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Abstract

In the last few decades, numerous experiments have shown that humans
do not always behave so as to maximize their material payoff.Cooperative
behavior when non-cooperation is a dominant strategy (withrespect to the
material payoffs) is particularly puzzling. Here we propose a novel approach
to explain cooperation, assuming what Halpern and Pass (2013) call translu-
cent players. Typically, players are assumed to beopaque, in the sense that a
deviation by one player does not affect the strategies used by other players.
But a player may believe that if he switches from one strategyto another,
the fact that he chooses to switch may be visible to the other players. For
example, if he chooses to defect in Prisoner’s Dilemma, the other player may
sense his guilt. We show that by assuming translucent players, we can re-
cover many of the regularities observed in human behavior inwell-studied
games such as Prisoner’s Dilemma, Traveler’s Dilemma, Bertrand Competi-
tion, and the Public Goods game.

1 Introduction

In the last few decades, numerous experiments have shown that humans do not al-
ways behave so as to maximize their material payoff. Many alternative models have
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consequently been proposed to explain deviations from the money-maximization
paradigm. Some of them assume that players are boundedly rational and/or make
mistakes in the computation of the expected utility of a strategy (Camerer, Ho, and Chong 2004;
Costa-Gomes, Crawford, and Broseta 2001; Halpern and Pass 2014; McKelvey and Palfrey 1995;
Stahl and Wilson 1994); yet others assume that players have other-regarding pref-
erences (Bolton and Ockenfels 2000; Charness and Rabin 2002; Fehr and Schmidt 1999);
others define radically different solution concepts, assuming that players do not try
to maximize their payoff, but rather try to minimize their regret (Halpern and Pass 2012;
Renou and Schlag 2010), or maximize the forecasts associated to coalition struc-
tures (Capraro 2013; Capraro, Venanzi, Polukarov, and Jennings 2013), or maxi-
mize the total welfare (Apt and Schäfer 2014; Rong and Halpern 2013). (These
references only scratch the surface; a complete bibliography would be longer than
this paper!)

Cooperative behaviour in one-shot anonymous games is particularly puzzling,
especially in games where non-cooperation is a dominant strategy (with respect to
the material payoffs): why should you pay a cost to help a stranger, when no clear
direct or indirect reward seems to be at stake? Nevertheless, the secret of success
of our societies is largely due to our ability to cooperate. We do not cooperate only
with family members, friends, and co-workers. A great deal of cooperation can be
observed also in one-shot anonymous interactions (Camerer2003), where none of
the five rules of cooperation proposed by Nowak (2006) seems to be at play.

Here we propose a novel approach to explain cooperation, based on work of
Halpern and Pass (2013) and Salcedo (2013), assuming what Halpern and Pass call
translucent players. Typically, players are assumed to beopaque, in the sense that
a deviation by one player does not affect the strategies usedby other players. But a
player may believe that if he switches from one strategy to another, the fact that he
chooses to switch may be visible to the other players. For example, if he chooses
to defect in Prisoner’s Dilemma, the other player may sense his guilt. (Indeed, it
is well known that there are facial and bodily clues, such as increased pupil size,
associated with deception; see, e.g., (Ekman and Friesen 1969). Professional poker
players are also very sensitive totells—betting patterns and physical demeanor that
reveal something about a player’s hand and strategy.)

We use the idea of translucency to explain cooperation. Thismay at first seem
somewhat strange. Typical lab experiments of social dilemmas consider anony-
mous players, who play each other over computers. In this setting, there are no
tells. However, as Rand and his colleagues have argued (see,e.g., (Rand et al. 2012;
Rand et al. 2014)), behavior of subjects in lab experiments is strongly influenced
by their experience in everyday interactions. People internalize strategies that are
more successful in everyday interactions and use them as default strategies in the
lab. We would argue that people do not just internalize strategies; they also inter-
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nalizebeliefs. In everyday interactions, changing strategies certainlyaffects how
other players react in the future. Through tells and leaks, it also may affect how
other players react in current play. Thus, we would argue that in everyday interac-
tions, people assume a certain amount of translucency, bothbecause it is a way of
taking the future into account in real-world situations that are repeated and because
it is a realistic assumption in one-shot games that are played in settings where play-
ers have a great deal of social interaction. We claim that players then apply these
beliefs in lab settings where they are arguably inappropriate.

