
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 43, No. 1, pp. 96–125

THE GENERALIZED WORK FUNCTION ALGORITHM IS
COMPETITIVE FOR THE GENERALIZED 2-SERVER PROBLEM∗

RENÉ SITTERS†

Abstract. The generalized 2-server problem is an online optimization problem where a sequence
of requests has to be served at minimal cost. Requests arrive one by one and need to be served
instantly by at least one of two servers. We consider the general model where the cost function of
the two servers may be different. Formally, each server moves in its own metric space and a request
consists of one point in each metric space. It is served by moving one of the two servers to its
request point. Requests have to be served without knowledge of future requests. The objective is
to minimize the total traveled distance. The special case where both servers move on the real line
is known as the CNN problem. We show that the generalized work function algorithm, WFAλ, is
constant competitive for the generalized 2-server problem. Further, we give an outline for a possible
extension to k � 2 servers and discuss the applicability of our techniques and of the work function
algorithm in general. We conclude with a discussion on several open problems in online optimization.
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1. Introduction. The work function algorithm is a generic algorithm for online
optimization problems. For many problems, it gives the optimal competitive ratio or
it is conjectured to be optimal. For example, it has the best known ratio of 2k − 1
for the k-server problem [25], which is probably the most appealing and well-studied
problem in online optimization, and the work function algorithm is conjectured to
have an optimal ratio of k. There are many papers that deal with this classical
work function algorithm. More powerful, but less well known is the generalized work
function algorithm, WFAλ, which is the standard work function algorithm with an
additional parameter λ. A result by Burley [9] shows that the generalized algorithm
can indeed be strictly more powerful than the standard work function algorithm.

The (generalized) work function algorithm may be computationally expensive and
pretty hard to analyze, but things can be much better for special cases. For example,
the simple doubling algorithm for the cow path problem is mimed by the generalized
work function algorithm WFA0.5. Another example is the (optimal) move-to-front
algorithm for the list update problem which can be seen as the work function algorithm
WFA1. The running time of the work function algorithm very much depends on the
complexity of computing offline solutions. For example, the work function algorithm
for traversing layered graphs can be implemented in linear time while its analysis is
quite involved [9]. Further, the performance of the work function algorithm may be
much better in practice than what is guaranteed in theory (see, for example, [6]). For
some problems, the work function algorithm is optimal but there are more efficient
alternatives. For example, it is k-competitive for weighted caching [5] but the elegant
double coverage (DC) algorithm [11] has the same optimal ratio. However, the DC
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THE GENERALIZED WORK FUNCTION ALGORITHM 97

algorithm is not extendable to arbitrary metric spaces. For some hard problems, the
work function algorithm is basically the only algorithm known. Examples are the
(deterministic) k-server problem and the generalized 2-server problem that we discuss
in this paper.

We say that an algorithmAlg for an online minimization problem is c-competitive
(c � 1) if there is a constant c0 such that for every instance I of the problem, the
algorithms cost Alg(I) and the optimal cost Opt(I) satisfy

Alg(I) � c ·Opt(I) + c0.

The competitive ratio of the algorithm is the infimum over c such that Alg is c-
competitive. The competitive ratio of the online minimization problem is the infimum
over c such that there is a c-competitive algorithm.

In the generalized 2-server problem we are given a server, whom we will call the
X-server, moving in a symmetric metric space X, and a server, the Y-server, moving in
a symmetric metric space Y. A starting point (OX,OY) ∈ X×Y is given and requests
(x, y) ∈ X × Y are presented online one by one. Requests are served by moving one
of the servers to the corresponding point in its metric space and the choice of which
server to move is made without knowledge of the future requests. The objective is
to minimize the sum of the distances traveled by the two servers. The special case
X = Y = R is known as the CNN problem [26, 27]. This problem can be seen as a
single server moving in R2 with the L1-norm and each request is a point in R2 which
is served if the x- or y-coordinate of the server and request coincide.

Research on the CNN problem started more than ten years ago but despite the
simplicity of the problem and its importance for the theory of online optimization,
the problem is still not well understood. The CNN problem first appeared in a
paper of Koutsoupias and Taylor [26, 27]. They conjectured that the generalized
work function algorithm WFAλ has a constant competitive ratio1 for any λ ∈ (0, 1).
They also conjectured that the generalized work function algorithm is competitive
for the generalized 2-server problem. In this paper we settle both conjectures. The
constant that follows from our proof is large and we do not present an upper bound
on its value. Hence, the gap between known lower and upper bound remains large.
The first competitive algorithm was given in [33] and in its journal version [32]. The
importance of the new result here is that we analyze the generalized work function
algorithm which is applicable to any metrical service systems. Our techniques here
are more involved than those in [32] and are interesting for online optimization in
general. This is discussed in section 6.

As the name suggests, the generalized 2-server problem originates from the clas-
sical 2-server problem in which X = Y and x = y for every request, i.e., each request
is a point in the metric space and we have to decide which server to move to the
requested point. The k-server problem (with k � 2 servers) is one of the most studied
problems in online optimization. A recent survey of the k-server problem is given
by Koutsoupias [23]. The k-server problem on a uniform metric space is the paging
problem. In the weighted k-server problem a weight is assigned to each server (of
the classical problem) and the total cost is the weighted sum of the distances. The
weighted k-server problem is a special case of the generalized k-server problem.

All online optimization problems mentioned in this article belong to the class
of metrical task systems (for a definition see section 1.3 and [7]). Given multiple
metrical task systems, the sum problem [27] is again a metrical task system and is

1The λ in [27] corresponds to 1/λ in our notation.
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98 RENÉ SITTERS

defined as follows: At each step we receive one request for each task system and
we have to serve at least one of those requests. The CNN problem is the sum of
two trivial problems: in both problems there is one server moving on the real line
and each request consists of a single point. Koutsoupias and Taylor [27] emphasize
the importance of the CNN problem: “It is a very simple sum problem, which may
act as a stepping stone towards building a robust (and less ad hoc) theory of online
computation.” Indeed, our techniques are useful for sum problems in general and we
hope it leads to a better insight and hence further simplifications and generalizations
in the theory of online computation.

1.1. Known competitive ratios. No memoryless (randomized) algorithm can
have a finite competitive ratio for the CNN problem [15, 27, 35] while a finite ratio
is possible if we are allowed to store the entire given sequence (or at least the current
work function) [32, 33]. The algorithms in the latter two papers are complex and
the ratio very high but they do apply to the generalized 2-server problem as well.
See [10] for a review of [33]. For the classical k-server problem, the work function
algorithm is (2k − 1)-competitive for any metric space [25] and it is conjectured to
be even k-competitive [28, 25]. This famous k-server conjecture was posed more than
two decades ago and is still open. The competitive ratio of the weighted k-server
problem is much higher. Fiat and Ricklin [17] prove that for any metric space with at
least k + 1 points there exists a set of weights such that the competitive ratio of any
deterministic algorithm is at least kΩ(k). Koutsoupias and Taylor [27] prove that any
deterministic online algorithm for the weighted 2-server problem has a competitive
ratio of at least 6+

√
17 > 10.12 even if the underlying metric space is the line and [15]

shows that any memoryless randomized algorithm has unbounded competitive ratio
in this case. These two lower bounds apply to the CNN problem as well since it
contains the weighted 2-server problem on the line as a special case.

1.2. More special cases and variants. The orthogonal CNN problem [22]
is the special case of the CNN problem in which each request either shares the x-
coordinate or the y-coordinate with the previous request. Iwama and Yonezawa [22]
give a 9-competitive algorithm and a lower bound of 3 is given in [1].

In the continuous CNN problem [1], there is one request which follows a contin-
uous path in R2 and the online server must serve it continuously by aligning either
horizontally or vertically. It generalizes the orthogonal version in the sense that any
c-competitive algorithm for the continuous problem implies a c-competitive algorithm
for the orthogonal problem. Augustine and Gravin [1] give a 6.46-competitive mem-
oryless algorithm (improving the 9 from [22] mentioned above).

The axis-bound CNN problem was introduced by Iwama and Yonezawa [20, 21]
and is the special case in which the server can only move on the x- and y-axes. They
give an upper bound of 9 and a lower bound of 4+

√
5. The lower bound was raised to

9 in [4]. That paper also gives an alternative 9-competitive algorithm by formulating
it as a 2-point request problem [9]. Finally, the box bound CNN problem [3] is the
restriction in which the server can move only on the boundary of a rectangle and
requests are inside the rectangle. The problem can be transformed into the 4-point
request problem [3]. An upper bound of 88.71 for the latter problem follows from the
paper by Burley [9].

For the weighted 2-server problem, the only known competitive algorithm follows
from the one for the generalized 2-server problem. For the special case of a uniform
metric space (where all distances are 1), Chrobak and Sgall [15] prove that the work
function algorithm is 5-competitive and that no better ratio is possible. They also
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give a 5-competitive randomized, memoryless algorithm for uniform spaces, and a
matching lower bound. Further, they consider a version of the problem in which a
request specifies two points to be covered by the servers, and the algorithmmust decide
which server to move to which point. For this version, they show a 9-competitive
algorithm and prove that no better ratio is possible. Finally, Verhoeven [35] shows
that no memoryless randomized algorithm can be competitive for the CNN problem
under an even weaker definition of memoryless than used in [15] and [27].

1.3. Metrical task systems and metrical service systems. Borodin, Linial,
and Saks [7] introduced the problem of metrical task systems, a generalization of all
online problems discussed here. Such system is a pair S = (M, T ), whereM is a metric
space and T a set of tasks. Each task τ ∈ T is defined by a function τ : M → R+

which gives for each s ∈ M the cost of serving the task while being in s. In an
online instance, the tasks are given one by one and the objective is to minimize the
total traveled distance (starting from given origin O) plus the total service cost. The
system is called unrestricted if T consists of all nonnegative real functions on M. The
authors of [7] show that the competitive ratio is exactly 2m− 1 for the unrestricted
metrical task system on any metric space on m points.

A restricted model is that of metrical service systems, introduced in [12], [13],
and [29]. (In [29] it is called forcing task systems.) Such a system is a pair S = (M,R),
where M is a metric space and R a set of requests where each request r ∈ R is a subset
of M. The system is called unrestricted if R consists of all subsets of M. Metrical
service systems correspond to metrical task systems for which τ : M → {0,∞} for
each task τ . Manasse, McGeoch, and Sleator [29] give an optimal (m−1)-competitive
algorithm for the unrestricted metrical service system on any metric space onm points.

