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Abstract This paper enhances a well-known dynamic portfolio management algo-
rithm, the BGSS algorithm, proposed by Brandt et al. (Review of Financial Studies,
18(3):831–873, 2005). We equip this algorithm with the components from a recently
developed method, the Stochastic Grid Bundling Method (SGBM), for calculating
conditional expectations. When solving the first-order conditions for a portfolio opti-
mum, we implement a Taylor series expansion based on a nonlinear decomposition to
approximate the utility functions. In the numerical tests, we show that our algorithm is
accurate and robust in approximating the optimal investment strategies, which are gen-
erated by a new benchmark approach based on the COS method (Fang and Oosterlee,
in SIAM Journal of Scientific Computing, 31(2):826–848, 2008).

Keywords Dynamic portfolio management · Simulation method · Least-square
regression · Taylor expansion · Fourier cosine expansion method

1 Introduction

Solving the dynamic portfolio management problem has become an interesting topic
ever since empirical findings in financial research suggested that asset returns were
predictable. When the distributions of the asset returns are time-invariant, Merton
(1969) and Samuelson (1969) have shown that an investor using a power utility func-
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tion, who re-balances his portfolio optimally, should choose the same asset allocation
at every time point, regardless of the investment horizon.

However, if the distributions of the asset returns are time-dependent, for example,
when the asset returns follow a vector auto-regression (VAR) model, the optimal
asset allocations at intermediate time points are usually not identical. In this case,
an investor, who aims to find an optimal asset allocation at initial time, has to first
consider all possible asset allocations in subsequent time points, which in turn are
also influenced by the initial investment decision. Mathematically, an investor must
solve a multivariate optimization problem regarding asset allocations at all portfolio
re-balancing times.

Generally it is difficult to solve this multivariate optimization problem directly, and
therefore this problem is usually solved by a backward recursion process,where at each
time step the investor considers a simplified problem.Basically, there are two stages for
solving this step-wise optimization problem. First, we determine how to formulate this
optimization problem. We can either focus on the optimization problem directly or try
to solve its correspondingfirst-order conditions,which usually dependon a preparatory
approximation of the optimization problem.Then, the rest of the problemcanbe treated
as a mathematical problem of computing conditional expectations. In Brandt et al.
(2005), the authors work on the first-order conditions and compute the conditional
expectations by simulation and cross-path regression. We call the algorithm the BGSS
algorithm. In van Binsbergen and Brandt (2007b), the authors propose an alternative
algorithm, the vBB algorithm, where they work on the optimization problem directly
via grid-searching but still utilizing simulation and cross-path regression to compute
the conditional expectations. They state that the vBB algorithm is more stable than
the BGSS algorithm, since the BGSS algorithm essentially relies on an approximation
of the utility function. Many other numerical approaches for computing conditional
expectations have been considered, for example, in Barberis (2000), Jondeau and
Rockinger (2006) and Garlappi and Skoulakis (2009).

In this paper, we propose improvements for the BGSS and the vBB algorithms,
which, respectively, rely on solving the first-order conditions and grid-searching to
tackle the optimization problem.

In the original BGSS algorithm, cross-path standard regression is employed for
solving first-order conditions, which correspond to the utility function via a Taylor
series expansion. Within this framework, we particularly contribute in two aspects.
First, we replace the standard regression method by the (local) regression combined
with bundling of simulation paths, as employed in the stochastic grid bundling method
(SGBM), from Jain and Oosterlee (2015). According to our tests, this modification
makes the algorithm more stable and robust, and therefore our algorithm performs
highly satisfactorily compared to the BGSS and the vBB algorithms, particularly when
the investment horizon is long and risk aversion is high. In the process of approximating
the utility function, we consider an alternative Taylor expansion to the expansion
employed in the original BGSS algorithm. This Taylor expansion was introduced in
Garlappi andSkoulakis (2009). This expansion is however not directly compatiblewith
regression-based approaches. With a specific choice of the Taylor expansion center,
we can equip our SGBM regression-based portfolio algorithm with this improved
Taylor expansion, making the approximations less biased. In short, our enhanced
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algorithm still constitutes an algorithm based on simulation and cross-path regression.
It thus remains possible to extend this algorithm to high-dimensional scenarioswithout
increasing the computation complexity dramatically.

Based on grid-searching, which is the basic idea of the vBB algorithm, we utilize
a Fourier cosine series technique (Fang and Oosterlee 2008, 2009) to compute the
conditional expectations and come up with a benchmark algorithm, the COS portfolio
management method. Because this method is not based on simulation, there is no
such error present in the corresponding numerical results. In the test cases to follow,
reference solutions can therefore be generated via this COS-based algorithm.

The paper is organized as follows. Section 2 gives the mathematical formulation
of the investor’s problem. In Sect. 2.1, we introduce a special case of the investor’s
problem where the simulation- and regression-based methods can be applied. In Sect.
3 the SGBM algorithm is briefly described and the alternative Taylor expansion is also
discussed. The benchmark algorithm based on the COSmethod is presented in Sect. 4.
Following that, we display results of the numerical tests in Sect. 5. A brief discussion
of the errors of the simulation-based methods is performed in Sect. 5.6. We conclude
in the last section.

2 Problem Formulation: The Investor’s Problem

This section defines the dynamic portfolio optimization problem, or, in other words,
“the investor’s problem”.We assume that the financial market is defined on a complete
filtered probability space (Ω,F , {Ft }0≤t≤T ,P) with finite time horizon [0, T ]. The
state space Ω is the set of all realizations of the financial market within the time
horizon [0, T ],F is the sigma algebra of events at time T , i.e.F = FT . We assume
that the filtration {Ft }0≤t≤T is generated by the price processes of the financial market
and augmented with the null sets of F . The probability measure P is defined onF .

Weconsider a portfolio consistingof one risk-free asset andd risky assets,which can
be traded at discrete time points, t ∈ [0, 1, . . . , T −1], before terminal time T . At each
trading time t , an investor decides his trading strategy to maximize the expected value
of the utility of his terminal wealth WT . Formally, the investor’s problem is given by

Vt (Wt , Zt ) = max
{xs }T−1

s=t

E[U (WT )
∣
∣Wt , Zt ], (1)

subject to the constraints:

Ws+1 = Ws ·
(

x′
sR

e
s+1 + R f

)

, s = t, . . . , T − 1.

Here xs denotes the asset allocation of the investor’s wealth in risky assets. Vector
transposition is denoted by the prime sign. R f is the return of the risk-free asset,
which is assumed to be constant for simplicity, and Re

s+1 = [Re,1
s+1, . . . , R

e,d
s+1] are

the excess returns of the risky assets at time s + 1. The function U (WT ) denotes the
utility of the investor’s terminal wealth. Vt (Wt , Zt ) is termed the value function, which
measures the investor’s investment opportunities at time t with wealth Wt and market
state Zt . We assume that {Zt }Tt=0 is an Ft -adapted Markov process.
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Mathematically, an investor decides his asset allocations {xs}T−1
s=0 at all time steps

to maximize V0(W0, Z0) or, equivalently, E[U (W0
∏T−1

s=0 (x′
sR

e
s+1 + R f ))

∣
∣W0, Z0].

2.1 Numerical Approaches to the Investor’s Problem

From Eq. (1), we see that at time t it is impossible for the investor to determine
the optimal asset allocation xt without knowing optimal asset allocations {xs}T−1

s=t+1
at future time points. A multivariate optimization problem with respect to all asset
allocations {xs}T−1

s=t may be considered, but due to the complexity of the dynamics of
Zt it is usually not feasible to solve this problem.

