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Abstract A time-integration scheme for semi-discrete linear Maxwell equations is
proposed. Special for this scheme is that it employs component splitting. The idea
of component splitting is to advance the greater part of the components of the semi-
discrete system explicitly in time and the remaining part implicitly. The aim is to
avoid severe step size restrictions caused by grid-induced stiffness emanating from
locally refined space grids. The proposed scheme is a blend of an existing second-
order composition scheme which treats wave terms explicitly and the second-order
implicit trapezoidal rule. The new blended scheme retains the composition property
enabling higher-order composition.
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1 Introduction

In this paper we study the numerical integration of linear ODE systems

(
Mu 0
0 Mv

)(
u′
v′

)
=

(
0 −K

KT −D

)(
u

v

)
+

(
f u(t)

f v(t)

)
. (1.1)
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This partitioned form is generic for semi-discrete linear first-order wave equations.
In particular, it covers common spatial discretizations of the Maxwell equations

μ∂tH = −∇ × E,

ε∂tE = ∇ × H − σE − JE,
(1.2)

including the classical staggered finite-difference and various finite-element dis-
cretizations. The similarity between (1.1) and (1.2) shall be clear. The vectors
u = u(t) and v = v(t) are the unknown vector (grid) functions approximating the
values of the magnetic field H and electric field E, respectively. The matrices K and
KT emanate from the curl operator ∇×. In particular, we will assume throughout
this paper that element wise

K ∼ 1

h
, h → 0, (1.3)

where h parameterizes the distance of the (possibly nonuniform) space grid and the
dimensions of K and u and v. The matrix D is associated with the dissipative con-
duction term −σE and the matrices Mu,Mv typically represent mass matrices arising
with finite elements. The functions f u(t) and f v(t) are source terms. Normally f v

represents the given source current JE , but f u and f v may also contain boundary
data.

We could have also started from(
u′
v′

)
=

(
0 −K

KT −D

)(
u

v

)
+

(
f u(t)

f v(t)

)
, (1.4)

because our integration schemes can be implemented for either choice. In particular,
results for this somewhat more simple formulation always carry over to (1.1) and
vice versa, see e.g. [1]. For convenience of notation and presentation, we will there-
fore proceed with (1.4). Herein the damping matrix D may be assumed symmetric,
non-negative definite. For zero D the matrix of (1.4) is skew-symmetric. As a conse-
quence, when omitting the source terms f u and f v , the exact solution satisfies

d

dt

(
‖u(t)‖2 + ‖v(t)‖2

)
= −2〈Dv,v〉 ≤ 0, (1.5)

where 〈·, ·〉 is the l2 inner product (the standard scalar product) and ‖ · ‖ the corre-
sponding norm. So, without damping we have norm preservation (energy conserva-
tion) and with damping norm dissipation. In both cases we speak of stability. An ap-
propriate numerical method should mimic these solution norm properties sufficiently
accurately.

The contribution of this paper is a numerical time-integration scheme for semi-
discrete, linear Maxwell equations (1.4) that is designed to enable component split-
ting. The idea of component splitting is to advance part of the components of the
semi-discrete system explicitly in time and the remaining part implicitly. The aim is
to overcome severe stability step size restrictions in cases of grid-induced stiffness
emanating from locally refined space grids. For example, unstructured finite-element
grids on complex domains may contain elements much smaller than found elsewhere
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just to accommodate a complicated spatial geometry [3]. If the number of these very
small elements amounts to only a relatively small fraction of the total number of el-
ements, we speak of grid-induced stiffness, because this requires standard explicit
schemes to take small step sizes limited by the very small elements only but to be
used for all elements of the grid including coarser ones.

In such cases a component splitting scheme may prove very useful as it over-
comes the stability step size limitation at the expense of solving per time step a small
sized symmetric positive definite system of linear algebraic equations. The compo-
nent splitting technique we propose in this paper is akin to the component splitting in
our recent preprint [13] on the two-step Crank-Nicolson–Leapfrog scheme. The new
scheme is a blend of a well-known second-order, explicit (in the wave terms) compo-
sition scheme and the second-order implicit trapezoidal rule. Thus the new blended
scheme is one-step and retains the composition property enabling higher-order com-
position. The new scheme also bears a relationship to a component splitting scheme
discussed in [3] which is especially designed for a discontinuous Galerkin discretiza-
tion. A novel local time-stepping technique for second-order wave equations dis-
cretized in space by a continuous or discontinuous finite element method has been
proposed in [2] and is further discussed in [4]. This local time-stepping technique
also serves to overcome step size limitations by grid-induced stiffness.

In Sect. 2 we will briefly review the second-order composition scheme and the
trapezoidal rule. Section 3 is devoted to our component splitting scheme. Here we
also discuss conservation and convergence properties. In particular, we will prove
that our new scheme retains its second order in time for spatial grid size h → 0.
Thus the scheme does not suffer from order reduction which is not a priori clear with
splitting. Numerical results are presented in Sect. 4. The paper concludes with Sect. 5
on some plans for future work. Also a few remarks on the approach from [2] and [4]
are included in this final section.

2 The composition scheme and the trapezoidal rule

The composition scheme is given by

un+1/2 − un

τ
= −1

2
Kvn + 1

2
f u(tn),

vn+1 − vn

τ
= KT un+1/2 − 1

2
D(vn + vn+1) + 1

2
(f v(tn) + f v(tn+1)),

un+1 − un+1/2

τ
= −1

2
Kvn+1 + 1

2
f u(tn+1).