There is some additional experimental evidence that can be viewed as support-
ing translucency. There is growing evidence that showing people simple images of
watching eyes has a marked effect on behavior, ranging from giving more in Public
Goods games to littering less (see (Bateson et al. 2013) for adiscussion of some
of this work and an extensive list of references). One way of understanding these
results is that the eyes are making people feel more translucent.

We apply the idea of translucency to a particular class of games that we call
social dilemmas(cf. (Dawes 1980)). A social dilemma is a normal-form game with
two properties:

1. there is a unique Nash equilibriumsN , which is a pure strategy profile;

2. there is a unique welfare-maximizing profilesW , again a pure strategy pro-
file, such that each player’s utility ifsW is played is higher than his utility if
sN is played.

Although social dilemmas are clearly a restricted class of games, they contain
some of the best-studied games in the game theory literature, including Prisoner’s
Dilemma, Traveler’s Dilemma (Basu 1994), Bertrand Competition, and the Public
Goods game. (See Section 3 for more discussion of these games.)

There are (at least) two reasons why an agent may be concernedabout translu-
cency in a social dilemma: (1) his opponents may discover that he is planning to
defect and punish him by defecting as well, (2) many other people in his social
group (which may or may not include his opponent) may discover that he is plan-
ning to defect (or has defected, despite the fact that the game is anonymous) and
think worse of him.

For definiteness, we focus here on the first point and assume that, in social
dilemmas, players have a degree of beliefα that they are translucent, so that if they
intend to cooperate (by playing their component of the welfare-maximizing strat-
egy) and decide to deviate, there is a probabilityα that another player will detect
this, and play her component of the Nash equilibrium strategy. (These detections
are independent, so that the probability of, for example, exactly two players other
than i detecting a deviation byi is α2(1 − α)N−3, whereN is the total number

3



of players.) Of course, ifα = 0, then we are back at the standard game-theoretic
framework. We show that, with this assumption, we can already explain a number
of experimental regularities observed in social dilemmas (see Section 3). We can
model the second point regarding concerns about translucency in much the same
way, and would get qualitatively similar results (see Section 5).

The rest of the paper is as follows. In Section 2, we formalizethe notion of
translucency in a game-theoretic setting. In Section 3, we define the social dilem-
mas that we focus on in this paper; in Section 4, we show that byassuming translu-
cency, we can obtain as predictions of the framework a numberof regularities that
have been observed in the experimental literature. In Section 5, we show that most
of the other approaches proposed for explaining human behavior in social dilem-
mas do not predict all these regularities.

In the appendix, we discuss a solution concept that we calltranslucent equilib-
rium, based on translucency, closely related to the notion ofindividual rationality
discussed by Halpern and Pass (2013), and show how it can be applied in social
dilemmas.

2 Rationality with translucent players

In this section, we briefly define rationality in the presenceof translucency, moti-
vated by the ideas in Halpern and Pass (2013).

Formally, a (finite) normal-form gameG is a tuple(P, S1, . . . , SN , u1, . . . , uN ),
whereP = {1, . . . , N} is the set of players,Si is the set of strategies for playeri,
andui is playeri’s utility function. LetS = S1 × · · · × SN andS−i =

∏

j 6=i Sj.
We assume thatS is finite and thatN ≥ 2.

In standard game theory, it is assumed that a playeri has beliefs about the
strategies being used by other players;i is rational if his strategy is a best response
to these beliefs. The standard definition of best response isthe following.

Definition 2.1. A strategysi ∈ Si is a best response to a probabilityµi onS−i if,
for all strategiess′i for playeri, we have

∑

s′
−i∈S−i

µi(s
′
−i)ui(si, s

′
−i) ≥

∑

s′
−i∈S−i

µi(s
′
−i)ui(s

′
i, s

′
−i).

Definition 2.1 implicitly assumes thati’s beliefs about what other agents are
doing do not change ifi switches fromsi, the strategy he was intending to play, to a
different strategy. (In general, we assume thati always has anintended strategy, for
otherwise it does not make sense to talk abouti switching to a different strategy.)

