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Abstra
t. Least-squares spe
tral element methods are based on two im-portant and su

essful numeri
al methods: spe
tral/hp element methodsand least-squares �nite element methods. Least-squares methods lead tosymmetri
 and positive de�nite algebrai
 systems whi
h 
ir
umvent theLadyzhenskaya-Babu�ska-Brezzi stability 
ondition and 
onsequently al-low the use of equal order interpolation polynomials for all variables. Inthis paper, we present results obtained with a parallel implementation ofthe least-squares spe
tral element solver on a distributed memory ma-
hine (Cray T3E) and on a virtual shared memory ma
hine (SGI Origin3800).
1 Introdu
tionFor many engineering 
ow problems, the least-squares prin
iples o�er severaltheoreti
al and 
omputational advantages in the algorithmi
 design and imple-mentation [1, 2, 3, 4℄ of the 
orresponding �nite element methods, advantagesthat are not present in standard Galerkin based dis
retization. In parti
ular, theleast-squares formulations lead to symmetri
 and positive de�nite algebrai
 sys-tems [5℄ whi
h 
ir
umvent the Ladyzhenskaya-Babu�ska-Brezzi stability 
onditionirrespe
tive of the underlying partial di�erential equations. Due to these advan-tages, least-squares �nite element methods are be
oming in
reasingly popular tosolve the Stokes [6, 7, 8℄ and Navier-Stokes equations [9, 10, 5℄.Least-squares spe
tral element methods (LSQSEM) seem very promisingsin
e these methods 
ombine the generality of �nite element methods with thea

ura
y of the spe
tral methods and also the theoreti
al and 
omputationaladvantages in the algorithmi
 design and implementation of the least-squaresmethods. In [11, 12℄, the a

ura
y of a least-squares spe
tral dis
retization of theStokes problem (
ast in velo
ity-vorti
ity-pressure form) has been reported for??? Funding for this work was provided by the National Computing Fa
ilities Foundation(NCF), under proje
t numbers NRG-2000.07 and MP-068. Computing time was alsoprovided by HP�C, Centre for High Performan
e Applied Computing at the DelftUniversity of Te
hnology.
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di�erent boundary 
onditions. The interested reader is referred to these papersfor a sound dis
ussion regarding the least-squares spe
tral element formulationof the Stokes problem, the gathering pro
edure and the e�e
t of the boundary
onditions on the formulation. The present paper deals with eÆ
ient parallel so-lution strategies to solve the algebrai
 systems resulting from the least-squaresspe
tral element formulation of the Stokes problem.Parallelization of the least-squares �nite element methods seems to be straight-forward by using element-by-element te
hniques [1, 4℄. However, this is not the
ase with least-squares spe
tral element methods sin
e two di�erent kinds ofdistribution of data are required and the 
onversion is rather 
ompli
ated. Thespe
tral element stru
ture enables to 
al
ulate the lo
al matri
es 
orrespondingto ea
h spe
tral element, simultaneously. Obviously, if the number of availablepro
essors is mu
h larger than the number of spe
tral elements, many pro
es-sors be
ome idle unless the data of a single spe
tral element will be 
omputedalong several pro
essors. In the present paper, we 
onsider a spe
tral element,also 
alled a 
ell, as the smallest 
omputational unit. The parallel solution of thealgebrai
 problem, a large, global sparse system, requires a 
ompletely di�erentdata distribution.The present paper is organized in the following way. In Se
t. 2, some imple-mentation aspe
ts of least-squares spe
tral element methods are treated. Theprogram stru
ture and parallel implementation are dis
ussed in Se
t. 3. The re-sults of the numeri
al simulations are dis
ussed in Se
t. 4. Con
lusions are givenin Se
t. 5.
2 Implementation aspe
ts of least-squares spe
tralelement methodsThe domain is dis
retized with a mesh of k non-overlapping 
onforming quadri-lateral spe
tral elements of the same order. As dis
ussed in [11, 12℄, ea
h quadri-lateral spe
tral element is �rst mapped on the parent spe
tral element and thenthe lo
al systems Aizi = fi; with i = 1; � � � ; k (1)are 
al
ulated. The matrix Ai represents the least-squares spe
tral element dis-
retization of the governing equations of spe
tral element i and the ve
tors ziand fi represent the 
orresponding lo
al variables and the right-hand fun
tion,respe
tively.In Fig. 1 an example is given of a domain dis
retized with a mesh of fourspe
tral elements. Ea
h spe
tral element 
ontains nine lo
al nodes, numberedfrom 1 to 9 (small-size digits). In the same �gure, also a global numbering(normal-size digits) is shown. First, the internal nodes or variables are num-bered (1; � � � ; 9), then the knowns (10; � � � ; 25) given by the boundary 
onditions.Sin
e ea
h lo
al variable 
orresponds to a global variable, one 
an establish thelo
al-global mapping operator gmI for ea
h spe
tral element. For the given ex-
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Fig. 1. Example of lo
al and global numbering. The domain has been divided into four
ells: I, II,III, IV. Ea
h 
ell 
ontains 9 nodes, denoted by a Æ.
ample, we have gmI = [ 10; 11; 12; 19; 1; 2; 20; 4; 5 ℄;gmII = [ 12; 13; 14; 2; 3; 15; 5; 6; 16 ℄;gmIII = [ 20; 4; 5; 21; 7; 8; 22; 23; 24 ℄;gmIV = [ 5; 6; 16; 8; 9; 17; 24; 25; 18 ℄: (2)
The lo
al-global mapping operator gmI 
an also be expressed by the sparsegathering matrix Gi whi
h has nonzero entries a

