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Abstract. In the Netherlands, for coastal and inland water applications, wave modelling with
SWAN has become a main ingredient. However, computational times are relatively high. Therefore
we investigated the parallel efficiency of the current MPI and OpenMP versions of SWAN. The MPI
version is not that efficient as the OpenMP version within a single node. Therefore, in this paper
we propose a hybrid version of SWAN. It combines the efficiency of the current OpenMP version on
shared memory with the capability of the current MPI version to distribute memory over nodes. We
describe the numerical algorithm. With numerical experiments for important applications we show
the potential of this hybrid version, We further optimize the approach and illustrate the behavior
for larger number of nodes. Parallel I/O will be subject of future research.
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1. Introduction. In the Netherlands, for assessments of the primary water de-
fences (for instance [8]), operational forecasting of flooding [7, 10], and water quality
studies in coastal areas and shallow lakes (for instance [4]) waves are modelled with
the third generation wave simulation software SWAN [1]. However, computational
times of SWAN are relatively high. Operational forecasting of flooding and water
quality studies require a faster SWAN, at the moment this is a major bottleneck.
Assessments of the primary water defences require both a fast and efficient SWAN:
in 2011 the assessments needed more than 10000 productions runs, resulting in more
than 1500 days of computational time on a single node with 2 Intel quad-core Xeon
L5520 processors.
Therefore, extensive benchmarks on different architectures have been performed to
investigate the parallel efficiency of the current MPI and OpenMP versions of SWAN
on structured computational grids. A small, but typical selection of the results of
these benchmarks is reported in this paper (§ 4.1). To understand these results,
we studied the numerical algorithm of both the MPI and OpenMP version (§ 3.1
and § 3.2, respectively). The MPI and OpenMP versions do not change the original
serial numerical algorithm for parallelization. The numerical algorithm applies a
Gauss-Seidel iteration or sweep technique, which may look old-fashioned. However,
for this specific application in SWAN, given the processes incorporated and model
equations, the approach is a well balanced compromise between broad application
range, efficiency, and robustness. Based on the study we propose a hybrid version of
SWAN (§ 3.3). This hybrid version combines the efficiency of the current OpenMP
version on shared memory with the capability of the current MPI version to distribute
memory over nodes. With results for important real life applications we show the
potential of this hybrid version (§ 4.2). We further optimize the approach (§ 4.3) and
illustrate the behavior for larger number of nodes (§ 4.4). Parallel I/O will be subject
of future research.
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Fig. 1. Illustration of the sweep technique for the four quadrants. For every quadrant the arrow
indicates the sweep direction and the black bullet represents a computational grid point that is being
processed for which information comes from the two grey bullets via the upwind coupling stencil.

37 38 39 40 41 42 43 44 45

28 29 30 31 32 33 34 35 36

19 20 21 22 23 24 25 26 27

10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9

hyperplane orderingcomputational grid natural ordering

5 6 7 8 9 10 11 12 13

4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

Fig. 2. Natural ordering and corresponding hyperplane ordering for sweep 1 of the sweep
technique. The black bullet represents a point in the computational grid that is being processed for
which information comes from the two grey bullets via the upwind coupling stencil.

2. SWAN. The simulation software package SWAN (Simulating WAves Near-
shore) developed at Delft University of Technology [1], computes random, short-
crested wind-generated waves in coastal areas and inland water systems. It solves
a spectral action balance equation that incorporates spatial propagation, refraction,
shoaling, generation, dissipation, and nonlinear wave-wave interactions. The coupling
of wave energy via the spectral action balance equation is global over the entire geo-
graphical domain of interest. Compared to spectral methods for oceanic scales that
can use explicit schemes, SWAN has to rely on implicit upwind schemes to simulate
wave propagation for shallow areas in a robust and economic way. This is because
typical scales (both spatial, temporal, and spectral) may have large variations when,
for instance, waves propagate from deep water towards the surf zone in coastal areas.
For spectral and temporal discretization fully implicit techniques are applied. As a
consequence the solution procedure of SWAN is computationally intensive. For typical
applications these computations dominate other processes like memory access and file
I/O.
In the present paper we consider SWAN for structured computational grids (both
rectangular and curvilinear) that cover the geographical domain. The spectral space
is decomposed into four quadrants. In geographical space a Gauss-Seidel iteration,
or sweep technique is applied for each quadrant. This serial numerical algorithm is
based on the Strongly Implicit Procedure (SIP) by Stone [13]. Fig. 1 illustrates the
sweep technique.