A special case, discussed in Barberis (2000), Brandt et al. (2005) and van Bins-
bergen and Brandt (2007b), is when the investor has constant relative risk aversion
(CRRA)1, his optimal asset allocation xt is independent of his wealth Wt . With this
utility function, the optimization problem with respect to the original value function,
Vt (Wt , Zt ), which depends on two variables Wt and Zt , reduces to an optimization
problem with respect to a simplified value function, vt (Zt ):

vt (Zt ) := Vt (1, Zt ) = max
{xs }T−1

s=t

E

[

U

(
T−1
∏

s=t

(

x′
sR

e
s+1 + R f

)
) ∣
∣
∣
∣
Zt

]

.

Value function vt (Zt ) can be written as a recursive procedure:

vt (Zt ) = max
{xs }T−1

s=t

E

[

U

(
T−1
∏

s=t

(

x′
sR

e
s+1 + R f

)
) ∣
∣
∣
∣
Zt

]

= max
{xs }T−1

s=t

E

[

E

[

U

(
T−1
∏

s=t

6
(

x′
sR

e
s+1 + R f

)
) ∣
∣
∣
∣
Zt+1

] ∣
∣
∣
∣
Zt

]

= max
xt

E

[

max
{xs }T−1

s=t+1

E

[

U

(
T−1
∏

s=t

(x′
sR

e
s+1 + R f )

) ∣
∣
∣
∣
Zt+1

] ∣
∣
∣
∣
Zt

]

= max
xt

E

[

vt+1

((

x′
tR

e
t+1 + R f

)

, Zt+1

)
∣
∣
∣
∣
Zt

]

. (4)

1 The CRRA utility function U (WT ) reads:

U (WT ) = W 1−γ
T

1 − γ
, γ �= 1, (2)

and

U (WT ) = log(WT ), γ = 1, (3)

where Eq. (2) is termed the power utility function and Eq. (3) the log utility function. This utility function
is homothetic in wealth, which means that with identical market state Zt , two investors, one with wealth
Wt and the other with wealth 1, will have the same optimal investment strategy at subsequent time points.
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Equation (4) is basedon theBellmanprinciple of optimality anddynamicprogramming
(Bellman 1957), which forms the basis for any recursive solution of the dynamic
portfolio problem. The principle can be applied since the state vector is assumed to
follow a Markov process and, therefore, the optimal asset allocation xt only depends
upon time and the current state Zt .

Using the simplified value function and the power utility function with parameter
γ , we can solve the investor’s problem, in a backward recursion process2, as follows:

– At time T , we determine the value function as:

vT (ZT ) = 1

1 − γ
, γ �= 1;

– At time T − 1, the investor considers the optimization problem:

vT−1(ZT−1) = max
xT−1

E

[

U
(

x′
T−1Re

T + R f
)
∣
∣
∣
∣
ZT−1

]

= max
xT−1

E

[(

x′
T−1Re

T + R f
)1−γ

vT (ZT )

∣
∣
∣
∣
ZT−1

]

.

We denote the optimal asset allocation by x̂T−1, so that:

max
xT−1

E

[

U
(

x′
T−1Re

T + R f
)
∣
∣
∣
∣
ZT−1

]

:= E

[

U
(

x̂′
T−1Re

T + R f
)
∣
∣
∣
∣
ZT−1

]

.

Recursively, moving backward in time, the following steps are subsequently per-
formed at times t , t = T − 2, T − 3, . . . , 1, 0.

– When the investor’s optimal asset allocations, {x̂s}T−1
s=t+1, are determined, we can

calculate the value function vt+1(Zt+1) as:

vt+1(Zt+1) = E

[

U

(
T−1
∏

s=t+1

(

x̂′
sR

e
s+1 + R f

)
) ∣
∣
∣
∣
Zt+1

]

.

Then, the value function vt (Zt ) reads

vt (Zt ) = max
{xs }T−1

s=t

E

⎡

⎣U

⎛

⎝

(

x′
tR

e
t+1 + R f

) T−1
∏

s=t+1

(

x′
sRe

s+1 + R f
)

⎞

⎠

∣
∣
∣
∣
Zt

⎤

⎦

= max
xt

E

⎡

⎣

(

x′
tR

e
t+1 + R f

)1−γ
max

{xs }T−1
s=t+1

E

⎡

⎣U

⎛

⎝

T−1
∏

s=t+1

(x′
sRe

s+1 + R f )

⎞

⎠

∣
∣
∣
∣
Zt+1

⎤

⎦

∣
∣
∣
∣
Zt

⎤

⎦

= max
xt

E

[(

x′
tR

e
t+1 + R f

)1−γ
vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

, (5)

2 Choosing the CRRA utility function is essential for this process to be valid.
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where the last equality is valid byusing the definition ofvt+1(Zt+1).Value function
vt (Zt ) can also be written as:

vt (Zt ) = max
xt

E

[
(

x′
tR

e
t+1 + R f

)1−γ

E

[

U

(
T−1
∏

s=t+1

(

x̂′
sR

e
s+1 + R f

)
) ∣
∣
∣
∣
Zt+1

] ∣
∣
∣
∣
Zt

]

= max
xt

E

[
(

x′
tR

e
t+1 + R f

)1−γ

U

(
T−1
∏

s=t+1

(

x̂′
sR

e
s+1 + R f

)
) ∣
∣
∣
∣
Zt

]

, (6)

where the last equality follows from the law of iterated expectations.

Either Eqs. (5) or (6) can be employed to evolve the information in the backward recur-
sion. They respectively correspond to the “value function iteration” and the “portfolio
weight iteration”, to be discussed in the following subsection. In either case, the opti-
mization problem with respect to xt can be solved via numerical techniques.

As mentioned before, there are basically two numerical approaches available for
dealing with this problem, one is by grid-searching and the other is by solving the
first-order conditions. These techniques are discussed in subsequent sections.

Portfolio Weight Iteration or Value Function Iteration

In the backward recursion process, after either the optimal asset allocations {xs}T−1
s=t+1

or xt+1 and vt+1(Zt+1) have been determined, we need to evolve the information
from time step t + 1 to time step t to proceed the recursive computation. We can
consider either Eqs. (5) or (6) for this purpose. The former is termed “portfolio weight
iteration” and the latter “value function iteration”. In van Binsbergen and Brandt
(2007b) the authors show that more stable results can be obtained by the portfolio
weight iteration. They explain their results as follows. In the value function iteration,
the value function is a conditional expectation approximated by cross-path regression
and approximation errors may accumulate in the backward recursion process. In the
portfolio weight iteration, since the portfolio weights are bounded by borrowing and
short-sale constraints, the approximation error remains bounded throughout the whole
valuation process.

However, if the value function at each intermediate time step can be approximated
accurately, the value function iteration should yield similar results as the portfolio
weight iteration. In the numerical tests to follow, we will see that our enhanced numer-
ical methods perform highly satisfactory and in most cases, using the value function
iteration produces comparable results as the portfolio weight iteration.

3 Solving First-order Conditions

When the value function vt+1(Zt+1) is known, we consider the optimization problem
displayed in Eq. (5).
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One approach to obtain the optimal asset allocation xt in Eq. (5) is to solve the
first-order conditions for an optimum, i.e.