ording to Gi(i; gmI (i)) =1; I = I; � � � ; IV. The global assembly of the k lo
al systems (1) 
an now readilybe obtained with: KU = F , " kXi=1 GTi AiGi#U = kXi=1 GTi fi. (3)where the matrix K represents the symmetri
al globally gathered matrix of fullbandwidth and the ve
tors U and F represent the global nodes (e.g., variablesand knowns) and the global right-hand side fun
tion, respe
tively.Sin
e the known nodes are numbered last, one 
an subdivide the ve
tor Uinto an unknown 
omponent U1 and a known 
omponent U2. Consequently, thematrix K 
an be fa
tored into submatri
es K1;1, K1;2, KT1;2 and K2;2. Also thethe right-hand side ve
tor F 
an be fa
tored into the submatri
es F1 and F2.Hen
e, system (3) has the following matrix stru
ture�K1;1 K1;2KT1;2 K2;2 � �U1U2 � = �F1F2 � ; (4)



whi
h readily allows "stati
 
ondensation\ of the knowns, leading to the followingsparse symmetri
 and positive de�nite systemK1;1U1 = F1 �K1;2U2 . (5)System (5) will be solved in parallel with the 
onjugate gradient method.
3 Program stru
ture and parallel implementation3.1 Redistribution of data due to renumberingAfter we have built up the grid 
ompletely and after the 
al
ulation of thelo
al systems (1), we have to swit
h from lo
al numbering to global numberingas dis
ussed in Se
t. 2. As a result, we obtain a global CSR-matrix whi
h 
aneasily be distributed long an arbitrary number of pro
essors. Ea
h pro
essor hasto send data from one 
ell to a few other pro
essors or possibly to itself, a veryunbalan
ed task due to the 
hosen numbering. However, if this task is 
ompleted,ea
h pro
essor 
ontains a part of the global assembled matrix (3), and the dataper pro
essor will be balan
ed again.Let us return to the example grid of Fig. 1. If we 
onsider only the internalnodes and investigate the 
ase of four pro
essors, then before redistributionpro
essor p0 
orresponds to 
ell I, p1 to 
ell II and so on. After the rearrangementof the data, p0 
ontains the �rst three rows of matrix K of (3), p1; p2 and p3ea
h two rows. The distribution is as follows:p0( 
ell I) ) p0(N1; N2); p1(N4; N5);p1( 
ell II) ) p0(N2; N3); p1(N5); p2(N6);p2( 
ell III)) p1(N4; N5); p2(N7); p3(N8);p3( 
ell IV) ) p1(N5); p2(N6); p3(N8; N9): (6)
3.2 Parallel Conjugated Gradient Performan
eSin
e system (5) is symmetri
 and positive de�nite, the 
onjugate gradient (CG)method 
an be applied dire
tly. The performan
e of this iterative solution strat-egy for least-squares �nite element approximation of 
ow problems on distributedparallel 
omputers is 
learly of relevan
e to 
omputational 
uid dynami
s. In thisreport, we des
ribe results with the simple, easy to parallelize, Ja
obi or diagonalpre
onditioning. At this moment, we test the eÆ
ien
y of other pre
ondition-ing s
hemes for the in
ompressible Navier-Stokes problem: blo
k-Ja
obi, SSOR,FEM-matrix and Additive S
hwarz and their parallel possibilities. The latterseems to be a good 
andidate.Having assembled the system lo
ally in parallel, solution by CG iterationinvolves repeated matrix-ve
tor produ
ts, dot produ
ts and DAXPY operations.More spe
i�
ally, ea
h iteration involves one matrix-ve
tor produ
t, two dotprodu
ts, two DAXPY and one DAYPX operations (y = y + �x; y = x+ �y). Lo
aldot produ
ts are 
omputed in parallel on the pro
essors and the s
alar results