3. Parallel implementation. Given a serial numerical algorithm, in general
two parallelization strategies can be followed [3]: type (1): change the algorithm for
a high degree of parallelism or type (2): do not change the algorithm but try to
implement it in parallel as much as possible. For the serial numerical algorithm of
SWAN based on implicit schemes with sweep technique, a strategy of type (2) has an
upperbound of maximal parallelism for the computations. For each of the four sweeps
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Fig. 3. Illustration of the block wavefront approach for sweep 1 of the sweep technique. Shown
are succeeding iterations in case of three parallel processing units (proc1, proc2, and proc3). The
black bullets represent computational grid points that are being updated in the current iteration. The
grey bullets were updated in a previous iteration.

of the sweep technique this upperbound is related to a hyperplane ordering [3, § 4.1].
This depends on the stencil that couples the points in the computational grid: a new
value at a point in the computational grid cannot be computed before values are known
at neighbouring points that are coupled via this stencil. If computations proceed via
some ordering (for instance the natural ordering for sweep 1 as shown in Fig. 2) then
the corresponding hyperplane ordering shows those points in the computational grid
for which new values can be computed simultaneously (i.e. concurrent computations,
in parallel, with opportunity for fine-grained synchronization). These points have the
same number in the ordering (a hyperplane), points on which they depend via the
coupling stencil have a lower number (data dependency).

3.1. Distributed memory. To reduce computational times of SWAN, Zijlema
[15] considered parallelization approaches for distributed memory architectures. The
current MPI version of SWAN is based on this work. The approach followed is of type
(2): a block wavefront approach for which the author was inspired by a parallelization
of an incomplete LU factorization.
In fact, it is based in a more coarse-grained way on the hyperplane ordering for the
sweeps of the sweep technique from § 3. For this purpose, the computational grid is
decomposed into strips in one direction. The number of computational grid points
in this direction is equal or higher than the number of computational grid points in
the other direction. Fig. 3 illustrates the block wavefont approach for sweep 1 of the
sweep technique (the idea for the other sweeps is similar). In iteration 1, following
the dependencies of the upwind stencil, processor 1 updates the values at the com-
putational grid points in the lowest row of strip 1. All other processors are idle in
iteration 1. When sweep 1 arrives at the right-most point in the lowest row of strip
1, after the update the corresponding value is communicated to strip 2. Then pro-
cessor 2 is activated. In iteration 2, processor 1 performs sweep 1 on the next row of
strip 1, processor 2 performs sweep 1 on the lowest row of strip 2. Etcetera. Note
that not all processors are fully active during start and end phase of this approach.
However, for a larger number of computational grid points (compared to the number
of processors) this becomes less important. The block wavefront approach is imple-
mented in the current editions of SWAN with MPI [12, 9]. Data is distributed via the
decomposition in strips. For each sweep, at the end of every iteration communication
between adjacent strips is needed to pass updated values. This global dependency
of data may hamper good parallel performance on distributed memory architectures.
Note that the MPI version can run on shared memory multi-core architectures too.
Furthermore, this approach can be seen as a block (or strip) version of the approach
that will be discussed next.
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Fig. 4. Illustration of the pipelined parallel approach based on the hyperplane ordering for sweep
1 of the sweep technique. Shown are succeeding steps in case of three parallel processing units (proc1,
proc2, and proc3). The black bullets represent computational grid points that are being updated in
the current step. The grey bullets were updated in a previous step.
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Fig. 5. Illustration of the hybrid approach based on a combination of the block wavefront ap-
proach and the pipelined parallel approach for sweep 1 of the sweep technique. Shown are succeeding
steps in case of three OpenMP threads (thread 1, thread 2, and thread 3) within two MPI processes
(node 1 and node 2). The black bullets represent computational grid points that are being updated
in the current step. The grey bullets were updated in a previous step.