So what we really have are beliefsµ
si,s

′

i

i for i indexed by a pair of strategiessi and
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s′i; we interpretµ
si,s

′

i

i asi’s beliefs if he intends to playsi but instead deviates to
s′i. Thus,µsi,si

i representsi’s beliefs if he playssi and does not deviate.
We can now define a best response fori with respect to a family of beliefs

µ
si,s

′

i

i .

Definition 2.2. Strategysi ∈ Si is a best response fori with respect to the beliefs

{µ
si,s

′

i

i : s′i ∈ Si} if, for all strategiess′i ∈ Si, we have

∑

s′
−i∈S−i

µsi,si
i (s′−i)ui(si, s

′
−i) ≥

∑

s′
−i∈S−i

µ
si,s

′

i

i (s′−i)ui(s
′
i, s

′
−i).

We are interested in players who are making best responses totheir beliefs, but
we define best response in terms of Definition 2.2, not Definition 2.1. Of course,
the standard notion of best response is just the special caseof the notion above

whereµ
si,s

′

i

i = µsi,si
i for all s′i: a player’s beliefs about what other players are

doing does not change if he switches strategies.

Definition 2.3. We say that a player istranslucently rationalif he best responds to
his beliefs in the sense of Definition 2.2.

Our assumptions about translucency will be used to determine µ
si,s

′

i

i . For ex-
ample, suppose thatΓ is a 2-player game, player1 believes that, if he were to
switch fromsi to s′i, this would be detected by player 2 with probabilityα, and

if player 2 did detect the switch, then player2 would switch tos′j . Thenµ
si,s

′

i

i is
(1− α)µsi,si + αµ′, whereµ′ assigns probability 1 tos′j ; that is, player 1 believes
that with probability1 − α, player 2 continues to do what he would have done all
along (as described byµsi,si) and, with probabilityα, player 2 switches tos′j.

3 Social dilemmas

Social dilemmas are situations in which there is a tension between the collective
interest and individual interests: every individual has anincentive to deviate from
the common good and act selfishly, but if everyone deviates, then they are all worse
off. Personal and professional relationships, depletion of natural resources, climate
protection, security of energy supply, and price competition in markets are all in-
stances of social dilemmas.

As we said in the introduction, we formally define a social dilemma as a
normal-form game with a unique Nash equilibrium and a uniquewelfare-maximizing
profile, both pure strategy profiles, such that each player’sutility if sW is played is
higher than his utility ifsN is played. While this is a quite restricted set of games,
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it includes many that have been quite well studied. Here, we focus on the following
games:

Prisoner’s Dilemma. Two players can either cooperate (C) or defect (D). To
relate our results to experimental results on Prisoner’s Dilemma, we think of
cooperation as meaning that a player pays a costc > 0 to give a benefitb > c
to the other player. If a player defects, he pays nothing and gives nothing.
Thus, the payoff of(D,D) is (0, 0), the payoff of(C,C) is (b − c, b − c),
and the payoffs of(D,C) and(C,D) are(b,−c) and(−c, b), respectively.
Condition b > c implies that(D,D) is the unique Nash equilibrium and
(C,C) is the unique welfare-maximizing profile.

Public Goods game.N ≥ 2 contributors are endowed with 1 dollar each; they
must simultaneously decide how much, if anything, to contribute to a public
pool. (The contributions must be in whole cent amounts.) Thetotal amount
in the pot is then multiplied by a constant strictly between 1andN , and
then evenly redistributed among all players. So the payoff of player i is
ui(x1, . . . , xN ) = 1− xi + ρ(x1 + . . . + xN ), wherexi denotesi’s contri-
bution, andρ ∈

(

1
N
, 1
)

is themarginal return. (Thus, the pool is multiplied
by ρN before being split evenly among all players.) Everyone contributing
nothing to the pool is the unique Nash equilibrium, and everyone contribut-
ing their whole endowment to the pool is the unique welfare-maximizing
profile.