(2.1)

This one-step method steps from (un, vn) to (un+1, vn+1) with step size τ . Here un

denotes the approximation to the exact solution u(tn), etc., and τ = tn+1 − tn. The
method is explicit in the wave terms and implicit in D (the trapezoidal rule). If D

is block-diagonal with a small bandwidth, this implicitness comes with little costs.
For n ≥ 1 the third-stage derivative computation can be copied to the first stage at
the next time step to save computational work. Per time step this method thus is very
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economical as it actually requires a single righthand side evaluation per time step
(for zero D), while it is second-order consistent (this follows immediately from its
symmetry). Assuming the source function evaluations to be cheap, the costs per time
step amount mainly to one matrix-vector multiplication with K and one with KT .

This composition scheme is well-known, in particular for zero D, in the literature
on geometric integration [5]. With regard to time stepping it bears a close resem-
blance to the popular Yee-scheme [14] from electromagnetism and to Verlet’s method
from molecular dynamics [11]. For the Maxwell equations it has for example been
studied in [9] and [1].

A step size bound for stability for the general system (1.4) is not known,1 except
when the diagonal matrix D is given by the unit matrix times a constant non-negative
scalar, say α. Then we have stability in the inner product norm if [1]

τsmax < 2 if α = 0 and τsmax � 2 if α > 0, (2.2)

where smax is the maximal square root of the eigenvalues of KT K . Because these
eigenvalues are proportional to h−2, for time stepping stability a relation τ ∼ h for
h → 0 is required. This result applies to (1.2) with α = σ/ε if ε and σ are constant
scalars. Note that the conduction puts no limit on τ and that the requirement τ ∼ h for
h → 0 is common for explicit methods. On the other hand, on strongly non-uniform
grids with locally very small cells, the step size limitation for the wave terms can be
truly restrictive.

For more details and results on (2.1) we refer to [1]. Assuming (1.3), one of the
results states that if τ ∼ h its second ODE order is maintained for h → 0 (no order
reduction with stiff source terms). Another result is that, with zero source terms,

(‖un+1‖2 + ‖vn+1‖2 − (‖un‖2 + ‖vn‖2)

τ

= −2

〈
D

(
vn + vn+1

2

)
,
vn + vn+1

2

〉

− 1

4
τ(〈Kvn,Kvn〉 − 〈Kvn+1,Kvn+1〉). (2.3)

It thus follows that with a zero damping term and zero source terms, we have (energy)
conservation if and only if 〈Kvn,Kvn〉 = 〈Kvn+1,Kvn+1〉, cf. (1.5). In general this
will not hold. What is conserved, however, is the O(τ 2)-perturbed quantity

‖un‖2 + ‖vn‖2 − 1

4
τ 2〈Kvn,Kvn〉, (2.4)

showing that the conservation behavior is actually very good. Herewith it is of course
tacitly assumed that τ is limited such that the method integrates in a stable way,
something which cannot be concluded from this result due to the minus sign in front
of the third term.

1We mean a bound expressed in properties of K,KT and D only.
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The component splitting scheme discussed in Sect. 3 is a blend of (2.1) and the
2nd-order, unconditionally stable implicit trapezoidal (Crank-Nicolson) rule. Like
(2.1) we write it in the three-stage form

un+1/2 − un

τ
= − 1

2
Kvn + 1

2
f u(tn),

vn+1 − vn

τ
= 1

2
KT (un + un+1) − 1

2
D(vn + vn+1)

+ 1

2
(f v(tn) + f v(tn+1)),

un+1 − un+1/2

τ
= − 1

2
Kvn+1 + 1

2
f u(tn+1).

(2.5)

For zero sources this scheme mimics (1.5) through

(‖un+1‖2 + ‖vn+1‖2) − (‖un‖2 + ‖vn‖2)

τ

= −2

〈
D

vn+1 + vn

2
,
vn+1 + vn

2

〉
, ∀τ > 0, (2.6)

revealing unconditional stability and energy conservation. On strongly non-uniform
grids with locally very small cells unconditional stability seems attractive. However,
our experience from [12] indicates that even with locally very small cells the overhead
for implicit solves can become too large to render the trapezoidal rule competitive to
(2.1). With component splitting we seek to reduce this overhead by treating only a
small portion of the components implicitly.

3 The component splitting scheme

The schemes (2.1) and (2.5) differ only in the second stage for vector v. This suggests
to blend the two into

un+1/2 − un

τ
= − 1

2
Kvn + 1

2
f u(tn),

vn+1 − vn

τ
=KT

0 un+1/2 + 1

2
KT

1 (un + un+1)

− 1

2
D(vn + vn+1) + 1

2
(f v(tn) + f v(tn+1)),

un+1 − un+1/2

τ
= − 1

2
Kvn+1 + 1

2
f u(tn+1),

(3.1)

where

K = K0 + K1 (3.2)
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is a matrix splitting that is still to be defined. By this splitting the method is explicit
for K0 and implicit for K1. For zero K1 we recover (2.1) and for zero K0 method
(2.5). Note that matrix D and the source terms are not split and that for n ≥ 1 the
computation of the third stage can again be reused at the first stage of the next time
step, which enhances efficiency. Because the scheme is also symmetric, it is 2nd-
order consistent for any given semi-discrete Maxwell system (1.4) of fixed dimension.
We will prove below that like its constituent schemes (2.1) and (2.5), the component
splitting scheme (3.1) retains its second ODE order under stable simultaneous space-
time grid refinement.