3.2. Shared memory. In [2], Campbell, Cazes, and Rogers considered a paral-
lelization strategy of type (2) for SWAN. The approach is based in a fine-grained way
on the hyperplane ordering for the given sweep from § 3. This ordering determines the
data dependency and enables concurrent computations with maximal parallelism for
type (2). For the implementation with fine-grained synchronization, [2] uses pipelined
parallel steps in one direction of the computational grid. Lines with computational
grid points in the other direction are assigned to the available processors in a round-
robin way. Fig. 4 illustrates the pipelined parallel approach based on the hyperplane
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ordering for sweep 1 of the sweep technique (the idea for the other sweeps is similar).
In the current editions of SWAN, this approach is implemented on shared memory
multi-core architectures (or SM-MIMD, [14, § 2.4, 2012] with OpenMP [5].

3.3. Hybrid version. Further inspection of the approaches used by the MPI
and OpenMP versions of SWAN learned us that, conceptually, a combination should
be quite straightforward. We illustrated the conceptual approaches for both versions
in Fig. 3 and Fig. 4, respectively. Both illustrations were for the same computational
grid. Let us reconsider the situation for the approach of the OpenMP version in § 3.2.
As the approach is based on the hyperplane ordering for the given sweep, the approach
also holds for the transpose of the situation shown in Fig. 4. (In fact [2] uses this
transposed situation as illustration.) In this transposed situation lines with compu-
tational grid points perpendicular to the other direction are assigned to the available
processors in a round-robin way. Now, the point is that this transposed situation for
the pipelined parallel approach fits nicely in one strip of the block wavefront approach
of § 3.1. The block wavefront approach distributes the strips and for each strip the
grid lines are processed efficiently by the pipelined parallel approach within shared
memory. In this way the part of the sweeps inside the strips are built up by the
pipelined parallel approach and the block wavefront approach couples the sweeps over
the strips. Again, all computations can be performed without changing the original
serial numerical algorithm. Note that, for one strip the hybrid approach reduces to
the pipelined parallel approach, whereas for one processor per strip it reduces to the
block wavefront approach.
In Fig. 5 we illustrate this hybrid version for sweep 1 of the sweep technique. To
make the link with the actual implementation we give a short description in terms
of OpenMP threads and MPI processes. Shown are succeeding steps in case of three
OpenMP threads (thread 1, thread 2, and thread 3) within two MPI processes. The
black bullets represent computational grid points that are being updated in the current
step. The grey bullets were updated in a previous step. Note that, the OpenMP
threads on node 1 and node 2 are different threads. With MPI two strips are created:
strip 1 is located on node 1, strip 2 on node 2. On node 1, OpenMP starts with
the pipelined parallel approach for strip 1. Lines (horizontal for this example) with
computational grid points are assigned to the three OpenMP threads in a round-robin
way. Node 2 stays idle until sweep 1 arrives at the right-most point in the lowest row
of strip 1, after the update the corresponding value is communicated to node 2. Then
on node 2 OpenMP starts with the pipelined parallel approach on strip 2. Etcetera.
The hybrid version required some subtle modifications in the source code of SWAN for
structured computational grids. They are essential to accomodate the combination of
OpenMP and MPI:

• the mask array to signal if an OpenMP thread can proceed with process-
ing on the next grid point is now properly defined for multiple subdomains
with internal boundaries (and not for only one subdomain with only external
boundaries),

• for sending/receiving data to/from neighbouring subdomains: for MPI SEND
and MPI RECV each task identifier is now uniquely defined for the row on
which the data should be exchanged (and not equal to one fixed number)
to allow multiple threads to call MPI SEND and MPI RECV concurrently
without interfering eachother, and

• the OpenMP implementation now works in both grid directions (and not only
in the first grid direction as in [2]).
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Fig. 6. Bathymetry (mainly blue) of the SWAN model for the Wadden Sea projected on a
satellite image of the northern part of the Netherlands (satellite image: ESA). Shown are also lakes
IJssel and Marken and a small part of the North Sea.