The generalized 2-server problem is a metrical service system: There is one server
moving in the product space M = X×Y and any pair (x, y) ∈ X×Y defines a request
r(x, y) = {{x}×Y}∪{X×{y}} ⊂ M. The distance between points (x1, y1) and (x2, y2)
in X × Y is d((x1, y1), (x2, y2)) = dX(x1, x2) + dY(y1, y2), where dX and dY are the
distance functions of the metric spaces X and Y.

The work function algorithm is optimal for metrical task and metrical service
systems in the sense that it is, respectively, (2m− 1)- and (m− 1)-competitive on any
metric space of at most m points [14]. This is not of direct use for the CNN problem
since the metric space, R2, has an unbounded number of points.

1.4. The work function algorithm: WFAλ. The work function algorithm
appeared for the first time in [12] but was discovered independently by others (see [25]).
We use it here only for metrical service systems but it works the same for metrical
task systems.

Definition 1.1. Given a metrical service system S = (M,R) and origin O ∈ M,
and given a request sequence σ, the work function Wσ : M → R+ is defined as follows.
For any point s ∈ M, Wσ(s) is the length of the shortest path that starts in O, ends
in s, and serves σ.

We assume here that the work function is well-defined (which is always true if
the metric space is finite). Thus, we assume that for any σ = r1, . . . , rn and any
point s ∈ M there are points si ∈ ri (i = 1, . . . , n) such that d(O, s1) + d(s1, s2) +
· · ·+ d(sn−1, sn) + d(sn, s) � d(O, t1) + d(t1, t2) + · · ·+ d(tn−1, tn) + d(tn, s) for any
set of points ti ∈ ri (i = 1, . . . , n). Clearly, the work function is well-defined for the
generalized 2-server problem since we may assume that for each si, both its coordinates
are from requests given so far. See [13] for a sufficient condition for the work function
to be well-defined.

D
ow

nl
oa

de
d 

01
/1

3/
15

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

100 RENÉ SITTERS

For a work function Wσ we say that point s is dominated by point t if Wσ(s) =
Wσ(t) + d(s, t). We define the support of Wσ as

supp(Wσ) = {s ∈ M : s is not dominated by any other point}.

Let σr denote the sequence σ followed by request r. If Wσr is a well-defined work
function then supp(Wσr) ⊆ r since for any point s /∈ r there exists a point t ∈ r such
that Wσr(s) = Wσr(t)+d(s, t). For more properties and a deeper analysis of the work
function (algorithm) see, for example, [8], [9], and [23].

The generalized work function algorithm is a work-function-based algorithm pa-
rameterized by some constant λ ∈ (0, 1]. We denote it by WFAλ.

Definition 1.2. For any request sequence σ and any new request r, the general-
ized work function algorithm WFAλ moves the server from the position s it had after
serving σ to any point

(1.1) s′ ∈ Argmin
t∈M

{Wσr(t) + λd(s, t)}.

This minimum may not be well-defined if the request r contains infinitely many
points of the metric space. This is no problem for the generalized 2-server prob-
lem since the minimum is attained for some t with both coordinates of the given
requests [32]. From (1.1), we see that

Wσr(s
′) + λd(s, s′) � Wσr(t) + λd(s, t) for any point t ∈ M.

Using the triangle inequality, we get that for any t ∈ M

Wσr(s
′) � Wσr(t) + λ(d(s, t)− d(s, s′)) � Wσr(t) + λd(s′, t).(1.2)

If λ < 1 then (1.2) implies that s′ is not dominated by any other point, whence
s′ ∈ supp(Wσr) ⊆ r. We see that if the moves of WFAλ are well-defined then the
choice of λ < 1 ensures that the point s′ always serves the last request and we may
replace t ∈ M by t ∈ r in Definition 1.2.

For λ = 0, the generalized work function algorithm corresponds to the algorithm
that always moves to the endpoint of an optimal solution, and for λ = ∞ it corre-
sponds to the greedy algorithm (if we take t ∈ r instead of t ∈ M in (1.1)). The
standard work function algorithm has λ = 1 and was first used in [12] and has been
studied extensively. The general form was defined in [12] as well but was used only
shortly after in [13] where it is called the λ-cheap-and-lazy strategy. They show that
WFAλ with λ = 1/3 is optimal for the 2-point request problem. Burley generalized
this and showed that WFAλ is O(k2k)-competitive for the k-point request problem
(where λ depends on k).

In most papers, λ is placed before Wσr in (1.1) instead of before d(s, t), as we do
here. Also, sometimes α is used instead of λ. For example, Burley [9] uses α > 1 and
the following definition of the work function algorithm: s′ ∈ Argmint∈M

{αWσr(t) +
d(s, t)}. Replacing α by 1/λ matches our definition. Our choice was partly for an
aesthetic reason: Now, the term λ appears much more often in the paper than the term
1/λ. But also in the definitions of the extended cost and slack function (section 2),
using λ < 1 seems the natural choice.

1.5. Paper outline and proof sketch. The main part of this paper is devoted
to the CNN problem (Theorem 3.1). The generalization to arbitrary metric spaces
(Theorem 4.1) is more complex and we do this in a separate section. The proof of
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Theorem 3.1 is based on no less than 21 lemmas. To obtain a better insight into the
relation between lemmas we mention after each lemma where it is used. The proof of
Theorem 4.1 uses exactly the same lemmas (only some constants are different) and
we indicate how to adjust the proofs of these lemmas.

Before giving a sketch of the proof, we give a brief outline of the paper. In section 2
we list some properties of the work function algorithm. These hold for any metrical
service system and can be found in several other papers, e.g., [9, 14, 25]. Further,
we introduce the closely related slack function and list some of its properties. In
section 3 we present our potential function for the CNN problem together with some
of its properties. Although the potential function is defined for the CNN problem,
the theory in sections 3.1 and 3.2 applies to any metrical service system on R2. In
section 3.3 we state some properties of the CNN problem which do not depend on
the potential and in section 3.4 we put everything together and apply the potential
to the CNN problem. In section 4 we show how to modify the proof for general
metric spaces, i.e., we prove that the generalized work function algorithm is constant
competitive for the generalized 2-server problem. In section 5 we give a sketch of a
possible extension to higher dimensions. Finally, in section 6 we discuss several open
problems in online optimization.

There are several reasons for giving a separate CNN proof. First, the reader
has the option of just reading the CNN proof and skipping the more difficult general
proof. Nevertheless, we believe that the generalization is relatively easy to digest once
the reader has worked through the CNN proof and it may be even easier this way
than when we would present only the general proof. One reason is that the CNN

problem can be seen as moving points in the Euclidean plane which makes the proof
easier to visualize than the proof for the general case.

Our potential function has a long description and may seem unintuitive at first.
It is a linear combination of two functions: F and G. Function F is a special case
of the potential function that was used in [32] to give the first constant competitive
algorithm for the generalized 2-server problem. When we use only F as our potential
function and follow the line of proof that we use here, then the analysis fails. Taking
G as potential function does not work either. However, the two functions are in a
way complementary and if we take a linear combination of the two functions then the
proof goes through.

Next, we give a very short technical sketch of the proof, which applies to both
the CNN problem and the general problem. This part can be ignored but it may be
very helpful for readers that are familiar with analysis of the work function algorithm.
Definitions and formulas given here are presented in more detail later.

The potential function Φσ assigns a real value to each request sequence σ. It has
the following form:

Φσ = (1− γ) min
s1,s2,s3∈M

Fσ(s1, s2, s3) + γ min
s1,s2,s3∈M

Gσ(s1, s2, s3).

The functions Fσ : M3 → R and Gσ : M3 → R depend on the sequence σ. Further,
M = X × Y and γ ∈ (0, 1) is a constant. The initial value is zero and in general
it is upper bounded by the optimal value of the sequence so far, i.e., Φσ � Optσ.
We consider two arbitrary, subsequent requests r′ and r′′ and show that the increase
Φ′′ − Φ′ of the potential function for the new request r′′ is at least some constant c
times the so called extended cost for r′′, denoted by ∇r′′ (Definition 2.1):

(1.3) Φ′′ − Φ′ � c∇r′′ .
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Then, taking the sum over all requests in the entire sequence ρ of the instance,2 we find
that the total increase in the potential function is at least c times the total extended
cost, denoted by ∇ρ. We get ∇ρ � (1/c)Φρ � (1/c)Optρ. Proof of competitiveness
then follows directly from Lemma 2.2.

We now give some more details of (1.3). Let σ′ be a request sequence which ends
with r′. It is followed by r′′ and we denote σ′′ = σ′r′′. Let s1, s2, s3 be a minimizer
of Fσ′′ . By construction of F , all three points will serve the last request r′′. (The
same holds for Gσ′′ .) We distinguish between Case A: |{s1, s2, s3}| � 2, and Case B :
|{s1, s2, s3}| = 3. In the following, c1, c2, c3, c4 > 0 are specific constants depending
on λ. For Case A, we show that

minFσ′′ −minFσ′ � c1∇r′′ and minGσ′′ −minGσ′ � 0,

where ∇r′′ is the extended cost for r′′ w.r.t. σ′. Hence, the increase for Φ is at least
(1− γ)c1∇r′′ and (1.3) holds with c = (1− γ)c1. Note that, if we were always in Case
A then there would be no need for function G. The more difficult part of the proof is
Case B. In that case, it is easy to show that the increase for the minimum of function
F is

minFσ′′ −minFσ′ � c2 min{∂x, ∂y},

where ∂x = dX(x′, x′′) and ∂y = dY(y′, y′′). This is not enough to prove (1.3) if
min{∂x, ∂y} 
 ∇r′′ . So, let us consider the extreme case that min{∂x, ∂y} = 0.
Intuitively, we should be fine if we can handle this. The function G was designed
exactly for this case. More precisely, we show that if min{∂x, ∂y} = 0 then

(1.4) minGσ′′ −minGσ′ � c3∇r′′ .

Hence, the increase for Φ is at least γc3∇r′′ and (1.3) holds with c = γc3. In general,
we prove that

min Gσ′′ −minGσ′ � c3∇r′′ − c4 min{∂x, ∂y}.

The increase in Φ becomes at least

γc3∇r′′ + ((1− γ)c2 − γc4)min{∂x, ∂y},

which becomes at least γc3∇r′′ by choosing γ < c2/(c2 + c4). Again, (1.3) applies
with c = γc3.

Finally, a few words on how to prove (1.4). Let (s1, s2, s3) be a minimizer of
Gσ′′ . Remember that, for function F , we argued that we are fine if the cardinality
of {s1, s2, s3} is at most 2. But for function G we can enforce this situation by using
the fact that the two subsequent requests are aligned. Say that ∂y = 0. It will turn
out that the only interesting case is when s1, s2, s3 are all on the line y = y′ = y′′.
(Since otherwise, (1.4) will follow almost directly.) For this situation, we prove (see
Lemma 3.6) that one of the three points is redundant in the sense that there are
points u1, u2 ∈ {s1, s2, s3} such that Gσ′′ (u1, u2, u2) = Gσ′′ (s1, s2, s3). Then, (1.4) is
proven in a similar way as is done for F in Case A.