The splitting (3.2) is very general. Our aim, however, is to adopt the idea of com-
ponent splitting proposed in [13] to restrict the implicit computation of un+1, vn+1
only to those components which impede implicitness for stability reasons. Let us
therefore first describe how the implicit computation is done. From the third stage of
(3.1) follows

KT
1 un+1 = −1

2
τKT

1 Kvn+1 + KT
1

(
un+1/2 + 1

2
τf u(tn+1)

)
. (3.3)

Substitution into the second stage then defines vn+1 by

Mvn+1 = bn+1, (3.4)

where

M = I + 1

4
τ 2KT

1 K + 1

2
τD,

bn+1 = vn + τKT
0 un+1/2 + 1

2
τKT

1

(
un + un+1/2 + 1

2
τf u(tn+1)

)

− 1

2
τDvn + 1

2
τ(f v(tn) + f v(tn+1)).

(3.5)

Hence we can solve vn+1 from the linear equation (3.4) and successively un+1 di-
rectly from the third stage formula. For K1 = K , recovering the implicit trapezoidal
rule, matrix M − 1

2τD is symmetric positive definite, since for any useful spatial
discretization KT K is symmetric semi-positive definite. With the splitting we wish
to also have KT

1 K symmetric (and hopefully semi-positive definite), since this facil-
itates the solution of (3.4), either directly or iteratively.

To this end we define K1 as follows:

K1 = SuK, (3.6)

where Su is a diagonal matrix of dimension the length of u and with entries S
(jj)
u

obeying the rule

S
(jj)
u =

{
0, component uj of u to be treated explicitly,

1, component uj of u to be treated implicitly.
(3.7)

Again, this definition of S is rather general so that we have some freedom in choos-
ing S in an actual application. With this definition, however, we do have the aimed
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symmetry of KT
1 K , since KT

1 K = KT SuK = KT SuSuK = KT
1 K1, giving

M = I + 1

4
τ 2KT

1 K1 + 1

2
τD. (3.8)

If component splitting works as anticipated, this matrix M will be significantly more
sparse than without splitting, enabling us to solve the linear systems (3.4) at signifi-
cantly lower costs.

3.1 Conservation

Remove the sources in (3.1) and substitute half of un+1/2 from the first stage and half
of un+1/2 from the third one into the second stage. Together with the final expression
for un+1 this yields

un+1 − un = −1

2
τK(vn + vn+1),

vn+1 − vn = τKT
0

(
1

2
un + 1

2
un+1 − 1

4
τKvn + 1

4
τKvn+1

)

+ 1

2
τKT

1 (un + un+1) − 1

2
τD(vn + vn+1).

(3.9)

Taking inner products with un+1 + un and vn+1 + vn yields, respectively,

‖un+1‖2 − ‖un‖2 = −1

2
τ 〈KT (un + un+1), vn + vn+1〉,

‖vn+1‖2 − ‖vn‖2 = 1

2
τ 〈KT

1 (un + un+1), vn + vn+1〉

− 1

2
τ 〈D(vn + vn+1), vn + vn+1〉

+ 1

2
τ 〈KT

0 (un + un+1), vn + vn+1〉

+ 1

4
τ 2〈KT

0 K(vn+1 − vn, vn + vn+1〉.

(3.10)

Hence,

(‖un+1‖2 + ‖vn+1‖2) − (‖un‖2 + ‖vn‖2)

τ

= 1

4
τ 〈KT

0 K(vn+1 − vn), vn+1 + vn〉 − 2

〈
D

vn + vn+1

2
,
vn + vn+1

2

〉
. (3.11)

Since by definition of K1 = SuK the matrix KT
0 K is symmetric, it follows that for

zero damping matrix D we have the conserved quantity

‖un‖2 + ‖vn‖2 − 1

4
τ 2〈Kvn,K0vn〉 = ‖un‖2 + ‖vn‖2 − 1

4
τ 2(〈Kvn,Kvn〉

− 〈SuKvn,SuKvn〉). (3.12)
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For the unit diagonal matrix Su we recover the exact conservation property of the
implicit trapezoidal rule and for zero diagonal matrix Su the conservation property
(2.4) of the explicit scheme. Since in general the entries of the diagonal matrix Su are
either zero or one, with component splitting the deviation from the exact energy is
reduced compared to the explicit scheme.

3.2 Convergence

This section is central in the paper. For our component splitting scheme (3.1) ap-
plied to system (1.3), (1.4) it sketches an error analysis on the following result. Let
uh(t) and vh(t) denote the grid functions for the true underlying PDE solution at
time t restricted to the used space grid and assume them to be three times continu-
ously differentiable on a given, finite time interval [0, T ]. For a Lax-Richtmyer stable
space-time grid refinement τ ∼ h,h → 0, the component splitting scheme approxi-
mations then converge with temporal order two to uh, vh on [0, T ] for any splitting
(3.2), (3.6). This means that neither the splitting nor stiff sources do introduce tem-
poral order reduction, something which for splitting methods and stiff source terms
is not a priori clear. Further note that the assumptions for convergence are similar as
for the trapezoidal rule and the explicit scheme (2.1).