4. Benchmarks for important applications. As a central case for the bench-
marks a SWAN model is used that has been developed for the assessment of the
primary water defences in the northern part of the Netherlands [8]. In 2011 the as-
sessments needed 5400 productions runs with this model, resulting in 1000 days of
computational time on a single node with 2 Intel quad-core Xeon L5520 processors
(see also § 1). Here the model settings are slightly changed resulting in a wall-clock
time of about 1/7 of a single production run of the assessments. The model covers the
Dutch part of the Wadden Sea, a complex area of tidal channels and flats sheltered by
barrier islands from the North Sea. Fig. 6 shows the bathymetry of this SWAN model
projected on a satellite image of the Netherlands. The model is relatively large with
a 2280 × 979 curvilinear computational grid for the geographical domain, resulting in
more than 2 million active computational grid points and a required working memory
of about 6 GB.
In addition, benchmarks are performed for SWAN models of the North Sea (1318
× 317 curvilinear computational grid with shortened simulation period and no I/O),
Lake IJssel (454 × 626 rectangular computational grid with full simulation period and
I/O), Lake Marken (195 × 204, 586 × 614, and 975 × 1024 curvilinear computational
grids with shortened simulation period and no I/O). See Fig. 6 for the locations. The
first two models have been developed for operational forecasting of flooding near the
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Dutch coast [10] and the Dutch major lakes [7], respectively. The third model has
been developed for water quality studies in Lake Marken and is used in combination
with a shallow water and advection diffusion solver for modelling resuspention and
sedimentation, light penetration, and related ecological effects [4, 6].
Benchmarks are performed on the following hardware:

• Huygens: 16 socket IBM dual 4.7 GHz core Power6 nodes, InfiniBand, IBM
PE MPI (IBM pSeries 575 system [14, § 9.2, 2010], SURFsara, the Nether-
lands),

• Lisa: 2 socket Intel quad-core Xeon L5420 “Harpertown” [14, § 2.8.6, 2008]
nodes, 2.50 GHz core, InfiniBand, OpenMPI (SURFsara, the Netherlands),

• WDNZ: 2 socket Intel six-core Xeon E5645 “Westmere-EP” [14, § 2.8.5.2,
2011] nodes, 2.40 GHz core, Gigabit Ethernet, MPICH2 (Deltares, the Ne-
therlands),

• H5: 1 socket Intel quad-core i7-2600 “Sandy Bridge” [14, 2011, § 2.8.5.3
and 2012, § 2.8.4.1] nodes, 3.40 GHz core (hyperthreading: 8 computational
threads on 4 cores per node), Gigabit Ethernet, MPICH2 (Deltares, the
Netherlands),

• Curie: 2 socket Intel eight-core Xeon E5-2680 “Sandy Bridge-EP” nodes, 2.70
GHz core, InfiniBand, Bull X MPI (Bull B510 bullx system [14, § 3.1.1.1,
2012], CEA, France), and

• Cartesius: 2 socket Intel twelve-core Xeon E5-2690 v3 “Haswell” nodes, 2.60
Ghz core, InfiniBand, Intel MPI (Bull B720 bullx system, SURFsara, the
Netherlands).

Benchmarks have been performed for MPI, OpenMP, and hybrid implementations of
Deltares1 SWAN versions 40.72ABCDE (Wadden Sea, North Sea, and Lake IJssel
cases) and 40.91AB.8 (Lake Marken case) for Linux 64 bits platforms. Note that for
one computational process with one thread, the OpenMP, MPI, and hybrid version are
functionally identical to the serial version of SWAN. Standard compiler settings are
used as supplied with the Fortran source code at the SWAN website [1]. (Resulting in
XL Fortran 12 compiler with level 3 optimization for the Power6 processor and Intel
Fortran 11, 12, and 14 compiler with level 2 optimization for the Intel processors.).
During the benchmarks it was checked for all cases that the different combinations
(MPI version, OpenMP version, hybrid version, hardware, number of processes /
threads) show the same convergence behavior of SWAN. Furthermore, on Cartesius,
the Deltares SWAN tesbed was run to verify the validity of the hybrid implementation
of Deltares SWAN version 40.91AB.8. This testbed originates from the ONR testbed
for SWAN [11]. It runs analytical, laboratory, and field testcases for SWAN for typical
functionality and compares results with previous tested versions on different platforms
and measured wave characteristics. Based on statistical postprocessing results of the
testbed runs can be accumulated in numbers that indicate the model performance on
which it can be decided to accept a new SWAN version. For the hybrid implementation
of Deltares SWAN version 40.91AB.8 no significant differences were observed.
Timings of the wall-clock time have been performed three times. Results presented
here are averages of these timings. To have an indication of the variance (i.e. measure-
ment error), also the average minus the standard deviation and the average plus the
standard deviation are included. Shown are double logarithmic plots for wall-clock