Summarizing, function F works fine as a potential function on its own, except
for the case that min{∂x, ∂y} ≈ 0. In a way, the difficult part is reduced to an

2In this paper, ρ always refers to the entire given sequence, i.e., no requests are given after ρ.
We mainly use σ otherwise.
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easier situation where the two subsequent requests are on a line and we designed a
potential function G that takes care of this situation. In other words, the difficult
case in the proof is reduced to a problem of lower dimension. This insight led to the
generalization to higher dimensions discussed in section 5.

2. Preliminaries. This section applies to any metrical service system. For the
analysis of the generalized work function algorithm we make extensive use of two
concepts: extended cost and slack. The first is an amortized cost of the (general) work
function algorithm. It was introduced together with the work function algorithm in
[12] (where it is called pseudocost) and has been used in every analysis of the work
function algorithm. The slack function was defined by Burley [9] and was also used
in [32]. Its definition comes naturally with that of extended cost and its use enhances
the analysis.

2.1. The extended cost.
Definition 2.1. For request sequence σ and request r, the extended cost for r is

∇r(Wσ) = max
s∈M

min
t∈r

[Wσ(t) + λd(s, t)−Wσ(s)] .

For ρ = r1r2 · · · rn, we define the total extended cost as ∇ρ =
∑n

i=1 ∇ri(Wr1···ri−1).
The definition of extended cost matches that in [32] and matches the commonly

used extended cost in the case λ = 1. It also matches the definition by Burley [9],
although the notation is quite different. The intuition behind extended cost becomes
clear from the following lemma and its proof.

Lemma 2.2. Let ∇ρ be the total extended cost of sequence ρ. If ∇ρ � cOptρ

for some constant c and any request sequence ρ then WFAλ is (c− 1)/λ-competitive.
(Used in proof of Theorem 3.1.)

Proof. Assume the online server is in point s′ after it served the initial sequence
σ and moves to t′ to serve a new request r. Since we maximize over s ∈ M in
Definition 2.1 we have

∇r(Wσ) � min
t∈r

[Wσ(t) + λd(s′, t)−Wσ(s
′)]

= min
t∈r

[Wσr(t) + λd(s′, t)−Wσ(s
′)] .

By the definition of WFAλ, the minimum on the right side is attained for t = t′.
Therefore,

∇r(Wσ) � Wσr(t
′) + λd(s′, t′)−Wσ(s

′).

Rewriting we get

d(s′, t′) � 1

λ
(∇r(Wσ) +Wσ(s

′)−Wσr(t
′)) .

This gives an upper bound for the cost of WFAλ for serving some single request r.
Let q be the point where the algorithm ends after serving ρ. Summing up over all
requests in ρ we get that the total cost for WFAλ is at most

1

λ
(∇ρ +Wε(O)−Wρ(q)) �

1

λ
(∇ρ −Optρ) �

1

λ
(c− 1)Optρ.
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104 RENÉ SITTERS

t s

C

Wσ

Slσ(s;C)

Fig. 2.1. The slack of s with respect to line segment C is attained in t ∈ C.

2.2. The slack function. We use the concept of the slack of a point relative
to another point. Intuitively, the slack of a point s with respect to a point t is the
amount that the work function value in s can increase before the generalized work
function algorithm moves from s to t. More precisely, the generalized work function
algorithm, being in point s after serving sequence σ, moves away from s after a new
request r is given if there is a point t such that Wσr(t)+λd(s, t) � Wσr(s). The slack
is the difference between the left and right sides of this inequality. More generally, we
define the slack of a point with respect to a subset of M. See Figure 2.1.

Definition 2.3. Given a request sequence σ, we define the slack of a point s ∈ M
with respect to a (possibly infinite) set of points C ⊆ M as

Slσ(s;C) = min
t∈C

{Wσ(t) + λd(s, t)} −Wσ(s).

If C contains only one point t then we simply write Slσ(s; t) instead of Slσ(s; {t}).
If C is a closed subset of M then the minimum is well-defined.

Using the slack function makes the proof shorter and more intuitive. For example,
we can rewrite the extended cost, ∇r(Wσ), for request sequence σ and new request r
in terms of the slack function.

(2.1) ∇r(Wσ) = max
s∈M

{min
t∈r

{Wσ(t) + λd(s, t)} −Wσ(s)} = max
s∈M

Slσ(s; r).

In the remainder of this section, we list some properties of the slack function. The
first property (2.2) follows directly from its definition and from the work function
being Lipschitz continuous with constant 1. For any s, t ∈ M

(2.2) Slσ(s; t) � (1 + λ)d(s, t).

The next lemma also follows directly from the definition of slack.
Lemma 2.4. If C1 ⊆ C2 ⊆ M then for any s ∈ M we have Slσ(s;C1) � Slσ(s;C2).

(Used in proof of many lemmas.)
The lemma above is mostly used in the form t ∈ C ⊆ M implies Slσ(s; t) �

Slσ(s;C).
Lemma 2.5. For any set of points C ⊂ M there is a point s ∈ C such that

Slσ(s;C) = 0. (Used in proof of Lemma 3.4.)
Proof. Let s ∈ Argmin{Wσ(t) | t ∈ C}. Then, for any t ∈ C

Slσ(s; t) = Wσ(t) + λd(s, t)−Wσ(s) � 0.

Clearly, Slσ(s; s) = 0. Hence, Slσ(s;C) = mint∈C Slσ(s; t) = 0.
The next lemma shows a transitivity property of slack.
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Lemma 2.6. Let s1, s2, s3 ∈ M such that d(s1, s2) + d(s2, s3) = d(s1, s3). Then
Slσ(s3; s1) = Slσ(s3; s2) + Slσ(s2; s1). (Used in proof of Lemma 3.6.)

Proof.

Slσ(s3; s1) = Wσ(s1) + λd(s1, s3)−Wσ(s3)
= Wσ(s1) + λ(d(s1, s2) + d(s2, s3))−Wσ(s3)
= Wσ(s1) + λd(s1, s2)−Wσ(s2) +Wσ(s2) + λd(s2, s3)−Wσ(s3)
= Slσ(s2; s1) + Slσ(s3; s2).

The next lemma generalizes Lemma 2.4.
Lemma 2.7. Let C1, C2 ⊆ M and δ ∈ R+.If for every point u1 ∈ C1 there is a

point u2 ∈ C2 with d(u1, u2) � δ, then for every s ∈ M

Slσ(s;C1) � Slσ(s;C2)− (1 + λ)δ.

(Used in proof of Lemma 3.2.)
Proof. Let u1 ∈ C1 be such that Slσ(s;C1) = Slσ(s;u1). There is a point u2 ∈ C2

such that d(u1, u2) � δ.

Slσ(s;C1)− Slσ(s;C2)
= Slσ(s;u1)− Slσ(s;C2)
� Slσ(s;u1)− Slσ(s;u2)
= Wσ(u1) + λd(u1, s)−Wσ(s)− (Wσ(u2) + λd(u2, s)−Wσ(s))
= Wσ(u1)−Wσ(u2) + λ(d(u1, s)− d(u2, s))
� Wσ(u1)−Wσ(u2)− λd(u1, u2)
� −d(u1, u2)− λd(u1, u2)
= −(1 + λ)δ.

Lemma 2.8. Let s, t ∈ M and C ⊂ M. Then,
(a) Slσ(t;C) � Slσ(s;C)− (1 + λ)d(s, t), and
(b) Slσ(t;C) � Slσ(s;C) + (1− λ)d(s, t), if t dominates s w.r.t. σ.

(Follows from Lemma 2.4. Used in proofs of Lemmas 3.2, 3.10, and 3.14.)
Proof. Let u ∈ C be such that Slσ(t;C) = Slσ(t;u). Then,

Slσ(t;C) = Slσ(t;u)
= Slσ(s;u)− λd(u, s) + λd(u, t) +Wσ(s)−Wσ(t)
� Slσ(s;u)− λd(s, t) +Wσ(s)−Wσ(t)
� Slσ(s;C)− λd(s, t) +Wσ(s)−Wσ(t).

The first inequality is given by the triangle inequality and the second by Lemma 2.4.
In general, Wσ(s) − Wσ(t) � −d(s, t), which implies (a). If t dominates s then we
have the stronger bound Wσ(s)−Wσ(t) = d(s, t).

3. The CNN problem. A simple example shows that the standard work func-
tion algorithm WFA1 has unbounded competitive ratio for the CNN problem: Take
(0, 0) as the origin and consider the request sequence (1, 2), (2, 2), (3, 2), . . . (m, 2) for
arbitrary m. The optimal solution moves from (0, 0) to (0, 2) but the work function
algorithm follows the path (0, 0), (1, 0), (2, 0), . . . , (m, 0). (There are no draws.) The
competitive ratio for this instance is m/2.

Theorem 3.1. The generalized work function algorithm WFAλ is constant com-
petitive for the CNN problem for any constant λ with 0 < λ < 1.

All the lemmas of the previous section apply to metrical service systems in general.
In this section, we restrict ourselves to the CNN problem. It is convenient to insist
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s1 = (x1, y1)

s2 = (x2, y2)

Fig. 3.1. The shaded area is Box(s1, s2), used in the potential function.

on writing M for the metric space although we now have M = R2. We make a subtle
distinction between the request point (x′, y′) ∈ R2 and the corresponding request as
defined by the metrical service system: r(x′, y′) = {{(x, y) ∈ R2 | x = x′ or y = y′}.

3.1. The potential function. Our potential function is defined for any metrical
service system on R2 but we only use it for the CNN problem.

One of the ingredients is the set Box(s1, s2) (see Figure 3.1) defined as follows.
Given points x1, x2 ∈ R, we denote by [x1, x2] the interval between x1 and x2 (we
allow x2 < x1, i.e., [x2, x1] = [x1, x2]). Note that at this point we use the restriction
to the real line since this is not well-defined for a general metric space. (In section 4,
where the proof is generalized to arbitrary metric spaces we shall start from this
point.)

Given points s1 = (x1, y1) ∈ M and s2 = (x2, y2) ∈ M we denote the set of points
in the rectangle spanned by these points by

Box(s1, s2) = {(x, y) ∈ M | x ∈ [x1, x2] and y ∈ [y1, y2]}.