E

[
∂

∂xt

((

x′
tR

e
t+1 + R f

)1−γ

vt+1 (Zt+1)

) ∣
∣
∣
∣
Zt

]

= 0. (7)

Since Eq. (7) is not directly solvable with respect to xt , in Brandt et al. (2005)
the authors proposed an approach to first approximate the value function vt (Zt ) via
a Taylor series expansion and then solve the first-order conditions corresponding to
the approximated function. Second-order Taylor expansion of the value function is
written as3:

vt (Zt ) ≈ max
xt

{

E[(R f )1−γ vt+1(Zt+1)
∣
∣Zt ] + E[(1 − γ )(R f )−γ x′

tR
e
t+1vt+1(Zt+1)

∣
∣Zt ]

+ E[1
2
(1 − γ )(−γ )(R f )−1−γ (x′

tR
e
t+1)

2vt+1(Zt+1)
∣
∣Zt ]

}

.

The corresponding first-order conditions read:

E

[

(1 − γ )(R f )−γ Re
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

+E

[

(1 − γ )(−γ )(R f )−1−γ (Re
t+1Re′

t+1)vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

xt = 0,

and the optimal asset allocation x̂t , which is assumed to be Zt-measurable, is given
by:

x̂t =
[

E

[

γ · (Re
t+1Re′

t+1)vt+1(Zt+1)

∣
∣
∣
∣
Zt

]]−1

· E
[

R f Re
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

. (8)

Here the conditional expectations can be approximated via simulation and cross-path
regression, as done inBrandt et al. (2005),Longstaff andSchwartz (2001) andTsitsiklis
and Roy (2001).

It is mentioned in Brandt et al. (2005) that solving first-order conditions is quite
sensitive to the order of the Taylor expansion of the value function and the results
from second-order and fourth-order expansions can be different. If we consider the
fourth-order Taylor expansion of the value function vt (Zt ), i.e.

vt (Zt ) ≈ max
xt

{

E

[

(R f )1−γ vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

+ E

[

(1 − γ )(R f )−γ x′
tR

e
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

+ E

[
1

2
(1 − γ )(−γ )(R f )−1−γ (x′

tR
e
t+1)

2vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

3 We first consider the Taylor expansion as implemented in Brandt et al. (2005). Another Taylor expansion
will be introduced in Sect. 3.2.
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+ E

[
1

6
(1 − γ )(−γ )(−1 − γ )(R f )−2−γ (x′

tR
e
t+1)

3vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

+ E

[
1

24
(1 − γ )(−γ )(−1 − γ )(−2 − γ )(R f )−3−γ (x′

tR
e
t+1)

4vt+1(Zt+1)

∣
∣
∣
∣
Zt

]}

,

the optimal asset allocation x̂t is defined as an implicit solution of the following
equation:

x̂t ≈
[

E

[

γ · (Re
t+1Re′

t+1)vt+1(Zt+1)

∣
∣
∣
∣
Zt

]]−1

·
{

E

[

R f Re
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

+ 1

2
E

[
(−γ )(−1 − γ )

R f
(x̂′

tR
e
t+1)

2Re
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

+ 1

6
E

[
(−γ )(−1 − γ )(−2 − γ )

(R f )2
(x̂′

tR
e
t+1)

3Re
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]}

. (9)

This equation can be treated as a fixed point problem, x = h(x) with h(·) denoting
the right-hand side in Eq. (9). This can be solved by an iterative method. To start
the iteration, we need an initial guess of the optimal asset allocation. Following the
discussion in Brandt et al. (2005), we can take the solution from the second-order
Taylor expansion of the value function as the initial guess x0t .

The iteration can be conducted by Newton’s method for h(x) − x = 0:

xl+1
t = xlt − h(xlt ) − xlt

h′(xlt ) − 1
, l = 0, 1, 2, . . . .

We stop the iteration, if either the 2-norm of the distance between two consecutive
approximations xlt and xl+1

t is smaller than a tolerance value εTOL or the number of
iterations reaches a predetermined value lmax.We take the last iteration xl+1

t as the final
solution of Eq. (9). In the numerical tests, we choose εTOL = 0.0001 and lmax = 30.
Always the tolerance εTOL can be reached, unless stated otherwise.

3.1 Stochastic Grid Bundling Method

The Stochastic Grid Bundling Method (SGBM), introduced in Jain and Oosterlee
(2015), is a powerful regression-basedmethod for calculating conditional expectations
in Eqs. (8) and (9).

It is shown in Jain and Oosterlee (2015) that applying SGBM is highly efficient
for obtaining the early-exercise boundary when pricing American-style options and
the estimated path-wise option value is so accurate that the Greeks can be generated
directly. InCong andOosterlee (2016), SGBM is implemented for solving the dynamic
mean-variance portfolio management problem in a robust and efficient way. In this
paper,we implement SGBMfor the dynamic utility-based portfoliomanagement prob-
lem. Similar as Brandt et al. (2005), we take the second-order Taylor expansion in the
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description of the algorithm for expositional ease. However, in our numerical experi-
ments, we always employ the fourth-order Taylor expansion. Extension to fourth-order
expansion can be achieved with the formulas in Eq. (9). Our algorithm can be formally
described as follows:
Step I: Simulation. Simulate N paths [Re

t (i), Zt (i)]Ni=1, t = 0, 1, . . . , T , and set the
value function at terminal time T as:

vT (ZT (i)) = 1

1 − γ
, i = 1, . . . , N .

The following steps are subsequently performed at times t , t ≤ T − 1.
Step II: Bundling. We bundle the paths at time t into B non-overlapping partitions,
Bt (1), . . . ,Bt (B). Let each bundle cover a similar number of paths.
Step III: Regression. Assume that there are N (b) paths in bundleBt (b) and their value
functions are {vt+1(Zt+1)(i)}N (b)

i=1 at time t+1, or, equivalently, the optimal asset allo-

cations read {x̂s(i)}N (b)
i=1 , s = t + 1, . . . , N , and their excess returns {Re

t+1(i)}N (b)
i=1 are

known. For these paths, we determine bundle-wise regression parameters {αk(b)}Kk=1

by regressing the values {γ · (Re
t+1(i)R

e′
t+1(i))vt+1(Zt+1)(i)}N (b)

i=1 on basis functions4

[φ1(Re
t+1(i), Zt+1(i)), . . . , φK (Re

t+1(i), Zt+1(i))]N (b)
i=1 , which are constructed using

the information at time t + 1. For any path whose state Zt is covered by bundle
Bt (b),E[γ ·(Re

t+1Re′
t+1)vt+1(Zt+1)

∣
∣Zt ], the denominator of the right-hand side part in

Eq. (8), can be approximated by:

E

[

γ · (Re
t+1Re′

t+1)vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

≈
K
∑

k=1

αk(b)E

[

φk(Re
t+1, Zt+1)

∣
∣
∣
∣
Zt

]

.

Similarly, E[R f Re
t+1vt+1(Zt+1)

∣
∣Zt ], the numerator of the right-hand side part in

Eq. (8), can be approximated by:

E

[

R f Re
t+1vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

≈
K
∑

k=1

βk(b)E

[

φk(Re
t+1, Zt+1)

∣
∣
∣
∣
Zt

]

,

where the regressionparameters {βk(b)}Kk=1 are obtainedby regressing {R f Re
t+1(i)vt+1

(Zt+1(i))}N (b)
i=1 on the same basis functions [φ1(Re

t+1(i), Zt+1(i)), . . ., φK (Re
t+1(i),

Zt+1(i))]N (b)
i=1 .