The derivations in the remainder of this section follow a method of lines analysis
related to that of [10] and [6, Sect. II.2]. Although these earlier contributions deal
with explicit Runge-Kutta methods, the notion on order reduction is the same and the
type of derivations is similar. The proof of second temporal order in the PDE sense
presented here is organized in three subsections. In Sect. 3.2.1 we will introduce the
so-called perturbed scheme obtained by substituting the true PDE solution restricted
to the assumed space grid into our component splitting scheme (3.1). Herewith we
introduce defects (truncation errors) composed of a temporal and a spatial error part.
Our focus lies on temporal order, so for simplicity of derivation we will omit the spa-
tial error part after this subsection. This is not essential. For our purpose the spatial
error part may be omitted without loss of generality, cf. [10] and [6, Sect. II.2]. In
Sect. 3.2.2 we derive the common temporal recurrence for the full global error: the
difference of the PDE solution restricted to the space grid and the numerical solu-
tion on this grid generated by scheme (3.1). Here we point out that this global error
scheme needs to be transformed to overcome a spatial inconsistency in the local er-
ror emanating from component splitting. The crucial observation hereby is that this
spatial inconsistency enters the temporal error by the negative power h−1 which kills
one power of τ as we assume τ ∼ h,h → 0 (order reduction). Fortunately, this order
reduction is present in the local error only and cancels in the transition from local to
global errors. That this cancelation occurs can be proved by transforming the global
error scheme, which is shown in the third Sect. 3.2.3.

3.2.1 The perturbed scheme

Substitution of uh and vh into (1.4) reveals the spatial truncation errors which we
denote by σu

h and σv
h , that is,

u′
h(t) = −Kvh(t) + f u(t) + σu

h (t),

v′
h(t) = KT uh(t) − Dvh(t) + f v(t) + σv

h (t).
(3.13)
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Next, substitution of the exact solutions uh(t), vh(t) into the component splitting
scheme (3.1) gives what we call the perturbed scheme containing defects (truncation
errors) composed of a temporal and a spatial error part. Let δk denote the defects for
the stages k = 1,2,3 (other sub indices are omitted to simplify notation). We then
have as perturbed scheme

uh(tn+1/2) − uh(tn)

τ
= −1

2
Kvh(tn) + 1

2
f u(tn) + δ1,

vh(tn+1) − vh(tn)

τ
= KT

0 uh(tn+1/2) + 1

2
KT

1 (uh(tn) + uh(tn+1))

− 1

2
D(vh(tn) + vh(tn+1))

+ 1

2
(f v(tn) + f v(tn+1)) + δ2,

uh(tn+1) − uh(tn+1/2)

τ
= −1

2
Kvh(tn+1) + 1

2
f u(tn+1) + δ3.

(3.14)

Eliminating all source term f u,f v contributions in the defect expressions through
(3.13) yields

δ1 = uh(tn+1/2) − uh(tn)

τ
− 1

2
u′

h(tn) + 1

2
σu

h (tn),

δ2 = vh(tn+1) − vh(tn)

τ
− 1

2
(v′

h(tn) + v′
h(tn+1))

− KT
0 (uh(tn+1/2) − 1

2
(uh(tn) + uh(tn+1))) + 1

2
(σ v

h (tn) + σv
h (tn+1)),

δ3 = uh(tn+1) − uh(tn+1/2)

τ
− 1

2
u′

h(tn+1) + 1

2
σu

h (tn+1).

(3.15)

Herein we can distinguish the temporal error parts and the spatial error parts con-
tained in the σu

h , σ v
h contributions. As mentioned above, our interest lies in the tem-

poral errors. We therefore simplify our derivations by omitting these spatial contribu-
tions. This is not essential. Carrying the spatial contributions along in the derivations
just complicates the formulas and will not lead to different conclusions for the tempo-
ral errors. Finally, the formal Taylor expansion at tn+1/2 delivers the temporal defect
expressions

δ1 =
∑
j=2

(
1

(j − 1)! − 1

j !
)

(−1)j

2j
τ j−1u

(j)
h , δ2 = δ4 + (K − K1)

T δ5,

δ3 =
∑
j=2

(
1

j ! − 1

(j − 1)!
)

1

2j
τ j−1u

(j)
h ,

δ4 =
∑
j=2′

−j

2j (j + 1)!τ
j v

(j+1)
h , δ5 =

∑
j=2′

1

2j j !τ
ju

(j)
h ,

(3.16)
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where j = 2′ means even values for j only, δ4 and δ5 are auxiliary, and u
(j)
h denotes

the j -th derivative of uh(t) at t = tn+1/2, etc. Also note that δ1 and δ3 start of with τ

and δ4 and δ5 with τ 2. Further, except for δ2, all defects just contain higher temporal
derivatives of the true PDE solution.

3.2.2 The global error recursion

Next we introduce the global errors εu
n = uh(tn) − un and εv

n = vh(tn) − vn and the
intermediate global error εu

n+1/2 = uh(tn+1/2)−un+1/2. Subtracting (3.1) from (3.14)
then gives the global error scheme

εu
n+1/2 = εu

n − 1

2
τKεv

n + τδ1,

εv
n+1 = εv

n + τKT
0 εu

n+1/2 + 1

2
τKT

1 (εu
n + εu

n+1) − 1

2
τD(εv

n + εv
n+1) + τδ2,

εu
n+1 = εu

n+1/2 − 1

2
τKεv

n+1 + τδ3.

(3.17)
Eliminating the intermediate error in the same symmetric way as in the derivation of
the conservation relation yields

εu
n+1 = εu

n − 1

2
τK(εv

n + εv
n+1) + τδu

n,

εv
n+1 = εv

n + 1

2
τKT (εu

n + εu
n+1) − 1

2
τD(εv

n + εv
n+1)

+ 1

4
τ 2KT

0 K(εv
n+1 − εv

n) + τδv
n,

(3.18)

where

δu
n = δ1 + δ3,

δv
n = δ4 + KT

0

(
1

2
τ(δ1 − δ3) + δ5

)
.