Let 0 < α < 1/2 and 0 < γ < 1. We define the functions Fσ : M3 → R and
Gσ : M3 → R as

Fσ(s1, s2, s3) = Wσ(s1)−
1

2
Slσ(s2; s1)− αSlσ(s3; {s1, s2}),

Gσ(s1, s2, s3) = Wσ(s1)−
1

2
Slσ(s2; s1)− αSlσ(s3;Box(s1, s2)).

The two functions only differ in the last term. The potential function Φσ is

Φσ = (1− γ) min
s1,s2,s3∈M

Fσ(s1, s2, s3) + γ min
s1,s2,s3∈M

Gσ(s1, s2, s3).

The numbers α and γ will depend only on λ and we fix their precise values later. It
is good to mention here that the proof works for any small enough values of α and
γ. More precisely, the proof works if we pick any α with 0 < α � α0 for some α0

depending on λ and then pick any γ with 0 < γ � γ0 for some γ0 depending on λ and
α.

Comprehensive notation. To simplify the analysis we define one more function
Hσ : M2 → R. It corresponds to the first two terms of Fσ and Gσ.

Hσ(s1, s2) = Wσ(s1)−
1

2
Slσ(s2; s1) =

1

2
Wσ(s1) +

1

2
Wσ(s2)−

λ

2
d(s1, s2).
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We can rewrite Fσ and Gσ as

Fσ(s1, s2, s3) = Hσ(s1, s2)− αSlσ(s3; {s1, s2}),

Gσ(s1, s2, s3) = Hσ(s1, s2)− αSlσ(s3;Box(s1, s2)).

For a request sequence σ, we denote mins1,s2,s3∈MFσ(s1, s2, s3) simply by minFσ

and make a similar simplification of notation for G and H. A shorter notation for the
potential function becomes

Φσ = (1 − γ)minFσ + γminGσ.

Note that Hσ is symmetric in s1 and s2 and, consequently, also Fσ and Gσ are
symmetric in s1 and s2. This property is not essential but enhances the argumentation
at some points.

3.2. Properties of the potential function. In this section we list some prop-
erties of the potential function Φσ which hold for any metrical service system on
M = R2 and arbitrary corresponding request sequence σ. In section 3.3, we restrict
the analysis to the CNN problem.

The functions Fσ and Gσ are constructed such that in the minimum all three
points s1, s2, s3 are on the last request, at least if α is small enough. This is stated in
Lemma 3.3. The next lemma is preliminary for this lemma and several others.

Lemma 3.2. Let t ∈ M dominate s ∈ M (w.r.t. σ) and let δ = d(s, t). Then, for
any s1, s2, s3 ∈ M,

(a) Fσ(s1, s2, s) − Fσ(s1, s2, t) � δ · α(1 − λ),

(b) Fσ(s1, s, s3) − Fσ(s1, t, s3) � δ ·
(
1

2
(1 − λ)− α(1 + λ)

)
,

(c) Fσ(s, s2, s3) − Fσ(t, s2, s3) � δ ·
(
1

2
(1 − λ)− α(1 + λ)

)
,

(d) Gσ(s1, s2, s) − Gσ(s1, s2, t) � δ · α(1 − λ),

(e) Gσ(s1, s, s3) − Gσ(s1, t, s3) � δ ·
(
1

2
(1 − λ)− α(1 + λ)

)
,

(f) Gσ(s, s2, s3) − Gσ(t, s2, s3) � δ ·
(
1

2
(1 − λ)− α(1 + λ)

)
.

(Follows from Lemmas 2.7 and 2.8. Used in proof of Lemmas 3.3, 3.7, 3.12, 3.13,
and 3.14.)

Proof. Statement (a) follows directly from Lemma 2.8(b) with C = {s1, s2}:
Fσ(s1, s2, s)−Fσ(s1, s2, t) = αSlσ(t; {s1, s2})− αSlσ(s; {s1, s2}) � α(1 − λ)δ.

The same holds for (d) but now with C = Box(s1, s2). By symmetry of F and G in
their first two arguments, it only remains to prove statements (b) and (e). We start
with (b):

(3.1)

Fσ(s1, s, s3)−Fσ(s1, t, s3)

=
1

2
(Slσ(t; s1)− Slσ(s; s1)) + α (Slσ(s3; {s1, t})− Slσ(s3; {s1, s})) .

For the first part of (3.1) we use Lemma 2.8(b):

(3.2) Slσ(t; s1)− Slσ(s; s1) � (1− λ)δ.

For the second part we apply Lemma 2.7 with C1 = {s1, t} and C2 = {s1, s}. The
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condition of Lemma 2.7 is satisfied for δ = d(s, t). We have

(3.3) Slσ(s3; {s1, t})− Slσ(s3; {s1, s}) � −(1 + λ)δ.

Combining (3.2) and (3.3) we get (b). The proof of (e) is similar. We apply (3.2) and
Lemma 2.7 with C1 = Box(s1, t) and C2 = Box(s1, s). The condition of Lemma 2.7
is satisfied for δ = d(s, t):

Gσ(s1, s, s3)− Gσ(s1, t, s3)

=
1

2
(Slσ(t; s1)− Slσ(s; s1)) + α (Slσ(s3;Box(s1, t))− Slσ(s3;Box(s1, s)))

� 1

2
(1− λ)δ − α(1 + λ)δ.

Note that all the right-hand sides in Lemma 3.2 are strictly positive if 0 < α <
(1− λ)/(2(1 + λ)). We assume this from now on.

Lemma 3.3. If Fσr or Gσr is minimized in (s1, s2, s3) then s1, s2, s3 ∈ r. (Follows
from Lemma 3.2. Used in proof of Lemmas 3.13 and 3.14.)

Proof. Any point is dominated by a point in the last request. Take any triple of
points in M. If at least one of the points is not in r then Lemma 3.2 tells us that
we can replace it by a point of the last request, r, such that the values of Fσ and Gσ

become strictly smaller.
Lemma 3.4. minFσ � minGσ � minHσ. (Follows from Lemmas 2.4 and 2.5.

Used in proof of Lemma 3.15.)
Proof. For any s1, s2 ∈ M there is a point s3 such that Slσ(s3;Box(s1, s2)) = 0.

(See Lemma 2.5.) Hence, min Gσ � minHσ.
For any s1, s2, s3 ∈ M we have Slσ(s3; {s1, s2}) � Slσ(s3;Box(s1, s2)) since

{s1, s2} ⊆ Box(s1, s2). (See Lemma 2.4.) Therefore, minFσ � minGσ.
The two inequalities of Lemma 3.4 are only strict if the three points for which

the minimum of Fσ or Gσ is attained are in a way different enough. For example,
the next lemma implies that if the minimum of Fσ is attained for (s1, s2, s3) but they
are not all different, then both inequalities are equalities. For Gσ a stronger property
holds. If s1, s2, s3 are all on a line then the second inequality is an equality.

Lemma 3.5. If {s1, s2, s3} has cardinality 1 or 2 then Hσ(u1, u2) � Fσ(s1, s2, s3)
for some u1, u2 ∈ {s1, s2, s3}. (Used in proof of Lemmas 3.13 and 3.15.)

Proof. If Slσ(s3; {s1, s2}) � 0 then Hσ(s1, s2) � Fσ(s1, s2, s3). So assume the
opposite:

(3.4) Slσ(s3; {s1, s2}) > 0.

We cannot have s1 = s3 or s2 = s3, since this contradicts (3.4). Hence, we must have
s1 = s2, which implies Slσ(s2; s1) = 0.

Fσ(s1, s2, s3) = Wσ(s1)−
1

2
Slσ(s2; s1)− αSlσ(s3; {s1, s2})

= Wσ(s1)− αSlσ(s3; {s1, s2})

> Wσ(s1)−
1

2
Slσ(s3; {s1, s2})

= Wσ(s1)−
1

2
Slσ(s3; s1)

= Hσ(s1, s3).

For the inequality we used (3.4) and α < 1/2.
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Lemma 3.5 applies also to Gσ instead of Fσ but we shall not use this. In addition,
Gσ has the following property.

Lemma 3.6. If s1, s2, s3 ∈ M all have the same x-coordinate or the same y-
coordinate, then Hσ(u1, u2) � Gσ(s1, s2, s3) for some u1, u2 ∈ {s1, s2, s3}. (Follows
from Lemmas 2.4 and 2.6. Used in proof of Lemma 3.14.)

Proof. We shall prove something stronger than we need as this hardly changes
the proof. If one of the three points is contained in Box(·, ·) defined by the other two
points then Hσ(u1, u2) � Gσ(s1, s2, s3) for some u1, u2 ∈ {s1, s2, s3}. The lemma is a
special case of this.

The proof is similar to that of Lemma 3.5. If Slσ(s3;Box(s1, s2)) � 0 then
Hσ(s1, s2) � Gσ(s1, s2, s3) and we are done. So assume the opposite:

(3.5) Slσ(s3;Box(s1, s2)) > 0.

Now assume s1 ∈ Box(s2, s3) or s2 ∈ Box(s1, s3) or s3 ∈ Box(s1, s2). We cannot
have the latter since that contradicts (3.5). Hence, either s1 or s2 is contained in
Box(·, ·) defined by the other two points. By symmetry of H and G in their first two
arguments, we may assume the latter is true. Hence, d(s1, s2) + d(s2, s3) = d(s1, s3).
By Lemma 2.6,

(3.6) Slσ(s3; s1) = Slσ(s3; s2) + Slσ(s2; s1).

For the first inequality below we use Lemma 2.4 and for the second we use α < 1/2
and (3.5):

Gσ(s1, s2, s3) = Wσ(s1)−
1

2
Slσ(s2; s1)− αSlσ(s3;Box(s1, s2))

� Wσ(s1)−
1

2
Slσ(s2; s1)− αSlσ(s3; s2)

> Wσ(s1)−
1

2
Slσ(s2; s1)−

1

2
Slσ(s3; s2)

= Wσ(s1)−
1

2
Slσ(s3; s1)

= Hσ(s1, s3).

Initially, the potential function is zero and in general it is upper bounded by the
optimal value of the given sequence. This is stated in the next two lemmas. Let ε be
the empty request sequence.

Lemma 3.7. Φε = 0. (Follows from Lemma 3.2. Used in proof of Theorem 3.1.)
Proof. Any point s is dominated by the origin O w.r.t. the empty sequence.

By Lemma 3.2, we see that minFε = Fε(O,O,O) = 0 and minGε = Gε(O,O,O)
= 0.

Lemma 3.8. Φρ � Optρ for any sequence ρ. (Used in proof of Theorem 3.1.)
Proof. Let q be the endpoint of an optimal solution for ρ. Then Wρ(q) = Optρ

and Fρ(q, q, q) = Gρ(q, q, q) = Wρ(q). Hence, minFρ � Wρ(q) = Optρ and min Gρ �
Wρ(q) = Optρ.