For any pathwhose stateZt is covered by bundleBt (b), the optimal asset allocation
is approximated by:

4 In this paper, we always choose for the basis functions basic polynomials.
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x̂t ≈
[

K
∑

k=1

αk(b)E

[

φk(Re
t+1, Zt+1)

∣
∣
∣
∣
Zt

]]−1

·
[

K
∑

k=1

βk(b)E[φk(Re
t+1, Zt+1)

∣
∣
∣
∣
Zt ]
]

.

The regression step is repeated for all bundles at each time step, so for each path we
find the corresponding optimal asset allocation.

Step IV: Transition. For the i-th path in bundle Bt (b), we can either apply portfolio
weight iteration or value function iteration to transfer the information of the optimal
investment strategy from time t to time t − 1.

When using the portfolioweight iteration, we just store the optimal asset allocations
{xs}T−1

s=t and write vt (Zt ) as
∏T−1

s=t (x′
sR

e
s+1 + R f )1−γ /(1 − γ ) in the regression step

at time t − 1.
If we use the value function iteration, the process is slightly more involved. For

all paths in bundleBt (b), we regress {(x′
t (i)R

e
t+1(i)+ R f )1−γ vt+1(Zt+1(i))}N (b)

i=1 on

the following polynomial basis functions [φ̂1(Zt (i)), . . . , φ̂K (Zt (i))]N (b)
i=1 formed by

{Zt (i)}N (b)
i=1 and obtain regression parameters [ϕ1(b), . . . , ϕK (b)]. The value function

is then approximated by5:

vt (Zt ) ≈
K
∑

k=1

ϕk(b)φ̂k(Zt ).

3.2 Taylor Expansion Based on a Nonlinear Decomposition

In both, the BGSS and SGBM:6 algorithms, an essential step before solving the equa-
tions for the first-order conditions is to rewrite the value function, vt (Zt ), in a Taylor
series expansion in which the asset allocation xt is separated from the conditional
expectations of Re

t+1. A K th-order Taylor expansion in SGBM can be written as7

(

xt R
e
t+1 + R f

)1−γ ≈
K
∑

k=0

g(k)
1 (0)

k! (xt R
e
t+1)

k, (10)

where g(k)
1 (0) denotes the kth derivative of function g1(y) when y = 0. Function

g1(y) = (y + R f )1−γ . So, g1(xt Re
t+1) = (xt Re

t+1 + R f )1−γ .
Since the excess return Re

t is a nonlinear transformation of the log excess return ret ,
i.e.

Re
t+1 = exp(ret+1)R

f − R f ,

5 It should be noted that the standard regression method is implemented in this step. According to our tests,
introducing SGBM in this step is not helpful.
6 With a little abuse of the term, we also denote our dynamic portfolio management method by “SGBM”.
7 For simplicity, we describe the dynamic portfolio management problem with one risky asset here.
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an alternative way to perform a Taylor expansion for (xt Re
t+1 + R f )1−γ is given by:

(

xt R
e
t+1 + R f

)1−γ ≈
K
∑

k=0

g(k)
2 (0)

k! (ret+1)
k, (11)

where function g2(z) is defined by:

g2(z) =
(

R f + xt
(

exp(z)R f − R f
))1−γ

.

Functions g1(xt Re
t+1) and g2(ret ) are both identical to (xt Re

t+1 + R f )1−γ , but
different ways of choosing the underlying variable yield different Taylor expansion
formulas.

In Garlappi and Skoulakis (2011), the authors term the expansion described in
Eq. (10) as “Taylor expansion based on a linear decomposition” and the expansion
described in Eq. (11) as “Taylor expansion based on a nonlinear decomposition”.
They show that when the centers of Taylor expansions are carefully chosen, the
“Taylor expansion based on a nonlinear decomposition” is more accurate than the
“Taylor expansion based on a linear decomposition” when approximating the function
(xt Re

t+1 + R f )1−γ . We will call these expansions “original Taylor” and “log Taylor”
expansions, respectively, in the rest of this paper. Although the log Taylor expan-
sion has been implemented in Garlappi and Skoulakis (2009) for dynamic portfolio
management, their choice of expansion center is not compatiblewith the algorithmdis-
cussed here. We deal with this problem by performing a log Taylor expansion around
center 0, as displayed in Eq. (11).8 According to the numerical tests in Sect. 5, we find
that the log Taylor expansion is indeed a superior choice even when the expansion
center is chosen to be 0. The reasoning is that the log excess return ret usually exhibits
a distribution similar to the normal distribution. Therefore, a Taylor expansion with
respect to this variable, i.e. the so-called “log Taylor” expansion, can yield accurate
results with a limited number of expansion terms. The distribution of the excess return
Re
t usually exhibits a fat tailed distribution, which requires more terms in the original

Taylor expansion to approximate its moments.

4 Grid-Searching Methods

An alternative technique to solving first-order conditions is based on grid-searching,
which is an intuitive idea for solving the optimization problem described in Eq. (5).

8 We especially choose the Taylor expansion center to be 0, because only in this case is there no term
related to xt inside the power transformation, for example:

g2(0) = (R f )1−γ ,

g′
2(0) = (1 − γ )(R f )1−γ xt ,

g′′
2 (0) = (1 − γ )(R f )1−γ (−γ x2t + xt ).
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In grid-searching, we reduce the optimization problem on the continuous domain
to a problem on a discrete domain. For example, if we consider the allocation, xt ,
of one risky asset, the original optimization problem is solved on a domain [0, 1].
By grid-searching, we construct M equidistant grid points { m

M }Mm=0 and consider the
optimization problem on the discrete domain DM = { m

M | m = 0, 1, . . . , M}. To solve
this discrete optimization problem, we test each possible choice of the allocation
x (m)
t = m

M ,m = 0, . . . , M and calculate the corresponding value functions:

v
(m)
t (Zt ) = E

[

(x (m)
t Re

t+1 + R f )1−γ vt+1(Zt+1)

∣
∣
∣
∣
Zt

]

. (12)

We determine the maximum, vmax
t (Zt ), from {v(m)

t (Zt )}Mm=0 and denote its corre-
sponding asset allocation as “the optimal asset allocation”.

Although it is mentioned in van Binsbergen and Brandt (2007a, b) that the grid-
searching method is robust and avoids a number of numerical issues regarding
convergence that occurwhen solvingfirst-order conditions, it should be noted that grid-
searching is an expensive numerical approach. The workload of grid-searching grows
exponentially as the dimensionality of the problem increases. Moreover, according to
our numerical tests in the low-dimensional cases, the vBB algorithm, which employs
grid-searching together with simulation, yields more “uncertain” results (larger vari-
ance) compared to the other simulation-based algorithms.

However, if we wish to find an accurate reference solution to the dynamic portfolio
management problem, grid-searching seems our only choice since solving first-order
conditions essentially relies on Taylor approximations of the utility function, whereas
grid-searchingdoes not. In the next subsectionwewill present our benchmark approach
based on the idea of grid-searching.

