fall off after gene B

probability to fall off after gene B
.

(3.25)
We assume that the probability to fall off on a particular nucleotide is independent

of the sequence and equals p. From the geometric distribution we infer the probability to
fall off after transcribing n nucleotides,

Pr(N = n) = (1− p)np. (3.26)

From this we obtain expressions for both probabilities in Eq. 3.25. The first one, the
probability to terminate on gene B (produces mRNA with A gene only) is,

PrA =

NA+NB−1∑
i=NA

(1− p)ip = (1− p)NA − (1− p)NA+NB . (3.27)

NA and NB are lengths of gene A and B, respectively. Note that taking NA in the lower
bound of the sum ensures that transcription terminates on the first nucleotide of gene B
(no spacing between genes assumed) thus yielding mRNA with full gene A and incomplete
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gene B. Similarly, the upper bound NA + NB − 1 accounts for termination on the last
nucleotide of gene B.

The second term, the probability to terminate after gene B (mRNA with gene A and
B is produced) reads,

PrAB =

∞∑
i=NA+NB

(1− p)ip = (1− p)NA+NB . (3.28)

After substituting PrA and PrB into Eq. 3.25 we obtain,

mRNAA
mRNAB

= (1− p)−NB . (3.29)

The ratio depends solely on the length of gene B!

3.5.11 Numerical simulations

We carried out computer simulations using a custom written C code. Response regulators
are modeled as point objects in 3D space confined by a sphere of radius Rcell. Membrane
receptors are treated as randomly distributed disks of radius RRE on that sphere. Binding
between RE and RR takes place if a RR exceeds the cells radius and is within a reaction
radius RRR +RRE from the center of the RE disk. Similarly, for binding to a DNA site,
a regulator needs to be within RRR +RDNA from the DNA site. The site is modeled as a
sphere of radius RDNA placed in the center of the cell’s volume. The simulation consists
of discrete time steps during which regulators are assigned a new position in X, Y and Z
direction drawn from a Gaussian distribution of mean 0, and standard deviation

√
2Dδt,

D - diffusion constant, δt - simulation time step. δt is chosen such that on one hand the
error due to fixed time step is minimized, and on the other hand the simulations do not
run exceedingly long. For instance, for binding targets sized at RRE = RDNA = 2.5nm

and for the regulator with diffusion constant DRR = 5µm2s−1 and the radius 2.5 nm we
ran the simulation with δt = 1e−8s. During that time, with a 3-sigma confidence a RR
can displace a maximum of 0.9 nm, which is a safe margin given the reaction radius equals
5 nm. Decreasing δt further did not exhibit any appreciable improvement in results.

3.5.12 Bioinformatic analysis

We utilized the MiST database [Ulrich & Zhulin 2007], which contains 934 completely
sequenced genomes and their associated signal transduction repertoires, to perform the
bioinformatic analysis of two-component systems. To mitigate bias due to overrepresented
genomes, we grouped them by their genus and species classification and only included the
largest genome from each group. At the species level, 623 unique genomes were considered
in this study. We queried the MiST database for histidine kinases with at least one
predicted trans-membrane region or signal peptide and response regulators that contain
a DNA-binding domain. Hybrid histidine kinases (possess both transmitter and receiver
domains on the same polypeptide molecule) and chemotaxis proteins were excluded.
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constraints count % of all: % of all HK-TMs

global
all HKs 14322 100% N/A
HK-TM 10133 71% 100%

isolated pair

all pairs 8488 100% N/A
RR-DNA 7597 90% N/A
HK-TM 7187 85% 71%

HK-TM & RR-DNA 6670 76% 66%

dicistronic

all pairs 2306 100% N/A
RR-DNA 2007 87% N/A
HK-TM 1937 84% 19%

HK-TM & RR-DNA 1765 77% 17%

Table 3.1: Abundance of histidine kinases in 623 unique genomes (out of 934) from MiST
database. An isolated pair was defined as a single HK and RR on the same strand, with
no intervening genes, with any amount of intergenic space, bounded on both sides by a
gene in opposite direction or a non-two-component protein or a 250-bp sequence. HK-TM
denotes a histidine kinase with at least one trans-membrane domain. RR-DNA denotes a
response regulator with at least one DNA-binding domain.

3.5.12.1 Isolated vs dicistronic pairs

We operationally define an isolated, classical two-component system as a single histidine
kinase that putatively interacts with a single cognate response regulator. To identify these
at a genomic scale, we scanned each genome for operons containing one histidine kinase
gene that is immediately adjacent to a response regulator gene and this pair is bounded
by non two-component gene(s) or distinct operon(s). Distinct operons are operationally
defined as one or more genes encoded on the same DNA strand each of which is no further
than 250 base pairs from its immediate neighbor. Dicistronic operons are specialized
operons that comprise only two genes.

3.5.12.2 Identification of RBS sites

We identified ribosome binding sites (RBS) for each genome using a local copy of Gen-
eMarkS version 4.6e [Besemer et al. 2001] in conjunction with a modified version of the
RBS-finder tool [Suzek et al. 2001]. First, a RBS consensus probability matrix is derived
by running GeneMarkS against the entire genomic DNA (prokaryotic sequence model).
All RBS are then predicted with RBS-finder, which we modified to train its internal
Markov model based on this externally derived consensus probability matrix.
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5’ gene 3’ gene 934 genomes 623 genomes

all pairings all pairings

HK-TM HK-TM
& &

RR-DNA RR-DNA
(dicistronic)

HK RR 5894 (45%) 4094 (48%) 2690 (40%) 705 (40%)
RR HK 7074 (55%) 4394 (52%) 3980 (60%) 1060 (60%)

sum 12968 8488 6670 1765

Table 3.2: Count of isolated HK and RR pairings for different gene orders. An isolated
pair is defined as in Table 3.1. Bias favoring RR → HK order is higher if only HKs with
trans-membrane domain and RRs with DNA-binding domains are considered.

isolated pair: HK-TM and RR-DNA all HK-TM
count 6670 (66%) 10133 (100%)

RBS at 5’ gene RBS at 5’ and 3’ gene
count 610 (9%) 5334 (80%)

HK → RR RR → HK HK → RR RR → HK
count 98 (16%) 512 (84%) 2193 (41%) 3141 (59%)

length of HK [aa] 558± 187 470± 73 551± 171 467± 80

length of RR [aa] 264± 95 237± 39 283± 106 241± 47

Table 3.3: Number of ribosome binding sites (RBS) for pairs of isolated HK and RR. 623
genomes from MiST database were considered. Note that the numbers for 1 and 2 RBSs
do not sum to 100%. The remaining cases include an RBS at 3’ gene which we omit here.
Gene lengths include the mean and the standard deviation.

dicistronic: HK-TM and RR-DNA all HK-TM
count 1765 (17%) 10133 (100%)

RBS at 5’ gene RBS at 5’ and 3’ gene
count 146 (8.3%) 1433 (81%)

HK → RR RR → HK HK → RR RR → HK
count 27 (18%) 119 (82%) 584 (41%) 849 (59%)

length of HK [aa] 577± 186 477± 79 557± 186 473± 83

length of RR [aa] 259± 89 238± 43 272± 101 247± 56

Table 3.4: Number of ribosome binding sites (RBS) for pairs of isolated HK and RR
transcribed on a dicistronic mRNA. 623 genomes from MiST database were considered.
Note that the numbers for 1 and 2 RBSs do not sum to 100%. The remaining cases include
an RBS at 3’ gene which we omit here. Gene lengths include the mean and the standard
deviation.
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4.1 Abstract

We compare stochastic computational methods accounting for space and discrete nature of
reactants in biochemical systems. Implementations based on Brownian dynamics and the
reaction-diffusion master equation are applied to a simplified gene expression model and
to a signal transduction pathway in E. coli. In the regime where the number of molecules
is small and reactions are diffusion-limited predicted fluctuations in the product number
vary between the methods, while the average is the same. Computational approaches at
the level of the reaction-diffusion master equation compute the same fluctuations as the
reference result obtained from the particle-based method if the size of the sub-volumes is
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comparable to the diameter of reactants. Using numerical simulations of reversible binding
of a pair of molecules we argue that the disagreement in predicted fluctuations is due to
different modeling of inter-arrival times between reaction events. Simulations for a more
complex biological study show that the different approaches lead to different results due
to modeling issues. Finally, we present the physical assumptions behind the mesoscopic
models for the reaction-diffusion systems.

Input files for the simulations and the source code of GMP can be found under the
following address: http://projects.cwi.nl/sic/bioinformatics2007/.

4.2 Introduction

There are many examples of biochemical reactions where spatial effects play an im-
portant role. In case of gene expression, transcription of a gene involves an encounter
of RNA polymerase and transcription factors with a specific place on a DNA strand.
The inclusion of diffusive effects is also important in the description of signaling path-
ways where additional noise due to sub-cellular compartmentalization can cause the
signal weakening [Bhalla 2004]. Especially if the reactions are fast, diffusion can be a
limiting factor in these processes since the environment is crowded and the dimen-
sions of a cell are large compared to the size of the molecules. Besides, the number of
molecules involved can be low which is an additional source of stochasticity. The pres-
ence of the stochastic effects in biological systems has numerous consequences. One of
them is the appearance of redundancy in regulatory pathways in order to obtain de-
terministic behavior [McAdams & Arkin 1999]. Fluctuations may also increase the phe-
notypic heterogeneity which in turn improves the organism’s environmental adaptation
[Kaern et al. 2005, Perkins & Swain 2009, Eldar & Elowitz 2010].

The need for discrete-spatial-stochastic computational methods is apparent when
confronted with theoretical studies of biochemical networks. Spatial coupling between
chemically reacting systems is known to stabilize the autocatalytic reaction kinetics
[Marion et al. 2002]. Numerical analyses of a population model [Shnerb et al. 2000], a
4-component autocatalytic loop [Togashi & Kaneko 2001], or a simple reaction-diffusion
system [Togashi & Kaneko 2004] show the emergence of a new behavior induced by the
discrete nature of reactants. A behavior that could not be captured by the contin-
uum approaches, let alone methods without space. The models of calcium wave prop-
agation [Stundzia & Lumsden 1996] and intracellular Ca+2 oscillations [Zhdanov 2002],
the study of Soj protein relocation in Bacillus subtilis [Doubrovinski & Howard 2005] or
MinD/MinE protein oscillations in E. coli [Fange & Elf 2006] are another illustration
where the stochastic effects due to space and discreteness need to be accounted for to
explain the experimental results.

In this chapter we focus on some computational approaches that have been pub-
lished recently and applied to biological systems. Green’s Function Reaction Dynam-
ics, a Brownian dynamics-based method has been used to study fluctuations in gene
expression [van Zon & ten Wolde 2005a, van Zon et al. 2006] and to analyze the gain
in a network of two antagonistic enzymes that modify a substrate covalently, a so
called “push-pull” network [Morelli & ten Wolde 2008]. Smoldyn, the second of Brow-
nian dynamics-based methods, has been applied in a number of biological settings.
Most notably it has been used to simulate signal transduction in E. coli chemo-

http://projects.cwi.nl/sic/bioinformatics2007/
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Figure 4.1: Biological problems and relevant models placed in correlation-length versus
number-of-molecules space. Abbreviations for (1) models with space: BD – Brownian dy-
namics, PDE – partial differential equation, RDME – reaction-diffusion master equation,
and (2) models without spatial detail: CME – chemical master equation, ODE – ordinary
differential equation. ODE and PDE are deterministic models; CME, RDME and BD are
stochastic.

taxis [Lipkow et al. 2005, Lipkow 2006], generation of cAMP microdomains in synapses
[Oliveira et al. 2010], and pheromone response system signaling among yeast cells
[Andrews et al. 2010]. MesoRD and Gillespie Multi-Particle, two implementations of the
reaction-diffusion master equation, allowed to study spatio-temporal dynamics of the cel-
lular processes [Elf & Ehrenberg 2004, Fange & Elf 2006, Rodríguez et al. 2006]. Finally,
the Stochastic Simulation Algorithm by Gillespie has been frequently applied to investi-
gate the influence of noise on biochemical networks [Arkin et al. 1998, Kierzek et al. 2001,
Krishna et al. 2005]. A general overview of the main features of the methods can be found
in Takahashi et al. [Takahashi et al. 2005]. Here we compare the various assumptions in
the different models (Tab. 4.1) and the computational results. For clarity we choose a
simplified model of gene regulation as a case study. Using this model we make a de-
tailed comparison between the methods. In particular we are looking at fluctuations of
the product protein in gene expression. For a more realistic and complex biological system
we discuss the influence of the necessary modeling choices.

4.3 Regimes and models in biochemistry

Biological phenomena in a single living cell span over a wide range of spatial and temporal
scales. Also the number of molecular species involved can vary significantly. Concentra-
tions of agents in reactions involved in gene expression reach nanomoles, while molecules
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Model Space Discrete Extra assumptions
BD Yes Yes –

RDME Yes Yes WM locally
CME No Yes WM
PDE Yes No C, LMA
ODE No No WM, C, LMA

Table 4.1: Models, their main features and assumptions with respect to BD for modeling
biochemical systems. Abbreviations: WM – well-mixed system, C – continuum hypothesis
for reactants, LMA – Law of Mass Action.

are highly abundant in metabolic pathways (Fig. 4.1).
Current silicon cell platforms can often make reliable predictions for metabolic net-

works based on ordinary differential equations (ODEs). There it is assumed that concen-
trations are high and space is not important. Only the rates of the processes determine
changes in concentration of the metabolites. When spatial effects come into play, and the
correlation length (CL)1 decreases, indicating that the volume can no longer be treated
homogeneous, methods based on partial differential equations (PDEs) are an appropriate
approach. PDEs describe the change of continuous concentrations in time and also in the
spatial dimension. This can be a good model for biochemical networks where some of the
biomolecules are bound to the membrane like in signaling pathways or in eukaryotic cells
in general because molecules are localized in compartments such as nucleus, mitochon-
dria, endoplasmic reticulum, etc. In all of these instances possibly significant concentration
gradients appear, and a simulation may require spatial methods [Francke et al. 2003].

It is known that the process at the very origin of the whole cellular machinery,
gene expression, gives rise to fluctuations in the concentration of the final protein prod-
ucts. One of the sources of stochasticity in gene regulation is the low number of DNA-
binding proteins which have to find their specific target in order to initiate translation
[Halford & Marko 2004]. A low copy number of regulators and the positioning of genes
on the chromosomes result in decreasing frequency of gene activation, thus increasing the
fluctuations of mRNA [Becskei et al. 2005].

The discrete nature of matter as expressed in low-molecule-number conditions violates
the continuum hypothesis used in ODEs and PDEs. A model accounting for this is based
on the chemical master equation (CME), a deterministic linear ODE for the evolution of
the probability density function for a Markov process [van Kampen 1997]. The Markov
process models the stochastic transitions between discrete states of the system. In this
case stochasticity reflects the fluctuation in the number of reactants’ collisions, and hence
the fluctuation in the number of molecules participating in a chemical reaction. The CME
approach remains valid as long as the system is well-mixed or, equivalently, has a large
correlation length.

The question is whether this is a correct assumption when dealing e.g. with gene
expression. Since there is a specific binding site which needs to be found by a relatively
small number of competing transcription factors, diffusion might limit the process thus

1The correlation length (CL) is a measure of the typical length scale at which a system retains its
spatial homogeneity. Estimating CL can be a difficult task, since the different subprocesses involved can
all have a different CL.
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Reaction Rate

DNA+A ka→ DNA·A 3 · 109 M−1s−1

DNA+A kd← DNA·A 21.5 s−1

DNA·A kprod→ P+DNA+A 89.55 s−1

P kdec→ ∅ 0.04 s−1

Table 4.2: Reaction scheme and parameters associated with the gene expression model.
Initially there is one free DNA site fixed in the center and 18 molecules A (corresponds
to a 30 nM concentration) diffusing with D = 1µm2s−1.

giving rise to larger fluctuations [Metzler 2001]. The probability of a reaction becomes
inherently dependent on the distance from the target site. As a result the frequency of
diffusion-limited binding events, for times smaller than the typical time needed to cross the
volume, has a power-law distribution [Redner 2001] instead of the exponential one used
in mean-field approaches as CME. In order to resolve single diffusive encounters between
biomolecules a more detailed approach such as Brownian dynamics (BD) is needed. In
this approach the solvent is treated as a continuum medium while solute molecules are
modeled explicitly in space [Allen & Tildesley 2002]. Their trajectory is described by a
random walk due to collisions with the much smaller solvent molecules. Since the majority
of degrees of freedom is characterized by the fluctuating force, the computational cost is
much smaller than that of molecular dynamics (MD) where the positions and velocities
of all atoms or groups of atoms are traced.

Unfortunately brute-force BD is too expensive for whole-cell simulations. Much more
promising candidates for a versatile multi-scale framework are methods based on the
reaction-diffusion master equation (RDME) – an extension of CME for spatially dis-
tributed systems. Space is incorporated by dividing the volume into smaller sub-volumes,
which allows to tackle inhomogeneities due to diffusion [Gardiner 1983]. Tracking a single
molecule is not possible in this model; unlike in BD, apart from the occupancy of the
sub-volumes no exact positions of molecules are stored. Diffusive effects are treated cor-
rectly with RDME if the size of a sub-volume is of the order of the correlation length.
Small sub-volumes are important if we want to account for fluctuations not only due to
the probabilistic nature of chemical reactions but also resulting from rare binding events
in diffusion-limited sparse (i.e. low concentration) systems. Obviously such detailed sim-
ulations are computationally expensive. Faster computations with large sub-volumes will
give only a crude estimation of higher moments, but also the average will not be correct
if the sub-volumes’ size is larger than the CL and if the reactions are nonlinear.