Φρ = (1− γ)minFρ + γmin Gρ � (1 − γ)Optρ + γOptρ = Optρ.
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∂x

∂y

(x′, y′)

(x′′, y′′)

Fig. 3.2. Two subsequent requests r′ = r(x′, y′) and r′′ = r(x′′, y′′). We assume ∂x � ∂y.

3.3. Properties of the work function. Each metrical service system has its
own specific properties of its work function. For example, Koutsoupias and Papadim-
itriou show a quasi-convexity property of the work function for the k-server prob-
lem [25]. A good understanding of the CNN work function is lacking but the two
simple properties we show in this section are enough to prove constant competitive-
ness. These properties hold for the generalized 2-server problem as well.

Let σ′ be an arbitrary request sequence for the CNN problem and let r′ = r(x′, y′)
be the last request in σ′.

Lemma 3.9. Any (x, y) ∈ M is dominated w.r.t. σ′ by (x′, y) or by (x, y′). (Used
in proof of Lemmas 3.12 and 3.14.)

Proof. Any point is dominated by a point of the last request. Therefore, (x, y)
is dominated by (x′, ŷ) or by (x̂, y′) for some ŷ ∈ Y or x̂ ∈ X. In general, if s is
dominated by t then s is dominated by any point on the shortest path between s and
t. Now, note that (x′, y) is on the shortest path between (x, y) and (x′, ŷ), and that
(x, y′) is on the shortest path between (x, y) and (x̂, y′).

Let σ′ be followed by request r′′ = r(x′′, y′′) and denote the extended sequence
by σ′′ = σ′r′′. To simplify notation we denote dX(x

′, x′′) = |x′−x′′| by ∂x and do the
same for y. (See Figure 3.2.) From now on we assume without loss of generality that

∂x � ∂y.

Remember the definition of extended cost. From (2.1) we know that

∇r′′(Wσ′) = max
s∈M

Slσ′(s; r′′).

Since this will be the only extended cost that we consider in this proof, we denote it
simply by ∇. Further, let ξ ∈ M be a point where the maximum is attained, i.e.,

(3.7) ∇ = ∇r′′(Wσ′ ) = Slσ′(ξ; r′′).

Point ξ will be used in Lemmas 3.13 and 3.14.
Lemma 3.10. ∇ � (1 + λ)∂x. (Follows from Lemma 2.8. Used in proof of

Lemma 3.14.)
Proof. Any s ∈ M is dominated by a point in r′ w.r.t. σ′. Hence, by Lemma 2.8(b),

we may restrict ourselves to r′, i.e., ∇ = maxs∈M Slσ′(s; r′′) = maxs∈r′ Slσ′(s; r′′). For
any point s in r′, there is a point in r′′ at distance at most ∂x, implying (using (2.2))
Slσ′(s; r′′) � (1 + λ)∂x for any point s in r′.

3.4. The potential applied to CNN. In this section, we apply our potential
function to the CNN problem. Lemmas 3.13, 3.14, and 3.15 state how minF and
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minG increase when a new request r′′ arrives, i.e., when going from σ′ to σ′′. Then,
Lemma 3.16 combines these results and gives a lower bound on the increase of the
potential function in terms of the extended cost. The proof of Theorem 3.1 is then
straightforward.

The following lemma is given without proof as it is easy to check by looking at
the definitions.

Lemma 3.11. Consider request sequence σ′ as fixed and consider the next request
r′′ = r(x′′, y′′) as a variable. Then minGσ′r′′ and ∇ are Lipschitz continuous in both
x′′ and y′′. (Used in proof of Lemma 3.14.)

Lemma 3.11 is true as well for F and H but we do not need that. We shall use
the following easy property several times:

(3.8) Wσ′ (s) = Wσ′′ (s) for any s ∈ r′′.

Any s ∈ M is dominated w.r.t. σ′ by a point in r′ and Lemma 3.9 gives two
candidate points. The next lemma reduces this to one candidate in certain cases.

Lemma 3.12. Assume that Fσ′′ or Gσ′′ is minimized in (s1, s2, s3). Then, the
following is true for any i ∈ {1, 2, 3}.

1. If si = (x′′, y) for some y �= y′ then (x′, y) dominates si w.r.t. σ
′.

2. If si = (x, y′′) for some x �= x′ then (x, y′) dominates si w.r.t. σ
′.

(Follows from Lemmas 3.2 and 3.9. Used in proof of Lemmas 3.13 and 3.14.)
Proof. We only prove the first, since the second follows by symmetry. By

Lemma 3.9, point si = (x′′, y) is dominated w.r.t. σ′ by (x′′, y′) or by (x′, y). Suppose
the first is true. Then, using (3.8), si is dominated by this point w.r.t. σ′′ as well. In
that case Lemma 3.2 implies that Fσ′′ and Gσ′′ are strictly reduced by replacing si
by (x′′, y′). This contradicts the assumption of minimality. Thus, si is dominated by
(x′, y) w.r.t. σ′.

Equation (3.8) implies that if s1, s2, s3 ∈ r′′ then

Hσ′(s1, s2) = Hσ′′ (s1, s2) and Fσ′(s1, s2, s3) = Fσ′′(s1, s2, s3).

(This is not true for G.) These two easy equalities will be used several times without
reference in the following lemmas. From now, we let

(3.9) α � 1− λ

12 + 4λ
.

We use this bound for Lemmas 3.13 and 3.14, although for Lemma 3.13 we could do
with a weaker bound.

Lemma 3.13. Let Fσ′′ be minimized in (s1, s2, s3). There are constants c1, c2 > 0
(depending on λ) such that,

(Case A) if the cardinality of {s1, s2, s3} is 1 or 2 then

minFσ′′ −minFσ′ � c1∇, and

(Case B) if the cardinality of {s1, s2, s3} is 3 then

minFσ′′ −minFσ′ � c2∂y.

(Follows from Lemmas 3.2, 3.3, 3.5, and 3.12. Used in proof of Lemma 3.16.)
Proof. Lemma 3.3 tells us that s1, s2, s3 ∈ r′′. We use this in both cases.
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Case A. By Lemma 3.5, there are points u1, u2 ∈ {s1, s2, s3} such thatHσ′′ (u1, u2) �
Fσ′′(s1, s3, s3). Remember the definition of ξ in (3.7):

minFσ′′ = Fσ′′(s1, s2, s3)
� Hσ′′ (u1, u2)
= Hσ′ (u1, u2)
= Fσ′(u1, u2, ξ) + αSlσ′(ξ; {u1, u2})
� minFσ′ + αSlσ′(ξ; {u1, u2})
� minFσ′ + αSlσ′(ξ; r′′)
= minFσ′ + α∇.

Case B. Since the three points are different, at least one of the these points differs
from both (x′′, y′) and (x′, y′′). By Lemma 3.12, this point is dominated w.r.t. σ′ by
a point at distance ∂x or ∂y. Now we use Lemma 3.2 with δ = ∂y. Note that, by our
bound on α, all right-hand sides in Lemma 3.2 are at least α(1− λ)∂y:

minFσ′′ = Fσ′′(s1, s2, s3)
= Fσ′(s1, s2, s3)
� minFσ′ + α(1 − λ)∂y.

Lemma 3.14. minGσ′′ − minGσ′ � c3∇ − c4∂y for some constants c3, c4 > 0
depending on λ. (Follows from Lemmas 2.4, 3.2, 3.3, 3.6, 3.10, 3.11, and 3.12. Used
in proof of Lemma 3.16.)

Proof. By Lemma 3.11, it is enough to prove that minGσ′′ −minGσ′ � c3∇ under
the assumption that y′ = y′′. So we assume y′ = y′′ and denote both by y∗.

Let Gσ′′ be minimized for (s1, s2, s3) and let si = (xi, yi), for i ∈ {1, 2, 3}. We
make the following partition of possible cases:

Case 1. y1 = y∗ and y2 = y∗ and y3 = y∗;
Case 2. y1 = y∗ and y2 = y∗ and y3 �= y∗;
Case 3. y1 �= y∗ or y2 �= y∗.

By Lemma 3.3, we have s1, s2, s3 ∈ r′′. We shall use this property several times
here. For example, if yi �= y∗ then xi = x′′.

Case 1. We apply Lemma 3.6: Hσ′′ (u1, u2) � Gσ′′ (s1, s2, s3) for some u1, u2 ∈
{s1, s2, s3}.

minGσ′′ = Gσ′′(s1, s2, s3)
� Hσ′′(u1, u2)
= Hσ′(u1, u2)
= Gσ′(u1, u2, ξ) + αSlσ′(ξ;Box(u1, u2))
� minGσ′ + αSlσ′(ξ;Box(u1, u2))
� minGσ′ + αSlσ′(ξ; r′′)
= minGσ′ + α∇.

The last inequality follows from Box(u1, u2) ⊂ r′′ and Lemma 2.4.
Case 2. Since Box(s1, s2) ⊂ r′′ and s1, s2, s3 ∈ r′′ we have

Gσ′′ (s1, s2, s3) = Gσ′ (s1, s2, s3).

By Lemma 3.12, point s3 = (x′′, y3) is dominated by point t = (x′, y3) w.r.t. σ′. Now
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(x′, y∗) s2

t = (x′, y1) s1 = (x′′, y1)

(x′′, y∗) s3

Fig. 3.3. Case 3 of Lemma 3.14: y1 �= y∗. The shaded area is Box(s1, s2).

we apply Lemma 3.2(d):

minGσ′′ = Gσ′′ (s1, s2, s3)

= Gσ′(s1, s2, s3)

� Gσ′(s1, s2, t) + α(1 − λ)∂x

� minGσ′ + α(1 − λ)∂x

� minGσ′ + α(1 − λ)∇/(1 + λ).

The last inequality is given by Lemma 3.10.
Case 3. Unlike the previous two cases, we may now have Box(s1, s2) � r′′ which

makes the proof slightly more complicated (see Figure 3.3). By symmetry, we may
assume that y1 �= y∗. This implies x1 = x′′ and point s1 = (x′′, y1) is dominated by
point t = (x′, y1) with respect to σ′. We now apply Lemma 3.2(f):

(3.10)

Gσ′(s1, s2, s3) � Gσ′ (t, s2, s3) +

(
1

2
(1− λ) − α(1 + λ)

)
∂x

� minGσ′ +

(
1

2
(1− λ)− α(1 + λ)

)
∂x.