4.1 COS Portfolio Management Method

In this section, we present a benchmark method, based on the Fourier cosine series
expansion (COS) method to calculate the conditional expectations. This method was
introduced inFang andOosterlee (2008) for pricingone-dimensionalEuropeanoptions
and later in Fang and Oosterlee (2009) for pricing one-dimensional Bermudan and
barrier options. In Ruijter and Oosterlee (2012), this method was extended to the
two-dimensional case. Because the COS method is not based on simulation, it can
yield benchmark solutions to the investor’s problem, especially in the basic case with
one risky asset and one risk-free asset. Following the previous discussions, this basic
investor’s problem with power utility function is given by:

vt−1(Zt−1) = max
xt−1

E

[

(xt−1R
e
t + R f )1−γ vt (Zt )

∣
∣
∣
∣
Zt−1

]

t = 1, . . . , T − 1, (13)

where the terminal condition reads:

vT (ZT ) = 1

1 − γ
, γ �= 1.
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If we denote the conditional transition density function from state Zt−1 to (Re
t , Zt ) as

f (Re
t , Zt |Zt−1), the investor’s problem reads:

vt−1(Zt−1) = max
xt−1

∫∫

R2
(xt−1R

e
t + R f )1−γ vt (Zt ) f (R

e
t , Zt |Zt−1)dR

e
t dZt , t = 1, . . . , T − 1.

(14)

The COS algorithm for calculating conditional expectations can be described in five
steps:

Step I: Truncate the integration range in Eq. (14).
If we assume that the integrand is integrable, we can truncate the integration range
fromR

2 to [aR, bR]×[aZ , bZ ]without losing significant accuracy. The approximated
value function v̂t−1(Zt−1) reads:

v̂t−1(Zt−1) = max
xt−1

∫ bZ

aZ

∫ bR

aR
(xt−1R

e
t + R f )1−γ vt (Zt ) f (R

e
t , Zt |Zt−1)dR

e
t dZt .

Remark 4.1 For one variable, for example Zt , the suggested integration range [aZ , bZ ]
in Fang and Oosterlee (2009) and Ruijter and Oosterlee (2012) is [ξ Z

1 − Lξ Z
2 , ξ Z

1 +
Lξ Z

2 ], where ξ Z
1 is the mean of Zt and ξ Z

2 the standard deviation of Zt . L should be
large enough to make the truncation error acceptably low.

Step II: Expand the integrand in Fourier cosines.
If we denote the Fourier cosine expansion of f (Re

t , Zt |Zt−1) on [aR, bR]×[aZ , bZ ]
by:

Ak1,k2(Zt−1) := 2

bZ − aZ

2

bR − aR

∫ bZ

aZ

∫ bR

aR
f (Re

t , Zt
∣
∣Zt−1)

× cos

(

k1π
Re
t − aR

bR − aR

)

cos

(

k2π
Zt − aZ
bZ − aZ

)

dRe
t dZt ,

and similarly define the utility coefficients as:

Vk1,k2(t, xt−1) := 2

bZ − aZ

2

bR − aR

∫ bZ

aZ

∫ bR

aR
(xt−1R

e
t + R f )1−γ vt (Zt )

× cos

(

k1π
Re
t − aR

bR − aR

)

cos

(

k2π
Zt − aZ
bZ − aZ

)

dRe
t dZt ,

value function vt−1(Zt−1) can be approximated by:

v̂t−1(Zt−1) = max
xt−1

⎧

⎨

⎩

bZ − aZ
2

bR − aR
2

∞
∑

k1=0

′
∞
∑

k2=0

′Ak1,k2(Zt−1)Vk1,k2(t, xt−1)

⎫

⎬

⎭
.

The primed sum
∑ ′ means that the first term of the summation has half weight.
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Step III: Truncate the infinite series.
We truncate the infinite series, as follows:

v̄t−1(Zt−1) = max
xt−1

⎧

⎨

⎩

bZ − aZ
2

bR − aR
2

N1−1
∑

k1=0

′
N2−1
∑

k2=0

′Ak1,k2(Zt−1)Vk1,k2(t, xt−1)

⎫

⎬

⎭
.

Step IV: Calculate the coefficients Ak1,k2(Zt−1).
The coefficients Ak1,k2(Zt−1) can be approximated by Fk1,k2(Zt−1), as follows:

Fk1,k2(Zt−1) := 2

bZ − aZ

2

bR − aR

∫∫

R2
f (Re

t , Zt
∣
∣Zt−1)

× cos

(

k1π
Re
t − aR

bR − aR

)

cos

(

k2π
Zt − aZ
bZ − aZ

)

dRe
t dZt .

Using the following property of cosines: 2 cos(α) cos(β) = cos(α +β)+ cos(α −β),
we can calculate Fk1,k2(Zt−1) by:

Fk1,k2(Zt−1) = F+
k1,k2

(Zt−1) + F−
k1,k2

(Zt−1)

2
,

where

F±
k1,k2

(Zt−1)

= 2

bZ − aZ

2

bR − aR

∫∫

R2
f (Re

t , Zt |Zt−1) cos

(

k1π
Re
t − aR

bR − aR
± k2π

Zt − aZ
bZ − aZ

)

dRe
t dZt

= 2

bZ − aZ

2

bR − aR
�
(∫∫

R2
f (Re

t , Zt |Zt−1) exp

(

ik1π
Re
t

bR − aR
± ik2π

Zt
bZ − aZ

)

dRe
t dZt

× exp

(

−ik1π
aR

bR − aR
∓ ik2π

aZ
bZ − aZ

))

= 2

bZ − aZ

2

bR − aR
�
(

ψ

(
k1π

bR − aR
, ± k2π

bZ − aZ

∣
∣
∣
∣
Zt−1

)

× exp

(

−ik1π
aR

bR − aR
∓ ik2π

aZ
bZ − aZ

))

.

�(·) means taking the real part of the input data. ψ(ur , uZ |Zt−1) is the bivariate
conditional characteristic function of (Re

t , Zt ) given state Zt−1:

ψ(uR, uZ |Zt−1) =
∫∫

R2
exp(i[uR, uZ ] · [Re

t , Zt ]′ f (Re
t , Zt |Zt−1)dR

e
t dZt .

For many asset dynamics models this bivariate characteristic function is known in
closed form.
Step V: Calculate the coefficients Vk1,k2(t, xt−1).
The coefficients Vk1,k2(t, xt−1) are not directly related to any closed-form expression.
However, we can apply numerical integration and the discrete cosine transform (DCT)
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to approximate Vk1,k2(t, xt−1). To do this, we take Q ≥ max[N1, N2] grid points in
each spatial dimension and define:

Rn1
t := aR + (n1 + 1

2
)ΔRt n1 = 1, . . . , Q

Zn2
t := aZ + (n2 + 1

2
)ΔZt n2 = 1, . . . , Q

ΔRt := bR − aR
Q

, ΔZt := bZ − aZ
Q

.

The midpoint-rule integration gives us

Vk1,k2(t, xt−1) ≈
Q−1
∑

n1=0

Q−1
∑

n2=0

2

bR − aR

2

bZ − aZ

(

xt−1R
e
t + R f

)1−γ

vt (Zt )

× cos

(

k1π
Rn1
t − aR
bR − aR

)

cos

(

k2π
Zn2
t − aZ
bZ − aZ

)

ΔRtΔZt

=
Q−1
∑

n1=0

Q−1
∑

n2=0

2

Q

2

Q

(

xt−1R
n1
t + R f

)1−γ

vt (Z
n2
t ) cos

(

k1π
Rn1
t − aR
bR − aR

)

× cos

(

k2π
Zn2
t − aZ
bZ − aZ

)

.