1This Deltares version has some small but subtle additional functionality compared to the official
TU Delft version (see website [1]) to enable interaction with a shallow water solver and for wave
growth in depth-limited situations like Lake IJssel and Lake Marken.
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Fig. 7. Parallel performance of the MPI and OpenMP versions of SWAN for the Wadden
Sea case on Curie, Huygens, and Lisa. Abbreviations used: mpi for the MPI version, omp for the
OpenMP version, x12 for the XL Fortran 12 compiler, i11 for the Intel 11 compiler, and i12 for the
Intel 12 compiler.

time as a function of the number of computational cores. In case of linear parallel
scaling, lines will have a downward slope of 45◦.

4.1. MPI version versus OpenMP version. Extensive benchmarks on dif-
ferent architectures have been performed to investigate the parallel efficiency of the
current MPI and OpenMP versions of SWAN. A small, but typical selection of the
results of these benchmarks is reported here.
Fig. 7 shows benchmark results for both MPI and OpenMP version of SWAN for the
Wadden Sea case on the same hardware. It can be observed that already within a
single node wall-clock times for the MPI version start to deviate from the OpenMP
version (which stays close to the line for linear parallel scaling). This trend goes on
for larger numbers of computational cores. For instance, the MPI version on 2 nodes
with 2 socket Xeon E5-2680 with in total 32 computational cores has about the same
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Fig. 8. Parallel performance of the MPI, OpenMP, and hybrid versions of SWAN for the
Wadden Sea case on H5. Abbreviations used: mpi for the MPI version, omp for the OpenMP
version, mpi omp for the hybrid version, and i11 for the Intel 11 compiler.

wall-clock time as the OpenMP version on 1 node with 2 socket Xeon E5-2680 with 16
computational cores. So, for this hardware the OpenMP version is twice as efficient
as the MPI version.

4.2. MPI together with OpenMP: hybrid version. The hybrid version
naturally evolves from the MPI and OpenMP versions (§ 3.3). Therefore we expect
that it inherits positive performance properties from the OpenMP version as shown
in § 4.1. Here, we will start with some numerical experiments to illustrate this.
Fig. 8 shows the parallel performance of the MPI, OpenMP, and hybrid versions of
SWAN for the Wadden Sea case on H5. Note that H5 has hyperthreading switched on:
in Fig. 8 results with hyperthreading used 8 processes per node with 4 computational
cores. Similar to what was observed in § 4.1, we see that the MPI version starts to
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deviate from the OpenMP version within a single node. Resulting in a gap of the
OpenMP version with the MPI version for 1 node. The hybrid version shows the
same gap with the MPI version for 2 and 4 nodes.
In Table 1 we show the corresponding numbers of Fig. 8 for 1 node and 4 nodes.
There we also split the wall-clock time in the time needed for the iterations of the
solution procedure during and the I/O at the end of the simulation. Time needed
for the initialization, before the iterations of the solution procedure start, is several
seconds for this Wadden Sea case and is therefore not considered separately. In Table 2
we show results for the same Wadden Sea case, but now for 1 node and 3 nodes of
WDNZ. On WDNZ we run 12 processes per node with 12 computational cores. From
both tables we conclude that the hybrid version indeed combines the efficiency of the
OpenMP version per node with the MPI version to use more than one node. This
results in a hybrid version that is faster than the MPI version.
The widening of the gap for more cores per node (see end of § 4.1) can also be observed
for the hybrid version: compare Table 1 and Table 2 for the MPI and hybrid versions
on multiple nodes. This is of importance as the current trend is that the number
of cores per node increases for new hardware. Furthermore, Table 1 and Table 2
indicate that the current implementation of I/O should be further investigated for
possible improvements. If we concentrate only on the wall-clock time needed for the
iterations then we also see that the gap increases when going to more nodes and/or
more cores per node. This is confirmed also for the case of the North Sea on H5 in
Table 3.

Table 1

Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1 node (top) and 4
nodes (bottom) of H5 (4 cores per node and hyperthreading) for the Wadden Sea case.