4.4 Test cases

4.4.1 Gene expression

In order to study fluctuations due to low number of molecules and spatial effects van Zon
and colleagues [van Zon & ten Wolde 2005b] used a very simplified model to focus on the
first step of gene regulation, reversible binding of polymerase to the operator site. Only
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Figure 4.2: Geometry for diffusion of CheYp. (A) Length of the cell is 2.5µm for Smoldyn
simulations. In order to make the number of sub-volume divisions even the length is
increased to 2.52µm for MesoRD and GMP simulations with Lsv = 20 and 40 nm, and to
2.56µm at Lsv = 80 nm. Width and height are 0.88µm in all of the simulations. Motors
are placed on every long sidewall at 0.5, 1.0, 1.5 and 2µm from the anterior cell wall. Again
the positioning of the motors was slightly adjusted in case of simulations with MesoRD
and GMP. (B) Scheme of motor discretization for MesoRD and GMP simulations. For
Lsv = 20nm motors consist of 8 sub-volumes (2x2x2). For 40 and 80 nm motors occupy
only one sub-volume. (C) Geometry of the motor for simulations with Smoldyn. Here, the
reaction radii have been drawn around the molecules. For the time step equal to 0.2 ms
the binding radius for the CheYp association to FliM proteins is 6 nm, hence the overlap
of the radii. A total of 34 proteins is placed on the walls of the cuboid of approximate
size 40x40x30 nm.

this step is modeled explicitly in space.
The system under consideration is a closed volume V with a DNA binding site fixed in

the center surrounded by molecules A diffusing freely with diffusion coefficient D. Once
the DNA ·A complex is formed with association rate ka it can either dissociate back to
separate DNA and A (with rate kd) or a protein P can be produced with a production rate
kprod with subsequent complex dissociation. In both cases dissociation of DNA·A results in
two separate molecules, DNA and A, at contact. The protein further decays at rate kdec.
Obviously the single protein production step in this model encompasses both transcription
and translation which, as a matter of fact, consist of many biochemical reactions. Protein
degradation is also simplified and treated as a first-order reaction. Tab. 4.2 includes the
chemical reactions in the model.

The assumption that after protein production molecules are placed at contact is not
fully correct if we treat A as a RNA polymerase like in the original study. In fact poly-
merase travels a certain distance along DNA and unbinds at a position further than the
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Figure 4.3: Reaction scheme for the diffusion of CheY through the cytoplasm. Prefix Che
is omitted in the names of the components. CheA* kinase dimers form an array of 1260
chemotaxis receptors inside the anterior cell wall. Dotted arrow in the receptor denotes
an autophosphorylation of active dimers, CheA*→ CheAp. Solid arrow in the receptor is
a phosphorylation of CheY. Only one flagellar motor (34 FliM proteins) is depicted here.
8200 CheY signaling molecules (both non- and phosphorylated) and 1600 CheZ dimers
diffuse freely in the cytoplasm. The biochemical network is described in the text, reactions
and rate constants are listed in Table 4.4. Diffusion coefficients and spatial locations of
chemical species are listed in Table 4.3.

initial one. Hence, we would like to remark that the freely diffusing agent A could be a
transcription factor or an activator, which are also reported to occur in small quantities,
instead of the RNA polymerase. Protein P could be seen as mRNA. In fact the idea of
this model is to demonstrate product fluctuations due to rare events where the frequency
is diffusion-limited.

We also assume that the molecules perform a pure random walk where the mean
square displacement of the molecules is linear with time. The diffusion coefficient and the
reaction rates are taken constant. Therefore we do not consider anomalous diffusion due
to molecular crowding or hydrodynamic effects.

4.4.2 Signal transduction

In our comparison we include also a model for diffusion of phosphorylated CheY in the
E. coli chemotaxis pathway as reported by [Lipkow et al. 2005]. The cell is modeled as a
rectangular box of length 2.52 µm, and width and height 0.88 µm (see the detailed scheme
of the geometry in Figure 4.2). Chemotaxis receptors are positioned inside the cell at the
anterior wall. They form an array of 35 by 36 CheA dimers, which amounts to a total
size of the receptor of 510 by 520 nm. Four motors are placed on the long sidewalls of
the cell at 500 nm distance from each other. Each motor consists of 34 FliM molecules
positioned on the walls of a cube (empty inside) of 40 nm. The cytoplasm contains 8200
CheY signaling molecules (partially in phosphorylated form), and 1600 CheZ dimers, both
diffusing freely.

The reaction network is schematically depicted in Fig. 4.3. CheY monomers are phos-
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Species Location Diffusion constant
CheA, CheA* Receptor at the anterior end of the cell Fixed
CheY, CheYp Cytoplasm 10µm2 s−1

CheZ Cytoplasm 6µm2 s−1

FliM Four motors on sidewalls Fixed

Table 4.3: Location and diffusion constants for species in the CheY diffusion model.

Reaction Rate constant ∆t = 0.1ms ∆t = 0.2ms
Unimolecular Reaction probability per time step
CheA*→ CheAp 3.4× 101 s−1 3.4× 10−3 6.8× 10−3

CheY→ CheYp 5.0× 10−5 s−1 5.0× 10−9 1.0× 10−8

CheYp→ CheY 8.5× 10−2 s−1 8.5× 10−6 1.7× 10−5

FliM·CheYp→ FliM + CheYp 2.0× 101 s−1 2.0× 10−3 4.0× 10−3

Bimolecular Reaction radius [nm]
CheAp + CheY→ CheA* + CheYp 1.0× 108 M−1 s−1 12.8 16.1
CheZ + CheYp→ CheZ + CheY 1.6× 106 M−1 s−1 3.2 4.0
FliM + CheYp→ FliM·CheYp 5.0× 106 M−1 s−1 4.7 5.9

Table 4.4: Details of the reaction network for the CheY diffusion model. Data adapted from
Tab. 1 in [Lipkow et al. 2005]. The reaction probability per time step for unimolecular
reactions and the reaction radius for bimolecular reactions is given for two simulation
time steps, 0.1 ms and 0.2 ms.

phorylated at the receptors where the phosphotransfer from CheAp to CheY takes place.
Active CheA dimers (CheA*) produced in this reaction are converted back to CheAp in an
autophosphorylation reaction. Phosphorylated CheY (CheYp) diffuses in the cytoplasm
and binds reversibly to the FliM motor protein. CheYp can be also dephosphorylated by
CheZ scavengers diffusing in the cytoplasm or it can autodephosphorylate. Once dephos-
phorylated, CheY converts to CheYp in a relatively slow reaction or it diffuses back to the
receptor to go through the CheA-mediated phosphorylation. Further, CheYp can diffuse
and form again the FliM·CheYp complex.

4.5 Computational methods

Here we describe shortly the main features of the algorithms used in the comparison.
A more detailed explanation of the models and computational methods can be found in
Appendix C. The following versions of computer implementations have been used for the
simulations: Smoldyn – version 1.72, MesoRD – version 0.2.1. For GFRD and GMP no
version system has been maintained at the time of this publication.

4.5.1 BD-level

Green’s Function Reaction Dynamics (GFRD) developed by
[van Zon & ten Wolde 2005a] and Smoldyn (Smoluchowski Dynamics) by
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Method Receptor Motors Total no. of sv’s
Smoldyn 510 x 520 nm, 40 x 40 x 30 nm, NA

1 layer at 20 nm 3 layers at 16, 25 and
from the wall. 35 nm from the wall.

GMP & MesoRD 20 nm 1 x 26 x 26 sv 2 x 2 x 2 sv 243936
GMP & MesoRD 40 nm 1 x 13 x 13 sv 1 x 1 x 1 sv 30492
GMP & MesoRD 80 nm 1 x 7 x 7 sv 1 x 1 x 1 sv 3872

Table 4.5: Geometry and discretization into sub-volumes (sv) of receptor and motors. A
total number of 1260 CheA dimers is placed at the receptor. Every motor consists of 34
FliM motor proteins. In case of Smoldyn the reaction rates and the simulation time step
(0.2 ms) result in the reaction radius equal to 16 nm for CheA-mediated phosphorylation
of CheY, and to 6 nm for binding of CheYp to FliM motor proteins.

[Andrews & Bray 2004], are two particle-based computational methods, which allow to
explicitly model the gene expression problem described above. Reacting biomolecules are
represented as spheres diffusing freely in a volume, and no excluded volume interactions
are assumed.

GFRD uses the analytical solution of the Smoluchowski diffusion equation to resolve
the reactive collisions. This allows to increase the simulation time step as compared to
the traditional BD approach. This varying time step depending on the nearest neighbor
distance is particularly efficient for systems with a low number of molecules. The method
is not available as a general tool, and the code has been obtained from the authors.

Smoldyn, on the other hand is a convenient package. It is a more coarse-grained
approach to BD simulations of biochemical reactions. The simulation time step is set
by the user such that the probability of any reaction event per time step is small. Also
the mean square displacement of diffusing molecules must allow for correct treatment
of collisions. Here every collision leads to a reaction and the length of the binding and
the unbinding radius (larger than the binding distance) for every reaction reproduces the
macroscopic reaction rate.

4.5.2 RDME-level

MesoRD [Hattne et al. 2005] simulates trajectories of discrete, stochastic systems with
space described by the reaction-diffusion master equation. Gillespie Multi-Particle (GMP)
[Rodríguez et al. 2006] approximates this trajectory by splitting diffusion and reactions
into two separate processes. In both cases the simulation volume is divided into sub-
volumes, and the number of reactants inside them is recorded. Thus the knowledge of the
position of the reacting molecules is limited by the resolution of the space discretization.

MesoRD employs the next sub-volume method [Elf & Ehrenberg 2004] in order to iden-
tify the region of the domain where the next event triggers. The event can be either a
transfer of particles between neighboring cells due to diffusion or a (bio)-chemical reaction.

GMP is based on the Lattice Gas Automata algorithm [Chopard et al. 1994] for the
diffusion process. The time step in GMP is fixed for every diffusing species and prescribed
by the size of the lattice and respective diffusion coefficient. Reactions are executed in
every sub-volume between the diffusion steps (different for every species) using Gillespie’s
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SSA algorithm. Note that the fixed diffusion time step is in fact the average time be-
tween diffusion events in the reaction-diffusion master equation. This fact assures that
the macroscopic diffusion in GMP is the same as obtained from MesoRD.

4.5.3 CME-based

The widely used Stochastic Simulation Algorithm (SSA) developed by [Gillespie 1976,
Gillespie 1977] generates realizations of the Markov process whose probability density
function is described by the chemical master equation [Gillespie 1992]. During every step
of the simulation two random numbers are drawn from appropriate distributions, and
provide time and type of the next chemical reaction. Time assumes continuous values
and the state of the system is a discrete number of all components present. Space is not
included in the CME model.

4.6 Results

4.6.1 Gene expression

The simplicity of the gene expression model discussed in Section 4.4.1 allows to illustrate
how the implementations perform in the regime where spatial fluctuations are important.
Additionally it is possible to address the issue of choosing the proper lattice size in RDME
methods. The results of the RDME methods are compared to the solution obtained with
CME and with the two BD-level simulations, where single molecules are modeled explicitly
in space.

We analyze the average of the protein level and its noise η quantified as the ratio of
standard deviation over average. Values of the parameters for the simulation are given
in Tab. 4.2. Note that protein fluctuations depend on the frequency of the encounters of
A and DNA. The influence of space is omitted in computational schemes based on CME
such as the SSA algorithm by Gillespie. In that case the distribution of times between
successive bindings of A to the promoter site on DNA is exponential because the process
is assumed to be dependent on the reactants’ concentration and not on their position.
For spatially resolved methods the distribution of arrival times changes due to diffusion
and results in burst-like behavior of the protein production. Therefore, we consider this
problem, despite the great simplification of the gene expression, to be a good setting for
the analysis of noise influenced also by spatial effects.

4.6.2 Dynamics of gene expression

The parameters we use in the simulations are such that the production process is limited
by diffusion and that new proteins appear in bursts. We anticipate that stochastic effects
will be significant under such circumstances. This idea is supported in Fig. 4.4, where the
protein level behavior in time is shown. Fluctuations are higher for methods explicitly
accounting for space (GFRD and Smoldyn) comparing to the widely used SSA while
the averages are the same. The reader will also notice that GFRD yields significantly
larger fluctuations than Smoldyn – in principle a method at the same level of detail. The
reason for the differences between the two BD methods is explained further in Section
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Figure 4.4: Sample simulated time trajectories of the protein level for the gene expression
problem. Note that the average is the same for all methods, while the fluctuations are
higher for Smoldyn and GFRD, methods that include spatial effects. Parameters as in
Tab. 4.2.

4.6.3 and later in the Discussion. For now it is sufficient to say that GFRD produces
more trustworthy results since it is an exact method to solve diffusion-limited reversible
reactions.

The comparison for the RDME-class methods, MesoRD and Gillespie Multi-Particle,
reveals the behavior for an increasing number of space divisions nsv (the number of sub-
volumes per unit length). We know that for nsv = 1, the well-mixed case, RDME methods
are equivalent with the chemical master equation which does not include space. In Fig. 4.5
we see that as the spatial detail is increased the predicted fluctuations reach the value
given by GFRD, while the average number of proteins is the same, within statistical error,
for all lattice sizes.

The fact that MesoRD and GMP are able to reproduce not only the average but also
the correct variance of the solution as compared to the reference result obtained from
GFRD, shows their capability to give good results in the regime where spatial effects are
important (the diffusion-limited regime with small numbers of molecules).

4.6.3 Reversible reaction of an isolated pair

In order to explain the differences in noise level predicted by various methods (Fig. 4.5) we
look at a simple example of an isolated pair of molecules undergoing a reversible reaction,
the same type of reaction as the first step in the gene expression model. This will allow
us to examine the distribution of times between successive reactive events.

The target molecule is fixed in the center of the unit volume V , the second molecule
is diffusing freely with diffusion coefficient D. The molecules can undergo a reversible
reaction with association and dissociation rates, κa and κd, respectively. We look at the
time between consecutive bindings of the molecules. Simulations with GFRD, Smoldyn,
GMP and SSA reveal that the distribution of inter-binding times is different for methods

2The reaction mean free path is defined as λRMFP =
√
〈τR〉 ·Drel, where 〈τR〉 is the mean time be-

tween reactions,Drel is the relative diffusion coefficient [Togashi & Kaneko 2005, Baras & Mansour 1996,
Rodríguez et al. 2006].
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Figure 4.5: Noise in the protein level as a function of nsv – the number of sub-volumes
per unit length, for RDME-level methods. The noise for SSA, Smoldyn and GFRD is
computed from the experiment of Fig. 4.4. RMFP – the reaction mean free path2, the
estimate of the correlation length; 2σ – size of the sub-volume equal to two reaction dis-
tances which corresponds to two molecules fitting in one sub-volume. Noise is proportional
to the square root of nsv. Average protein level is the same for all experiments.

with and without space, and also that methods with spatial detail treat the diffusion-
limited reactions differently.

It is known [Redner 2001] that for a particle diffusing in an infinite three-dimensional
space the probability that it reaches a specific target at a specified time (the first-passage
probability) has a power-law distribution. This is depicted in the log-log plot in Fig. 4.6.
All spatial methods reproduce the power-law behavior (straight line) for times shorter
than the average time needed to approach the boundary; a classical result for diffusion
in an infinite 3D space. On such a short time scale the molecule is not influenced by
the finite boundary because it simply did not have time to travel that distance. On the
other hand, diffusion in a finite volume results in an exponential decay of the first-passage
probability for long times. Exponential behavior is characteristic to mean-field approaches
like the chemical master equation, where the time of a next reaction is independent of the
molecules’ position (the well-mixed assumption). Note that, the exponential part of the
result obtained with GFRD can be reproduced by changing the forward reaction rate in
SSA from the intrinsic rate κa to the overall on rate coefficient kON [Agmon & Szabo 1990,
van Zon & ten Wolde 2005a], which “includes” the time needed to reach the target by
diffusion and the time to undergo a chemical reaction.3 It is important to note that the
average of the first-passage distribution SSA(kON) in Fig. 4.6 differs from the rest of the
experiments. This fact indicates that the simple change of the reaction rates from the
intrinsic to the overall rates which include the effects of diffusion will not preserve the
average time between bindings. The plot also shows that an increase of spatial resolution
of an RDME-class method like GMP results in the distribution which can be as close
as desired to the exact solution given by GFRD. For clarity we draw only intermediate
distributions with small (5) and average (30) number of sub-volumes per unit volume.
The simulation with nsv = 50 overlaps with the result from GFRD.
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Figure 4.6: Probability density function of time between subsequent bindings of an isolated
pair of particles, also known as the first-passage probability. Methods including spatial
effects, GFRD, Smoldyn and GMP, reproduce the power-law behavior for short times.
For times larger than ≈ 0.1s, which is the average time needed to reach the boundary,
the first-passage probability exhibits an exponential decay. GMP-5 and GMP-30 denote
simulations where the whole volume’s side is divided into 5 and 30 sub-volumes. The
left- and rightmost curves are computed with SSA with the forward reaction rate equal
to the intrinsic κa and to the overall kON reaction rate, respectively. The averages of all
distributions are the same, equal 1/κa, except for the SSA(kON), where the average is larger
and amounts to 1/kON. Note, that the position of the power-law line is chosen arbitrarily;
it only compares the slope of data for short times obtained from different methods.

4.6.4 CheY diffusion

We have simulated the chemotaxis pathway in E. coli [Lipkow et al. 2005] using Smoldyn,
MesoRD and GMP. GFRD is omitted in this case study because it is not suited for solving
such a complex problem. A detailed description of the geometry is shown in Figure 4.2.