The equation above can be calculated efficiently via a two-dimensional DCT, for
example, with the function dct2 of MATLAB. Moreover, we can rewrite the sum of
multiplications into a multiplication of sums, that is:

Vk1,k2(t, xt−1) ≈ 2

Q

2

Q

⎛

⎝

Q−1
∑

n1=0

(

xt−1R
n1
t + R f

)1−γ

cos

(

k1π
Rn1
t − aR
bR − aR

)
⎞

⎠

×
⎛

⎝

Q−1
∑

n2=0

vt
(

Zn2
t
)

cos

(

k2π
Zn2
t − aZ
bZ − aZ

)
⎞

⎠ .

Then, the two-dimensional DCT can be replaced by two separate one-dimensional
DCTs, which helps reducing the computational time.

For state Zt−1 and asset allocation xt−1, we can calculate the conditional expec-
tation shown in Eq. (13) by the COS method. To solve the optimization problem
with respect to xt−1, we employ grid-searching: we evaluate discretized values of
xt−1 ∈ { m

M |m = 0, . . . , M} and find the largest conditional expectation. The back-
ward recursion process can be performed from time T − 1 to the initial time.

Within the COS method, we have five parameters to adjust the truncation and
discretization errors. These are N1, N2, L , Q and M . Generally, larger values of these
parameters lead to more accurate approximations but also to higher computational
load. We use the following default parameter setting:
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N1 = 50, N2 = 100, L = 8, Q = 100, M = 200. (15)

According to our experiments, the COSmethod provides highly accurate results under
this setting. However, when the admissible asset allocation can be chosen from a very
wide range of values, the COS approach, which is based on discrete grid search,
may lose its accuracy. In that case, the SGBM method equipped with the log Taylor
expansion and a large number of paths will still generate satisfactory solutions and
appears favorable.

Remark 4.2 The COS method suffers from the curse of dimensionality. However,
this is a problem for any method involving discretization of the state space and grid-
searching. To settle this issue in high-dimensional cases, adaptive discretization, or
sparse grids, and grid-searching can be applied.

Remark 4.3 The computational load of the COS method for a dynamic portfolio
management problem is mainly related to the DCT computations, for which the com-
putational complexity at each time step is O(N2 · M · Q · log(Q)). Computations at
each time step are performed sequentially, but the computations for the value function
at each state point are independent, so it should be possible to accelerate the COS
method by parallel processing.

5 Numerical Experiments

In this section, we test the performance of five methods for generating the optimal
dynamic portfolio management strategy. These are:

– “BGSS”: the method introduced in Brandt et al. (2005);
– “vBB”: the method introduced in van Binsbergen and Brandt (2007b);
– “SGBM”: SGBM with the original Taylor expansion;
– “SGBM-LT”: SGBM with the log Taylor expansion;
– “COS”: the COS method.

We impose borrowing and short-sale constraints on the asset allocations, that are
therefore restricted between 0 and 1. When we implement the simulation-based algo-
rithms, we always generate 214 paths. For “SGBM” and “SGBM-LT”, which require
bundling, we employ 32 bundles at each time step. We approximate the utility func-
tion by Taylor expansions, up to 4th-order for both the log Taylor expansion and the
original Taylor expansion. For “BGSS” and “vBB”, we use polynomials of the state
variable up to second-order as the basis functions for the cross-path regression. For
“SGBM” and “SGBM-LT”, the polynomials are also second-order but in of the state
variable and the return variable.

To measure the performance of a dynamic portfolio management strategy, we
consider the statistic, “annualized certainty equivalent rate”, CER. It describes the
annualized return rate of a risk-free asset which at terminal time Y (years) yields the
same utility of wealth obtained from the dynamic portfolio management strategy.
Equivalently, the CER is the risk-free rate that an investor is willing to accept rather
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than adopting a particular risky portfolio management strategy. Formally the CER is
defined by:

U (W0 · (1 + CER)Y )) = V0(W0, Z0), (16)

where the value function V0(W0, Z0) is defined by Eq. (1). Generally, a portfolio
management strategy with high CER is close to the optimal strategy and can thus be
regarded as an accurate solution to the dynamic portfolio management problem.

We perform numerical tests here for a basic test case where the portfolio contains
one risky asset and one risk-free asset. We consider the vector auto-regression (VAR)
model to describe the dynamics of the log excess return ret of the risky asset and its log
dividend yield dt , that are chosen as the state variables. Quarterly data are generated
with the following process, as in Brandt et al. (2005), van Binsbergen and Brandt
(2007b) and Garlappi and Skoulakis (2009):

[

ret+1
dt+1

]

=
[

0.227
−0.155

]

+
[

0.060
0.958

]

dt +
[
εrt+1
εdt+1

]

,

where
[
εrt+1
εdt+1

]

∼ N (με,Σε), με =
[

0
0

]

and Σε =
[

0.0060 −0.0051
−0.0051 0.0049

]

.

In most of the tests, the initial state, d0, is chosen as the unconditional mean, i.e.,
d0 = −0.155/(1 − 0.958) = −3.6905. Only in Sect. 5.4 we will consider three
quantiles, the 25, 50 and 75% quantiles, of the unconditional distribution of state
variable respectively as the initial state. The gross return of the risk-free asset is chosen
as R f = 1.060.25 and the excess return Re

t of the risky asset is R
e
t = R f (exp(ret )−1).

Associated to the 1D-VARmodel, the characteristic function, which is essential for
the COS portfolio management method, can be formulated as9:

ψ(ur , uZ |Zt−1) = exp

(

ik1π
0.227 + 0.060 · Zt−1

br − ar
+ ik2π

−0.155 + 0.958 · Zt−1

bZ − aZ

)

·

× exp

(

iμε
′[ur , uZ ]′ − 1

2
[ur , uZ ]Σε [ur , uZ ]′

)

.

5.1 Quality of the COS Portfolio Management Method

We first check the validity and quality of the COS portfolio management method. For
the dynamic portfolio management problemwith the 1D-VARmodel, we calculate the
optimal asset allocations and the corresponding annualized certainty equivalent rates
and compare them with the reference values from Garlappi and Skoulakis (2009). As
we can see in Table 1, in case of different investment horizons and risk aversions,

9 Since Re
t is an injective function of ret , for all equations in Sect. 4 replacing the functions of Re

t by
functions of ret is valid with trivial modification.
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Table 1 Initial optimal asset allocations and the corresponding annualized certainty equivalent rates of the
COS portfolio management method, based on the 1D-VARmodel, with reference values from Garlappi and
Skoulakis (2009)

Optimal initial asset allocation (%) Annualized CER (%)

γ = 5 γ = 15 γ = 5 γ = 15

COS Reference COS Reference COS Reference COS Reference

T = 10 41.5 42.8 15.0 15.6 7.23 7.22 6.43 6.43

T = 20 56.5 56.3 23.0 25.3 7.84 7.84 6.72 6.72

T = 30 69.0 66.9 33.0 35.4 8.26 8.26 7.01 7.01

T = 40 77.5 76.8 43.0 44.5 8.53 8.53 7.27 7.26

the COS method always provides accurate approximations of the annualized certainty
equivalent rates and also highly satisfactory approximations of the optimal initial asset
allocations.