1 node, 8 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2
wall-clock time full simulation (m) 33.31 ± 0.07 30.28 ± 0.10 1.1000
wall-clock time iterations (m) 26.59 ± 0.03 24.80 ± 0.04 1.0724
wall-clock time I/O at end (m) 6.71 ± 0.11 5.48 ± 0.14 1.2247
4 nodes, 32 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time full simulation (m) 12.32 ± 0.13 10.81 ± 0.03 1.1398
wall-clock time iterations (m) 8.98 ± 0.06 7.79 ± 0.06 1.1527
wall-clock time I/O at end (m) 3.33 ± 0.18 3.01 ± 0.09 1.1066

Table 2

Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1 node (top) and 3
nodes (bottom) of WDNZ (12 cores per node) for the Wadden Sea case.

1 node, 12 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2
wall-clock time full simulation (m) 33.31 ± 0.04 22.75 ± 0.22 1.4643
wall-clock time iterations (m) 24.35 ± 0.10 18.26 ± 0.06 1.3335
wall-clock time I/O at end (m) 8.96 ± 0.14 4.49 ± 0.28 1.9962
3 nodes, 36 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time full simulation (m) 14.77 ± 0.13 11.27 ± 0.02 1.3110
wall-clock time iterations (m) 9.84 ± 0.12 7.08 ± 0.07 1.3891
wall-clock time I/O at end (m) 4.93 ± 0.25 4.18 ± 0.08 1.1789

4.3. Further optimization and behavior inside a node. Current hardware
trends show an increase in the number of computational cores per processor whereas
multiple processors share memory inside a node. We think it is important to take
notice of this. Therefore, here we first try to further optimize the MPI, OpenMP, and
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Table 3

Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1 node (top) and 4
nodes (bottom) of H5 (4 cores per node and hyperthreading) for the North Sea case.

1 node, 8 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2
wall-clock time iterations (m) 62.28 +/- 0.03 52.82 +/- 0.08 1.1790
4 nodes, 32 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time iterations (m) 22.65 +/- 0.05 18.28 +/- 0.06 1.2389

Table 4

Wall-clock time in minutes for the iterations of the MPI, OpenMP, and hybrid (2 MPI pro-
cesses, one MPI process per socket with 12 OpenMP threads each) versions on one Cartesius node
using all 24 cores for the Wadden Sea case for different types of pinning the MPI processes /
OpenMP threads to the cores.

type of pinning MPI version OpenMP version hybrid version
none 7.874 +/- 0.044 5.405 +/- 0.125 5.339 +/- 0.009
scatter 7.659 +/- 0.008 5.357 +/- 0.026 5.346 +/- 0.008
compact 7.645 +/- 0.013 5.236 +/- 0.026 5.335 +/- 0.009

hybrid version before we scale up to larger number of nodes. We do this for Cartesius
(2 processors / sockets per node, 12 cores per processor).
We start with some numerical experiments to investigate the effect of the position
of the computational processes on specific locations (cores, processors) inside a node.
We consider the iterations of the Wadden Sea case (i.e. no I/O).
Table 4 shows the wall-clock time in minutes of the MPI, OpenMP, and hybrid (2
MPI processes, one MPI process per socket with 12 OpenMP threads each) versions
on one Cartesius node using all 24 cores. We investigated different types of pinning
the MPI processes / OpenMP threads to the cores:

none: computational processes are placed randomly during execution of
SWAN at runtime (i.e. not pinned to cores),
scatter: computational processes of neighbouring strips (MPI) or lines
(OpenMP) are placed as far as possible from eachother, and
compact: computational processes of neighbouring strips (MPI) or lines
(OpenMP) are placed as close as possible to eachother.

From the table we may conclude that, when using all cores inside a node, the lowest
wall-clock times are for compact pinning of the computational processes for both the
MPI, OpenMP, and hybrid version.
Fig. 9 shows the parallel performance of the serial, MPI, and OpenMP versions on one
Cartesius node as a function of the number of cores used. For the MPI and OpenMP
version two ways of pinning the processes / threads to the cores are shown:

compact: computational processes of neighbouring strips (MPI) or lines
(OpenMP) are placed as close as possible to eachother and
spread: computational processes of neighbouring strips (MPI) or lines
(OpenMP) are placed in corresponding order but spread over the free cores
as much as possible.