Since Smoldyn allows for placing and tracking every molecule in the system, the im-
plementation of the geometry of the receptor and motors is straightforward: CheA and
FliM molecules can be fixed exactly at their positions. However, one needs to make an
assumption about the placement of the motor and receptor molecules because Smoldyn
does not account for excluded volume interactions and does not have any special treat-
ment of reactions near walls. Following the choice made in [Lipkow et al. 2005], we placed
the receptor array of CheA dimers inside the cytoplasm, 20 nm from the anterior wall.
The FliM motor proteins form a cuboid consisting of three layers at 16, 25 and 35 nm
distance from the cell wall. Although molecules are modeled as points in Smoldyn, the
macroscopic reaction rates prescribe the microscopic binding radii for every bimolecu-
lar reaction channel. For the given parameters and a simulation time step of 0.2 ms the
binding distances are 16 nm for CheY phosphorylation at the receptor, 4 nm for CheZ-

3The overall on reaction rate equals 1
kON

= 1
κa

+ 1
KD

, where κa is the intrinsic association rate, and
KD is the diffusion-limited reaction rate given by 4πσD, dependent on the reaction distance σ and the
relative diffusion coefficient D of two reacting molecules. Note that inverses of rates are equivalent to
quantities with a dimension of time.
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Method Comments TM1 TM2 TM3 TM4

Smoldyn ∆t = 0.2ms 0.11 0.19 0.22 0.29
MesoRD Lsv = 20nm 0.06 0.10 0.15 0.21
MesoRD Lsv = 40nm 0.06 0.11 0.15 0.22
MesoRD Lsv = 80nm 0.06 0.10 0.14 0.19
GMP Lsv = 40nm 0.06 0.08 0.17 0.23

Table 4.6: Average time (in seconds) to reach motor occupancy of 10 CheYp molecules.
Results are averaged over 10 runs for every method.

mediated dephosphorylation, and 6 nm for binding to the FliM proteins. Smaller time
step of 0.1 ms did not affect the results.

To reach the same level of spatial detail with RDME methods like MesoRD and GMP,
a very fine discretization is required, since the exact positions of the molecules are known
only up to the size of the sub-volume. We performed simulations where the side of the
sub-volume Lsv equals 20, 40 and 80 nm. For Lsv = 20nm the receptor consists of one
boundary layer of 26 by 26 sub-volumes. In this case a cube constructed out of 8 sub-
volumes approximates a motor. Four such cubes are positioned on the long sidewalls of
the cell’s surface. When bigger sub-volumes are used, motors occupy only one sub-volume.
The receptor is a one-layer array of 13x13 and 7x7 sub-volumes for Lsv = 40 and 80 nm,
respectively.

4.6.5 Dynamics of CheY diffusion

In the computer simulations we first measure the time required to reach a given level of
motor occupancy. Initially all CheA dimers in the receptor are in phosphorylated form,
CheY and CheZ are freely diffusing in the cytoplasm. The results in Fig. 4.7 show averages
over 10 runs of 1 second for every method. The number of motor-bound CheYp is growing
visibly slower for motors placed further along the cell. The time required to reach a
threshold of 10 CheYp molecules bound to a FliM motor cluster predicted by MesoRD is
the same within statistical error for all three sizes of the sub-volumes (Tab. 4.6). GMP
produces slightly higher averages which can be attributed to the splitting error between
reaction and diffusion. Molecules diffuse in “bursts” due to the fixed diffusion time step
which affects the first-passage properties of the diffusing front while the macroscopic
mean square displacement is reproduced correctly. Finally, the average time to reach the
given threshold is noticeably higher for Smoldyn. This difference cannot be explained by
a wrong treatment in RDME of the nonlinear reactions due to sub-volumes larger than
the correlation length. Simulations for different sizes of the sub-volumes yielded the same
results within statistical error. We contribute the discrepancy between Smoldyn and other
methods to the difference in the modeling of receptor and motors. In MesoRD and GMP
a reaction may occur when reactants are in the same sub-volume. For BD-based methods
like Smoldyn two reacting molecules need to be within the binding radius in order for
an event to occur. This is a stricter constraint because it is possible that two molecules
may simply pass each other despite being in a very close vicinity which would result in a
reaction in RDME-level methods (unless the discretization is such that each sub-volume
contains just one motor molecule).
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Figure 4.7: Change in motor occupancy in time. Time step used in Smoldyn is 0.2ms.
The side of the sub-volume Lsv in MesoRD and GMP is 40 nm. Results do not change
when Lsv = 20 or 80 nm is used.

Another property of the CheYp diffusion model we have studied is the average and the
noise in the motor occupancy in steady-state (Tab. 4.7). For MesoRD and GMP we pick
the simulations with 40 nm sub-volumes. Both RDME-level methods yield very similar
results, although again averages from GMP are slightly higher than those obtained from
MesoRD; Smoldyn computes approximately 20% lower averages. Note the interesting
effect regarding noise in the motor occupancy, which increases for motors placed further
from the receptor. This behavior of noise can be attributed to the concentration gradient of
CheYp (high at the receptor and low at the posterior end). A smaller CheYp concentration
at motor four compared to motor one results in a drop of the average motor occupation,
and causes the fluctuations in binding to the FliM cluster to increase.

Additionally, we provide the SSA result for the motor occupancy (lower-right plot
in Fig. 4.7 and Tab. 4.7) with the same reaction rates as in the other simulations. The

M1 M2 M3 M4
Method 〈N〉 η 〈N〉 η 〈N〉 η 〈N〉 η

Smoldyn 13.9 0.20 13.2 0.21 12.5 0.23 12.4 0.23
MesoRD 19.1 0.17 18.0 0.18 16.5 0.20 16.0 0.22
GMP 20.3 0.15 19.0 0.16 18.6 0.16 18.1 0.16
SSA 27.5 0.08

Table 4.7: Average and noise in the level of motor occupancy in steady-state. Averages were
computed from simulations of length 21 s after the equilibration period of 1 s. Parameters
of the simulations are the same as in Fig. 4.7. MesoRD and GMP used Lsv = 40nm.



96 Chapter 4. Methods for diffusion-limited problems

occupancy for only one motor cluster is shown because all of them are equivalent if space
is not included. This is clearly a wrong approach to model CheY diffusion, nevertheless it
gives an indication of the error one can make when spatial information is omitted either by
not accounting for geometry or by lack of correction in the diffusion-limited reaction rates.
The average occupation which is higher than in the other methods is a direct consequence
of a lack of delay due to the diffusion of CheYp towards the motors. Lower noise, on the
other hand, results from the constant, and immediate supply of reactants while in case of
simulations accounting for space, the supply is considerably lower due to the appearance
of the CheYp concentration gradient.

4.7 Discussion

The computational methods for modeling biochemical systems with single-particle and
spatial detail compared in this study are based on Brownian dynamics and reaction-
diffusion master equation models. In principle they are all suited for application to systems
with a low molecule number and a short correlation length. The need for methods in this
regime is steadily increasing as new results of experiments on biochemical reactions in
single biological cells appear [Pedraza & van Oudenaarden 2005, Rosenfeld et al. 2005,
Acar et al. 2005, Golding et al. 2005]. A theoretical study of simple systems as the gene
expression shows that fluctuations arise in diffusion-limited processes not only due to the
small number of reactants but also resulting from spatial effects [van Zon et al. 2006].

In the comparison for the simple gene expression test case we show that not all meth-
ods compute fluctuations correctly, although the average is the same as those given by the
mean-field models (CME, ODE, PDE). Note that in general, if reactions are nonlinear,
one cannot expect RDME methods to give a correct estimate of the average when the
sub-volumes are larger than the correlation length because concentration gradients are not
represented within a sub-volume. Smoldyn yields much smaller fluctuations compared to
GFRD, even though both methods are BD-based (Fig. 4.4). The reason for the incorrect
prediction of the second moment by Smoldyn lies in the way it deals with diffusion-limited
reversible reactions. The assumption that every collision is reactive leads to the introduc-
tion of the unbinding radius such that it reconstructs the macroscopic geminate recom-
bination probability (Section C.2, Appendix C provides more details on Smoldyn). By
doing so part of the spatial fluctuations is “averaged” and the resulting first-passage prob-
ability lies between the exact solution of the Smoluchowski diffusion equation obtained
with GFRD and the mean-field result from SSA for the well-mixed system (Fig. 4.6).

The methods at the level of the reaction-diffusion master equation, MesoRD and GMP,
are able to predict correctly the fluctuations. The key issue here is to choose the space
discretization (division into sub-volumes) such that the size of a single sub-volume is of
the order of the system’s correlation length. Otherwise the assumption about the local
independence of the reaction probability from the inter-particle distance does not hold.
If the requirement of well-mixed sub-volumes is not satisfied, spatial fluctuations are
averaged which is clearly visible in Fig. 4.5. For a small number of volume sub-divisions
both the noise in the protein level and the distribution of times between bindings approach
the prediction from the CME model. On the other hand, if the number of sub-volumes
increases up to the limit where two molecules fill completely one sub-volume4, the first-
passage probability gradually recovers the desired characteristics typical for the diffusion
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process in a closed volume: power-law behavior for short times and exponential decay for
long times (Fig. 4.6).

A word of caution about the notion of exact prediction of fluctuations needs to be
added here. Although we treat noise computed with GFRD as a reference value, one
should bear in mind that this is a result of fluctuations with a rather simple Brown-
ian dynamics model for chemical reactions. We are ignoring here other, possibly impor-
tant, microscopic effects, like hydrodynamic interactions, electrostatic forces or molecular
crowding. These certainly affect the diffusion process [Echeveria et al. 2007] but their sig-
nificance for enhancing noise in biological systems is an open issue. Methods like GFRD
which solve numerically the Smoluchowski model for diffusion-limited chemical reactions
will provide an upper bound for the magnitude of fluctuations if compared to mesoscopic
methods based on the master equation. The latter contain additional physical assump-
tions (Tab. 4.1) in order to simplify computations at the cost of averaging microscopic
phenomena.

In Section 4.6.3 we argue that for a reversible reaction of a pair of particles the methods
reproduce the first-passage probability differently, which is the cause of the variation in
noise for the gene expression case. The power-law behavior for short departures from the
target diminishes as the spatial detail is decreased, which is equivalent to: increasing the
size of sub-volumes in MesoRD and GMP, increasing the difference between the binding
and the unbinding radius for the reversible reaction in Smoldyn, and obviously the well-
mixed postulate in SSA. The power-law region constricts also with increasing number
of molecules or with accelerating the diffusion process (not shown in this study). Then
the system moves away from the low-molecule-number and the short-correlation-length
regime and the distribution converges to the mean-field exponential behavior. This can
be properly approximated either by RDME-level methods with a coarse discretization or
simply by the SSA algorithm. If the overall forward reaction rate kON is taken instead
of the intrinsic κa, the SSA is also able to reproduce the exponential decay of the first-
passage probability equal to the one obtained from GFRD or RDME methods with a large
number of sub-volumes. However, for obvious reasons the power-law part is not recovered
(in SSA the next event is drawn from the Poisson distribution), and hence the average
inter-binding time is larger than that of GFRD.

Whereas the previous examples show the biophysical behavior of the methods for
diffusion-limited reactions, we discuss in Sections 4.6.4 and 4.6.5 a more realistic biological
problem, the chemotaxis pathway in E. coli [Lipkow et al. 2005, Lipkow 2006]. There it
is shown that modeling aspects and their consequences for the computational approaches
can result in different predictions of averages and noise.

Qualitative estimates addressing the computational cost of the mesoscopic methods
considered here are given in Tab. 4.8. GFRD and Smoldyn scale in a manner typical for
BD-based methods. Their main computational cost lies in computing the next position for
every molecule (involves drawing few random numbers) and computing distances between
reacting molecules, typically a N2 operation if no neighbor list technique is applied.
Differences in computational time may arise, however, because GFRD is an event-driven

4In the physical picture, if the size of the sub-volume is further decreased, the probability of finding
two molecules, which in reality have a certain diameter, is zero. This can be done in RDME-level methods
since they do not model single molecules but their population in sub-volumes. Such an operation is not
physical, however (see section Materials and Methods in [Fange & Elf 2006]).
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Method Computational cost Comments
GFRD ∼∑S NS Diffusive movements.
(event-driven) ∼∑NR

∏
S∈RNS Reactive distances.

Smoldyn As GFRD As GFRD.
(fixed time step)
MesoRD ∼ logNR [Gibson & Bruck 2000].
(event-driven) ∼ logNsv A sub-volume adds

a diffusive reaction.
∼ 〈τD〉−1

∼ 〈τR〉−1

GMP* ∼∑S NS ** Diffusive movements.
∼ NR As in the SSA.
∼ τ−1

D Fixed diffusion time step.
∼ 〈τR〉−1

Where:
〈τD〉 ∝ L2

sv/D ·Nsv/NS , 〈τR〉 ∝ L3
sv/kR ·

∏
S∈RNsv/NS ,

τD ∝ L2/D ·N−2/3
sv .

* The scheme is event-driven for reactions but the diffusion time step τD is fixed. The
diffusion time step is assigned for every diffusing species.
** If NS/Nsv > 90 molecules are moved in bulk, otherwise one-by-one in τD.
Note that for event-driven schemes the cost of diffusive movements or of computing reac-
tive distances is given per iteration time step.

Table 4.8: Scaling of the computational cost for the spatial discrete methods presented
in this comparison. Abbreviations: NS – number of molecules of a given species, NR –
number of reaction channels, Nsv – the total number of sub-volumes, 〈τR〉 – average
time between reactions, 〈τD〉 – average time between diffusive movements, D – diffusion
coefficient, kR – rate of reaction R, Lsv – length of the sub-volume, L – length of the total
volume.

scheme while Smoldyn uses a fixed time step. Choosing the right ∆t in the latter is not
a completely arbitrary procedure since one has to assure that the probability of events
per time step is small. In GFRD the maximum simulation time step during an iteration
depends on the distance of the molecules to the target. If the total number of molecules
decreases, the inter-particle distances increase, thus making a larger time step possible.
Using similar arguments one can explain differences in the cost of performing diffusion
in MesoRD and GMP (the first is an event-driven scheme, the latter uses a fixed ∆t).
Obviously the number of molecules of a given species in the sub-volume has to be used
instead of the inter-particle distance. Then, the average time between diffusive jumps,
〈τD〉, in MesoRD is inversely proportional to that quantity (see the caption of Tab. 4.8).
Additionally, thanks to the next sub-volume method, MesoRD finds sub-volumes where
the next event occurs instead of looping over the whole volume. On the other hand, GMP
favors higher densities because, contrary to all other methods, particles can be diffused
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in bulk rather than one-by-one. The computational cost of the two RDME-level methods
differs also in scaling with the number of reaction channels NR. The usage of the SSA
scheme in GMP results in linear scaling with NR; MesoRD achieves approximately logNR
scaling. Note that a diffusion event in the latter method is treated similarly as a reaction,
and is also entered into an event queue.

Results for the test cases give an additional indication of performance. In case of the
gene expression model general tools like Smoldyn, MesoRD or GMP will not outperform
significantly the supposedly more expensive GFRD since they are not optimized for this
very specific problem. On the other hand GFRD needs tailoring to every new problem and
in general is implementation-wise difficult to adjust in order to tackle bigger problems.
Computations of the CheY model showed a similar performance of all the methods. Smol-
dyn was only approximately twice slower than MesoRD and GMP, and appeared to be the
most flexible method from the modeling point of view. For example, it allows to construct
a more realistic, disc shape of the FliM motor cluster without any additional efficiency
penalty. Such geometry of the motor implemented in RDME-level methods requires a
much finer spatial resolution, which adds a significant computational cost.
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Chapter 5

Discussion

The following topics were discussed in the thesis: (i) the effect of stochastic motion of
motor proteins along biopolymer on gene expression bursts (Chapter 2), (ii) the effect
of protein abundance, variability and localization on response time in bacterial signaling
(Chapter 3), (iii) the emergence of the exponential regime in stochastic processes with
non-exponential waiting times (Chapters 1 and 3), (iv) the comparison of theoretical and
computational models for stochastic, spatially-resolved biological problems (Chapter 4).
Below we shall summarize and discuss the main findings.

Bursty gene expression. We suggest that bursts in mRNA (or protein) production
may result from stochastic changes in promoter occupancy as well as from stalling of
RNA polymerase (or ribosomes) during their stochastic motion along biopolymers, i.e.
transcription and translation. This stochastic motion disturbs or enhances temporal pat-
terns such as transcription initiation bursts. Stochastic bursting, a source of uncertainty
in establishing intracellular protein levels, is a potent mechanism of inducing phenotypic
heterogeneity in a population of cells [Yu et al. 2006, Sigal et al. 2006] (Fig. 5.1). Such
noise-induced variability in properties of individual cells may confer fitness advantage on
the population level in the face of antibiotic exposure [Blake et al. 2006], chemotherapy
treatment [Cohen et al. 2008, Spencer et al. 2009, Sharma et al. 2010] or general changes
in extracellular conditions [Acar et al. 2008].

Experimentally verified stalling of RNA polymerase during transcription
[Artsimovitch & Landick 2000, Core & Lis 2008, Greive & von Hippel 2005] and
ribosome pausing during translation [Hayes & Sauer 2003, Sunohara et al. 2004,
Buchan & Stansfield 2007] is a target for altering gene expression. Poised polymerases
have been argued to play a decisive role in influencing regulation of genes in embryo
development [Hayes & Sauer 2003]. Our theoretical findings imply that motor protein
motion during transcriptional (or translational) elongation is a potentially additional
level of regulating the extent of cellular heterogeneity resulting from bursts in gene
expression. Due to collisions of motor proteins during transcription and translation,
genes under the control of an activating transcription factor are more likely to induce
bursts by means of polymerase or ribosome stalling. Proteins synthesized from strongly
suppressed genes, on the other hand, will suffer from stochastic bursts generated at the
initiation phase. Whether stalling and pausing during elongation indeed can produce
coherent and significant bursts of protein synthesis, which would further translate to
physiologically relevant phenotypic differences among individual cells in a population
remains to be verified in vivo. Even more intriguing is the ability of transcriptional
elongation to modulate temporal activity of events generated upstream, e.g. at the
transcription initiation stage. Experiments have demonstrated that the frequency of
bursts (rather than concentration) of transcription factor activity might also encode



102 Chapter 5. Discussion

induction level, kON

st
an

da
rd

 d
ev

ia
tio

n 
in

 P

ON

OFF

P
kini

kON kOFF

∅

kdeg

kON, kini - varied
kOFF, kdeg - fixed

kini = 100

kini = 10

kini = 1

Poisson
exponential

bimodal

0.001 0.01 0.1 1 10 100

0.5
1.0

5.0
10.0

50.0

Figure 5.1: The relationship between the standard deviation and the induction level, kON
- the on switching rate of the burster. Indicated are three regimes of the shape of the
steady-state P distribution, which correspond to distributions plotted in Fig. 1.7 in the
Introduction. Parameter kini approximates the size of a burst. Bursty protein produc-
tion resulting in bimodal distribution has been measured in yeast cells and attributed
a biological function: an increased cell-cell variability due to bursty gene expression en-
ables cells to respond quickly when challenged with antibiotic stress [Blake et al. 2006].
Bimodality in protein distribution emerges only due to stochasticity, in a system without
feedbacks and associated bistability, a condition traditionally regarded as necessary to
achieve multiple states (compare the two mechanisms in Fig. 1.8 in the Introduction).

information about the extracellular conditions [Cai et al. 2008, Ashall et al. 2009]. In
these cases, physiologically relevant patterns of gene expression corresponding to different
cell fates depend heavily on frequency-modulation. To ensure robust information relay,
transcription elongation should be in the regime where collisions of motor proteins
are negligible and hence unable to impair timescale separation introduced upstream.
Disruption of frequency patterns in transcription factor activity such as NF-κB by means
of polymerase pausing could be a possible therapeutic target.