As the COS method with the parameter settings in (15) and the reference method
involve some approximation errors, it is difficult to say whose optimal initial asset
allocation is superior. However, since it is known that first-order deviations in the
portfolio policy have only second-order welfare effects (Cochrane 1989) and the COS
method and the reference method yield similar annualized certainty equivalent rates,
we consider these as the optimal solutions when comparing with simulation-based
methods.

Remark 5.1 We have also tested the performance of the COS portfolio management
method with different initial states d0. For any initial state tested, it generates very
similar results as the reference values in Garlappi and Skoulakis (2009).

5.2 Portfolio Management with the Buy-and-Hold Strategy

In this section, instead of the dynamic portfolio management problem, in which an
investor decides his optimal asset allocations at intermediate times t = 0, 1, . . . , T−1,
we consider a case where the investor decides his optimal asset allocation at time t = 0
and holds a fixed amount of assets until terminal time t = T . The corresponding value
function reads

v0(Z0) = max
x0

E

[
1

1 − γ

(

x0R
e
0→T + R f

0→T

)1−γ
∣
∣
∣
∣
Z0

]

,

where R f
0→T = (R f )T , Re

0→T = R f
0→T · e

∑T
t=1 r

e
t − R f

0→T .
This type of problem can be viewed as a static portfolio management problem, for

which the aforementioned four simulation-based methods (“SGBM-LT”, “SGBM”,
“BGSS” and “vBB”) can be applied. The COS method is utilized to generate bench-
marks for the optimal asset allocations and the corresponding annualized certainty
equivalent rates.

Figure 1 shows that “vBB” provides identical results to the optimal ones, since
it does not involve Taylor expansion errors. For the other three candidates, in which
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Fig. 1 For the simulation-based methods, we report the point estimate of the initial asset allocations from
100 runs. The optimal values are generated with the COS method, a optimal allocation γ = 5, b certainty
equivalent rate γ = 5, c optimal allocation γ = 15, d certainty equivalent rate γ = 15

Taylor expansions are involved, “SGBM-LT” provides the best approximation of the
initial asset allocations. When the investment horizon is long, although the asset allo-
cations of “SGBM-LT” are not close to the optimal solutions, their corresponding
certainty equivalent rates are similar to the optimal ones. For the other two methods,
“SGBM” and “BGSS”, the estimates of asset allocations and certainty equivalent rates
are acceptable only when the investment horizon is shorter than 10 quarters.

This test indicates that the log Taylor expansion (214 paths, 32 bundles) outperforms
the original Taylor expansion for approximating the utility functions. The advantage
of using the log Taylor expansion is obvious when the distribution of the accumulated
excess return, Re

0→T , exhibits a fat tail.

5.3 Dynamic Portfolio Management with Different Investment Horizons
and Risk Aversion Parameters

Following the discussion in van Binsbergen and Brandt (2007b), we consider for the
dynamic optimization problem the portfolio weight iteration in the transfer step and
compare the four simulation-based methods.
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Table 2 Mean and the standard derivations of the CER from 100 runs, comparing 4 simulation-based
methods for dynamic portfolio management for different investment horizons and risk aversion parameters

Annualized certainty equivalent rate (%)

γ BGSS (SE) vBB (SE) SGBM (SE) SGBM-LT (SE) COS

T = 40

5 8.51 (0.02) 8.52 (0.02) 8.55 (0.02) 8.56 (0.02) 8.53

10 7.61 (0.03) 7.63 (0.04) 7.67 (0.02) 7.77 (0.03) 7.74

15 7.12 (0.03) 7.08 (0.05) 7.17 (0.02) 7.26 (0.02) 7.27

20 6.85 (0.03) 6.72 (0.06) 6.90 (0.01) 6.97 (0.02) 6.98

T = 80

5 8.79 (0.02) 8.78 (0.02) 8.96 (0.01) 8.97 (0.01) 8.94

10 7.76 (0.04) 7.63 (0.03) 8.08 (0.02) 8.28 (0.02) 8.29

15 7.18 (0.05) 7.03 (0.04) 7.47 (0.01) 7.65 (0.02) 7.83

20 6.86 (0.05) 6.65 (0.06) 7.13 (0.01) 7.28 (0.01) 7.49

The portfolio weight iteration is utilized. The COS method serves as the reference

In Table 2, we observe that “SGBM-LT”, among the four methods, always provides
the highest certainty equivalent rates, which implies that the portfolio management
strategy generated by “SGBM-LT” is most similar to the optimal one. However,
when the investment horizon is long and risk aversion is high, even the results of
“SGBM-LT” are not highly satisfactory. In that case, we prefer to solve the dynamic
portfolio management problem by the COS portfolio management method. Regard-
ing the simulation-based methods, “SGBM” and “SGBM-LT” are superior to “BGSS”
and “vBB”, since their corresponding CERs have larger means and smaller standard
errors.

Different from the findings in van Binsbergen and Brandt (2007b) that value func-
tion iteration also results in low certainty equivalent rates here. Table 3 shows that
when using “SGBM” or “SGBM-LT”, we can also get satisfactory results by the value
function iteration in most test cases. Portfolio weight iteration is significantly better
than value function iteration when the risk aversion is large and the investment horizon
is long.

5.4 Influence of Varying Initial State

We consider three different initial values, d0, of the state variable. Each value corre-
sponds to the p-th quantile of the unconditional distribution of d, where p takes values
25, 50 and 75.

Figure 2 shows that, for any initial state, “SGBM-LT” performs better than the
other three simulation-based algorithms. The intermediate asset allocations generated
by “SGBM-LT” are most similar to the optimal ones. At the initial recursion steps,
“vBB” also generates similar asset allocations. However, as the backward recursion
progresses, the uncertainty in the “vBB” estimates grows and hence the accuracy of
“vBB” gets worse.
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Table 3 Mean and the standard derivations of the CER from 100 runs, comparing “SGBM” and “SGBM-
LT”with the portfolioweight and the value function iteration; different investment horizons and risk aversion
parameters

Annualized certainty equivalent rate (%)

γ SGBM SGBM-LT COS

PWI (SE) VFI (SE) PWI (SE) VFI (SE)

T = 40

5 8.55 (0.02) 8.53 (0.02) 8.56 (0.02) 8.53 (0.02) 8.53

10 7.67 (0.02) 7.61 (0.03) 7.77 (0.03) 7.70 (0.04) 7.74

15 7.17 (0.02) 7.13 (0.02) 7.26 (0.02) 7.18 (0.16) 7.27

20 6.90 (0.01) 6.86 (0.08) 6.97 (0.02) 6.81 (0.39) 6.98

T = 80

5 8.96 (0.01) 8.94 (0.02) 8.97 (0.01) 8.94 (0.02) 8.94

10 8.08 (0.02) 8.02 (0.02) 8.28 (0.02) 8.18 (0.15) 8.29

15 7.47 (0.01) 7.42 (0.05) 7.65 (0.02) 7.55 (0.11) 7.83

20 7.13 (0.01) 7.09 (0.04) 7.28 (0.01) 7.16 (0.17) 7.49

The COS method serves as the reference

In any case, “SGBM” and “SGBM-LT” yield estimates with low uncertainties.
Moreover, we see that “SGBM-VFI” and “SGBM-LT-VFI”, in which the value func-
tion iteration is considered in the recursion step, respectively, generate very similar
results to those of “SGBM” and “SGBM-LT”. These are advantages of the newmethod
to calculate conditional expectations.