For example: if only 6 cores are used then for compact the computational processes
1, 2, 3, 4, 5, and 6 are placed on physical cores 0, 1, 2, 3, 4, and 5, respectively.
For spread they are placed on physical cores 0, 4, 8, 12, 16, and 20, respectively.
From the figure we may conclude that, when using not all cores inside a node, it is
beneficial for the wall-clock time to “spread” the computational processes over the
cores. Furthermore, in Fig. 9 it can be seen that this effect dissapears when using
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Fig. 9. Parallel performance of the serial, MPI, and OpenMP versions of SWAN for the
Wadden Sea case on one Cartesius node as a function of the number of cores used. For the MPI
and OpenMP version two ways of pinning the processes/threads to the cores are shown: compact and
spread. See § 4.3 for further explanation. Shown is the wall-clock time in minutes for the iterations.

more than 8 cores on Cartesius and that then also the difference between MPI and
OpenMP becomes more prominent.
A similar observation can be made from Fig. 10. This figure shows the parallel
performance of the hybrid version of SWAN on one Cartesius node using all 24 cores
as a function of the number of MPI processes. Each MPI process uses (24 / number of
MPI processes) OpenMP threads. Note that for one MPI process the hybrid version
reduces to the original OpenMP version with 24 OpenMP threads (most left), whereas
for 24 MPI processes it reduces to the original MPI version (most right). For each
MPI process of the hybrid version the OpenMP threads are pinned compact to the
cores, for the next MPI process in the ordering of the algorithm the OpenMP threads
are pinned compact to the next cores in the ordering of the node. For the MPI
and OpenMP versions the MPI processes respectively OpenMP threads are pinned
compact to the cores of the node. Shown is the wall-clock time in minutes for the
iterations.
Based on the previous numerical experiments we conclude that, when using all cores
of a Cartesius node, optimal settings for the MPI, OpenMP, and hybrid versions is
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Fig. 10. Parallel performance of the hybrid version of SWAN for the Wadden Sea case on one
Cartesius node using all 24 cores as a function of the number of MPI processes. Each MPI process
uses (24 / number of MPI processes) OpenMP threads. See § 4.3 for further explanation. Shown is
the wall-clock time in minutes for the iterations.

pinning the MPI processes and/or OpenMP threads compact to the cores. We will
use these settings for the remainder of this paper.

Table 5

Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1 node (top), 2 nodes
(middle), and 4 nodes (bottom) of Cartesius (24 cores per node) for the Wadden Sea case.

1 node, 24 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2
wall-clock time iterations (m) 7.645 ± 0.013 5.236 ± 0.026 1.4601
2 nodes, 48 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time iterations (m) 4.530 ± 0.002 2.994 ± 0.002 1.5130
4 nodes, 96 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time iterations (m) 2.540 ± 0.012 1.668 ± 0.005 1.5228

Table 6

Wall-clock time in minutes of the MPI, OpenMP, and hybrid versions on 1 node (top), 2 nodes
(middle), and 4 nodes (bottom) of Cartesius (24 cores per node) for the Lake IJssel case.

1 node, 24 processes / threads MPI version (t1) OpenMP version (t2) t1 / t2
wall-clock time full simulation (m) 117.229 ± 0.153 60.600 ± 0.350 1.9345
wall-clock time iterations (m) 115.493 ± 0.165 57.736 ± 0.410 2.0004
wall-clock time I/O at end (m) 1.736 ± 0.012 2.863 ± 0.060 0.6064
2 nodes, 48 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time full simulation (m) 65.509 ± 0.051 45.906 ± 0.119 1.4270
wall-clock time iterations (m) 64.373 ± 0.055 43.197 ± 0.151 1.4902
wall-clock time I/O at end (m) 1.136 ± 0.004 2.709 ± 0.032 0.4193
4 nodes, 96 processes / threads MPI version (t1) hybrid version (t2) t1 / t2
wall-clock time full simulation (m) 38.282 ± 0.025 27.480 ± 0.052 1.3931
wall-clock time iterations (m) 37.351 ± 0.052 25.101 ± 1.071 1.4880
wall-clock time I/O at end (m) 0.931 ± 0.027 2.379 ± 1.019 0.3913

With this knowledge / settings we extend the numerical experiments from § 4.2 with
results on 1, 2, and 4 Cartesius nodes for the Wadden Sea case (iterations, no I/O) in
Table 5 and the Lake IJssel case (full simulation with I/O) in Table 6. These results
confirm again the trends as observed in § 4.2.
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Fig. 11. Parallel performance of the OpenMP, MPI, and hybrid versions of SWAN for the
Wadden Sea case on Cartesius for large numbers of nodes. Shown is the wall-clock time in minutes
for the iterations.