(3.19)

These two new defects contain only even terms in τ and both start of with τ 2. The
defect δu

n is just the defect of the trapezoidal rule. At this stage we assume uh, vh ∈
C3[0, T ]. Then it follows from the remainder in Taylor’s theorem that

δu
n = O(τ 2), δ4 = O(τ 2),

1

2
τ(δ1 − δ3) + δ5 = O(τ 2) for τ ∼ h,h → 0.

(3.20)
Writing

(
I 1

2τK

− 1
2τKT I − 1

4τ 2KT
0 K + 1

2τD

)(
εu
n+1

εv
n+1

)

=
(

I − 1
2τK

1
2τKT I − 1

4τ 2KT
0 K − 1

2τD

)(
εu
n

εv
n

)
+ τ

(
δn
u

δn
v

)
, (3.21)
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and putting εn = [(εu
n)T , (εv

n)T ]T and δn = [(δu
n)T , (δv

n)T ]T , we arrive at the compact
notation

εn+1 = Rεn + τρn, R = R−1
L RR, ρn = R−1

L δn, (3.22)

with RL and RR the left and right block matrix, respectively.
This recursion has the standard form featuring in the convergence analysis of one-

step integration methods, see e.g. [6]. Assuming Lax-Richtmyer stability, whereby
we include RL inversely bounded for τ ∼ h,h → 0, it transfers local errors to the
global error by essentially adding all local errors. It trivially reveals second-order
convergence for a fixed spatial dimension (ODE convergence) since then KT

0 within
the defect δv

n is bounded and hence ρn = O(τ 2) for τ → 0, because both δu
n and δv

n

are O(τ 2). However, if we simultaneously refine the spatial grid, parameterized by
h → 0, the local error component δv

n must have components which will grow with
1/h. This growth is unavoidable, since by definition of K1 = SuK we have

KT
0 = (K − K1)

T = ((I − Su)K)T = KT (I − Su), (3.23)

showing that KT
0 has zero columns and thus due to the splitting at certain components

spatial consistency within the expression for δv
n is lost. This causes the growth by

1/h which in turn causes reduction by one unit of τ if we let τ ∼ h,h → 0 (order
reduction). The local error component δu

n causes no problems. It is bounded for h → 0
as it contains only solution derivatives.

Fortunately, in our case this order reduction by one unit of τ manifests itself only
in the local error and cancels in the transition from local to global errors. That this
cancelation occurs can be proven by transforming the global error scheme (3.22) into
one with local errors which remain second order for τ ∼ h,h → 0.

3.2.3 A transformed global error recursion

The following derivation, which we also used in [13] and which is based on a Lemma
from [6], reveals that the second order will be maintained for any stable space-time
grid refinement τ ∼ h,h → 0. This derivation starts with the following Ansatz: the
local error τρn allows a decomposition

τρn = (I − R)ξn + ηn such that ξn = O(τ 2), ηn = O(τ 3) (3.24)

with order constants being O(1) for τ ∼ h,h → 0.
Denote ε̃n = εn − ξn. Then, by the Ansatz,

ε̃n+1 = Rε̃n + ρ̃n, ρ̃n = ξn − ξn+1 + ηn = O(τ 3), (3.25)

giving order two for ε̃n and hence also for εn. So there remains to check the Ansatz,
which amounts to examining

τρn = τR−1
L δn = (I − R)ξn + ηn = (I − R−1

L RR)ξn + ηn, (3.26)

or, equivalently,

τR−1
L

(
δu
n

δv
n

)
= R−1

L (RL − RR)

(
ξu
n

ξv
n

)
+ R−1

L RL

(
ηu

n

ηv
n

)
, (3.27)
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or (
τδu

n

τδv
n

)
= (RL − RR)

(
ξu
n

ξv
n

)
+ RL

(
ηu

n

ηv
n

)
, (3.28)

or

τ(δ1 + δ3) = τKξv
n + ηu

n + 1

2
τKηv

n,

τ

(
δ4 + KT

0

(
1

2
τ(δ1 − δ3) + δ5

))
= −τKT ξu

n − 1

2
τKT ηu

n + ηv
n (3.29)

− 1

4
τ 2KT

0 Kηv
n + τD

(
ξv
n + 1

2
ηv

n

)
.

Thus, our task is now to identify error vectors ξu
n , ξv

n and ηu
n, ηv

n in accordance
with the Ansatz such that (3.29) are satisfied. Let us first define

ηu
n = τ(δ1 + δ3) = O(τ 3), ξv

n = −1

2
ηv

n, (3.30)

where ηu
n = O(τ 3) is due to (3.20). Then the first equation of (3.29) is satisfied in

accordance with the Ansatz. Next we choose, again in accordance with the Ansatz,

ηv
n = τδ4 = O(τ 3), (3.31)

which is also due to (3.20). Then we are done if we can choose ξu
n to satisfy

KT ξu
n = −1

2
KT ηu

n − 1

4
τKT

0 Kηv
n − KT

0

(
δ5 + 1

2
τ(δ1 − δ3)

)
, (3.32)

such that ξu
n = O(τ 2). Inserting KT

0 = KT (I − Su) shows that

ξu
n = −1

2
ηu

n − 1

4
τ(I − Su)Kηv

n − (I − Su)

(
δ5 + 1

2
τ(δ1 − δ3)

)
(3.33)

satisfies (3.32). Thus there remains to confirm ξu
n = O(τ 2). The first term of ξu

n is
O(τ 3). Due to (1.3) we have τK = O(1) if τ ∼ h,h → 0. Consequently, also the
second term of ξu

n is O(τ 3). Finally, again using (3.20) shows that the third term is
O(τ 2), confirming that ξu

n = O(τ 2). This completes the error analysis.