The analysis of bursts in the context of gene expression is frequently marred by the
inability to elucidate the mechanism responsible for generating such variability in times
of mRNA or protein synthesis. Problems originating in other fields, such as telecommu-
nication networks or generic analysis of time series, are affected too. This complication
becomes even more serious when the stochastic events in question are very infrequent.
Without a prior knowledge of the mechanism generating bursts, e.g. the length of the
periods of synthetic activity, it is impossible to group individual occurrences of product
arrival into a single burst unambiguously. The same time trace of synthetic activity can
be characterized by various burst sizes and durations (Fig. 5.2). Therefore, comparison
and quantification of different stochastic bursts is impossible without objective measures.
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Figure 5.2: Grouping occurrences of synthetic events is ambiguous. If synthetic events are
infrequent (vertical lines), apparently close events may result from different continuous
periods of activity (dark grey regions).

In Chapter 2, we introduce three indices: burst size, significance, and duration, which are
independent of the underlying mechanism of bursts. For the simplest case, bursts gener-
ated by an ON /OFF switch (Fig. 5.1), the indices have a clear analytical interpretation.
For general cases we provide a straightforward framework to calculate our measures from
the analysis of a time trace of product arrivals.

Objective indices allow for comparison of measurements and identification of the un-
derlying burst-generating mechanism. Recent experiments revealed some contradicting
results possibly indicating a fundamental difference in regulation of stochastic bursts be-
tween yeast and mammalian cells. A study of a synthetic construct implemented in yeast
showed that the concentration of the inducer affected the frequency of bursts, i.e. the dy-
namics of the OFF -to-ON state transition, rather than their size [Raser & O’Shea 2004].
In mammalian cells, on the other hand, it was the burst size that was affected by the
concentration of an inducing transcription factor [Raj et al. 2006]. Burst size and dura-
tion are both properties of the active (ON ) state and could relate to such mechanisms as
exposing new binding sites due to chromatin remodeling or engaging additional transcrip-
tional regulators localized in the vicinity of the active site [Skupsky et al. 2010]. Globally
controlled changes in chromatin configuration are more likely to affect burst significance,
a quantity related to the frequency of bursts [Skupsky et al. 2010]. Therefore, further
experiments are required to reveal how much of the stochasticity in gene expression is
regulated, which properties of the noise spectrum are modulated and what parts of the
regulatory machinery are actively controlling the expression dynamics.

Prokaryotic signaling. In order to quantify the effect of protein abundance, their
fluctuations and diffusion on the speed of signaling response we analyzed a generic two-
component signaling network in Chapter 3. Other studies have focused on input-output
performance of signaling networks at steady-state and have shown that the two-component
design is very favorable for dealing with information transfer [Batchelor & Goulian 2003,
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Shinar et al. 2007]. We are concerned with the temporal response of this network, in par-
ticular with the time to initiate gene expression after the extracellular signal appears. The
response time is likely optimized during evolution as many environmental stresses have
an instantaneous negative influence on cellular physiology. Our theoretical results backed
with analysis of bioinformatics data suggest how such an optimization could arise in this
remarkably simple system. Distances between the response regulator, the membrane and
the DNA site that have to be covered by means of diffusion are physical limitations around
which the structure and the composition of the network has to evolve in order to increase
its performance.

We find that already a few dozen molecules that constitute the two-component system
suffice to achieve a sub-second performance. Scattering receptors on the membrane instead
of grouping them in one cluster confers additional two to three-fold reduction. A single
response regulator and a single membrane receptor molecule can only achieve this task
in about a minute mainly due to the time required to search cognate binding targets
on the membrane and on the DNA. This estimate assumes a kinetic scheme without
dephosphorylation, free diffusion of proteins and assumes that the first binding to the
DNA site of the active response regulator is already successful. Additional time spent
on (de-)phoshorylation events, temporal changes in receptor activity (not all receptors
remain active during signal relay, which effectively decreases the rate of the regulators’
phosphorylation), and the presence of low-affinity binding sites on the DNA (regulators
bind to “wrong” sites thus requiring additional attempts to search the relevant promoter),
all of these effects will slow down the initial phase of signal response even more. Our
theoretical framework uses a single-molecule perspective as a basis for further analysis.
Additional biochemical phenomena as those mentioned above can be simply added as
transitions that a single molecule undergoes in a sequence. Since many molecules are
eventually engaged in signaling response, the time to initiate response is calculated as the
first-passage time in an ensemble of molecules (Section A.4).

If the time of the initial stage of the signaling response is indeed under selective
pressure (an issue awaiting experimental verification), the results of our study indicate
directions this optimization may take. A higher abundance of network constituents evi-
dently decreases the mean and the variance of the response time. However, the benefit
of this reduction scales only as the square root of the number of molecules and further
synthesis of signaling proteins is likely offset by the cost of their production. For a cell of
the size of an E.coli bacterium tens of thousands of molecules will not bring about a phys-
iologically significant reduction in the response time compared to a hundred molecules.
Scattered receptors do reduce the response time but the change is only few-fold. Recep-
tor clusters as a way to amplify the signal may therefore evolve without hindering the
signal relay [Berg & Purcell 1977, Shoup & Szabo 1982, Zwanzig 1990]. The presence of
many low-affinity binding sites and many target genes may require a much higher level
of response regulators being synthesized than the estimation for the simple model (many
response regulators would be arrested at these sites and would slow down the search
process). In Figure 3.14 we provide an approximation to account for this effect. Indeed,
such a strong bias in favor of a higher response regulator concentration has been ob-
served experimentally (for a UhpA/UhpB network: thousands of response regulators, a
few dozen of receptors). This ratio may be further facilitated by the bias in gene order
of the two components. We back this claim by the analysis of 623 unique genomes from
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MiST database [Ulrich & Zhulin 2007] (Section 3.5.12.2) where we find that in 60% of
the cases the gene coding for response regulator is placed before the receptor gene.

Even though the behavior of the generic two-component system that we study will
likely be affected by numerous additional effects mentioned earlier, the major findings
regarding the effects shaping the design of this network should remain valid. Kinetic
parameters, protein abundance and spatial configuration of membrane receptors are cur-
rently known for only a handful of systems. Therefore, our numerical estimations may
only serve as a diffusion limit for the efficiency of a two-component signal transmission.

How non-exponential waiting times can converge to exponential? All of the
problems discussed in this thesis involved processes with times between chemical events
described by a waiting time distribution differing from the exponential function. Bursty
production analyzed in the Introduction and in Chapter 2 occurred at times drawn from
a double-exponential function. Sequential processes are another rich class of problems
where the shape of the waiting time distribution differs from the exponential. The time
to complete a chemical transition taking place in a series of small steps has a smaller
variance than a single-step process. We have seen examples of such a reduction in variance
when discussing a sequence of events such as motion of a polymerase (or a ribosome)
during transcriptional (or translational) elongation (Chapter 2), a response in a two-
component network (Chapter 3), diffusive search for a cognate target (Chapter 3), or
threshold activation (Section 1.3.1 of Introduction). Kinetics of a single enzyme have
this property too [Qian 2008]. Subsequent steps of the enzymatic transition form a cycle
where the time to complete it (the waiting time) is a stochastic variable from a peaked,
non-exponential distribution – a fact also confirmed by experiments [English et al. 2006]
(Fig. 5.3B). Due to lower noise in the time to complete a sequence, it is conceivable that
serial chemical transitions gave organisms not only the ability to checkpoint the cell’s
regulation but also to synchronize biochemical events in time.

Brownian motion of biomolecules and their diffusion-limited searches for cognate tar-
gets also belong to that category. A chemical interaction like gene activation, receptor
binding or a generic enzyme-substrate binding requires an encounter of two molecular
species in cellular space. Typically the distance is covered by means of diffusion (another
possibility is active transport which we do not cover here). The shape of the distribution
of times required to cover that distance or the distribution of times required to undergo a
sequence of chemical transitions (the waiting time or the first-passage time) is a peaked
distribution as shown in Fig. 1.13 or Fig. 1.10 in the Introduction. The characteristic
shape is a reflection of the simple fact that it is physically impossible for two molecules
to meet or to complete the sequence instantaneously, hence the waiting-time distribution
assumes zero at the origin.

Non-exponential waiting times may strongly affect steady-state product dis-
tributions – a quantity frequently measured in studies of cellular stochasticity
by means of experimental technique known as flow cytometry [Blake et al. 2003,
Newman et al. 2006, Friedman et al. 2006]. Bursty gene expression may yield a bimodal
protein distribution (Fig. 1.7) [Shahrezaei & Swain 2008] inducing cell-cell heterogeneity
[Perkins & Swain 2009, Eldar & Elowitz 2010]; narrow, gamma-like waiting time distri-
butions in sequential production and degradation processes will give rise to a narrow
steady-state product distribution with noise smaller than the noise of the Poisson dis-
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tribution (Fig. 1.3, Introduction). Transients in processes with non-exponential waiting
times change too. The time to reach the steady-state in a sequential degradation process
discussed in the Introduction differs entirely from the analogous process but modeled as
a single step with exponential timing (Fig. 1.11).

Since much of the intuition about biochemical processes in systems biology is based on
the assumption that waiting times in chemical reactions are distributed according to the
exponential function, it is worthwhile to understand the regimes when non-exponential
biochemical processes converge to a much more familiar description. The theoretical
framework dealing with exponential processes is well established: a Markov chain can
be formed as an abstraction of the stochastic sequence of events. The master equation
which describes the temporal evolution of such a system can be solved using various ana-
lytical approaches or numerical schemes. Numerous approximations are available too. For
instance, moments can be obtained by a variation of the fluctuation-dissipation theorem -
the so called linear noise approximation, which assumes a Gaussian distribution of fluctu-
ations around the mean obtained with ordinary differential equations following the law of
mass action. The macroscopic limit of the master equation, the law of mass action, is also
built on the assumption about the exponential distribution of chemical events in time.
Below we shall discuss how bursts, enzymatic reactions and diffusion reactions loose their
timing properties and become effectively first-order processes described by exponential
waiting times.

Stochastic bursts loose their significance when bursty gene expression takes place from
multiple copies of the same gene simultaneously. The double-exponential waiting time
in mRNA synthesis converges to an exponential function already for a few gene copies
(Fig. 2.9 and Fig. 5.3A). In Section 3.3.5 we discussed the effect of fluctuations in protein
concentration on the performance of the signaling network. Infrequent bursty protein syn-
thesis results from slow fluctuations extending cellular generation time [Sigal et al. 2006].
This in turn, may impair signal relay even further as some cells may end up with a
highly asymmetrical distribution of proteins constituting the network. Positioning genes
under control of the same promotor may avoid the effects of such strong fluctuations
[Løvdok et al. 2009] – variability in concentration will still exist but all protein species
will fluctuate in a correlated fashion. The existence of multiple gene copies may signifi-
cantly reduce the magnitude of fluctuations altogether.

Time precision in single enzyme activity can be also diminished by increasing the copy
number of the enzyme (Fig. 5.3B) – the overall waiting time for product release quickly
converges to the exponential with the amount of the enzyme rising [Qian 2008]. An ODE
description becomes an appropriate level of abstraction; the Michealis-Menten formal-
ism derived from the mass-action law, which intrinsically assumes exponential waiting
times, correctly describes the biochemistry of many molecules (cf. Eqs. (1.1)–(1.3) in the
Introduction).

Exponential approximation in diffusion-limited systems Exponential approxi-
mation can be applied to diffusion-limited reactions too. The discrepancy is small if diffu-
sion involves very long trajectories, for instance, when the signaling molecule searches for
a small target on the DNA site (Fig. 5.4). The reason behind the exponential character
of the distribution becomes clear: intervals between stochastic events without memory of
past events are described by the exponential distribution (such a process forms a Markov
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Figure 5.3: In the limit of many independent stochastic processes (N) running in parallel,
the waiting time distribution converges to a single exponential function - a macroscopic
limit. (A) Waiting time distribution for the synthesis of product P in the generic burst
model. Production is very “bursty” - the waiting time distribution has two distinctive
regimes (the timescale separation is large). (B) Waiting time distribution for a single
enzyme cycle following Michealis-Menten kinetics.

chain). For a diffusive encounter, the trajectory becomes independent of initial conditions
(“looses memory”) if the search for the target involves very long trajectories where the
searching molecule “wanders off”. In that case, the peak of the waiting time distribution
(its typical value) is much smaller than the mean. The whole trajectory becomes a single
memoryless step without memory of the initial spatial configuration.

Diffusion-limited reactions are rarely trackable by analytical methods and usually re-
quire costly numerical simulations. Calculation of the behavior of the two-component
signaling network in Chapter 3 demonstrated how the exponential approximation can be
applied to a spatially resolved system without expensive computation: biochemical reac-
tions were modeled as first order processes with exponential waiting times. The existence
of such a regime is also an interesting example of how biological systems could evolve the
independence of cellular biochemistry to spatial geometry.

The exponential approximation of waiting times in diffusion-limited reactions con-
serves the mean but, depending on the spatial configuration of the problem, it introduces
deviations in higher moments of the waiting time statistics. Deviations in the waiting
times affect the steady-state variance as discussed earlier. A coarse-grained theoretical
description of a diffusion-limited reaction may introduce additional discrepancies. Com-
putational methods based on various physical models of a diffusive encounter may yield
different waiting time distributions. A study in Chapter 4 demonstrated this issue. The
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Figure 5.4: Waiting time distributions for small and large target searches. Solid line is
the waiting time distribution for a diffusive search process. Dashed curve indicates the
exponential approximation with the same mean as the original search process. The search
for a small target has the characteristics of the memoryless process. The waiting time
distribution is peaked but wide (the mean is much larger than the peak). The exponential
approximation of the search for a large target is poor; the distribution is very peaked.

magnitude of steady-state fluctuations computed for a generic gene expression model
depended on the underlying model and the level of spatial discretization (Fig. 4.5). In-
consistency in results was a direct consequence of the inability to reproduce a correct
waiting time statistics of a reversible bimolecular reaction (Fig. 4.6).

The extent to which the waiting time diverges from the exponential function and the
influence of this departure on macroscopic properties of the cell is still largely unrecog-
nized in the field of molecular biology. The topics discussed here will become even more
relevant in the light of recent advances in experimental techniques, which make possi-
ble the observation of the evolution of single enzyme molecules. Understanding of these
phenomena may come only from the type of analysis presented earlier in this thesis. Ex-
periments tackling the physiology of a single cell shall further improve our understanding
of timing properties of biochemical reactions and verify theoretical hypotheses, some of
which have been presented in this thesis. Recognizing the exponential regime shall be
also of great interest to the modeling community as the complexity of the problem can be
greatly reduced if stochastic events are assumed to be exponentially distributed in time.

One common hurdle in the quantitative study of living organisms is the immense
complexity of biochemical processes. The amount of involved biomolecules and vast in-
teraction networks they engage into, results in phenomena spanning several temporal and
spatial scales. A tiny change in the DNA sequence may change the organism’s pheno-
type, promotea a novel anatomical structure by rearranging connectivity between several
core processes, modify the social behavior or impair the functionality to the point the
organism is no longer viable. The understanding of how complex gene networks define the
phenotype still falls short from being complete and will likely occupy systems biologists
in the foreseeable future.

Despite the difficulty in analyzing theoretically the multi-scale nature of biochemical
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processes and collective phenomena emerging in complex biological networks, the laws of
physics behind them are no different from those governing the flight of a projectile or the
flow of electric current in a wire. Even though a consistent analytical framework dealing
with complex biological systems is still likely to materialize, it is conceivable that no new
form of physics will be required in such a theory. Physics as we know it today already
provides countless intuitive insights into the way functionality of the living organism is
shaped in the course of the evolution. Restriction and facilitation, are two forces to which
organisms owe their design.

The former one is the fairly obvious observation that the building blocks of any living
system cannot escape the limitations of the physical world they evolved in. For instance,
the process that relays information about the environment to the inside of the cell will
be subject to thermal noise affecting a sensory module. The time to process and adjust
cellular physiology to that information is also limited by rates of chemical reactions - an
outcome of the speed of molecular motion in the intracellular space, the relative position
of enzymatic active sites, the effective forces exerted by neighboring molecules and cellular
structures. Similarly, anatomical assimilations must conform to the laws of physics: a wing
of a bird, a fin of a fish, etc. Numerous mechanisms have evolved in order to push those
limits and to maximally optimize the structure such that the reproductive success of the
organism increases.