It remains to bound minGσ′′ − Gσ′(s1, s2, s3). We have3

(3.11)

minGσ′′ − Gσ′(s1, s2, s3)

= Gσ′′(s1, s2, s3)− Gσ′(s1, s2, s3)

= αSlσ′(s3;Box(s1, s2))− αSlσ′′ (s3;Box(s1, s2))

� −2α∂x.

The last inequality follows from Wσ′(s3) = Wσ′′ (s3) and from Wσ′′ (s)−Wσ′ (s) � 2∂x
for any point s ∈ M (and s ∈ Box(s1, s2) in particular). Below we use, subse-

3A more careful analysis gives a bound −(1 + λ)α∂x instead of −2α∂x.
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quently, (3.11), (3.10), (3.9) and Lemma 3.10:

minGσ′′

= Gσ′′ (s1, s2, s3)

� Gσ′ (s1, s2, s3)− 2α∂x

� minGσ′ +

(
1

2
(1− λ)− α(1 + λ)

)
∂x− 2α∂x

= minGσ′ +

(
1

2
(1− λ)− α(3 + λ)

)
∂x

� minGσ′ +

(
1

2
(1− λ)− 1

4
(1− λ)

)
∂x

= minGσ′ +
1

4
(1− λ)∂x

� minGσ′ +
1

4
(1− λ)∇/(1 + λ).

This completes the proof of the last case.
In Lemma 3.16, we combine Lemmas 3.13 and 3.14 and distinguish the same two

cases A and B as we did in Lemma 3.13. Lemma 3.14 will be used only for Case B,
although it holds in general. For Case A, we need the following different bound.

Lemma 3.15. Let Fσ′′ be minimized in (s1, s2, s3). If the cardinality of (s1, s2, s3)
is 1 or 2 then minGσ′′ � minGσ′ .(Follows from Lemmas 3.4 and 3.5. Used in proof
of Lemma 3.16.)

Proof. By Lemma 3.5, there are points u1, u2 ∈ {s1, s2, s3} such that minHσ′′ �
Hσ′′ (u1, u2) � Fσ′′(s1, s2, s3) = minFσ′′ . In Lemma 3.4, the inequalities are the other
way around. Hence,

minFσ′′ = minGσ′′ = minHσ′′ .

Further, note that minHσ′′ � minHσ′ (since, by defintion of H, we have that
Hσ′′ (t1, t2) � Hσ′(t1, t2) for any pair of points t1, t2). We conclude that

min Gσ′′ = minHσ′′ � minHσ′ � minGσ′ ,

where the last inequality follows again from Lemma 3.4.
Lemma 3.16. Φσ′′ − Φσ′ � c5∇ for some constant c5 > 0, depending on λ.

(Follows from Lemmas 3.13 and 3.14. Used in proof of Theorem 3.1.)
Proof.

Φσ′′ − Φσ′ = (1 − γ) (minFσ′′ −minFσ′) + γ (minGσ′′ −min Gσ′) .

Let Fσ′′ be minimized in (s1, s2, s3). We distinguish between the same two cases as
in Lemma 3.13.

Case A. The cardinality of {s1, s2, s3} is 1 or 2.
Case B. The cardinality of {s1, s2, s3} is 3.
Case A. By Lemma 3.13, minFσ′′ −minFσ′ � c1∇ for some constant c1 > 0 and

by Lemma 3.15, minGσ′′ −minGσ′ � 0. Hence,

Φσ′′ − Φσ′ � (1− γ)c1∇.
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Case B. By Lemma 3.13 and Lemma 3.14,

minFσ′′ −minFσ′ � c2 ∂y,

minGσ′′ −minGσ′ � c3∇− c4∂y

for some constants c2, c3, c4 > 0. Hence,

Φσ′′ − Φσ′ = (1− γ) (minFσ′′ −minFσ′) + γ (min Gσ′′ −minGσ′ )

� (1− γ)c2 ∂y + γ(c3∇− c4∂y)

= γc3∇+ ((1 − γ)c2 − γ c4)∂y.

By choosing γ small enough, the constant before ∂y will be positive. We choose
(1− γ) = γc4/c2, i.e., γ = c2/(c2 + c4). Hence,

(3.12) Φσ′′ − Φσ′ � γc3∇.

Combining Case A and Case B we obtain

Φσ′′ − Φσ′ � min {(1 − γ)c1, γc3}∇ = c5∇,

where

c5 = min {(1− γ)c1, γc3} = min

{
c1c4

c2 + c4
,

c2c3
c2 + c4

}
.

Proof of Theorem 3.1. Let ρ be any request sequence. Using Lemma 3.16 and
taking the sum over all requests, we get

Φρ − Φε � c5∇ρ.

Lemma 3.7 states that Φε = 0 and Lemma 3.8 states that Φρ � Optρ. Hence,

∇ρ � 1

c5
Optρ.

By Lemma 2.2, the competitive ratio is at most (1/c5 − 1)/λ.

4. General metric spaces. In this section, we extend Theorem 3.1 to arbitrary
symmetric metric spaces.

Theorem 4.1. The work function algorithm WFAλ is constant competitive for
the generalized 2-server problem for any constant λ with 0 < λ < 1.

On one hand, the generalization of the proof is easy since all lemmas stay exactly
the same, apart from some constants. Moreover, the only proof that really changes
is that of Lemma 3.6. However, to prove this lemma we make the potential function
even more complex than it already is.

A small problem that appears in a discrete metric space is that the new potential
function may no longer be a Lipschitz continuous function of the given request as we
stated in Lemma 3.11. To overcome this, we extend the metric space into a metric
space M ⊇ M where any two points are joint by a continuous path, i.e., for any pair
u1, u2 ∈ M and ζ ∈ [0, 1] there is a point u3 ∈ M such that d(u1, u3) = ζd(u1, u2) and
d(u2, u3) = (1 − ζ)d(u1, u2). This can easily be done and is a common assumption
for online routing problems. See, for example, [12] for a discussion on this. We avoid
using the notation M and simply assume that M has this property. Note that this
is done only for the analysis. The request sequence and the work function algorithm
will only use points of the original metric space.
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x1

x2
y1 y2

(−4,−4) (−4,−4)

(4, 4) (4, 4)

X Y

Fig. 4.1. Example of Spheres. Here, X is the Euclidean plane and Y is the plane with the
L1 norm. Further, s1 = (x1, y1) = ((0, 0), (0, 0)), and s2 = (x2, y2) = ((0, 1), (1, 0)). Hence,
dX(x1, x2) = 1 and dY(y1, y2) = 1. If constant η = 3 then Spheres(s1, s2) is the Cartesian product
of the shaded areas.

4.1. Adjusting the potential. The first point in the CNN proof where we
used the restriction to R2 is in the potential function: The set Box(s1, s2) is defined
only for s1, s2 ∈ R2. It was defined especially for Lemma 3.6 which says that if the
points (s1, s2, s3) have the same x- or y-coordinate then one of them is redundant.
We applied this in Lemma 3.14 (Case 1) where we replaced the redundant point by
point ξ. Lemma 3.6 still holds for a general metric space but its proof does not
apply anymore because equality (3.6) is in general an inequality: For any three points
(s1, s2, s3) and sequence σ,

Slσ(s3; s1) ≤ Slσ(s3; s2) + Slσ(s2; s1).

Unfortunately, we need ≥ here for the proof of Lemma 3.6 to hold. Looking ahead
at (4.4) one sees an alternative inequality which takes the place of (3.6). The trick is
quite simple. We make two changes to the potential function: We add the constraint
that s3 should be relatively far from s1 and s2 and we take two different measures
for slack. (See Figure 4.2.) The intuition is that if a point b has a nonnegative slack
with respect to a point a then by using a steeper slack function which has parameter
μ > λ, the slack of b with respect to a is at least (μ− λ)d(a, b). We make this precise
below.

The following definition takes the place of Box. (See Figure 4.1) Let η � 1.

Spheres(s1, s2) = { (x, y) ∈ X× Y | dX(x, x1) � η · dX(x1, x2)

and dY(y, y1) � η · dY(y1, y2) }.

Note that Spheres is in fact the Cartesian product of a sphere around x1 and a
sphere around y1. Instead of (x1, y1), we could also take (x2, y2) or somehow a point
in between. This makes no real difference if η is large. (One could think of Box(s1, s2)
as the Cartesian product of a 1-dimensional sphere of diameter |x2−x1| around point
(x1+x2)/2 and a 1-dimensional sphere of diameter |y2−y1| around point (y1+y2)/2.)

The other change that we make in the potential function is adjusting the con-
stants. The whole proof for Theorem 3.1 is still valid (up to a constant) if we replace
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t s

C

Wσ

Slλσ(s;C)

Slμσ(s;C)

Fig. 4.2. Two kinds of slack: one with parameter λ and one with parameter μ > λ.

the λ’s that appear in the potential function by some other constant μ for which
λ � μ < 1, while keeping WFAλ the same. (There is no need to verify this claim
since we do not use it explicitly.) This freedom in the parameter leaves a way for fine
tuning the potential function as we will do here. We fix such a μ with λ < μ < 1 and
define for s ∈ M and C ⊆ M the slack like we did before but now with μ instead of
λ. In addition, we keep the old definition and add the parameter λ in the notation:

Slμσ(s;C) = min
t∈C

{Wσ(t) + μd(s, t)} −Wσ(s),

Slλσ(s;C) = min
t∈C

{Wσ(t) + λd(s, t)} −Wσ(s).

Next, we define the new Hσ,Fσ, and Gσ. For simplicity, we keep the same names
although they are now slightly different functions:

Hσ(s1, s2) = Wσ(s1)−
1

2
Slμσ(s2; s1),

Fσ(s1, s2, s3) = Hσ(s1, s2)− βSlλσ(s3; {s1, s2}),
Gσ(s1, s2, s3) = Hσ(s1, s2)− βSlλσ(s3;Spheres(s1, s2)).

Note that μ is used for the slack of s2 while λ is used for the slack of s3. The potential
function is

Φσ = (1− κ)minFσ + κminGσ,

where 0 < κ < 1. To prove constant competitiveness, there is no need to specify
precise values of the constants. We only need to choose the constants either large or
small enough. The order in which we choose them and the domains are listed below.
For example, given λ and the choice of μ, there is a number η0 such that any choice
η � η0 is fine for our proof. We do not compute the values η0, β0, or κ0 but it will be
clear from the proof that such values exist:

λ : given parameter;
μ : λ < μ < 1;
η : η ≥ η0 � 1, where η0 depends on λ and μ;
β : 0 < β � β0 < 1/2, where β0 depends on λ, μ, and η;
κ : 0 < κ < κ0 < 1, where κ0 depends on λ, μ, η, and β.
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4.2. Adjusting the proofs of the lemmas. All lemmas stay exactly the same
apart from some constants. Moreover, all proofs stay basically the same. The only
proof that is really different is that of Lemma 3.6. Let us go over all the lemmas one
by one.