are a

umulated a
ross the pro
essors using global summation followed by abroad
ast. The 
ommuni
ation of the dot produ
t will in
rease logarithmi
allywith in
reasing number of pro
essors. The matrix-ve
tor produ
ts, whi
h 
learlyrequire the greatest fra
tion of the 
omputation, are 
omputed in parallel.Consider the matrix-ve
tor produ
tY = � A X + � Y; (7)where A is stored in Compressed Row Storage mode. A fast method to parallelizethis operation is to divide matrix A and ve
tor Y into equal parts for the sakeof a good load balan
ing. For the matrix A this means that ea
h pro
essor getsthe same number of rows mp, following the next distribution:mp = m=p; (8)if m, the number of rows of A, is a multiple of the number of pro
essors p. If not,whi
h will be true in most 
ases, some adjustment of this approximate pro
espartitioning will be needed and the number of grid points per pro
essor mayvary slightly. We assume that ea
h part has a 
omparable number of nonzeroelements. The 
omplete ve
tor X must be available on ea
h pro
essor.

X

+ β

YY

= α

AFig. 2. Parallel distribution of matrix A and ve
tor Y , along 8 pro
essors
The CSR-matrix A of Fig. 2 is de�ned asTYPE,PUBLIC :: matve
_
srREAL(DOUBLE), DIMENSION(:), POINTER :: FKEINTEGER, DIMENSION(:), POINTER :: JFKEINTEGER, DIMENSION(:), POINTER :: IFKEINTEGER :: no_rowsEND TYPE matve
_
sr



Then on ea
h pro
essor the matrix A 
an be de
lared as:TYPE(matve
_
sr) :: A,where A%FKE 
ontains the nonzero values at the pro
essor involved, where theINTEGER array A%JFKE 
ontains their 
olumn numbers and where A%IFKE(i+1)-A%IFKE(i) denotes the number of nonzeros of row i on that parti
ular pro
essor.
4 Numeri
al resultsIn (least-squares) spe
tral element appli
ations, two di�erent kinds of re�nementstrategies are 
ommonly used: h-re�nement and p-re�nement. The purpose of thenumeri
al simulations is to 
he
k the parallel performan
e for both re�nementstrategies. To this end, the least-squares spe
tral element formulation of thevelo
ity-vorti
ity-pressure formulation of the Stokes problem is demonstratedby means of the smooth model problem of Gerritsma-Phillips [13℄ with v = 1.This model problem involves an exa
t periodi
 solution of the Stokes problemde�ned on the unit-square ([0; 1℄ � [0; 1℄). The velo
ity boundary 
ondition isused for all the numeri
al simulations. The pressure 
onstant is set at the point(0; 0). The h� and p�grids used in the present paper 
orrespond to the grids in[11, 12℄.
4.1 The h- and p-re�nement approa
h and its parallel performan
eSix di�erent grids are used to 
he
k the parallel performan
e of the h-re�nement.As 
an be observed in Table 1, the polynomial order of all the spe
tral el-ements equals 4, whi
h means that ea
h dire
tion has four Gauss-Legendre-Lobatto(GLL) 
ollo
ation points, and the number of spe
tral elements is variedfrom 4 to 144. For the moment, we 
onsider a 
ell as the smallest 
omputationalunit. Obviously, an in
rease of the number of 
ells allows to use more pro
essors,and the parallel eÆ
ien
y will grow. In 
ase the number of pro
essors is less thanthe number of 
ells, one or more pro
essors will 
ompute data of more than one
ell.In the middle 
olumn of Tables 1 and 2 the order of the large sparse globalsystem is given together with the number of iterations required to solve this sys-tem using CG. The parallel solution of the systems may give a slightly di�erentnumber of iteration steps. The right 
olumn in the Tables lists the L2 norm ofthe di�erent 
omponents, like the velo
ity (L2 norm of x� and y�
omponentsagree), the vorti
ity and pressure. Only four di�erent grids have been used to
he
k the parallel performan
e in 
ase of the p-re�nement (see Table 2). Ea
hgrid 
ontains four spe
tral elements. The order of the approximating polynomialvaries from 4 to 10 and is the same in all the variables. A growth of the poly-nomial order in the p-re�nement 
ase will in
rease the number of nodes per 
elland so does the amount of 
omputational e�ort per 
ell. However, the highestparallel eÆ
ien
y will be a
hieved in 
ase the number of 
ells equals the number