Aside from restricting the structure of the living system, physical interactions facilitate
a number of its functionalities. It is that “physical scaffold” that allows a relatively small
number of human genes (a little more than 20000) to direct the matter to form several
hundred cell types, coordinate them to produce more than 100 trillion cells organized into
dozens of organs, one of them the brain: a staggering collection of 100 billion of neurons
linked with a million billion of synapses. Due to information capacity constraints neither
the exact position of every cell in the human body nor the information about its shape
or the precise molecular content is given explicitly in the gene sequence. It is not even
necessary. An exploratory process, a purely physical phenomenon, facilitates formation of
the vascular and the nervous system, or growth of microtubules which form and maintain
the cytoskeleton - the scaffolding of every eukaryotic (and according to recent findings,
possibly also prokaryotic) cell. The information contained in the genome merely defines
the building blocks, while the physics takes over the assembly process giving the final
organization of the organism growing from the embryo, the three-dimensional fold of the
protein or the messenger RNA, the lipid bilayer structure of the cell membrane. The
much discussed utilization of randomness in gene expression to induce heterogeneity in
the microbial population that increases survival rate in fluctuating environment belongs
to the same category of processes: the genome merely triggers the usage of a physical
phenomenon but does not prescribe the exact outcome. Hence, a lot of information about
the final anatomy of the organism or even structure of the population is written in the
physical interactions itself. The understanding of these relationships and mimicking them
by theoretical models is the holy grail of systems biology.





Appendix A

First-passage time basics

A.1 pdf and CDF

This chapter introduces the probability density function (pdf ), f(t), and a function re-
lated to it, the cumulative distribution function (CDF), F (t). In great simplification, the
pdf describes the following: the probability that a random variable (RV) X falls within
an infinitesimal interval (t, t+ ∆t) equals:

Pr[X ∈ (t, t+ ∆t)] = fX(t)∆t (A.1)

Throughout the thesis we analyze first-passage times of various biological phenomena.
Variable t is a measure of time elapsed till the commencement of the first event. Such an
event could be, for instance, reaching a certain area in a 3D space by one or more diffusing
molecules (Chapter 3), or the time between two consecutive syntheses of a molecule
(Chapter 2).

The area under the f(t) curve is normalized to 1, and in most cases its value at a
particular t exceeds 1. The pdf is not the probability of an event to occur per se. It can
be viewed as a continuous version of the histogram. Such a histogram shows frequencies
of values taken by the RV X.

A probability distribution has a density function if there exists a continuous CDF:

FX(t) = Pr[X ≤ t] =

∫ t

0

fX(τ)dτ (A.2)

The CDF gives the probability that a RV X takes on a value less than or equal to t. Its
derivative is the pdf :

d

dt
FX(t) = fX(t) (A.3)

It is also helpful to introduce the survival probability (SP) SX(t):

SX(t) = Pr[X > t] = 1− FX(t) (A.4)

fX(t) =
d

dt
FX(t) = − d

dt
SX(t) (A.5)

The term survival can be easily understood by analyzing the example of binding
macromolecules. Take a single molecule that starts diffusing at time t0. Then, the random
variableX denotes the time elapsed before the molecule finds a target, an area on a domain
boundary, for instance. In that sense, as long as the molecule is engaged in diffusion it
survives; that is, the molecule has not reached the target within time t. Similarly, the CDF
FX(t) is often termed the mortality function in the literature, as it gives the probability
that X is smaller than t, i.e. the molecule finds the target before time t.
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A.2 Moments of the first-passage

A number of properties of the first-passage time can be inferred from f̃(s) even without
performing the inverse transform. The behavior of the Laplace transform for s → 0

determines the long-time behavior of the function f(t). Using the definition of the Laplace
transform, the small-s expansion generates all positive moments of f(t) [Redner 2001]:

f̃(s) =

∫ ∞
0

f(t)e−stdt

=

∫ ∞
0

f(t)

(
1− st+

s2t2

2!
− . . .

)
dt

= F (∞)

(
1− s〈t〉+

s2

2!
〈t2〉 − . . .

)
(A.6)

where F (∞) ≡ f̃(s = 0) is the probability of eventually arriving in the state of interest. In
case of diffusing molecules, the long-time limit of the cumulant F (t) gives the probability
of reaching the absorbing sphere. For a reaction network, this limit refers to the total
probability of reaching a discrete molecular state. If the system always reaches this state
for any given initial condition, then F (∞) = 1.

A.3 Moments and the survival probability

Alternatively, one can compute the n-th moment directly from the interarrival time prob-
ability density fX(t):

〈tn〉 =

∫ ∞
0

tnfX(t) dt (A.7)

Simple algebra allows to obtain the relation between the survival probability and the
mean. Using definition A.4 and integrating Eq. A.7 for the moments by parts yields:

〈tn〉 = −
∫ ∞

0

tn
d

dt
SX(t) dt

= −tnSX(t)
∣∣∣∞
0

+ n

∫ ∞
0

tn−1SX(t) dt (A.8)

The first term equals zero at the lower limit by definition. The upper limit can be
inferred using the fact, given in Section A.2, that the eventual arrival probability equals
1. This in turn implies that none of the intervals can survive the infinite duration. Hence,
the SP must approach zero for t → ∞ and the integrated term at the upper limit must
be zero.

For n = 1, we obtain the mean first-passage time (MFPT):

〈t〉 =

∫ ∞
0

SX(t)dt (A.9)

A.4 Superposition of N independent random processes

In this section we derive a general expression for the first-passage time pdf for the super-
position of N independent and identically distributed (iid) random variables (RVs). We
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shall begin with the first order statistics. This result allows to obtain the first-passage
time pdf in an ensemble of N independent diffusing molecules (i.e. the pdf for the first
molecule that arrives at the target [Weiss et al. 1983]) or N independent bursting mech-
anisms (i.e. for the first molecule synthesized; Chapter 2). The assumption behind this
derivation is that all independent processes are initially synchronized. In the case of dif-
fusing molecules, this translates to all molecules being in the same position (although the
initial position could also be random) and not at the target. For an ensemble of bursters,
synchrony of the initial state implies the same state, ON or OFF, for all bursters. The
k-th order statistics provides analogous results for the k-th molecule arrival or the k-th
synthetic event.

Further on, we define the excess lifetime and we derive the first-passage time in an
ensemble of unsynchronized random processes. This result is applicable for a computation
of the distribution of interarrival times due to synthesis of molecules by an ensemble
of bursters, each being in a random state (Section 2.3.5). We also use this equation to
illustrate waiting time distributions for product synthesis in a classical enzymatic reaction
(Fig. 5.3).

A.4.1 First order statistics

Let Y 1, Y 2, . . . , Y N be a sample of independent and identically distributed (iid) continu-
ous RVs. A RV Y i has a pdf fY (t), and a CDF FY (t) (for brevity we skip the subscript Y
in this section). We define Y (1,N) = min

{
Y 1, Y 2, . . . , Y N

}
as the first order statistics of

the iid sample of size N . We are interested in the pdf and CDF of the first order statistics.
First, we note that:

f (1,N)(t) =
d

dt
F (1,N)(t) (A.10)

The CDF of the first order statistics, F (1,N)(t), can be easily related to the CDF of a
single RV, F (t):

F (1,N)(t) = 1− Pr[Y (1,N) > t]

= 1− Pr[Y 1 > t and Y 2 > t, . . . , and Y N > t]

= 1− (1− F (1)(t)) · (1− F (2)(t)) . . . (1− F (N)(t))

= 1− (1− F (t))N (A.11)

The third line results from the fact that all RVs are iid.
The survival probability S(t) = 1− F (t) (cf. Section A.1) for the first order statistics

reads:

S(1,N)(t) = S(t)N (A.12)

Finally, upon substituting the above into Eq. A.10 we obtain the pdf for the first
passage time out of N iid processes:

f (1,N)(t) = N f(t) (1− F (t))
N−1

= N f(t)

(
1−

∫ t

0

f (τ) dτ

)N−1

(A.13)
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A.4.2 k-th order statistics

The result of the previous section can also be achieved by a slightly different approach.
Additionally, one can obtain a k-th order statistics, i.e. a k-th smallest passage time
f (k,N)(t). A combinatorial term appears:

f (k,N)(t) dt = Pr(Y (k,N) ∈ (t, t+ dt))

= Pr(one of the Y i ∈ (t, t+ dt), k − 1 of all the others ≤ t)
= N Pr(Y 1 ∈ (t, t+ dt), (k − 1) others ≤ t)

= N Pr(Y 1 ∈ (t, t+ dt))

(
N − 1

k − 1

)
F (t)k−1(1− F (t))N−k

= Nf(t)dt

(
N − 1

k − 1

)
F (t)k−1(1− F (t))N−k

and finally:

f (k,N)(t) = Nf(t)

(
N − 1

k − 1

)
F (t)k−1(1− F (t))N−k (A.14)

A.4.3 Excess lifetime

We set out to obtain a distribution of interarrival times in the pooled (superposed) process,
where the states of the independent sources are not synchronized. Therefore, the result
of the previous two sections cannot be applied directly here. The Equations A.13 or A.14
would be relevant if one was interested in the pdf of the first arrival out of N , given that
all sources were in the same initial state at T0. However, we are looking for the interarrival
time at an arbitrary epoch T from the last arrival at T0. In this case, all other processes,
except for the one which fired at T0, are in some other state which is not necessarily
the very moment of firing. Therefore, we introduce an auxiliary RV, which describes the
interval between an arbitrary epoch and the event directly preceding regardless of the
source. A RV with these properties is known in the literature as the excess lifetime. We
shall define its pdf for a single source. This in turn, will allows us to use it in Eq. A.13 for
the first order statistics. Although, in our case arrivals are generated by a single source
– an interrupted Poisson process (IPP) as in Section 2.5.1, the results presented here are
not restricted to any particular distribution function.

We consider a stochastic process where the interarrival times between successive events
are iid random variables X = {Xk, k = 1, 2, . . . } ≡ Y i. A process with this property and
an arbitrary distribution of the interarrival times is a renewal process (cf. Chapter 1.7 in
[Medhi 2003]). RV X is described by a continuous probability density function fX(t) and
the cumulated distribution function FX(t). For instance, in case of a single-source IPP,
the pdf and CDF are given by Eqs. 2.9.

Since X denotes the length of the interarrival time of duration t, the epoch of the k-th
arrival is:

Tk = X1 +X2 + · · ·+Xk, k ≥ 1, and T0 = 0 (A.15)

The time of arrival that occurs immediately before an arbitrary epoch T is:

TK(T ), where K(T ) = sup {k : Tk ≤ T} (A.16)
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Figure A.1: Random variables for the interarrival time (X) and the excess lifetime (Z)
shown for three consecutive random arrivals. The equilibrium pdf for RV Z is related to
the probability distribution of interarrival times X through relation A.21.

Therefore, if an arbitrary epoch of time T lies between the k-th and the (k + 1)-th
arrival, then the time t between arrivals fulfills:

TK(T )−1 < t ≤ TK(T ) (A.17)

Further, we define an additional RV, Z(T ) = T − TK(T ), which is the length of the
interval between an arbitrary point at time T and the time of occurrence of the imme-
diately preceding event TK(T ) (Fig. A.1). RV Z(T ) is known in literature as the excess
or spent lifetime, or backward-recurrence time at T [Medhi 2003], or simply the delay
[Cox & Smith 2006].

The excess lifetime function at T is the pdf g associated with RV Z(T ):

gZ(t, T ) = Pr[Z(T ) ∈ (t, t+ ∆t)] (A.18)

Note that the value of RV Z(T ) is also denoted by the letter t, which is a measure of the
interval length. It is safe to do so, as long as the function is properly described by the
name of a corresponding RV, in this case subscript Z.

It can be written as the total density h(TK(T )) of events at time TK(T ) = T − t, times
the probability that the interarrival time Xk = TK(t)+1 − TK(t) exceeds t:

gZ(t, T ) = h(T − t) · Pr[X > t] = h(T − t)SX(t) (A.19)

where SX(t) is the SP for the interarrival time frequency.
In the long-time limit, the total density of events equals simply the expectation value

of RV X:
lim
T→∞

h(T − t) =
1

E(Xk)
=

1

〈t〉 (A.20)

and hence:

gZ(t) = lim
T→∞

gZ(t, T ) =
SX(t)

〈t〉 (A.21)

Thereby, we obtained a very useful relation between the excess lifetime function, gZ(t),
and the interarrival time SP. In the next section, we will use it to construct the excess
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lifetime pdf for the superposed process, and to obtain the interarrival time CDF for N
sources.

Similarly, the CDF associated with the equilibrium delay variable Z is given by:

GZ(t) = Pr[Z ≤ t] =
1

〈t〉

∫ t

0

SX(τ)dτ, τ ≥ 0 (A.22)

Note, that the pdf of the excess lifetime for the Poisson process is the same as the pdf
for interarrival times. This is the only renewal process with this property [Medhi 1994].

A.4.4 Interarrival time CDF in an unsynchronized ensemble

Here, we make use of Eqs. A.11 and A.13 for the first order statistics to express the
CDF in the pooled process (superscript S instead of (1, N)) in terms of a single source
probability distribution. As mentioned earlier, in order to tackle events generated by an
ensemble of unsynchronized processes we cannot use the interarrival time CDF of the
single source directly in these equations. Instead, we substitute the excess lifetime CDF
of a single source given by Eq. A.22:

G
(S)
Z (t) = 1− (1−GZ(t))N (A.23)

g
(S)
Z (t) =

d

dt
G

(S)
Z (t)

= N g(t) (1−GZ(t))N−1 (A.24)

Further, we substitute the excess lifetime pdf and CDF in the above relation with
Eqs. A.21 and A.22:

S
(1,N)
X (t)

〈t〉(S)
=
N

〈t〉SX(t)

(
1− 1

〈t〉

∫ t

0

SX(τ)dτ

)N−1

, (A.25)

where 〈t〉(S) is the mean interarrival time in the pooled process. For instance, for the su-
perposition of iid IPP processes this mean is related to the single source mean (Eq. 2.12a)
in the following manner:

〈t〉(S) =
〈t〉
N

(A.26)

Finally, the SP in a pooled IPP process can be written in terms of a single-source SP
SX(t):

S
(S)
X (t) = SX(t)

(
1− 1

〈t〉

∫ t

0

SX(τ)dτ

)N−1

(A.27)



Appendix B

Basics of diffusion-limited
reactions

B.1 Theory: single molecule

First-passage time theory is a useful theoretical framework to analyze diffusion of macro-
molecules in geometries like the problem analyzed in Chapter 3: a 3D sphere with (par-
tially) absorbing boundaries [Redner 2001, Weiss 1967].

Diffusive movement of a single macromolecule in a potential free domain can be de-
scribed by the following Fokker-Planck equation, also referred to as the Einstein diffusion
equation [Schulten & Kosztin 2000, Weiss 1994, Weiss 1967, Ebeling et al. 2003]:

∂c (~r, t|~r0, t0)

∂t
= D∇2c (~r, t|~r0, t0) . (B.1)

The continuous variable c is the probability density for finding a particle at position ~r
at time t given it was at ~r0 at the earlier time t0. Designation of the function by a letter
c is intentional because it is analogous to the macroscopic continuous concentration of
diffusing molecules.

In this case, the diffusion coefficientD is assumed constant in the whole domain. Equa-
tion B.1 implies that the molecule diffuses freely, that is, the mean square displacement
is linearly proportional to time:〈(

~r(t)− ~r(t0)
)2〉

= 2dDt, (B.2)

where d denotes the dimensionality.

B.1.1 Incorporating reactions through boundary conditions

In order to include chemical reactions into the model we need to prescribe appropriate
boundary conditions for the volume Ω. The list below summarizes four different types of
such conditions corresponding to various interactions.

Reflecting: the particle does not cross the boundary:

n̂(r) · Ĵ(r) c(r, t|r0, t0) = 0, r ∈ ∂Ω, (B.3)

where n̂(r) is a unit vector normal to ∂Ω, the boundary of the volume Ω. The term
Ĵ(r) = D∇ is the flux operator acting on the solution of the Einstein diffusion
equation. It yields the local probability flux.
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Reaction (absorbing): the particle arriving at the boundary is annihilated with 100%
efficiency:

c(r, t|r0, t0) = 0, r ∈ ∂Ω. (B.4)

Radiation: intermediate reactivity at the boundary:

n̂(r) · Ĵ(r) c(r, t|r0, t0) = κr c(r, t|r0, t0), r ∈ ∂Ω, (B.5)

where κr is intrinsic reaction rate at contact [Agmon & Szabo 1990].

Reversible (back-reaction): after reaction the particle can undergo dissociation with
intrinsic rate coefficient κd [Agmon & Szabo 1990]:

n̂(r) · Ĵ(r) c(r, t|r0, t0) = κr c(r, t|r0, t0)− κd [1− Sep(t|r0, t0)] , r ∈ ∂Ω, (B.6)

where Sep(t|r0, t0) is the separation probability, i.e. the probability that the
molecule is unbound [Agmon & Szabo 1990].

B.1.2 Solution for the spherically symmetric system

Since we are considering a strongly diffusion-limited binding, we assume that the time to
overcome the free energy barrier is negligible compared to the time required for the two
molecules to meet. Hence, we will use the reaction boundary condition B.4 to describe
the binding.

Once we assume radial symmetry of the problem, c(~r, t)→ c(r, t), where r = |~r|. Then,
Eq. B.1 can be rewritten in the following way:

∂c(r, t)

∂t
= D

[
∂2c(r, t)

∂r2
+
d− 1

r

∂c(r, t)

∂r

]
, (B.7)

where d is the dimensionality of the system.
We solve this equation with the absorbing boundary condition at the inner concentric

sphere r = R−, and reflecting at the outer boundary r = R+:

c(R−, t) = 0, (B.8)
∂c(r, t)

∂r

∣∣∣
r=R+

= 0. (B.9)

We assume the initial condition to be a spherical shell of probability density (concen-
tration) at r = r0:

c(r, t = 0) = δ(r − r0)
1

Ωd r
d−2
0

, (B.10)

where δ(r) is the Dirac delta function, Ωd is the surface area of a d-dimensional unit
sphere for normalization.