Bertrand Competition. N ≥ 2 firms compete to sell their identical product at a
price between the “price floor”L ≥ 2 and the “reservation value”H. (Again,
we assume thatH andL are integers, and all prices must be integers.) The
firm that chooses the lowest price, says, sells the product at that price, get-
ting a payoff ofs, while all other firms get a payoff of 0. If there are ties, then
the sales are split equally among all firms that choose the lowest price. Now
everyone choosingL is the unique Nash equilibrium, and everyone choosing
H is the unique welfare-maximizing profile.1

Traveler’s Dilemma. Two travelers have identical luggage, which is damaged (in
an identical way) by an airline. The airline offers to recompense them for
their luggage. They may ask for any dollar amount betweenL andH (where
L andH are both positive integers). There is only one catch. If theyask for
the same amount, then that is what they will both receive. However, if they

1We require thatL ≥ 2 for otherwise we would not have a unique Nash equilibrium, a condition
we imposed on Social Dilemmas. IfL = 1 andN = 2, we get two Nash equilibria:(2, 2) and
(1, 1); similarly, forL = 0, we also get multiple Nash equilibria, for all values ofN ≥ 2.
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ask for different amounts—say one asks form and the other form′, with
m < m′—then whoever asks form (the lower amount) will getm + b (m
and a bonus ofb), while the other player getsm− b: the lower amount and
a penalty ofb. It is easy to see that(L,L) is the unique Nash equilibrium,
while (H,H) maximizes social welfare, independent ofb.

From here on, we say that a playercooperatesif he plays his part of the
socially-welfare maximizing strategy profile anddefectsif he plays his part of the
Nash equilibrium strategy profile.

While Nash equilibrium predicts that people should always defect in social
dilemmas, in practice, we see a great deal of cooperative behavior; that is, people
often play (their part of) the welfare-maximizing profile rather than (their part of)
the Nash equilibrium profile. Of course, there have been manyattempts to explain
this. Evolutionary theories may explain cooperative behavior among genetically re-
lated individuals (Hamilton 1964) or when future interactions among the same sub-
jects are likely (Nowak and Sigmund 1998; Trivers 1971); see(Nowak 2006) for
a review of the five rules of cooperation. However, we often observe cooperation
even in one-shot anonymous experiments among unrelated players (Rapoport 1965).

Although we do see a great deal of cooperation in these games,we do not
always see it. Here are some of the regularities that have been observed:

• The degree of cooperation in the Prisoner’s dilemma dependspositively on
the benefit of mutual cooperation and negatively on the cost of cooperation
(Capraro, Jordan, and Rand 2014; Engel and Zhurakhovska 2012; Rapoport 1965).

• The degree of cooperation in the Traveler’s Dilemma dependsnegatively on
the bonus/penalty (Capra, Goeree, Gomez, and Holt 1999).

• The degree of cooperation in the Public Goods game depends positively on
the constant marginal return (Gunnthorsdottir, Houser, and McCabe 2007;
Isaac, Walker, and Thomas 1984).

• The degree of cooperation in the Public Goods game depends positively on
the number of players (Barcelo and Capraro 2014; Isaac, Walker, and Williams 1994;
Zelmer 2003).

• The degree of cooperation in the Bertrand Competition depends negatively
on the number of players (Dufwenberg and Gneezy 2002).

• The degree of cooperation in the Bertrand Competition depends negatively
on the price floor (Dufwenberg, Gneezy, Goeree, and Nagel 2007).
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4 Explaining social dilemmas using translucency

As we suggested in the introduction, we hope to use translucency to explain co-
operation in social dilemmas. To do this, we have to make assumptions about an
agent’s beliefs. Say that an agenti hastype(α, β,C) if i intends to cooperate (the
parameterC stands forcooperate) and believes that (a) if he deviates from that,
then each other agent will independently realize this with probability α; (b) if an
agentj realizes thati is not going to cooperate, thenj will defect; and (c) all other
players will either cooperate or defect, and they will cooperate with probabilityβ.

The standard assumption, of course, is thatα = 0. Our results are only of
interest ifα > 0. The assumption thati believes that agentj will defect if she
realizes thati is going to deviate from cooperation seems reasonable; defection is
the “safe” strategy. We stress that, for our results, it doesnot matter whatj actu-
ally does. All that matters arei’s beliefs about whatj will do. The assumption
that players will either cooperate or defect is trivially true in Prisoner’s Dilemma,
but is a highly nontrivial assumption in the other games we consider. While co-
operation and defection are arguably the most salient strategies, we do in practice
see players using other strategies. For instance, the distribution of strategies in the
Public Goods game is typically tri-modal, concentrated on contributing nothing,
contributing everything, and contributing half (Capraro,Jordan, and Rand 2014).
We made this assumption mainly for technical convenience; it makes the calcula-
tions much easier. We believe that results qualitatively similar to ours will hold
under a much weaker assumption, namely, that a type(α, β,C) player believes
that other players will cooperate with probabilityβ (without assuming that they
will defect with probability1− β).