Table 1. The di�erent grids used for the investigation of the h�re�nements.Spe
tral GLL- size of # L2 normelements order global system iterations Velo
ity Vorti
ity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�24� 4 4 1027 232 5.0 10�5 1.6 10�3 7.1 10�46� 6 4 2307 326 5.2 10�6 2.8 10�4 6.9 10�58� 8 4 4099 431 1.1 10�6 8.7 10�5 1.3 10�510� 10 4 6403 569 3.2 10�7 3.5 10�5 3.6 10�612� 12 4 9219 707 1.2 10�7 1.7 10�5 1.3 10�6
Table 2. The di�erent grids used for the investigation of the p�re�nements.Spe
tral GLL- size of # L2 normelements order global system iterations Velo
ity Vorti
ity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�22� 2 6 579 224 8.7 10�6 7.5 10�4 1.9 10�32� 2 8 1027 305 6.5 10�8 7.1 10�6 1.6 10�62� 2 10 1603 388 4.4 10�10 4.5 10�8 7.6 10�9

of pro
essors. If the number of pro
essors is larger than the number of 
ells, pro-
essors will be
ome idle and for parallel performan
e and s
alability this resultis dramati
.We remark that four spe
tral elements and a GLL-order of 8 gives a highera

ura
y 
ompared to the grid with 12� 12 spe
tral elements and a GLL-orderof 4. Moreover, the systems to solve are mu
h smaller whereas the number ofiterations is halved.4.2 Parallel platforms and implementationThe 
al
ulations have been performed on{ Cray T3E system Vermeer (named after the Dut
h painter) at HP�C with128 user PEs inter
onne
ted by the fast 3D torus inter
onne
t network with apeak performan
e of 76.8 Giga
op/s. Ea
h PE is 
on�gured with 128 Mbytesof lo
al memory, providing more than 16 Gbytes of globally addressabledistributed memory.{ The SGI Origin 3800 Teras with 1024 500 MHz RI 14000 pro
essors, subdi-vided into six partitions, two (intera
tive) 32-CPU partitions and four bat
hpartitions of 64, 128, 256 and 512 CPU's, respe
tively. The theoreti
al peakperforman
e is 1 Tera
op/s. The Teras is a CC-NUMA ma
hine, Ca
he-Coherent, Non Uniform Memory A

ess. For the user the 
omplete memoryis a

essible, though as a matter of fa
t the memory is distributed along all



pro
essors. The memory a

ess is not uniform, be
ause ea
h pro
essor 
ana

ess its own memory mu
h faster than the memory of other pro
essors.To get good portable programs whi
h may run on distributed-memory multi-pro
essors, networks of workstations as well as shared-memory ma
hines we useMPI, Message Passing Interfa
e. At this moment, standard or blo
king 
ommu-ni
ation mode is used: a send 
all does not return until the message data havebeen safely stored away so that the sender is free to a