The solution is obtained by means of the Laplace transform in the time domain
[Redner 2001]:

c(x, s) =
1

s

( s
D

)d/s (xx0)ν

Ωd

Cν(x<, x−)Dν,−(x>, x+)

Dν,−(x−, x+)
(B.11)

where:
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• d - dimensionality, and ν = 1− d/2 - dimensionality factor,

• x = r
√
s/D, radius reexpressed in terms of the dimensionless radial coordinate;

similarly, x± = R±
√
s/D,

• x> = max(x, x0), x< = min(x, x0),

• Cν(a, b) ≡ Iν(a)Kν(b)− Iν(b)Kν(a), where Iν and Kν are modified Bessel functions
of the first and second kind, respectively,

• Dν,±(a, b) ≡ Iν(a)Kν±1(b)−Kν(a)Iν±1(b).

A related problem, where the boundary conditions are switched, that is reflective at
R− and absorbing at R+, involves only interchanging variables x− and x+.

B.1.3 First-passage time

We denote the single-particle first-passage time (FPT) pdf as f(~rf , ~r0, t). It is the proba-
bility density for a single particle, initially placed at position r0 at time t = 0, to reach the
target at rf at time t for the first time. The FPT is related to the occupation probability
c(~rf , ~r0, t) which is the probability to be at rf at time t, irrespective of when it arrived:

c(~rf , ~r0, t) = (f(~rf , ~r0) ∗ c(~rf , ~rf )) (t)

=

∫ t

0

f(~rf , ~r0, τ) c(~rf , ~rf , t− τ)dτ. (B.12)

This convolution can be explained in the following way. The occupation probability at
the final position rf at time t has two contributions. The first is the FPT pdf to visit
the final position rf at the earlier time τ for the first time, f(~rf , ~r0, τ). The latter is
the occupation pdf for starting at rf and returning to the same position within time τ ′,
c(~rf , ~rf , τ

′). Finally, we need to sum all the terms f(τ)c(τ ′), where τ + τ ′ = t, because
we are looking for the occupation at the final time t. Hence the convolution f(τ) ∗ c(τ ′)
in the above equation.1

The relation B.12 is very useful if rewritten in the Laplace form. It allows to find the
FPT pdf from the occupation probability in the following way:

f(~rf , ~ri, τ) = L−1

{ L{c(~rf , ~ri, t)}
L {c(~rf , ~rf , t− τ)}

}
. (B.13)

B.1.4 First-passage related to flux

The first-passage probability density of a diffusing particle to a certain area, e.g. an
absorbing boundary, is the total current (flux) of the density c(~r, t) to that boundary
(provided the initial condition is normalized). Equation B.11 gives the Laplace transform
of the time-dependent occupation probability density in a radially symmetric domain with

1In probability theory the sum of two independent random variables is the convolution of their indi-
vidual probability densities.
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absorbing boundary at R− and reflective at R+. We are interested in the first-passage
time to the absorbing boundary, hence we compute the flux at R−:

J−(x0, s) ≡ f̃(x0, s)

=

∫
S−

D
∂c

∂r

∣∣∣∣
r=R−

=

(
x0

x−

)ν Dν,−(x0, x+)

Dν,−(x−, x+)
(B.14)

Note that J−(x0, s) in the above equation still depends on s through x± and not on the
real time t. We are still in the Laplace frequency domain. Dependency on x0 denotes the
initial position expressed in terms of the dimensionless radial coordinate.

The relation of the FPT to the flux is more general and applies also to the FPT of
chemical events occurring in reaction networks. For example, if one wishes to compute
the FPT to a certain discrete state in a reacting system described by the chemical master
equation, the FPT pdf consists of all possible transitions that end up in that particular
system.

B.1.5 Evaluation for 1D

We shall consider a 1D domain of length R+ ≡ L. In order to obtain the first moment,
or the mean, of the first-passage probability in 1D we evaluate expression B.14 for d = 1,
expand to the lowest order around small s (equivalent to taking t → ∞), and compare
coefficients to Eq. A.6. Setting the initial position to x0 = L (reflective end), and then
assuming R− = 0 we obtain the expression for the mean first-passage time to an absorbing
end at x = 0 of a particle diffusing on a 1D line of length L:

〈t〉L =
L2

2D
. (B.15)

One can recognize in the above expression the average time needed for a diffusing molecule
to traverse a distance L.

The Laplace transform of the FPT pdf takes the form:

f̃(x0 = L, s) = sech
(
L
√
s/D

)
. (B.16)

In this case it is possible to invert this relation and to obtain the explicit expression
for the time-dependent FPT pdf [Nagar & Pradhan 2003]:

f(t) =

∞∑
n=1

(−1)n+1 (2n− 1)πD

L2
e−(n− 1

2 )2π2Dt/L2

. (B.17)

Similarly, when a particle initiates its motion randomly in the domain, the FPT pdf in
the Laplace form equals:

f̃(s) =
1

L

∫ L

0

f̃(x0, s)dx0 =
1√
s/D

tanh
(
L
√
s/D

)
. (B.18)

The MFPT for random initial conditions is:

〈t〉rnd =
L2

3D
=

2

3
〈t〉L . (B.19)



Appendix C

Mesoscopic models and
computational methods

C.1 Mesoscopic models

Here we present various theoretical approaches to the modeling of biochemical reactions
on the mesoscopic level. All models are stochastic with discrete molecule detail. Only
Brownian dynamics and the reaction-diffusion master equation account for space.

Brownian dynamics (BD) is a computational model which proved to be very use-
ful in modeling biochemical systems. It has been applied, to name only a few studies,
to the enzyme-ligand binding or to determine kinetic parameters [Northrup et al. 1984,
Tan et al. 1993]. In this approach the solvent is treated as a continuous medium while so-
lute molecules are modeled explicitly in space. Their trajectory is described by a random
walk due to collisions with the much smaller solvent atoms. Additionally the interaction
potential, for example due to electrostatic forces, can be included. This dramatically re-
duces the order of complexity of the model since the majority of degrees of freedom is
characterized only by the fluctuating force. As a result the computational cost is much
smaller than that of methods based on molecular dynamics (MD) where the positions and
velocities of all atoms are traced. However, even BD is very expensive when applied to a
large biochemical system because of the relatively small simulation time step needed to
resolve a collision event leading to a chemical reaction.

Brownian dynamics with chemical reactions. A spherical molecule undergo-
ing a random walk close to a target to which it can bind reversibly can be modeled
by the Smoluchowski diffusion equation (Eq. B.1). This is a PDE for the probabil-
ity distribution of finding a particle at a certain point in space with boundary con-
ditions dependent on the intrinsic association and dissociation rates (Eqs. B.3-B.6)
[Rice 1985, Agmon & Szabo 1990, Weiss 1994]. This mathematical abstraction corre-
sponds to a pair of molecules diffusing and reacting in a closed or infinite volume. Far
from the target the solution is very well represented by a Gaussian distribution (free
diffusion) since the influence of the reactive trap is negligible. For short distances the
inter-particle distribution is modified significantly due to the possibility of binding and
geminate recombination. For that reason it is necessary to use smaller time steps in com-
puter simulations, since for a given distance the influence of the trap on the diffusing
particle is decreased on a shorter time scale. In order to maximize the simulation time
step an analytical solution of the diffusion equation for a pair of particles can be em-
ployed [Lamm & Schulten 1981]. One of the quantities obtained in such an operation is
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Figure C.1: Mesoscopic models and computational methods for solving biological problems
in different regimes. Abbreviations: BD - Brownian dynamics, CME - chemical master
equation, ODE - ordinary differential equation, PDE - partial differential equation, RDME
- reaction-diffusion master equation. For method abbreviation see text.

the probability of binding after a certain time step given the initial position at the ear-
lier time. An example analytical solution for a 1-D domain and an absorbing boundary
condition is given in Section B.1.5. In this way diffusion and reaction steps are combined
together which, in principle, allows to propagate the system with arbitrarily large time
steps. The analytical solution (a Green’s function or propagator) has been employed in
an efficient BD simulation method in 1-D [Edelstein & Agmon 1993], further extended to
3-D [Kim & Shin 1999], and used extensively as a reference result for testing theories of
diffusion-limited reactions [Popov & Agmon 2001a, Popov & Agmon 2001b]. The above
ideas are also implemented in two of the methods for modeling biochemical networks,
GFRD and Smoldyn, outlined in Section C.2. They have been respectively applied to
study fluctuations in gene expression [van Zon & ten Wolde 2005a, van Zon et al. 2006],
and to model signal transduction in E. coli chemotaxis [Lipkow et al. 2005].

Chemical master equation. In the commonly used ODE approach to modeling bio-
chemical networks concentrations of chemical species are treated as continuous variables.
Differential equations describe deterministic propagation of these variables in time. In
this approach, the discrete nature of molecules is discarded, which is valid if concentra-
tions are high. For large numbers of molecules the continuum assumption is an adequate
model, however for low concentrations the inherent randomness of the reactants’ collisions
requires a stochastic description. The chemical master equation (CME) is such a formula-
tion. It describes the evolution of the probability distribution of finding the system in a cer-
tain discrete state given by a vector with integer-valued populations of molecular species
reacting in the system (see [van Kampen 1997, Gillespie 1992] for a derivation). We shall
exemplify the structure of the CME using an example of the synthesis-degradation reac-
tion scheme depicted in Fig. 1.2 in the Introduction.

In our example, molecules of species X are synthesized at the rate kp, and degraded
at the rate kd · x, where x denotes the number of molecules. The stochastic description
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Figure C.2: (Left) Discrete states in the production-degradation model, ∅ → X → ∅.
Arrows depict chemical reactions that transfer the system to a new state. The chemical
master equation (Eq. C.1) describes temporal changes of the probability distribution for
a single state x. (Right) The steady-state solution, the Poisson distribution, shown for
three different steady-state averages, 〈x(t)〉t = kp/kd = 1, 2, and 5.

accounts for the discreteness of molecules and fluctuations in the synthesis and degrada-
tion rates; 1/kp has the interpretation of the mean time between two production events
and 1/kd is the mean lifetime of a single molecule X. Both intervals fluctuate and the
function describing their distribution is an exponential. The extensive discussion of the
effects of other waiting time probability distributions on the steady-state distribution of
X can be found in the Introduction (Chapter 1).

The quantity evolved in the CME is the probability distribution P (x, t), which is the
probability of finding the system in a state with x molecules at time t. Gains and losses
of a single state due to chemical reactions are depicted in Fig. C.2; mathematically they
are formalized in the following way:

d

dt
P (x, t) = kp P (x− 1, t) + kd (x+ 1)P (x+ 1, t)

− P (x, t) (kp + kd x) . (C.1)

The first line of the right hand side includes “gains”, that is all chemical reactions that
result in state x. These are the synthesis of a single X molecule in state x − 1 and the
degradation of a single X molecule in state x + 1. Similarly, the second line describes,
respectively, the synthesis and the degradation event that lead to abandonment of the
state x – the “losses”. Each state with x molecules is described by such an equation.
The steady-state solution, i.e. dP (x, t)/dt = 0, leads to a familiar Poisson distribution
(Fig. C.2). The CME approach to model chemical reactions remains relevant as long as
the system is in thermal equilibrium and is well-mixed, i.e. there are many more non-
reactive than reactive collisions and the probability of binding does not depend on the
molecules’ position.

The familiar macroscopic gain-and-loss equation for the deterministic evolution of the
continuous concentration c(t) = x(t)/V , where V is the system’s volume and x(t) is the
number of molecules at time t, reads:

d

dt
c(t) = κp − κd c(t) . (C.2)

The relation between Equation C.1 and Equation C.2 becomes clear after applying
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the ensemble average to both sides of the former. This average is taken over all discrete
states that the system might be in, weighted with the probability of every state, i.e.

〈x(t)〉 ≡
∞∑
x=0

xP (x, t) . (C.3)

Note that the dependency of x on time on the left hand side stems from the time depen-
dency of P . For the linear chemical scheme, the equivalence 〈x(t)〉/V = c(t) is exact. The
same applies to reaction-rate constants, kp and kd, which are numerically equal to macro-
scopic κp and κd, respectively. The mean of a stochastic trajectory obtained from the CME
agrees exactly with that obtained from the corresponding macroscopic ODE only when
reaction rates depend linearly on the number of molecules. In general, the macroscopic
equation is only an approximation to the CME, which omits higher moments represent-
ing fluctuations around the average. Reaction-rate constants will also differ (albeit by
constant factors only) between the stochastic and the deterministic approaches in case of
non-linear dependencies [Gillespie 1977]. We shall illustrate these issues with the following
simple non-linear scheme [Gardiner 1983]:

X
kp


kd

2X . (C.4)

The backward reaction proceeds at the rate 1/2 kd x (x− 1) (again, x denotes the number
of molecules X), which is quadratic with respect to x. The factor 1/2 stems from the fact
that there are only x(x − 1)/2! distinct pairs of molecules X available for the backward
reaction. The CME for the above scheme reads,

d

dt
Px = kp (x− 1)Px−1 +

kd
2
x(x+ 1)Px+1

− Px

(
kp x+

kd
2
x(x− 1)

)
, (C.5)

where Px ≡ P (x, t). Applying the average over x to both sides of Equation C.5 yields:

∞∑
x=0

x
d

dt
Px = kp

∞∑
x=0

xPx −
kd
2

∞∑
x=0

x(x− 1)Px (C.6)

As a result of Eq. C.3, every term can be ascribed to a respective ensemble average, i.e.
d〈x(t)〉/dt, 〈x(t)〉, and 〈x(t)(x(t) − 1)〉. The equivalence between this equation and the
macroscopic solution, dc(t)/dt = κpc(t)−κdc(t)2, can be established only by assuming that
〈x(t)(x(t)− 1)〉 ≈ 〈x(t)〉〈x(t)〉. This assumption, known as the mean-field approximation,
is valid for large number of molecules. Additionally, the correspondence between backward
reaction-rate constants follows, κd = V kd/2.

Analytical solutions of the CME are known only for a handful of reaction schemes
[McQuarrie 1967]. More complicated systems require numerical methods such as the
Stochastic Simulation Algorithm (SSA) by Gillespie [Gillespie 1977, Gillespie 2007]. It
has been applied in numerous studies that investigate the influence of noise on biological
systems [Arkin et al. 1998, Kierzek et al. 2001, Krishna et al. 2005].
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Reaction-diffusion master equation The reaction-diffusion master equation is an
extension of the CME model for systems with correlation length smaller than the size
of the system. Like the CME it is an equation for the probability of the realization of
a certain state of the system. Space is incorporated by dividing the volume into smaller
sub-volumes, which allows to tackle inhomogeneities due to diffusion [Gardiner 1983].
Tracking a single molecule is not possible in this model; unlike in BD, apart from the
occupancy of the sub-volumes, no exact positions of molecules are stored. Diffusion in
the RDME is added as a state change with rate proportional to the macroscopic diffusion
coefficient (and inversely proportional to the size of the sub-volume), which is equivalent
to adding a unimolecular reaction. The final form of the RDME is analogous to a semi-
discrete form of the reaction-diffusion PDE with the diffusion term discretized using a
second-order centered scheme [Bernstein 2005].

The change of state in one sub-volume depends on the rates of the chemical reactions
that occur locally within the sub-volume (like in the CME) and the diffusive flux, i.e. the
rate of diffusion between the sub-volume and neighboring sub-volumes. It is assumed that
within one sub-volume the probability of a reaction does not depend on the position of
the molecules, i.e. locally the system is well-stirred. That obviously sets a requirement for
the maximum size of the sub-volume if one wants to model a system where diffusion limits
the rates of chemical reactions. In principle the size of one sub-volume should be of the
order of the correlation length [Baras & Mansour 1996]. Although correct, this estimate
is rather difficult to asses for a complex reaction network. The correlation length, also
referred as the Kuramoto length, is usually estimated as the square root of the mean time
between reactions times the relative diffusion coefficient of the species involved in that
reaction [Togashi & Kaneko 2005, van Kampen 1997].

The availability of published software implementations of RDME like MesoRD
and Gillespie Multi-Particle (GMP), has recently allowed to study the spatio-
temporal dynamics of processes in the cell [Fange & Elf 2006, Elf & Ehrenberg 2004,
Rodríguez et al. 2006].

C.2 Computational methods

In this section we describe the main features of the stochastic methods used in the Chap-
ter 4. The methods are based on the mesoscopic models presented in the previous section.

Green’s Function Reaction Dynamics (GFRD) [van Zon & ten Wolde 2005b,
van Zon & ten Wolde 2005a] implements the idea of using analytical solutions to the
Smoluchowski diffusion equation (an outline of the algorithm can be found in Tab. C.1).
It is used to simulate biochemical networks, and should be especially efficient for those
processes consisting of small numbers of molecules. For such sparse systems longer simu-
lation times can be taken because of larger average distances to the nearest-neighboring
reacting molecule. Numerical experiments showed that an increase in time step by around
four orders of magnitude can be achieved compared to conventional brute-force BD meth-
ods (see Fig. 9 of [van Zon & ten Wolde 2005a] for the distribution of propagation times).
On the other hand the usage of analytical solutions requires a pretabulation of probability
distributions in computer memory with sufficiently fine discretization. Those tables have
to be searched every time step in order to obtain the new radial and angular position
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Table C.1: An outline of the GFRD algorithm for one binding site and many molecules
diffusing around the reactive target (e.g. the simple gene expression described in the main
article). Probability distributions for finding the time of the next reaction and the new
position around the absorbing target are computed from the solution of the Smoluchowski
diffusion equation. For efficiency these distributions are stored in look-up tables which are
searched every time step.

Step Action
1 Loop over all molecules and find the shortest distance to the binding site.
2 Set the maximum possible time step ∆tmax such that only the closest molecule

can reach the target, within a certain threshold.
3A If the binding site is occupied, move molecules to new positions with ∆tmax,

go to 1.
3B Else, use the solution of the Smoluchowski equation for a pair of molecules to find

the time of the next reaction tR from the appropriate probability distribution.
4A If tR < ∆tmax do the reaction,

find new positions for the rest of the molecules, go to 1.
4B Else do not react, find new positions for all molecules, go to 1.

around the target. This can be a costly procedure which reduces the gain of the increase
of the simulation time step.