5.5 Influence of Varying Model Uncertainty

If we consider higher model uncertainty in the 1D-VAR model, the aforementioned
methods perform differently. The model uncertainty can be modified by introduc-
ing a multiplier M2 to the original covariance matrix Σε of the white noise vector
[εrt+1, ε

d
t+1]′, so that the covariance matrix of the error term will be:

ΣM
ε = M2 · Σε.

In this test, with a fixed risk aversion parameter γ = 10, we change the multiplier M
and the investment horizon and report the certainty equivalent rates corresponding to
the different algorithms.

As shown in Table 4, when the model uncertainty increases, “vBB” is the most
impacted algorithm. “BGSS” performs somewhat better than “vBB” but worse than
“SGBM” and “SGBM-LT” as the corresponding certainty equivalent rate is smaller
and with higher uncertainty. “SGBM-LT” outperforms “SGBM”. The differences are
obvious when the model uncertainty is high and the investment horizon is long. The
“SGBM-LT” values in the table are obtained with sample size 214. In any case, “COS”
yields the reference results, which are verified by using “SGBM-LT” with a large
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Fig. 2 Comparison of simulation-based algorithms for estimating the optimal intermediate asset allocations
for different initial states. At each time step, the average asset allocations is computed. For the simulation-
based algorithms, the mean and the standard derivation of the average asset allocations are generated from
100 runs. The optimal values are generated by the COS method, a Mean of the average asset allocations,
d0 = −3.8551, bConfidence interval of the average asset allocations, d0 = −3.8551, cMean of the average
asset allocations, d0 = −3.6905, d Confidence interval of the average asset allocations, d0 = −3.6905,
eMeanof the average asset allocations,d0 = −3.5258, f Confidence interval of the average asset allocations,
d0 = −3.5258
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Table 4 Comparing four methods with various model uncertainties.

Annualized certainty equivalent rate (%)

M BGSS (SE) vBB (SE) SGBM (SE) SGBM-LT (SE) COS

T = 10

1 6.64 (0.03) 6.64 (0.03) 6.65 (0.03) 6.65 (0.03) 6.64

2 6.65 (0.03) 6.65 (0.03) 6.66 (0.03) 6.66 (0.03) 6.65

3 6.79 (0.38) 6.59 (0.82) 6.84 (0.05) 6.86 (0.03) 6.85

4 6.98 (1.05) 0.11 (6.46) 7.11 (0.04) 7.14 (0.04) 7.13

T = 20

1 7.06 (0.03) 7.07 (0.04) 7.07 (0.03) 7.10 (0.03) 7.06

2 7.06 (0.03) 7.01 (0.06) 7.06 (0.03) 7.12 (0.04) 7.07

3 7.21 (0.31) 6.84 (0.34) 7.27 (0.06) 7.40 (0.05) 7.34

4 7.20 (0.99) −0.23 (5.00) 7.54 (0.11) 7.78 (0.07) 7.72

The risk aversion parameter is fixed as 10. For different investment horizon T (quarters) and multiplier M
to the model uncertainty, the table reports the mean and the standard derivation of the certainty equivalent
rate from 100 runs. The results from the COS method serve as the reference values

sample size 218. In that case, we find, for example, the certainty equivalent rate of
“SGBM-LT” has mean value 7.71 and standard error 0.02 when T = 20 and M = 4.

5.6 Errors of the Four Simulation-Based Methods

In this subsection, we would like to briefly summarize the errors encountered within
the methods analyzed. If we do not consider errors in the simulation part, the errors
of the four simulation-based methods, “vBB”, “BGSS”, “SGBM” and “SGBM-LT”,
can be subdivided into three categories:

– approximation error which occurs when we approximate the true value functions
by the Taylor series expansion.

– projection error which occurs whenwe use low-order polynomials to approximate
the conditional expectations of the value functions or of the approximated value
functions.

– regression bias which occurs when we use cross-path regression to approximate
the conditional expectations.

The approximation error does not occur when Taylor series expansions are not
involved, for example, in “vBB”. However, as we have seen in the numerical tests,
“BGSS” and “SGBM” suffer from this source of error in a similar fashion, while
“SGBM-LT” appears to suffer less.

The projection error is the main source of error in “vBB”, where low-order polyno-
mials are implemented to approximate the value functions, which may be high-order
functions when the risk aversion is high, see Eq. (12). For “BGSS”, “SGBM” and
“SGBM-LT”, this is generally not a problem since the object functions, as in Eq. (9),
are at most of fourth-order.
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Table 5 Errors of the four simulation-based methods

vBB BGSS SGBM SGBM-LT

Approximation error – High High Low

Projection error High Low Low Low

Regression bias High High Low Low

The regression bias, which has been discussed in Cong andOosterlee (2015), can be
controlled effectively by bundling. The regression bias is high in “vBB” and “BGSS”
but relatively low in “SGBM” and “SGBM-LT”, that benefit from their bundling
technique.

A general description of the error components of the four simulation-basedmethods
is listed in Table 5. “SGBM-LT” exhibits a highly satisfactory performance in our
tests, since it has relatively small-sized errors in all three aspects. We expect however
that when the risk aversion parameter is high and the model volatility is large, even
“SGBM-LT” may fail to converge in some cases. In those cases, we propose either
to use a large number of paths in the simulation together with more bundles or to
implement a variance reduction technique.

6 Conclusion

In this paper, we enhance a popular dynamic portfolio management algorithm, the
BGSS algorithm, in two aspects. First, for the computation of the conditional expec-
tations appearing, we replace the standard regression method by the techniques from
the SCBM, so that the variances of the approximated asset allocations and the cor-
responding certainty equivalent rates can be reduced. Then, a log Taylor expansion,
based on a nonlinear decomposition, is employed in our algorithm. This expansion
gives rise to improved results compared to the original ones when approximating the
utility function. The resulting SGBM based portfolio management algorithm results
in a lower biased approximation of the optimal asset allocations.

Based on the COSmethod and the grid-searching technique, we have developed the
COS portfolio management method for generating reference values, which are quite
comparable to the reference values and further serve as the “optimal” solutions in our
numerical tests.

In our tests, combining SGBM and the log Taylor expansion yields superior results
to those of other simulation-based algorithms. In all testing cases, “SGBM-LT” shows
the higher certainty equivalent rates.Whenwemerely consider introducing the SGBM
components in the regression step, the benefits are obvious: the value function itera-
tion and the portfolio weight iteration associated to both “SGBM” and “SGBM-LT”
generate quite similar results, which indicate that the approximation errors at each
recursion step are small.

Our simulation- and regression-based algorithm “SGBM-LT” can be generalized
to higher-dimensional dynamic portfolio management problems. Besides, since our
algorithm is robust even in scenarios with high volatility dynamics, it is also possible
to focus on models with more complicated dynamics, for example, models with jump
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components or other time series models. In those cases, we may need some effective
bundling technique as proposed in Jain and Oosterlee (2015) and Cong and Oosterlee
(2015) but in each local domain we may still use low-order polynomials as the basis
functions. This helps to retain the robustness of our algorithm. In this paper, our
benchmark method is only employed for the case of one risky asset. It can be extended
at least to solving portfolio management problems with two or three risky assets. For
all algorithms, it is promising to adopt parallel computation.

One potential future research direction is to combine the grid-searching approach
with SGBM. This may be useful for utility-based optimization problems, where the
utility function cannot be approximated accurately by its Taylor expansion. In that case,
an adaptive grid-search combined with SGBM may constitute a generic solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
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