ess and overwrite thesend bu�er. All routines have been implemented in FORTRAN 90.4.3 Parallel performan
e and speedupsThe grid 
reation and the 
al
ulations of the global systems 
an be performed
ompletely in parallel and is very fast 
ompared to the solution of the globalsystems. However, the 
onversion of the 
ell distribution to the parallel CSR-format distribution be
omes more expensive in 
ase more pro
essors are involved.Table 3 shows wall-
lo
k timings for the Teras of this 
onversion simulated on asingle pro
essor and we do not expe
t a high parallel speedup for this pro
essthat is mainly dominated by 
ommuni
ation.
Table 3. Teras: Wall-
lo
k timings in se
onds for 
onversion of 
ell-wise distributionof grid with 2� 2 spe
tral elements into global matrix in CSR-format, simulated on asingle pro
essor. # Pro
essors GLL-order
onverted for 4 6 8 101 0.03 0.12 0.35 0.862 0.04 0.17 0.51 1.254 0.07 0.28 1.01 2.408 0.12 0.65 2.31 5.3016 0.25 1.20 5.85 13.2532 0.69 4.78 13.64 30.67

In Fig. 3, speedups for the solution part are given for grids with di�erentnumbers of spe
tral elements. The speedups, obtained at Teras and Vermeer, area
hieved for 2,4,8,16 and 32 pro
essors. The speedup Sp is de�ned as the quotientof the wall-
lo
k time measured on one pro
essor and the time measured on ppro
essors. Obviously, the speedup on the distributed memory ma
hine Vermeeris mu
h higher than on the virtual shared memory Teras (
f. Fig. 3a and 3b).Sin
e the SGI MPI-implementation on Teras takes into a

ount that the CPUsshare the memory, we did not expe
t this behaviour. The disappointing speedupmay be dominated by the slow 
ommuni
ation 
ompared to its high performan
e.To get an indi
ation of the performan
e of both ma
hines, the solution times forgrid 8� 8 on 1 and 32 pro
essors are listed in Table 4.



1 2 4 8 16 32
0

2

4

6

8

10

# processors

S
pe

ed
up

d) Teras,Spectral Grid 2x2

GLL=4

GLL=6

GLL=8

GLL=10

1 2 4 8 16 32
0

5

10

15

20

# processors

S
pe

ed
up

a) Vermeer,GLL=4

2X2

4x4

6x68x8

10x10
12x12

1 2 4 8 16 32
0

5

10

15

20

# processors

S
pe

ed
up

b) Teras,GLL=4

2X2

4x4

6x6

8x8

10x10

12x12

1 2 4 8 16 32
0

5

10

15

20

# processors

S
pe

ed
up

c) Teras,GLL=6

2x2

4x4

6x6

8x8

10x10
12x12

Fig. 3. Speedups a
hieved on both Vermeer and Teras for di�erent kind of grids.Table 4. Wall-
lo
k timings in se
onds for the solution part obtained for the grid of12� 12 spe
tral elements and GLL-order=4.Teras Vermeerp = 1 p = 32 p = 1 p = 3246.9 3.8 314.9 16.0
If we add per spe
tral element two more GLL-
ollo
ation points per dire
tion,the 
omputational e�orts in
rease and the speedup on Teras is nearly twi
eas mu
h (see Fig. 3
). Finally, Fig. 3d demonstrates that the eÆ
ien
y of theCG-solution method depends on the GLL-order. A
tually, the model problemdis
ussed here appears to be too small for both ma
hines.

5 Con
lusions and future plansThe LSQSEM method results in symmetri
 and positive de�nite systems oflinear equations whi
h 
an be solved by CG in parallel. At the moment, a Ja
obi



pre
onditioner is used that does not 
onverge very fast. Sin
e the total exe
utiontime is dominated by solving the linear systems it is ne
essary to 
on
entrateon good parallelizable pre
onditioners for these systems. Obviously, we have to
omplete the parallelization of the 
onversion part and to redu
e 
ommuni
ationtime by making use of nonblo
king MPI-routines. The exe
ution times listed inFig. 4 indi
ate that the parallel implementation is very suitable for large-s
aleproblems arising in s
ienti�
 
omputing.
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