4 Numerical results

4.1 Results in 1D

To illustrate the technique of component splitting and the above second-order con-
vergence result, we now present numerical tests for the one-dimensional Maxwell
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(wave) equation

∂Hz

∂t
= −∂Ey

∂x
,

∂Ey

∂t
= −∂Hz

∂x
− s(x, t),

(4.1)

with a source s(x, t) for component Ey . The tests for this one-dimensional Maxwell
problem are academic but serve our purpose very well, as they illustrate the essential
ideas put forward in this paper.

4.1.1 Spatial discretization

Assuming 0 ≤ x ≤ 1, we introduce the grid 0 = x0 < x1 < · · · < xm−1 < xm =
1 and discretize using standard staggering with ṽi (t) ≈ Ey(xi, t) and ũi (t) ≈
Hz(xi−1/2, t), xi−1/2 = (xi−1 + xi)/2 (the tildes will be removed):

ũ′
i = − ṽi − ṽi−1

xi − xi−1
, i = 1(1)m,

ṽ′
i = − ũi+1 − ũi

xi+1/2 − xi−1/2
− 1

xi+1/2 − xi−1/2

∫ xi+1/2

xi−1/2

s(x, t)dx, i = 1(1)m − 1.

(4.2)

Herein ṽ0 and ṽm are located at the boundary and thus may stand for given boundary
values. We assume this in the description below. For smooth solutions this approxi-
mation yields second-order spatial convergence on nonuniform grids, see e.g. [8].

To write this semi-discrete system in our generic form (1.4) we need to trans-
form it. Let the grid functions ũ ∈ R

m and ṽ ∈ R
m−1 contain the components ũi and

ṽi , respectively. Let the difference matrix K̃ ∈ R
m×m−1 have entries K̃ii = 1, i =

1(1)m − 1, and K̃i+1i = −1, i = 2(1)m, and zeros elsewhere. Let Md ∈ R
m×m be

diagonal with entries (xi − xi−1)
−1. Likewise, let Mh ∈ R

m−1×m−1 be diagonal with
entries (xi+1/2 − xi−1/2)

−1. Then (4.2) can be written as
(

u′
v′

)
=

(
0 −K

KT 0

)(
u

v

)
+

(
f u(t)

f v(t)

)
, (4.3)

where

u = M
− 1

2
d ũ, v = M

− 1
2

h ṽ, K = M
1
2
d K̃M

1
2
h , (4.4)

and

f u(t) = M
− 1

2
d f̃ u(t), f v(t) = M

− 1
2

h f̃ v(t). (4.5)

Herein f̃ u(t) ∈ R
m contains the boundary values, that is,

f̃ u(t) = [−Ey(x0, t)/(x1 − x0),0, . . . ,0,Ey(xm, t)/(xm − xm−1)]T , (4.6)

and, likewise, f̃ v(t) ∈ R
m−1 contains the source values from (4.2) evaluated at the

grid points xi . System (4.3) is of the generic form (1.4) to be used for the numerical
tests.
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4.1.2 Test results

We choose 0 ≤ t ≤ 1 as time interval, a zero source function, impose the smooth
exact solution Hz(x, t) = sin(ω(x − t)),Ey(x, t) = Hz(x, t),ω = 2π , and compute
this solution on the space grid depicted below. The grid is locally refined with a factor
of one hundred around the center point x = 1

2 which is also a grid point. In particular,
we will keep the number of refined cells to the fixed amount of four for any coarse
grid size h.

With this particular grid we thus aim to simulate a practical situation where solely
due to spatial geometry a few very fine grid cells are needed [3], giving grid-induced
stiffness. Needless to repeat that this is detrimental to the explicit integrator (2.1), as
it severely limits the step size τ for stability. For our model problem and a uniform
grid with grid size h, the critical step size for (2.1) is given by τ = h in accordance
with (2.2). Due to the refining factor 102, the critical step size for the depicted grid
is expected to be close to τ = 10−2h. It appears to be slightly larger, being τ ≈
1.08 × 10−2h.

Next we illustrate the virtue of component splitting by comparing (2.1) applied
with τ = 10−2h to the implicit trapezoidal rule (2.5) and the component splitting
scheme (3.1), the latter two both applied with the one hundred times larger step size
τ = h. For (3.1) we still have to define the m × m diagonal splitting matrix Su intro-
duced in (3.6). We have chosen

Su = diag(0,0, . . . ,0,0,1,1,1,1,1,0,0, . . . ,0,0), (4.7)

that is, we have put all entries of Su equal to zero, except those five entries which
belong to the components of u that are connected with the fine grid cells centered
around x = 1

2 . Those five are put equal to one, meaning that only fine grid cell infor-
mation enters the matrix in (3.8) that features in the implicit solve. In other words,
to overcome the stability limitation, with the component splitting scheme (3.1) we
time step on the whole of the grid explicitly, except for the few fine cells. This is the
essence of component splitting. In this simple 1D case, the dimension of the tridiago-
nal matrix KT

1 K1 present in (3.8) is just six, whereas the dimension of KT K is equal
to m − 2. Needless to say that in 2D or 3D such savings are appealing.