Nothing changes for section 2 since it comes before the potential function and
holds for any metric space. The first lemma in section 3 is Lemma 3.2. The lemma
holds with different constants. The bounds we get are

(4.1)

(a), (d) : δ · β(1 − λ),

(b), (c) : δ ·
(
1

2
(1− μ)− β(1 + λ)

)
,

(e) : δ ·
(
1

2
(1− μ)− ηβ(1 + λ)

)
,

(f) : δ ·
(
1

2
(1− μ)− (η + 1)β(1 + λ)

)
.

The proof for (a),(b),(c),(d) remains the same, only α becomes β and some of the
λ’s become μ. In (e), there is an additional factor η because a move of s2 over some
distance may cause the border of Spheres(s1, s2) to move by η times this distance.
For a move of s1, this factor is η+1 since Spheres is defined around s1. The precise
bounds are not so important. We only need to see that we can choose β small enough
to let all the right-hand sides be Ω(δ).

Nothing changes for Lemma 3.3. In the proof of Lemma 3.4, only Box needs to
be replaced by Spheres. In the proof of Lemma 3.5, we only need to update the
definition of F .

New proof of Lemma 3.6.
Proof. Let s1, s2, s3 have the same y-coordinate. We may assume that

(4.2) Slλσ(s3;Spheres(s1, s2)) > 0,

since otherwise Hσ(s1, s2) � Gσ(s1, s2, s3) and we are done. By this assumption, we
have s3 /∈ Spheres(s1, s2). Hence, d(s1, s3) > ηd(s1, s2) (using dX(si, sj) = d(si, sj)
for i, j ∈ {1, 2, 3}). Then

Slμσ(s3; s1) = Wσ(s1) + μd(s1, s3)−Wσ(s3)

= Wσ(s1) + λd(s1, s3)−Wσ(s3) + (μ− λ)d(s1, s3)

= Slλσ(s3; s1) + (μ− λ)d(s1, s3)

> Slλσ(s3; s1) + η(μ− λ)d(s1, s2).(4.3)

By choosing η large enough (given the values of λ and μ), we guarantee that η(μ−λ) �
1 + μ. If we also use that (1 + μ)d(s1, s2) � Slμσ(s2; s1) (follows directly from (4.1))
then the analogue of (3.6) becomes

(4.4) Slμσ(s3; s1) > Slλσ(s3; s1) + Slμσ(s2; s1).

The remainder of the proof is similar to the original proof. For the first two inequalities
below we use, respectively, (4.4) and Lemma 2.4. For the last inequality we use (4.2)
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and β < 1/2:

Hσ(s1, s3) = Wσ(s1)−
1

2
Slμσ(s3; s1)

< Wσ(s1)−
1

2
Slμσ(s2; s1)−

1

2
Slλσ(s3; s1)

� Wσ(s1)−
1

2
Slμσ(s2; s1)−

1

2
Slλσ(s3;Spheres(s1, s2))

< Wσ(s1)−
1

2
Slμσ(s2; s1)− βSlλσ(s3;Spheres(s1, s2))

= Gσ(s1, s2, s3).

The proof of Lemma 3.7 stays the same. Also the proof of Lemma 3.8 stays the
same apart from α becoming β and γ becoming κ. Lemmas 3.9 and 3.10 do not
depend on the potential function, nor do they depend on the metric space. These
lemmas and proofs stay exactly the same. Lemma 3.11 was given without proof and
again it can easily be verified from the definitions. The proof of Lemma 3.12 does not
change. For Lemma 3.13 there are a few small changes. In Case A, only α becomes
β. In Case B, the last inequality is different since the inequalities of Lemma 3.2 are
different. The new values were given in formula (4.1). All we need to notice is that by
choosing β small enough (depending on λ, μ, and η), the right-hand sides are Ω(δ).

Also in the proof of Lemma 3.14 there are a few small changes. Of course,
α becomes β and Box becomes Spheres. The new function G is still Lipschitz
continuous. Hence, we may assume y′ = y′′. We consider the same three cases and
the proof for the first and second cases remains the same. For Case 3 we need to use
the new bounds of Lemma 3.2. Then, (3.10) becomes

Gσ′(s1, s2, s3) � minGσ′ +

(
1

2
(1− μ)− (η + 1)β(1 + λ)

)
∂x.

Combining this with (3.11) as we did, we get

minGσ′′ −min Gσ′ �
(
1

2
(1 − μ)− (η + 1)β(1 + λ)− 2β

)
∂x.

By choosing β small enough (depending on λ, μ, and η), the right-hand side is at least
c3∇ for some constant c3 (using Lemma 3.10). The proof of Lemma 3.15 remains the
same. Finally, the only change in the proof of Lemma 3.16 is that γ becomes κ.

5. A decomposition approach for the generalized k-server problem.
The generalized k-server problem appears a lot more complicated for dimensions k �
3. It is unclear if for any fixed k � 3 a constant competitive ratio f(k) is possible at
all. In any case, the ratio will be at least kΩ(k) [17]. The question is important for its
relation to sum problems discussed in the introduction. Interestingly, the proof for
k = 2 does show a decomposition into subproblems which can be generalized to any
k and which seems to be a real simplification of the problem. Although an answer to
these subproblems is missing, it does give an example of decomposing a sum problem
into (apparently) easier problems.

Suppose that we can find k functions F (i)
σ : Mk+1 → R for i = 1, 2, . . . , k with the

following two properties:

(i) minF (i)
ε = 0 and minF (i)

σ � Optσ (where ε is the empty sequence);
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(ii) let r′ = r(x′
1, x

′
2, . . . , x

′
k) and r′′ = r(x′′

1 , x
′′
2 , . . . , x

′′
k) be two subsequent re-

quests and let π1, π2, . . . , πk be a permutation of 1, 2, . . . , k such that ∂xπ1 �
∂xπ2 � · · · � ∂xπk

, where ∂πi = |x′′
πi

− x′
πi
|. Further, denote σ′ = σr′ and

σ′′ = σr′r′′ and denote the extended cost ∇r′′(Wσ′ ) simply by ∇. Then for
all i there are constants a(i), b(i), c(i), d(i) > 0 (depending on k and λ) such
that either (A) or (B) holds:

(A) minF (i)
σ′′ −minF (i)

σ′ � a(i)∇− b(i)∂xπi−1 and for all j > i

minF (j)
σ′′ −minF (j)

σ′ � 0,

(B) minF (i)
σ′′ −minF (i)

σ′ � c(i)∂xπi .
Then, the following potential function proves that WFAλ is constant competitive for
some constant depending on k and λ:

Φσ =

k∑
i=1

γ(i) · min
s1,...,sk+1∈M

F (i)
σ (s1, s2, . . . , sk+1),

where γ(1) + · · ·+ γ(k) = 1 and γ(i)/γ(i+1) � b(i+1)/c(i) for i = 1, 2, . . . , k − 1.
First, let us see how this relates to our proof for k = 2. We denoted F (1) = F

and F (2) = G and denoted x1 and x2 by x and y. We assumed ∂y � ∂x which implies
π1 = 2 and π2 = 1. Property (i) holds (and was used for Lemma 3.7 and Lemma 3.8).
Now, it is easy to check that property (ii) corresponds to Lemmas 3.13, 3.14, and
3.15. (Define ∂xπ0 := 0 and note that ∇ = O(∂xk).)

Next, we give a short sketch why this would give a proof of competitiveness and
then we argue why this is an interesting decomposition. We need to show that the in-
crease in the potential for the new request r′′ is at least some constant times∇. (Then,
if additionally Φε = 0 and Φσ � Optσ, competitiveness follows from Lemma 2.2.)
First consider i = 1. (Define ∂xπ0 := 0.) If case (A) applies then we are done. So as-
sume from now that case (B) applies for i = 1. Consider i = 2. If case (A) applies for
i = 2 then, by the choice of the γ(i), the increase in the potential function is at least

γ(1)c(1)∂xπ1 + γ(2)(a(2)∇− b(2)∂xπ1) � γ(2)a(2)∇.

So assume case (B) applies and consider i = 3. We can repeat the argument until fi-
nally we consider i = k. Then the proof follows from case B as well since ∂xπk

= Ω(∇).
Now we will argue that the decomposition seemingly simplifies the analysis. Re-

member that the general idea is to find a potential function Φσ with the property that
the increase for every new request is at least some constant (depending on k) times
the extended cost ∇ of the new request. In the decomposition, this property is split
into k weaker properties. Assume that the functions F (i) are all Lipschitz continuous
functions of the last request. By this we mean, if r′′ is changed to some other request

r̃′′ while keeping the arguments s1, . . . , sk+1 fixed then the value F (i)
σ′′ (s1, . . . , sk+1)

changes by at most some constant (depending on k and λ) times ||r′′− r̃′′||. Lipschitz
continuity seems a natural property. Note that the extended cost ∇ := ∇r′′(Wσ′ ) is
always Lipschitz continuous in r′′. If Lipschitz continuity holds, then to prove (ii),
we may assume that ∂xπh

= 0 for all h < i, as we did in the proof of Lemma 3.14.

For example, for F (k)
σ we only need to show an increase of Ω(∇) under the (strong)

condition that ∂xj = 0 for all j � k − 1, i.e., under the condition that only one
coordinate changes.

We will not speculate on a general decomposition theorem for sum problems and
merely say that the outline appears a significant step towards a proof for k � 3 and
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is an interesting contribution towards a general theory of competitiveness of metrical
service systems.

6. Notes and open problems. The most prominent research direction is to
enhance the theory of competitiveness of metrical service (or task) systems and in
particular for the generalized work function algorithm. Our proof shows that only
very limited information of the work function may be needed to show that WFAλ

performs well. In fact, we only used the obvious properties that apply to any work
function, e.g. that any point s ∈ M is dominated by some point t on the last request
and that the work function is Lipschitz continuous with constant 1. (As a comparison,
Koutsoupias and Papadimitriou show for their k-server proof that the k-server work
function has some nice quasi-convexity property.) So, if this is all we use, why does
not this imply competitiveness for any metrical service system? The answer is that
the potential function was designed for the typical requests of the generalized 2-server
problem, i.e., the potential function exploits that the support of any work function
is a subset of the last request. This kind of analysis, that is purely based on the
geometry of a single request, is interesting for metrical service systems in general. For
this purpose, our potential function has some valuable ingredients such as the use
of convex sets like Box and Spheres and the use of slack functions with different
parameters (λ and μ). These techniques are helpful for isolating extreme solutions,
i.e., (a small number of) solutions which in a way represent all offline solutions.