In general, GFRD is an appealing approach because it is an exact method to solve the
diffusion problem with chemical reactions. It is efficient for sparse systems (nanomolar
concentrations) and this is exactly the situation where spatial fluctuations can be sig-
nificant. GFRD could also be easily used in a hybrid method dealing with multi-scale
problems since coupling to continuum methods requires only conservation of mass. The
main drawback is the complexity of the method. Also a usable, general tool based on this
approach is not available.

Smoldyn The idea behind Smoldyn (Smoluchowski Dynamics) [Andrews & Bray 2004]
is to set microscopic parameters like the binding and the unbinding radius for the re-
versible reaction such that the simulation reproduces the known macroscopic behavior. A
bimolecular, reversible reaction is modeled such that particles react immediately if their
centers are within a certain reaction distance (every collision leads to a reaction). There-
fore, instead of sampling from the exact single-particle probability distributions, binding
and unbinding radii are adjusted to obtain correct macroscopic steady-state values. In
reality, not every collision leads to a reaction (potential barrier), thus Smoldyn uses the
effective binding radius σb. The backward reaction creates a problem in Smoldyn because
the particle cannot be placed at contact (with a trap) since it would lead to immediate
rebinding with probability 1. Instead, the unbinding radius σu is introduced. Its magni-
tude is obtained using the argument that at equilibrium there is no net flux of particles
towards a trap: in a given time interval the same number of molecules is lost in a forward
reaction as in a backward reaction. Thus the source of molecules at σu must match the
sink at σb. Smoldyn is available as a convenient tool (with source code included).
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Table C.2: An outline of the Smoldyn method.
Step Action

0 Set binding and unbinding radii for all reaction channels.
Loop over the molecules

1 Execute unimolecular reactions (including dissociation of complexes).
2 Execute bimolecular reactions if two molecules are within the binding radius

for a given reaction.
3 Assign new positions to the molecules.
4 Go to 1.

Table C.3: An outline of the SSA algorithm, Gillespie’s direct method.
Step Action

1 Compute propensity functions aν for all M reaction channels.
2 Calculate the global propensity function a0 =

∑M
ν=1 aν .

3 Generate two random numbers r1 and r2 uniformly distributed in the interval [0,1).
4 Compute the time of the next reaction: τR = 1

a0
ln 1

r1
.

5 Compute which reaction ν will occur,
i.e. choose ν as the smallest integer for which

∑ν
ν′=1 aν′ > r2 a0.

6 Advance the simulation time by τR.
7 Update the number of species affected by the change after reaction ν.
8 Go to 1.

Stochastic Simulation Algorithm (SSA) is the direct method developed by Gille-
spie in 1976 [Gillespie 1976, Gillespie 1977]. Together with his other approach, the first-
reaction method, they belong to the broader class of Kinetic/Dynamic Monte Carlo meth-
ods (see [Fichthorn & Weinberg 1991] and [Voter 2005] for reviews) here applied to a
chemically reacting, well-mixed (space not included) system. SSA computes the trajec-
tory of a stochastic discrete system described by the chemical master equation (algorithm
in Tab. C.3).

The method scales linearly with the number of reactions which becomes a problem
for large chemical networks. Gibson and Bruck [Gibson & Bruck 2000] proposed the next
reaction method, an exact scheme which is proportional to the logarithm of the number of
reactions. This is achieved by minimizing the number of recalculations of the propensity
function aµ. A single reaction changes only a certain fraction of aµ’s in a system with
many reaction channels. By using a dependency graph one can compute beforehand which
reactions change which propensity functions. In this method only one random number per
event is required.

MesoRD is a tool for simulating trajectories of discrete, stochastic systems with
space as described by the reaction-diffusion master equation. It uses the next sub-
volume method [Elf & Ehrenberg 2004] which is an analogue of the next reaction method
[Gibson & Bruck 2000] for systems without space (algorithm in Tab. C.4). The efficiency
gain of this approach is especially advantageous when dealing with reaction-diffusion. As
it was mentioned in Section C.1 adding diffusion to the CME is in fact equivalent to
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adding reactions representing the flow of molecules between the sub-volumes. The event
queue (a binary tree) implemented in the next sub-volume method, which is equivalent
to the dependency graph of Gibson and Bruck [Gibson & Bruck 2000], identifies the sub-
volume where the next reaction will trigger. Therefore it is not necessary to scan all the
sub-volumes searching for the scheduled event. The method has been shown to produce
the same results as if the direct method has been employed instead of the next sub-volume
(see supplementary material of [Elf & Ehrenberg 2004]). MesoRD is available as a con-
venient and easy-to-use tool [Hattne et al. 2005], it accepts input files written in SBML
format.

Table C.4: An outline of the next sub-volume algorithm used in MesoRD (adopted from
the supplementary material of [Elf & Ehrenberg 2004]). Diffusion between sub-volumes is
treated as a unimolecular reaction with the propensity function weighed by the diffusion
coefficient and the size of the sub-volume.

Step Action
Initialization

0A For each sub-volume:
1. compute propensity functions for reactions and diffusion,
2. calculate time of the next event like in the SSA
(uses one random number r0 uniformly distributed in the interval [0,1)).

0B Sort sub-volumes in an event queue according to the time of the next event.
Iterations

1 Let α be the sub-volume from the event queue where the next event occurs.
2 Generate a random number r1 ∈ [0, 1).
3 Using r1 compute whether a reaction or a diffusion event occurs.

Reaction
4A Reuse r1 to determine which reaction occurs in the direct SSA method.
4B Recalculate the propensity function for the sub-volume α.
4C Generate a new random number r2, and calculate the time of the next-event tα.
4D Insert the next event in the event queue, sort the queue.
4E Go to 1.

Diffusion
5A Reuse r1 to choose the type of the molecule which diffuses.
5B Reuse r1 again to choose the direction of diffusion.
5C Update propensity functions for the sub-volume α and the neighbor β

which got an additional molecule.
5D Generate a new random number r2, and calculate the time of the next event

in both sub-volumes, α and β.
5E Insert next events in the event queue, sort the queue.
5F Go to 1.

Gillespie Multi-Particle Reaction-diffusion processes may also be computed with the
Gillespie Multi-Particle algorithm (source code available)[Rodríguez et al. 2006]. The ba-
sis of this method is the Lattice Gas Automata algorithm [Chopard et al. 1994], which is
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used for modeling diffusion processes. Single discrete molecules perform a random walk
on the lattice; it was demonstrated by Chopard that the macroscopic diffusion equation
is reproduced in the limit of Lsv → 0, where Lsv is the linear size of the lattice site
(a sub-volume in RDME terminology). For every species with a diffusion coefficient D,
and for a given lattice size Lsv, the diffusion time step6 τD is fixed. For a small number
of molecules diffusion jumps are performed individually, but above a certain threshold
(approximately 90 particles in one site) it is allowed and computationally more efficient
to move particles in a bulk according to a Gaussian distribution.

Reaction events are executed between diffusion steps using the SSA algorithm in ev-
ery sub-volume, and the simulation time is advanced by time intervals between reactions.
Once the simulation time reaches one of the fixed diffusion time steps for a diffusing
species, the molecules of the respective species are moved to neighboring sub-volumes. As
in RDME, it is assumed that chemical reactions are local and that inside the sub-volume
the probability of reactions is independent of the molecules’ position. Additionally, con-
centrations should not change significantly between two diffusion steps because reaction
and diffusion processes are split. This requirement has an important implication: if the
chemical reactions in the system under study are much more frequent than diffusion
events, then smaller diffusion time intervals should be used in order to diminish the split-
ting error. Since τD is prescribed by the size of the sub-volumes, this is equivalent to using
a finer lattice, which of course hampers the performance. A schematic algorithm is listed
in Tab. C.5.

Table C.5: An outline of the GMP method [Rodríguez et al. 2006].
Step Action

Initialization
0A Find the diffusion time step τDS for every species S.
0B Find tS = min {τDS}.
0C Set nS = 1 for all species, tsim = 0.

Iterations
Reaction

1 While tsim < tS , do:
1A Reactions in every lattice site with time step τR according to the SSA algorithm.
1B Advance the simulation time tsim = tsim + τR.

Diffusion
2A Diffuse species S for which tS = tsim.
2B Increment iteration nS for the diffused species.
2C Choose the next diffusion time step tS = min {τDS · nS}.
3 Go to 1.

6The diffusion time step equals τD = 1
2d

L2
sv
D

, where d is the dimensionality of the system, Lsv – the
linear size of the sub-volume, and D – the diffusion coefficient of a given species.
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Summary

The focus of this thesis revolves around stochastic effects in the physiology of a single
cell. Fluctuations in the concentration of chemical interactants in biochemical processes
pose a fundamental physical limit on the precision and robustness of the cellular function.
My main objectives are to (i) elucidate the influence of these fluctuations on the behavior
of a biological cell, (ii) analyze some of the mechanisms leading to reduction or magnifi-
cation of molecular noise to the benefit of the organism, (iii) identify biological regimes
where costly computer simulations of spatial stochastic biochemical processes can be sig-
nificantly reduced, (iv) evaluate the performance and accuracy of computational methods
dealing with spatial stochastic problems in cellular biology. Below I shall briefly explain
the key terminology used in the text such as stochasticity, gene expression, population
heterogeneity, signaling networks, memorylessness, and summarize the main findings.

Stochasticity, or randomness, is inherent to all biochemical processes and stems largely
from thermal fluctuations which affect the motion of biomolecules and their relative po-
sition thus biasing rates of chemical reactions. Changes in reaction rates, in turn, desyn-
chronize synthesis and degradation of chemical species such that their concentrations vary
over time. This variability becomes significant when the number of molecules engaged in
a particular biochemical reaction is small, a dozen for instance. This is the case for a
number of cellular processes. Gene expression, for example, is potentially susceptible to
such fluctuations. It is the process of synthesizing the sequence of amino-acids that consti-
tute a protein based on the information contained in a gene. Gene expression often takes
place from a single copy of a gene. The extent of the protein synthesis period changes
randomly as the molecules responsible for maintaining the gene in the active state (i.e.
allowing for expression and subsequent protein synthesis) repeatedly interrupt the chem-
ical binding with the regulatory part of the gene. Consequently, the intervals (or waiting
times) at which a newly synthesized protein appears in the cell are highly stochastic. As a
result, alternating periods of activity and rest in the protein production appear, so called
stochastic bursts.

A number of additional processes in gene expression may affect the amount of noise in
the synthesis intervals. RNA polymerase is a molecule that uses a DNA gene as template
to synthesize a complementary strain with genetic information used at a further stage to
build a protein. The polymerase moves step by step along the gene pausing occasionally.
Depending on the circumstances, randomness in the polymerase’s motion may enhance or
diminish the noise providing cells with an extra layer of noise control. We investigate this
issue in Chapter 2. The comparison of various mechanisms generating bursts requires
unambiguous measures such as burst size, duration and significance. We introduce and
derive them in this chapter. The measures are also applicable to other areas of science
dealing with stochastic events such as telecommunication or queueing theory.

Stochastic protein production, bursts in particular, heavily influence the spread, or
variance, of the protein number distribution in a cell at a particular instance of time.
Since proteins are involved in virtually all cellular processes, large uncertainty in their
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concentrations may have far-reaching consequences on the cellular physiology. However,
contrary to popular belief, molecular noise is not always a disruptive force. The generation
of population heterogeneity is one of the processes that benefits from stochastic gene
expression. A group of cells with the same set of genes, an isogenic bacterial population,
for instance, can differ significantly in the amount of protein species they consist of due to
gene expression noise. The state, active or silent, of hundreds of genes can differ from cell
to cell resulting in variations in their molecular make-up. Differences in protein expression
levels induced solely by stochasticity prescribe contrasting capacities to interact with the
environment across the population. By doing so, the population as a whole hedges its
existence against fatal and unexpected changes in the surroundings. When a stressful
condition arises, at least some cells are prepared to fight it off. This survival strategy
known as stochastic bet-hedging turns out to be a universal mechanism employed across
various evolutionary levels, from microbes, to birds and human societies, to minimize the
risk. We illustrated the effects of molecular noise on protein distributions and discussed
the physiological consequences of various distributions in Chapter 1.

The majority of cellular processes have evolved, however, to circumvent the influence
of molecular noise. Single cells constantly monitor the environment and their own state
to adjust the gene expression to meet new nutritional conditions or physical parameters
such as temperature or osmotic pressure. Noise in the concentration of proteins, the con-
stituents of signaling networks responsible for sensing that information, might disrupt
processing of the signal and affect the accuracy of decisions taken by the cell. There-
fore, the arrangement of biochemical reaction networks into specific structures, such as
multi-level cascades or feedback loops, or large concentrations of chemical species became
typical adaptations allowing for fast and robust operation largely independent of concen-
tration fluctuations. But how much is a large concentration? How many molecules are
required to assure a reliable signal sensing and transfer from the outside of the cell to
effect an appropriate change in the gene expression? Spatial aspects come into play here;
proteins occupying the cell have to find their cognate targets in space to complete the
signal relay. One of the simplest schemes, yet ubiquitous in microbes, a so called two-
component signaling network was the topic of our analysis in Chapter 3. Using theory
and computations we characterized the optimal number of proteins comprising the signal-
ing network that effect a quick response to a stimulus without a large energetic investment
in the production of network constituents. Our theoretical results provide insights into
the maximum swiftness of this type of networks arguably explaining the absence of the
two-component-like arrangement in the signaling of higher organisms.

The mathematical description of stochastic biochemical processes typically requires
computer simulations as the equations are too involved to evaluate in a pen-and-paper
manner. Problems accounting for spatial organization of the cell and stochastic motion of
chemical species are particularly challenging. Due to this complexity computations might
be lengthy and hungry for CPU power. Various theoretical approximations have been
proposed to optimize some aspects of the computations. We discuss them extensively
in Chapter 4 and perform comparisons using two biological test problems. Our results
indicate that significant differences in the magnitude of molecular noise may arise across
the methods; an important observation given the prime objective of these methods: the
simulation of spatial stochastic biochemical networks.

The computational cost of biological problems involving stochasticity and space can
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be greatly reduced, however. We devote parts of the Introduction, Chapter 3 and the
Discussion to that topic. The issue is best illustrated by looking at a signaling network
just like the one described earlier. In order to communicate the change in extracellular
conditions to the machinery able to respond to that change inside the cell the following
takes place: a protein with an altered state has to travel from the cellular membrane
(which is exposed to the outside world) to an appropriate gene or a set of genes to
initiate expression and production of a new set of proteins. In the simplest case, proteins
diffuse freely in the cell and search their targets by means of a random walk without
any “guidance”. Quantification of the speed of this search typically calls for computer
simulations that track the random motion of every molecule – a costly procedure from a
computational point of view. An approximation can be made, however. The search like
the one taking place in cell signaling involves very small targets compared to the size
of the cell. Therefore, the search trajectory of a single protein molecule becomes so long
that it “forgets” its initial position. The trajectory becomes memoryless. In this regime,
mathematics is very simple; the time to reach the target is still stochastic but the equation
describing the distribution of these times is a well-known exponential function. It is much
easier to handle analytically and the spatial aspect of the problem is reduced. Effectively
the system becomes independent of the spatial geometry – arguably a mechanism allowing
organisms to decouple search times from cell’s shape and internal organization.

The thesis contributes to our understanding of the sources of stochasticity in cellular
processes and the way the demand for enhancing or diminishing molecular noise shapes
cellular structures. The focus on waiting times in stochastic processes and the use of
first-passage time theory yields a powerful framework useful in the analysis of single-
cell, single-molecule measurements being actively pursued at the moment. The problems
studied in this work open a number of avenues for further theoretical research and also
for future experimental verification. For instance, the bursts analyzed in Chapter 2 refer
only to temporal patterns in the intervals of protein synthesis. The full description should
also account for protein degradation. Bursts as “packets” of proteins existing for a certain
amount of time are the topic of current research at CWI, Amsterdam. Similarly, the
effects of various statistics in the waiting times of protein synthesis and degradation on
the steady-state protein distributions are being actively studied there in order to obtain
analytical solutions. Here, only numerical results have been shown in the Introduction.
The role of RNA polymerase collisions and pausing during gene transcription in amplifying
or attenuating the noise postulated in Chapter 2 has not been verified experimentally
yet. Although very plausible, it is still not clear whether the composition of two-component
signaling networks is indeed optimized for speed in signal relay. Chapter 3 provides some
intuitive theoretical results on that issue, however, only an experimental setup could give
a definitive answer to an intriguing question: to what extent gene expression noise, gene
order or receptor location on the membrane affect performance of the two-component
signaling.





Samenvatting1

De focus van dit proefschrift is gericht op stochastische effecten in de fysiologie van een en-
kele cel. Fluctuaties in de concentratie van chemische stoffen die in biochemische processen
in interactie zijn stellen een fundamentele fysische limiet aan de precisie en robuustheid
van het functioneren van de cel. Mijn belangrijkste doelen zijn (i) de invloed van deze fluc-
tuaties op het gedrag van een biologische cel bloot te leggen, (ii) een aantal mechanismen
te analyseren die leiden tot vermindering of vergroting van de moleculaire fluctuaties die
in het voordeel zijn van het organisme, (iii) biologische regimes te identificeren waarvoor
tijdrovende computersimulaties van ruimtelijke stochastische biochemische processen aan-
zienlijk kunnen worden gereduceerd, (iv) de efficiëntie en de nauwkeurigheid te evalueren
van de computationele methoden om ruimtelijke stochastische problemen in cellulaire bi-
ologie door te rekenen. Hieronder zal ik kort de belangrijkste terminologie die in de tekst
wordt gebruikt toelichten, zoals stochasticiteit, genexpressie, populatie heterogeniteit, sig-
naleringsnetwerken en geheugenloosheid. Ook zal ik de belangrijkste bevindingen in dit
proefschrift samenvatten.