Figure 1 plots for increasing numbers of grid cells the maximum of all absolute
space-time errors of Hz,Ey at time t = 1. The plots clearly confirm the second-order
convergence result of the component splitting scheme for h → 0 and, in this case,
show in addition favorable space-time errors for this scheme compared to the explicit
and implicit one. Further tests with different component splittings also confirmed the
second-order convergence result.
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Fig. 1 Convergence plots for
1D test: o-marker component
splitting, ∗-marker explicit,
+-marker implicit. The dashed
line has slope two for
second-order convergence

4.2 Results in 2D

For a 2D test we consider the TM (transversal magnetic) model with components
Hx,Hz and Ey ,

μ
∂Hx

∂t
= ∂Ey

∂z
,

μ
∂Hz

∂t
= −∂Ey

∂x
,

∂Ey

∂t
= ∂Hx

∂z
− ∂Hz

∂x
.

(4.8)

For this model we borrow a test setup from [13] based on a strongly varying function
μ(x, z) rather than using a locally refined grid. This test setup is also academic, but
like for the 1D problem it nicely illustrates the ideas behind the technique of compo-
nent splitting. The function μ(x, z) is chosen as the inverse of the peaked function

d(x, z) = 1.0 + (dm − 1.0)e−ds((x−0.5)2+(z−0.5)2)). (4.9)

With ds > 0 we can monitor the shape and with dm > 1 the height. The larger dm,
the greater the step size restriction for the explicit method. Thus the idea of the test is
to take d close to one almost everywhere and to use component splitting near a high
and local peak so as to avoid the step size restriction over the whole space domain.

For the space domain we take the unit square and impose component Ey zero at
the boundary (boundary conditions for Hx and Hz are not needed). We choose as
initial conditions at time t = 0 the zero function for Hx and Hz and let Ey(x, z,0) =
sin(βx) sin(βz),β = 2π . The resulting exact solution is not available in analytical
form. Therefore, for assessing our test results, we will use a sufficiently accurate
reference (semi-discrete) solution on the chosen space grids.
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4.2.1 Spatial discretization

We semi-discretize (4.8) by means of second-order, central differences on a uni-
form, staggered grid with grid size h = 1/m. Let xi = ih, xi+1/2 = (i + 1/2)h, etc.
Then, Ey is approximated at (xi, zj ) for i, j = 1(1)m − 1, Hx at (xi, zj+1/2) for
i = 1(1)m − 1 and j = 0(1)m − 1, and Hz at (xi+1/2, zj ) for i = 0(1)m − 1 and
j = 1(1)m − 1. Note that this staggering accommodates our boundary condition be-
cause due to the staggering Hx and Hz are not required at the domain boundary.

Assuming natural ordering along grid lines in the x-direction, let ũ1 ∈ R
m(m−1)

denote the (grid function) vector for Hx resulting from the staggered discretization
(the tildes will be removed). Similarly, let ũ2 ∈ R

m(m−1) denote this vector for Hz

and ṽ ∈ R
(m−1)(m−1) for Ey . The resulting semi-discrete system then takes the form

⎛
⎜⎝

M1ũ
′
1

M2ũ
′
2

ṽ′

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 0 Ẽ
y
[z]

0 0 −Ẽ
y
[x]

H̃ x[z] −H̃ z
[x] −D̃

⎞
⎟⎟⎠

⎛
⎜⎝

ũ1

ũ2

ṽ

⎞
⎟⎠ , (4.10)

where M1,M2 and D̃ are diagonal matrices containing the encountered μ-values and
σ -values (taken unequal zero for the time being), respectively. Further, Ẽ

y
[z] is the

difference matrix for ∂/∂z acting on component Ey , etc. For the staggered grid holds

H̃ x[z] = −(Ẽ
y
[z])

T , H̃ z
[x] = −(Ẽ

y
[x])

T , (4.11)

giving

⎛
⎜⎝

M1ũ
′
1

M2ũ
′
2

ṽ′

⎞
⎟⎠ =

⎛
⎜⎜⎝

0 0 Ẽ
y
[z]

0 0 −Ẽ
y
[x]

−(Ẽ
y
[z])T (Ẽ

y
[x])T −D̃

⎞
⎟⎟⎠

⎛
⎜⎝

ũ1

ũ2

ṽ

⎞
⎟⎠ . (4.12)

This form reveals the skew-symmetry for zero D̃.
Finally, to arrive at our generic form (1.4), we rescale (4.12) to

⎛
⎜⎝

u′
1

u′
2

v′

⎞
⎟⎠ =

⎛
⎜⎝

0 0 E
y
[z]

0 0 −E
y
[x]

−(E
y
[z])T (E

y
[x])T −D

⎞
⎟⎠

⎛
⎜⎝

u1

u2

v

⎞
⎟⎠ , (4.13)

where

u1 = M
1/2
1 ũ1, u2 = M

1/2
2 ũ2, v = ṽ, (4.14)

and

E
y
[z] = M

−1/2
1 Ẽ

y
[z], E

y
[x] = M

−1/2
2 Ẽ

y
[x], D = D̃. (4.15)
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It follows that the matrix K from (1.4) is given by the 2m(m − 1) × (m − 1)2 differ-
ence matrix

K =
(

−E
y
[z]

E
y
[x]

)
=

(−M
−1/2
1 Ẽ

y
[z]

M
−1/2
2 Ẽ

y
[x]

)
. (4.16)

Clearly, matrix Su introduced in (3.6) and (3.7) thus takes the form

Su =
(

Su1

Su2

)
, (4.17)

where the diagonal matrices Su1 and Su2 multiply −E
y
[z] and E

y
[x], respectively. These

diagonal matrices define the splitting. They will be given below.