Similarly, the assumptions that a social dilemma has a unique Nash equilibrium
and a unique social-welfare maximizing strategy were made largely for technical
reasons. We can drop these assumptions, although that wouldrequire more com-
plicated assumptions about players’ beliefs.

The key feature of our current assumptions is that the type ofplayer i deter-

mines the distributionsµ
si,s

′

i

i . In a social dilemma withN agents, the distribution
µsi,si
i assigns probabilityβr(1 − β)N−1−r to a strategy profiles−i for the players

other thani if exactlyr players cooperate ins−i and the remainingN−1−r play-
ers defect; it assigns probability 0 to all other strategy profiles. The distributions

µ
si,s

′

i

i for s′i 6= si all have the form
∑

J⊆{1,...,i−1,i+1,...,N} α
|J |(1 − α)N−1−|J |µJ

i ,

whereµJ
i is the distribution that assigns probabilityβk(1− β)N−|J |−k to a profile

wherek ≤ N − 1 − |J | players not inJ cooperate, and the remaining players
(which includes all the players inJ) defect. Thus,µJ

i is the distribution that de-
scribes what playeri’s beliefs would be if he knew that exactly the players inJ
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had noticed his deviation (which happens with probabilityα|J |(1−α)N−1−|J |). In
the remainder of this section, when we talk about best response, it is with respect
to these beliefs.

For our purposes, it does not matter where the beliefsα andβ that make up a
player’s type come from. We do not assume, for example, that other players are
(translucently) rational. For example,i may believe that some players cooperate
because they are altruistic, while others may cooperate because they have mistaken
beliefs. We can think ofβ as summarizingi’s previous experience of cooperation
when playing social dilemmas. Here we are interested in the impact of the param-
eters of the game on the reasonableness of cooperation, given a player’s type.

The following four propositions analyze the four social dilemmas in turn. We
start with Prisoners Dilemma. Recall thatb is the benefit of cooperation andc is its
cost.

Proposition 4.1. In Prisoner’s Dilemma, it is translucently rational for a player of
type(α, β,C) to cooperate if and only ifαβb ≥ c.

Proof. If player i has type(α, β,C) and cooperates in Prisoner’s Dilemma, then
his expected payoff isβ(b − c) − (1 − β)c, since playeri believes thatj 6= i will
cooperate with probabilityβ. However, if i deviates from his intended strategy
of cooperation, thenj will catch him with probabilityα and also defect. Thus,
if i deviates, theni’s belief thatj will cooperate goes down fromβ to (1 − α)β.
(We remark that this is the case in all social dilemmas; this fact will be used in all
our arguments.) This means thati’s expected payoff if he deviates by defecting is
(1− α)βb. So cooperating is a best response ifβ(b− c)− (1− β)c ≥ (1− α)βb.
A little algebra shows that this reduces toαβb ≥ c.

As we would expect, ifα = 0, then cooperation is not a best response in
Prisoner’s Dilemma; this is just the standard argument thatdefection dominates
cooperation. But ifα > 0, then cooperation can be rational. Moreover, if we fixα,
the greater the benefit of cooperation and the smaller the cost, then the smaller the
value ofβ that still allows cooperation to be a best response.

We next consider Traveler’s Dilemma. Recall thatb is the reward/punishment,
andH andL are the high and low payoffs, respectively.

Proposition 4.2. In Traveler’s Dilemma, it is translucently rational for a player of

(α, β,C) to cooperate if and only ifb ≤

{ (H−L)β
1−αβ

if α ≥ 1
2

min
(

(H−L)β
1−αβ

, H−L−1
1−2α

)

if α < 1
2 ;