Stochasticiteit, of willekeur, is onlosmakelijk verbonden met alle biochemische proces-
sen. Het vloeit grotendeels voort uit thermische fluctuaties die de beweging van biomole-
culen en hun relatieve positie, en dus de snelheid van chemische reacties, beïnvloeden. Op
hun beurt verstoren veranderingen in reactiesnelheden de synchronisatie tussen aanmaak
en afbraak van chemische stoffen zodanig dat de concentraties variëren in de tijd. Deze
variabiliteit wordt significant wanneer slechts een klein aantal moleculen betrokken is bij
een bepaalde biochemische reactie, bijvoorbeeld een tiental. Dit is het geval bij een aantal
processen in de cel zoals bijvoorbeeld bij genexpressie. Dit is het proces van de synthese
van de aminozuurketen van een eiwit op basis van de informatie in een gen. Genexpres-
sie vindt vaak plaats vanuit slechts één enkele kopie van een gen en speciale moleculen
moeten dat gen in de actieve toestand houden (i.e. het mogelijk maken van expressie
en de daaropvolgende eiwitsynthese). De lengte van de eiwitsyntheseperiode verandert
willekeurig als die moleculen de chemische binding met het regulatie deel van het gen
herhaaldelijk onderbreken. Het gevolg is dat de intervallen (of wachttijden) tussen het
ontstaan van nieuw gesynthetiseerde eiwitten in de cel zeer stochastisch zijn. Daardoor
zullen zich afwisselend periodes van activiteit en rust in de eiwitproductie voordoen, de
zogenaamde stochastische uitbarsting, of burst.

Een aantal bijkomende processen in de genexpressie kunnen invloed hebben op de hoe-
veelheid ruis in de synthese-intervallen. RNA-polymerase is een molecuul dat een DNA
gen als mal gebruikt om een complementaire keten met genetische informatie te syn-
thetiseren. Deze keten wordt in een later stadium gebruikt om een eiwit te bouwen. De
polymerase beweegt stap-voor-stap langs het gen daarbij af en toe pauzerend. Afhankelijk
van de omstandigheden, kan willekeur in de beweging van de polymerase de ruis verhogen
of verminderen. Hierdoor krijgen de cellen een extra mogelijkheid tot ruiscontrole. Dit

1Vertaald door Peter van Heijster
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wordt bestudeerd in Hoofdstuk 2. Om de verschillende mechanismen die bursts genere-
ren te kunnen vergelijken zijn eenduidige maten nodig zoals omvang, duur en significantie
van de burst. Deze worden geïntroduceerd en afgeleid in dit hoofdstuk. Deze maten zijn
ook toepasbaar binnen andere gebieden van de wetenschap die te maken hebben met
stochastische gebeurtenissen, zoals telecommunicatie of wachtrijtheorie.

Stochastische eiwitproductie in het algemeen en bursts in het bijzonder, hebben grote
invloed op de spreiding (of variantie) van de distributie van het aantal moleculen van
een eiwit in een cel op een bepaald tijdstip. Aangezien eiwitten betrokken zijn bij vrijwel
alle cellulaire processen, kan grote willekeur in de eiwitconcentraties verregaande gevolgen
hebben voor de cellulaire fysiologie. Echter, in tegenstelling tot de populaire opvatting,
heeft moleculaire ruis niet altijd een ontwrichtende werking. De vorming van populatie
heterogeniteit is een van de processen die profiteert van stochastische genexpressie. In een
groep cellen met dezelfde set genen, een isogene bacteriële populatie bijvoorbeeld, kan als
gevolg van ruis in de genexpressie de hoeveelheid eiwitten per cel aanzienlijk verschillen.
De toestand, aan of uit, van honderden genen kan verschillen van cel tot cel resulterend
in verschillen in hun moleculaire samenstelling. Verschillen in niveaus van eiwitexpressie
die uitsluitend veroorzaakt zijn door stochasticiteit zorgen dat er binnen de populatie een
contrasterende capaciteit ontstaat om te reageren op de omgeving. Hierdoor beschermt
de gehele populatie zichzelf tegen fatale en onverwachte veranderingen in de omgeving.
Wanneer een stressvolle toestand ontstaat zullen door de variatie ten minste sommige
cellen in staat zijn om zich te verweren. Deze overlevingsstrategie, bekend als stochasti-
sche bet-hedging, blijkt een universeel mechanisme te zijn om risico’s te minimaliseren dat
werkzaam is op verschillende evolutionaire niveaus, van microben tot vogels en menselijke
samenlevingen. In Hoofdstuk 1 onderzoeken wij de effecten van moleculaire ruis op ei-
witdistributies en bespreken we de fysiologische gevolgen van de verschillende distributies.

De meeste cellulaire processen zijn zodanig geëvolueerd dat de invloed van de molecu-
laire ruis wordt omzeild. Individuele cellen monitoren voortdurend de omgeving en hun
eigen toestand om de genexpressie aan te passen aan nieuwe voedselcondities of fysische
parameters zoals temperatuur of osmotische druk. Ruis in de concentratie van eiwitten, de
bouwstenen van signaleringsnetwerken welke verantwoordelijk zijn voor het waarnemen
van die informatie, kan de verwerking van het signaal verstoren en de juistheid van de
beslissingen die genomen worden door de cel beïnvloeden. Daarom werden de organisatie
van biochemische reactienetwerken in specifieke structuren, zoals “multi-level cascades”
of “feedback-loops”, of grote concentraties van chemische componenten typerende aanpas-
singen die een snelle en robuuste werking mogelijk maken die grotendeels onafhankelijk is
van fluctuaties in concentraties. Maar wat is een grote concentratie? Hoeveel moleculen
zijn er nodig voor een betrouwbare waarneming en verwerking van een signaal buiten
de cel zodanig dat een juiste verandering in de genexpressie optreedt? Ook ruimtelijke
aspecten spelen hierbij een rol: eiwitten in de cel moeten verwante doelen zien te vinden
in de ruimte om het signaal te kunnen doorgeven. Een van de eenvoudigste systemen, dat
desondanks alomtegenwoordig is in microben, het zogenaamde twee-componenten signa-
leringsnetwerk, is onderwerp van onze analyse in Hoofdstuk 3. Zowel theoretisch als
met behulp van computerberekeningen hebben we het optimale aantal eiwitten in het
signaleringsnetwerk gekarakteriseerd dat een snelle reactie geeft op een stimulus zonder
dat er een grote energetische investering vereist is bij de productie van de bestanddelen.
Onze theoretische resultaten geven inzicht in de maximale snelheid van dit soort netwer-
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ken en verklaren de afwezigheid van de twee-componenten-achtige signalering in hogere
organismen.

De wiskundige beschrijving van stochastische biochemische processen vereist door-
gaans computersimulaties omdat de vergelijkingen te ingewikkeld zijn om met pen en
papier op te lossen. Vooral beschrijvingen die rekening houden met de ruimtelijke organi-
satie van de cel en de stochastische bewegingen van de chemische stoffen zijn uitdagend.
Vanwege deze complexiteit zijn berekeningen tijdrovend en vergen ze veel CPU-capaciteit.
Er zijn dan ook al verschillende theoretische benaderingen voorgesteld om bepaalde as-
pecten van de berekeningen te optimaliseren. We bespreken deze benaderingen uitgebreid
in Hoofdstuk 4 en vergelijken ze met behulp van twee biologische testproblemen. Uit
onze resultaten blijkt dat de verschillende methoden significant verschillende resultaten
in de omvang van de moleculaire ruis geven. Dit is een belangrijke constatering, aangezien
de voornaamste doelstelling van deze methoden de simulatie van ruimtelijke stochastische
biochemische netwerken is.

Echter, de rekentijden voor biologische problemen met stochasticiteit en ruimte kun-
nen sterk worden verminderd. We besteden delen van de Inleiding, Hoofdstuk 3 en de
Discussie aan dit onderwerp. Deze kwestie wordt het best geïllustreerd door te kijken
naar een signaleringsnetwerk zoals eerder beschreven. Het volgende moet gebeuren om
de verandering in de extracellulaire condities te communiceren naar de machinerie in de
cel die op deze verandering kan reageren: een eiwit met een veranderde toestand moet
van het celmembraan (dat is blootgesteld aan de buitenwereld) naar een passend gen of
een set van genen reizen om de expressie en de productie van een nieuwe verzameling
eiwitten mogelijk te maken. In het eenvoudigste geval kunnen eiwitten zich vrij versprei-
den in de cel en zoeken ze hun doelwit door middel van een random walk zonder enige
“sturing”. Kwantificering van de snelheid van deze zoektocht vraagt normaal gesproken
om computersimulaties die de willekeurige beweging van alle moleculen volgen – een kost-
bare procedure vanuit een computationeel oogpunt. Echter, er kan een benadering worden
gemaakt: een zoektocht zoals bij celsignalering is er één naar zeer kleine doelwitten in ver-
gelijking met de grootte van de cel. Hierdoor is de baan van een enkel eiwitmolecuul zo
lang dat het zijn aanvankelijke startpunt “vergeet”. De baan is zogezegd geheugenloos. In
dit regime is de wiskunde heel eenvoudig: de tijd om het doelwit te bereiken is nog steeds
stochastisch, maar de vergelijking die de verdeling van deze tijden beschrijft is een bekende
exponentiële functie. Dit probleem is analytisch veel makkelijker en het ruimtelijke aspect
van het probleem wordt gereduceerd. Effectief gezien wordt het systeem onafhankelijk
van de ruimtelijke geometrie – dit is aantoonbaar een mechanisme waardoor organismen
zoektijden kunnen ontkoppelen van celvorm en interne organisatie.

Dit proefschrift draagt bij aan ons begrip van de bronnen van onzekerheid in cellulaire
processen en hoe de eis tot vergroten of verminderen van de moleculaire ruis de celstruc-
turen vormt. De focus op wachttijden in stochastische processen en het gebruik van de
first-passage time theorie levert een solide kader op dat zeer nuttig zal zijn bij de analyse
van metingen aan individuele cellen en aan individuele moleculen. Dit type metingen zijn
momenteel onderwerp van lopend onderzoek. De problemen bestudeerd in dit proefschrift
geven een aantal suggesties voor verder theoretisch onderzoek en ook voor toekomstige
experimentele verificatie. Bijvoorbeeld, de bursts geanalyseerd in Hoofdstuk 2 hebben
alleen betrekking op de temporele patronen in de intervallen van de aanmaak van eiwit-
ten. Een volledige beschrijving dient ook rekening te houden met de afbraak van eiwitten.
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Bursts als “pakketjes” eiwitten die voor een bepaalde tijd bestaan zijn onderwerp van lo-
pend onderzoek bij het CWI, Amsterdam. Ook worden hier de effecten van verschillende
statistieken in de wachttijden van de aanmaak en afbraak van eiwitten op de eiwitdis-
tributies in evenwicht onderzocht, om zodoende analytische oplossingen te verkrijgen.
Merk op dat in de Inleiding alleen numerieke resultaten zijn weergegeven. De invloed
van RNA-polymerase botsingen en pauzes tijdens gentranscriptie op het versterken of
verzwakken van de ruis die gepostuleerd is in Hoofdstuk 2 is nog niet experimenteel
geverifieerd. Hoewel het zeer aannemelijk is, is het nog niet bewezen dat de samenstelling
van twee-componenten signaleringsnetwerken inderdaad optimaal is voor een snelle sig-
naaloverdracht. Hoofdstuk 3 bevat een aantal intuïtieve theoretische resultaten op dit
punt. Echter, slechts een experimentele opstelling kan een definitief antwoord geven op de
volgende intrigerende vraag: in welke mate hebben genexpressieruis, genvolgorde en de lo-
catie van de receptor op het membraan invloed op de prestaties van het twee-componenten
signaleringsnetwerk.



Dla laików

Zrozumienie procesów zachodzących w organizmach żywych jest wielkim wyzwaniem dla
nauki na najbliższe dziesięciolecia. Zadanie nie jest łatwe. Nawet pojedyncza komórka
biologiczna o długości jednej tysięcznej milimetra, to miliony cząsteczek chemicznych,
m.in. białek, tłuszczy, cukrów, mikroelementów, które oddziaływują ze sobą w dziesiąt-
kach tysięcy reakcji chemicznych. Co więcej, komórka, to zwykle część większego układu,
na przykład organizmu. Jej składowe podlegają ciągłym przekształceniom w procesie
ewolucji pod wpływem oddziaływania ze środowiskiem.

Aby przetrwać, każdy organizm musi być zdolny do przetwarzania informacji o oto-
czeniu oraz do podejmowania odpowiednich działań na podstawie jego zmian. Ilość oraz
rodzaj pożywienia (np. glukoza lub laktoza) w otoczeniu jednokomórkowej bakterii jest
ważną informacją, bowiem każdy rodzaj pożywienia wymaga nieco innego „przetwórstwa”.
Z kolei jego brak może wymusić na bakterii przekształcenie w formę uśpioną lub migrację
w bardziej zasobne rejony. Wprowadzenie w życie każdej z takich decyzji wymaga użycia
nieco innego zestawu cząsteczek chemicznych. Niektóre z nich są dostępne w komórce „od
ręki”, inne należy dopiero wyprodukować na podstawie genów zawartch w DNA. Produk-
cja nowych komponentów odpowiednich dla nowych warunków otoczenia oznacza wydatek
energetyczny dla organizmu, a zła decyzja może być bardzo kosztowna.

Komórka biologiczna to niezwykle skomplikowana, lecz czasem niezbyt rzetelna fa-
bryka. Pomyłki w reakcjach na zmiany się zdarzają, choć jak się okazuje część z nich
może być całkiem zamierzona. Brak precyzji bierze się głównie z losowości reakcji bio-
chemicznych. Aby nastąpiła reakcja pomiędzy dwoma rodzajami cząsteczek, obie muszą
się spotkać. Nie jest to łatwe biorąc pod uwagę ogromną ilość najróżniejszych substancji
w malutkiej komórce i ogólny chemiczny tłok, jaki w niej panuje. Fizyka działa tu rów-
nież na niekorzyść. To samo zjawisko, które skłania składniki gotującej się zupy do ruchu
powoduje, że ruch cząsteczek chemicznych wewnątrz komórki jest dość chaotyczny (tzw.
fluktuacje termiczne). Aby mieć pełen obraz, należy również wiedzieć, że część procesów
biochemicznych odbywa się z udziałem niewielu cząsteczek, kilkunastu bądź kilkudzie-
sięciu. A przecież przy tak małej ilości komponentów nadmiar lub brak nawet jednej
cząsteczki (np. enzymu) może być znaczący. Nawet nieznaczne różnice w ilości cząste-
czek przekładają się na szybkość procesów chemicznych, na szybkość reakcji na zmiany
otoczenia lub na wybór decyzji co do dalszego postępowania w danych warunkach środo-
wiskowych. Mimo to komórki nie rozpadają się; tworzą komunikujące się ze sobą struktury
jak na przykład kolonie bakterii, ewoluują w wielokomórkowe organizmy. Są częścią skła-
dową nas samych, myślących organizmów zdolnych do tworzenia nauki, sztuki, poezji. W
jaki sposób reakcje chemiczne, nawet na poziomie pojedynczej komórki tworzą spójny i
harmonijny taniec, pomimo niesprzyjającej losowości zdarzeń chemicznych?

Na to pytanie staramy się odpowiedzieć w rozdziale 3. na przykładzie prostego, lecz
powszechnego u bakterii układu przesyłającego stan otoczenia do wnętrza komórki. Uży-
wając wyłącznie opisu matematycznego reakcji chemicznych oraz symulacji komputero-
wych, jesteśmy w stanie określić jak szybko ten układ jest w stanie zareagować na zmiany
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oraz ile cząsteczek chemicznych wystarczy, aby przesłać sygnał szybko i bez przekłamań.
Narzędzia matematyczne, których używamy i które rozwijamy w rozdziałach 2. i 3. rzadko
stosowane są do tego rodzaju problemów. Ich przybliżenie w kontekście biologii komórki
stanowi zatem bazę do analizy dalszych, bardziej złożonych układów.

Ze względu na stopień komplikacji wiele problemów analizowanych w tej pracy wy-
maga obliczeń przy pomocy komputerów. Porównanie metod służących takim obliczeniom
stanowi treść rozdziału 4. Okazuje się, że ze względu na przyjęte założenia niektóre z tych
metod mogą dawać całkiem różne wyniki. Z drugiej strony kosztowne obliczenia kompu-
terowe mogą być czasem znacząco ograniczone, dzięki stosownym przybliżeniom. Jedno
z takich przybliżeń rozwijamy w rozdziale 1. i stosujemy do analizy zjawisk w dalszych
częściach tej pracy. Dzięki temu jesteśmy w stanie zredukować czas pracy komputera
kilkunastokrotnie.

Efekty losowe (tzw. stochastyczne) w życiu komórki są powszechne, lecz nie zawsze
stanowią przeszkodę dla funkcjonowania organizmu. Niedawne odkrycia pokazują fascynu-
jące mechanizmy, w których losowość jest kluczowa dla przeżycia lub rozwoju organizmu
żywego. I tak na przykład pojedyncze osobniki w populacji bakterii są w stanie zróżnico-
wać swoje cechy w sposób całkowicie losowy. Dzięki temu każdy z nich jest przygotowany
na innego rodzaju warunki otoczenia. Przygotowanie się na wiele różnych zmian jest zbyt
kosztowne dla pojedynczej bakterii. Rozdzielają więc zadania losowo i działają w gru-
pie minimalizując w ten sposób ryzyko na poziomie populacji. Strategia ta znana jest
inwestorom giełdowym. Korzystają z niej również bakterie, aby przeżyć, gdy zostaną po-
traktowane antybiotykami, a także komórki rakowe podczas chemioterapii. Zrozumienie
i opis teoretyczny tego rodzaju zjawisk w biologii wymaga jeszcze wielu dalszych badań,
a w miarę odkrywania kolejnych prawidłowości rodzą się nowe pytania. Analiza efektów
losowych w procesach komórkowych przedstawiona w niniejszej pracy stanowi pomoc w
zrozumieniu źródeł owej losowości oraz pokazuje sposób jej matematycznego opisu.
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