4.2.2 Test results

We choose for (4.9) the coefficient values dm = 100, ds = 2000 which gives a
strongly peaked shape with a height of one hundred. Test runs are carried out on
five space-time grids defined by h = 1/20,1/40,1/80,1/160,1/320 and τ = τ(h)

given by the corresponding stability step size restriction for the explicit scheme away
from the peak where d is close to one.

We realize this as follows. For a spatially constant coefficient function d , the sta-
bility step size restriction for the explicit scheme is

τ ≤ τc = h√
2d

. (4.18)

Without splitting this would result in a step size restriction τ ≤ h/
√

200. The idea is
now to choose the entries of the splitting matrices Su1 and Su2 introduced in (4.17)
equal to one if the corresponding entries in the matrices M1 and M2 of system (4.10)
are ≤ 1

2 , that means, the coefficient values d(x, z) ≥ 2. Otherwise the entries of Su1

and Su2 are taken zero. Hence we use implicit time stepping only in the vicinity of
the peak, and elsewhere explicit time stepping. The threshold d(x, z) ≥ 2 suggests
that, in accordance with (4.18), the required step size for the splitting scheme is

τ = h√
2d

with d = 2. (4.19)

Heuristically, we then satisfy the stability step size condition everywhere, while sav-
ing a factor

√
50 for the step size, of course at the expense of some implicit compu-

tations.
Results for the splitting scheme (3.1) and the fully implicit one (2.5), obtained with

the same step sizes τ , are listed in Table 1, including maximum errors taken over all
components at time t = 1 and numbers nnz (numbers of nonzeros) of the matrices
KT

1 K1 for the splitting scheme and KT K for the implicit scheme. These numbers
measure the sparsity encountered in the solution of the linear system (3.4). Note
that in this 2D example, the matrix KT K is the five-banded, second-order difference
matrix for the second-order elliptic operator. Matrix KT

1 K1 is similar, but contains
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Table 1 Maximum norm errors
and nnz’s for the 2D test
problem

m scheme (2.5) nnz scheme (3.1) nnz

20 0.20910−1 1729 0.12310−1 13

40 0.27010−1 7449 0.26810−1 69

80 0.18610−1 30889 0.12710−1 233

160 0.72410−2 125769 0.72010−2 965

320 0.53710−2 507529 0.43110−2 3753

only the rows and columns of KT K near the peak in accordance with the chosen
threshold for d(x, z) ≥ 2. All other rows and columns of KT

1 K1 are zero.
As can be seen in Table 1, the component splitting scheme yields the same errors

as the implicit trapezoidal rule. The fact that the second order does not show up on the
chosen space-time grids, is due to the very large gradients of the coefficient function
(4.9). These necessarily enter the discretization error. Taking the peak more smooth
will reveal second order. Furthermore, without a loss of accuracy we see that for the
component splitting scheme the numbers nnz are significantly lower as anticipated.
This, of course, is what we have forced here by the threshold d(x, z) ≥ 2. Yet it again
illustrates the virtue of component splitting, now in a setting different from that of
the 1D test problem.

5 Future work

The practical virtue of the component splitting scheme (3.1) for real applications has
not been illustrated in this paper and has to be assessed of course. In the near future
we plan to carry out such an assessment for discontinuous Galerkin discretizations on
unstructured meshes, as part of joint research with the authors from [3]. With unstruc-
tured meshes covering irregular domains, grid induced stiffness is likely to happen.
Component splitting can overcome this at the expense of a small overhead for local
implicit computations. This joint research will also deal with a comparison of our
scheme with a related component splitting scheme from [3]. The scheme from [3]
differs from (3.1) in that it was especially designed for discontinuous Galerkin dis-
cretizations on unstructured meshes.

Because with the discontinuous Galerkin approach it is possible to increase the
spatial convergence order, within this joint research we also plan to assess the practi-
cal virtue of component splitting for higher-order integration schemes. One possibil-
ity is to examine higher-order compositions [5]. For (3.1) this amounts to

�τ = �αsτ ◦ �∗
βsτ

◦ · · · ◦ �α1τ ◦ �∗
β1τ

, (5.1)

with �τ given by

un+1 − un

τ
= −Kvn+1 + f u(tn+1),

vn+1 − vn

τ
= KT

0 un + KT
1 un+1 − Dvn+1 + f v(tn+1).

(5.2)
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The composition �τ = �τ/2 ◦ �∗
τ/2 is identical to (3.1) and, for example, ODE order

four can be achieved for s = 5 with coefficients from [7]. Whether these higher-order
extensions will maintain their ODE order for spatial grid size h → 0 is doubtful. Yet
they can be efficient because well-designed composition coefficients, such as those
from [7], minimize truncation error coefficients to the extent that order reduction
becomes less deficient.

As already mentioned in Sect. 1, the method from [2] and [4] also serves to over-
come step size limitations by grid-induced stiffness. That method is designed for
second-order wave equations and the work reported focuses also on the Maxwell
equations. It is based on the two-step leapfrog method and overcomes the step size
limitation by local time stepping which renders the method explicit. In that respect it
differs substantially from the component splitting method from this paper and from
the one from [3]. The base method is also second-order accurate and can handle con-
duction terms too. Higher order is achieved through the modified equation approach,
but only for zero conduction. The second- and higher-order local time-stepping meth-
ods are no doubt very interesting. A numerical comparison between the local time-
stepping methods and the methods from this paper and [3] is of interest, certainly so
if 3D problems close to the actual practice would be considered.

Acknowledgements Stéphane Descombes and Stéphane Lanteri are acknowledged for sharing ideas
and experiences on component splitting and for developing plans for future co-operation.
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