4.4. Behavior for large number of nodes. We end with two numerical ex-
periments in which we increase the number of nodes.

First, to compare MPI and hybrid implementations, we consider the Wadden
Sea case (iterations, no I/O) on Cartesius. So in fact we extend Table 5 to larger
number of nodes. Per node all 24 cores are used and MPI processes and/or OpenMP
threads are pinned compact as described in § 4.3. Fig. 11 shows the resulting wall-
clock times in minutes for the OpenMP, MPI, and hybrid versions. It can be seen
that the gap between the MPI and hybrid version stays constant up to 16 nodes.
From this point on the wall-clock time for the MPI version increases as the strips
are becoming very thin. The MPI version divides the computational work in only
one direction. For this it chooses the direction with most computational grid points,
for the Wadden Sea case with 2280 × 979 computational grid this is the first grid
direction. For 32 nodes the computational work is divided in 32 × 24 = 768 strips
whereas there are only 2280 grid points in this direction, resulting in only 2 to 3 grid
points per strip. For 128 nodes there are not enough grid points anymore to have
at least one grid point per strip, therefore SWAN crashes. For the hybrid version,
however, the number of MPI processes is a factor 24 lower and the OpenMP threads
work in the other grid direction. In Fig. 11 the wall-clock time for the hybrid version
still decreases after 16 nodes. The lowest value occurs between 64 and 128 nodes.
After 128 nodes the wall-clock time increases again. In case of 95 nodes the hybrid
version has strips of width 2280 / 95 = 24. Then, with 24 OpenMP threads per node,
precisely all points in the computational grid for which new values can be computed
simultaneously are processed on the same moment. So for this situation we obtain
the maximal parallelism that we can obtain for the given algorithm (see § 3). This
corresponds with the observation that the lowest value of the wall-clock time occurs
between 64 and 128 nodes.

Second, to study the effect of increasing the grid size, we consider the Lake Marken
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Fig. 12. Parallel performance of the hybrid version of SWAN for the Lake Marken case on
Cartesius for large numbers of nodes and different grid sizes. Shown is the wall-clock time in minutes
for the iterations.

case (iterations, no I/O) on Cartesius. For this purpose the original 195 × 204 curvi-
linear computational grid of [4, 6] is uniformly refined with a factor of 3, respectively
5, in both horizontal grid directions. This resulted in a 586 × 614 and 975 × 1024
curvilinear computational grid. The corresponding number of computational grids
points is 39780 (original grid), 359804 (3 × 3 refined grid), and 998400 (5 × 5 refined
grid). (For the Wadden Sea case these numbers are 2280 × 979 = 2232120.) The
study of the effect of the refinement on computational times of SWAN is important as
the original grid is quite coarse for local ecological impact assessments like in [6]. We
did not take into account the coupling with the shallow water solver nor the advection
diffusion solver as we only want to know a lower bound of the contribution of SWAN
to the computational times. Furthermore we restricted the simulation period to 1 day
(instead of a typical full simulation period of 373 days). Fig. 12 shows the resulting
wall-clock times in minutes for the different grid sizes. As can be seen the behavior
is similar as for the Wadden Sea case in Fig. 11. For larger grids, more nodes can be
used to lower computational times. Again, lowest values of the wall-clock time occur
for the maximal parallelism that we can obtain for the given algorithm: for 204 / 24
≈ 9 nodes, 614 / 24 ≈ 26 nodes, and 1024 / 24 ≈ 43 nodes (for 195 × 204, 586 ×

614, and 975 × 1024 grid, respectively).

5. Conclusions and outlook. Because of the importance for real life applica-
tions in the Netherlands, we investigated the parallel efficiency of the current MPI
and OpenMP versions of SWAN. In this paper we proposed a hybrid version of SWAN
that naturally evolves from these versions. It combines the efficiency of the OpenMP
version with the capability of the MPI version to use more nodes. We described the
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numerical algorithm and showed its potential for important applications. Numerical
experiments showed that the hybrid version improves the parallel performance of the
current MPI version even more for larger number of cores per node and/or larger
number of nodes. Given the current trends in hardware this is of great importance.
Parallel I/O will be subject of future research.
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