Proof. If player i has type(α, β,C) and cooperates in Traveler’s Dilemma, then
his expected payoff isβH + (1 − β)(L − b), since playeri believes thatj 6= i
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will cooperate with probabilityβ. If i deviates and playsx 6= H, thenj will catch
him with probabilityα and playL. Recall from the proof of Proposition 4.1 that,
if i deviates,i’s belief thatj cooperates is(1 − α)β. This means thati’s expected
payoff if he deviates tox < H is (1−α)β(x+b)+(1−β+αβ)(L−b) if x > L, and
(1−α)β(L+b)+(1−β+αβ)L = L+(β−αβ)b if x = L. It is easy to see thati
maximizes his expected payoff either ifx = H−1 orx = L. Thus, cooperation is a
best response ifβH+(1−β)(L−b) ≥ max((1−α)β(H+b−1)+(1−β+αβ)(L−
b), L + (β − αβ)b). Again, straightforward algebra shows that this conditionis
equivalent to the one stated, as desired. (It is easy to checkthat if α ≥ 1/2, then
the conditionβH+(1−β)(L− b) ≥ (1−α)β(H + b−1)+(1−β+αβ)(L− b)
is guaranteed to hold, which is why we get the two cases depending on whether
α ≥ 1/2.)

Proposition 4.2 shows that asb, the punishment/reward, increases, a player
must have greater belief that his opponent is cooperative and/or a greater belief
that the opponent will learn about his deviation and/or a greater difference between
the high and low payoffs in order to make cooperation a best response. (The fact
that increasingβ increases(H−L)β

1−αβ
follows from straightforward calculus.)

We next consider the Public Goods game. Recall theρ is the marginal return
of cooperating.

Proposition 4.3. In the Public Goods game withN players, it is translucently
rational for a player of type(α, β,C) to cooperate if and only ifαβρ(N − 1) ≥
1− ρ.

Proof. Suppose playeri, of type(α, β,C), cooperates. Since he expects a player to
cooperate with probabilityβ, the expected number of cooperators among the other
players isβ(N − 1). Since he himself will cooperate, the total expected number
of cooperators is1 + β(N − 1). Sincei’s payoff isρm if m players including him
cooperate, and thus is linear in the number of cooperators, his expected payoff is
exactly his payoff if the expected number of players cooperate. Since his expected
payoff with 1 + β(N − 1) cooperators isρ(1 + β(N − 1)), this is his expected
payoff if he cooperates.

On the other hand, ifi deviates by contributingx < 1, his expected payoff if
m other players cooperate is(1−x)+ρ(m+x). Again, if i deviates, his expected
belief thatj will cooperate is(1−α)β. Thus, the expected number of cooperators
is (1−α)β(N − 1), and his expected payoff is1− x+ ρ((1− α)β(N − 1) + x).
Sinceρ < 1, he gets the highest expected payoff by defecting (i.e., taking x = 0).

Thus, cooperation is a best response ifρ(1+β(N−1)) ≥ 1+ρ(1−α)β(N−1).
Simple algebra shows that this condition holds iffαβρ(N − 1) ≥ 1− ρ.
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Proposition 4.3 shows that ifρ = 1, then cooperation is certainly a best re-
sponse (you always get out at least as much as you contribute). For fixedα and
β, there is guaranteed to be anN0 such that cooperation is a best response for
all N ≥ N0; moreover, for fixedα, asN gets larger, smaller and smallerβs are
needed for cooperation to be a best response.

Finally we consider the Bertrand competition. Recall thatH is the reservation
value andL is the price floor.

Proposition 4.4. In Bertrand Competition, it is translucently rational for aplayer
of type (α, β,C) to cooperate iffβN−1 ≥ f(γ,N)LN/H, wheref(γ,N) =
∑N−1

k=0

(

N−1
k

)

(1− γ)kγN−k−1/(k + 1) andγ = (1− α)β.

Proof. Clearly, if playeri cooperates, then his expected payoff isβN−1H/N , since
he getsH/N if everyone else cooperates (which happens with probability βN−1),
and otherwise gets0.