An illustrative example is the problem of chasing lines. In this system, the metric
space is Rd and the set R of requests contains all lines and line segments in Rd. By
taking our function G as the potential function (where Box(s1, s2) is now defined as
the line segment between s1 and s2), it follows immediately that WFAλ is constant
competitive (independent of d) for any λ ∈ (0, 1). All that we need to notice is the
following alternative formulation of Lemma 3.6: If s1, s2, s3 ∈ Rd are all on a straight
line then Hσ(u1, u2) � Gσ(s1, s2, s3) for some u1, u2 ∈ {s1, s2, s3}. Now assume that
sequence σ is followed by a request r and that s1, s2, s3 minimize Gσr . Then, all three
points are on the last request r and hence all are on a straight line. The lemma
says that one of the three points is redundant. Replacing one of the three points
by a point ξ ∈ M with maximum extended cost ∇, we see that the increase for the
potential function is Ω(∇) and competitiveness follows. The algorithm by Friedman
and Linial [19] for line chasing is much less general and uses angles and coordinates
in the Euclidean plane. Of course, how one can implement WFAλ efficiently for the
line chasing problem is a different story.

6.1. Open problems. There are some very intriguing open problems in online
optimization. Examples are the k-server conjecture (deterministic and randomized)
and the dynamic optimality conjecture [34] for binary search trees. (We refer to [16]
for a survey of recent results.) The latter conjecture states that there exists a constant
competitive online algorithm for binary search trees. Maybe not so well known is that
the binary search tree problem (without insertions or deletions) can be transformed
into a metrical service system with loss of a constant factor in the approximation. This
can be done as follows. Let 1, 2, . . . , n be the items of the tree. By a binary search tree,
we mean a rooted tree with maximum degree three. Then, the metric space consists
of all binary search trees with nodes 1, 2, . . . , n and the distance between two trees
is the minimum number of rotations needed to transform one tree into the other (or
we may take any other distance functions that is within a constant factor). Now, for
each item i we define a request ri which is the set of all binary search trees with root
i. The collection of possible requests is R = {r1, r2, . . . , rn}. Let bst be the binary
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search tree problem (as defined in [34]) and let bst
∗ be the bst problem modeled

as a metrical service system as described above . The next theorem states that the
(online) approximation ratios of these two problems are within a constant factor. A
similar result is given in [8] (Lemma 1.3) for the list update problem, which is the 1-
dimensional equivalent of the bst problem. There, it is shown that any c-competitive
algorithm remains c-competitive if the cost to serve i is depth(i)−1 instead of depth(i).
Below, we also show the other direction and model it as a metrical service system.

Lemma 6.1. The (online) approximation ratios of the bst problem and its met-
rical service system formulation bst

∗ are within a constant factor.
Proof. In [34], the cost for serving an item i is one plus depth(i), the depth of

item i in the current tree. This differs with our service system model in two ways.
First, in our model there is the restriction that i has to be moved to the root in order
to serve it. Note that this restriction only increases the cost by a small constant
factor since i can be moved to the root and back at a cost O(depth(i)). The other
difference is that in our model there is no additive cost of one to serve a request.
In particular, that means that items at the root are served at a cost of one in the
bst model while these are free in bst

∗. We call bst∗ the zero cost model. Next,
we compare the competitive ratios for bst and bst

∗ with the restriction that items
can only be served at the root. Under this restriction, let Opt and Opt0 denote the
optimum in, respectively, the standard cost and the zero cost model. Then for any
sequence σ, Opt(σ) = Opt0(σ) + |σ|. Let Alg be any c-competitive algorithm for
bst

∗. Then, it is c-competitive for bst as well (See also Lemma 1.3 in [8]):

Alg(σ) = Alg0(σ) + |σ| � cOpt0(σ) + |σ| = cOpt(σ) − (c− 1)|σ|.

For the other direction, assume that some algorithmAlg is c-competitive for bst.
We will show that this gives a (2c−1)-competitive algorithm for bst∗. For any request
sequence σ we define σ′ as the sequence obtained by removing the repeated requests.
For example, if item i is requested three times consecutively then we remove two of
these. Now define algorithm Alg

′ as follows. For any request sequence σ it gives the
truncated sequence σ′ to Alg and then behaves exactly like Alg. This means that
when a requested item i is moved to the root, the search tree remains unchanged until
the first moment that a different item is requested. This way, sequence σ is served
using the online solution for σ′. By assumption, Alg(σ′) � cOpt(σ′). Further, if we
assume that the first request is not to the root then |σ′| � Opt0(σ

′).

Alg
′
0(σ) = Alg

′
0(σ

′) = Alg(σ′)− |σ′| � cOpt(σ′)− |σ′|
= cOpt0(σ

′) + (c− 1)|σ′| � (2c− 1)Opt0(σ
′) = (2c− 1)Opt0(σ).

The bst problem is still not well understood. It is not known if the problem is
NP-hard, nor is there a constant factor offline approximation algorithm known. Lower
bounds on the optimal solution are hard to get. However, if constant competitiveness
is possible then probably there is no need for this kind of bounds. In online opti-
mization the analysis is usually based on some kind of extreme solutions that in a
way represent all possible offline solutions. A simple (and highly relevant) example is
the list update problem [8]. The move-to-front rule has optimal competitive ratio of
2 − 2/(n+1), where n is the size of the list. It is easy to see that it is 2-competitive
since with loss of a factor 2 we may assume that each item can only be served at the
front. But then, there is only one optimal solution and the move-to-front algorithm
gets one step closer to the optimal solution with every rotation that it makes. The
only information about the optimal offline solution that is used in this analysis is
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that its current configuration serves the current request. Hence, for list-update it is
enough to consider only one offline solution. Another example is the (optimal) double
coverage algorithm for the k-server problem on trees [11] where the potential function
is defined only by the current configuration of the online solution and that of the
optimal solution. An example with two extreme solutions is the line chasing problem
that we discussed at beginning of this section. We sketched a proof with a potential
function which is defined by three solutions. We could show that one of these was
redundant and the proof followed easily. Hence, for WFAλ applied to line chasing
there are only two extreme solutions. This analysis follows purely from the geometry
of a single request. There is no need for lower bounds on a sequence of requests. More
complicated examples are the 2k−1 ratio for the k-server problem [25] with a potential
based on k + 1 configurations, and our potential which uses six configurations.

It is not hard to show that WFAλ is in fact not constant competitive for binary
search trees when we define the metric space as in Lemma 6.1. However, all kinds of
variations are possible. Consider the following adjustment of the metric space. The
cost of a single rotation remains one but the cost of a splaying operation on item i is
only some small constant times depth(i). This way, WFAλ will behave much like the
splay tree algorithm and it seems a good candidate for being constant competitive.

A question that pops up is whether such an approach with an adjusted metric
has potential at all since we just noted that WFAλ is not competitive for the natural
distance function. Is WFAλ robust in the sense that small changes in the metric
give small changes in the competitive ratio of WFAλ? In that case our suggested
approach is doomed to fail. Fortunately, the answer is negative and follows from the
next example.

Example 1. Consider a metrical service system on a star graph with k leaves.
Let c be the center and let U = {u1, u2, . . . , uk} be the set of leaves. The distances
are d(c, u1) = 1 − ε and d(c, ui) = 1, i = 2, . . . , k. The set of requests is R =
{{c}, {U \ u2}, {U \ u3}, . . . , {U \ uk}}. The optimal online algorithm moves to c
whenever the request is {c} and moves to u1 otherwise. The competitive ratio of
this algorithm is 1. The work function algorithm WFAλ behaves the same for any
λ ∈ (0, 1) and therefore has ratio 1 as well. If we now change d(c, u1) from 1 − ε to
1+ ε then the optimal online algorithm stays the same and now has competitive ratio
1 + ε. However, WFAλ can be forced to visit all ui between two requests for c and
has the ratio (k + ε)/(1 + ε).

An obvious drawback of the work function approach for the bst problem is that it
is computationally expensive. In fact, no polynomial time constant factor approxima-
tion is known. Nevertheless, at the moment it is very interesting to see if a constant
competitive algorithm is possible at all, no matter how high the running time.

Below, we list some interesting open problems related to this paper, starting with
the bst problem discussed above.

� Give a constant competitive work function based algorithm for binary search
trees (without insertions or deletions). Although the algorithm would be
inefficient it would clearly be a big step towards proving competitiveness for
more efficient algorithms like splaying.

� Prove or disprove that the generalized k-server problem or weighted k-server
problem has an f(k)-competitive algorithm for some function f(k). Same for
the randomized problem. An outline for a possible proof is given in section 5.

� What is the competitive ratio of the k-point request problem, introduced
in [30]? Fiat et al. [18] gave an upper bound of O(9k) which was improved by
Burley [9] who showed that the generalized work function algorithm is O(k2k)-
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competitive. The best known lower bound is Ω(2k) [18]. Just as Burley we
conjecture that O(2k) is possible. A good candidate seems a dynamic work
function algorithm: one that adjusts the parameter λ online. Such a dynamic
work function algorithm would be more powerful than the generalized work
function algorithm. Randomization reduces the ratio drastically as shown by
Ramesh [31] who gave an upper bound of Ω(k13) against a lower bound of
k/2 [18].

� What is the competitive ratio of the continuous CNN problem? A lower
bound of 3 and upper bound of 6.46 is given in [1].

� Give other examples of natural metrical service systems that have a constant
competitive ratio. For example, Friedman and Linial [19] give a competitive
algorithm if the requests are a convex subset of R2. They conjecture that the
same applies to Rd for any fixed d and show that it is enough to prove this for
affine half-spaces. In the beginning of this section we sketched a proof that
WFAλ is constant competitive for lines in Rd and it would be interesting to
extend this to half-spaces.

� The k-server problem has some simple special cases for which 2k−1 is still the
best known ratio, for example the 3-server problem and the k-server problem
on a cycle: Find an algorithm with a smaller ratio. The ratio for trees is k
but it is unknown if the work function algorithm achieves this ratio. See [23]
for more background on this.

� What is the competitive ratio of the weighted k-point request problem, dis-
cussed in [15]? This problem is a special case of the generalized k-server
problem and a generalization of the k-point request problem.

� Extend the theory of sum problems. For example, by analyzing the sum
problem of another elementary metrical task system.

� Prove (or disprove) that the generalized work function algorithm WFAλ is
O(log n)-competitive for the online matching problem on a line. A lower
bound of Ω(logn) and an upper bound of O(n) were given in [24].

Acknowledgment. I thank the reviewers sincerely for carefully reading this long
proof with its numerous details. Their comments have been very useful.
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