Let γ = (1−α)β. Again, this is the probability thati ascribes to another player
playingH if he deviates. Ifi deviates, then it is easy to see (given his beliefs) that
the optimal choices for deviation areH − 1 andL. In the former case,

i’s expected payoff isγN−1(H − 1). In the latter case,i’s expected payoff
is

∑N−1
k=0

(

N−1
k

)

(1 − γ)kγN−k−1L/(k + 1): with probability (1 − γ)kγN−k−1,
exactlyk other players will playL, andi’s payoff will beL/(k + 1). Moreover,
each possible subset ofk defectors, has to be count

(

N−1
k

)

times. Letf(γ,N) =
∑N−1

k=0

(

N−1
k

)

(1 − γ)kγN−k−1/(k + 1). Note that, as the notation suggests, this
expression depends only onγ andN (and not any of the other parameters of the
game). Thus,i’s expected payoff in this case isf(γ,N)L, so cooperation is a
best response iffβN−1H/N ≥ max(γN−1(H − 1), f(γ,N)L). While it seems
difficult to find a closed-form expression forf(γ,N), this does not matter for our
purposes.2 Since we clearly haveβN−1H/N ≥ γN−1(H−1), cooperation is a best
response iffβN−1H/N ≥ f(γ,N)L, or, equivalently,βN−1 ≥ f(γ,N)LN/H,

Note thatf(γ,N) =
∑N−1

k=0

(

N−1
k

)

(1−γ)kγN−k−1/(k+1) ≥
∑N−1

k=0

(

N−1
k

)

(1−
γ)kγN−k/N = 1/N , so Proposition 4.4 shows cooperation is irrational ifβN−1 <
L/H. Thus, while cooperation may be achieved for reasonable values ofα andβ
if N is small, a player must be more and more certain of cooperation in order to
cooperate in Bertrand Competition as the number of players increases. Indeed, for
a fixed type(α, β,C), there existsN0 such that cooperation is not a best response
for all N ≥ N0. Moreover, if we fix the numberN of players, more values ofα

2Note that the expected value ofL/(k+1) cannot be computed by plugging in the expected value
of k, in the spirit of our earlier calculations, sinceL/(k + 1) is not linear ink.
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andβ allow cooperation asL/H gets smaller. In particular, if we fixH and raise
the floorL, fewer values ofα andβ allow cooperation.

While Propositions 4.1–4.4 are suggestive, we need to make extra assumptions
to use these propositions to make predictions. A simple assumption that suffices
is that there are a substantial number of translucently rational players whose types
have the form(α, β,C), and for each pair(u, v) and (u′, v′) of open intervals
in [0, 1], there is a positive probability of finding someone of type(α, β,C) with
α ∈ (u, v) andβ ∈ (u′, v′). With this assumption, it is easy to see that all the
regularities discussed in Section 3 hold.

5 Discussion

We have presented an approach that explains a number of well-known observations
regarding the extent of cooperation in social dilemmas. In addition, our approach
can also be applied to explain the apparent contradiction that people cooperate
more in a one-shot Prisoner’s dilemma when they do not know the other player’s
choice than when they do. In the latter case, Shafir and Tversky (1992) found that
most people (90%) defect, while in the former case, only 63% of people defect.
Our model of translucent players predicts this behavior: ifplayer 1 knows player
2 choices, then there is no translucency and thus our model predicts that player 1
defects for sure. On the other hand, if player 1 does not know player 2’s choice and
believes that he is to some extent translucent, then, as shown in Proposition 4.1, he
may be willing to cooperate. Seen in this light, our model canalso be interpreted
as an attempt to formalizequasi-magical thinking(Shafir and Tversky 1992), the
kind of reasoning that is supposed to motivate those people who believe that the
others’ reasoning is somehow influenced by their own thinking, even though they
know that there is no causal relation between the two. Quasi-magical thinking has
also been formalized by Masel (2007) in the context of the Public Goods gam and
by Daley and Sadowski (2014) in the context of symmetric2×2 games. The notion
of translucency goes beyond these models, since it may applied to a much larger
set of games.

Besides a retrospective explanation, our model makes new predictions for so-
cial dilemmas which, to the best of our knowledge, have neverbeen tested in the
lab. In particular, it predicts that

• the degree of cooperation in Traveler’s dilemma increases as the difference
H − L increases;

• for fixed L andN , the degree of cooperation in Bertrand Competition in-
creases asH increases, and what really matters is the ratioL/H.
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Clearly much more experimental work needs to be done to validate the ap-
proach. For one thing, it is important to understand the predictions it makes for
other social dilemmas and for games that are not social dilemmas. Perhaps even
more important would be to see if we can experimentally verify that people believe
that they are to some extent translucent, and, if so, to get a sense of what the value
of α is. In light of the work on watching eyes mentioned in the introduction, it
would also be interesting to know what could be done to manipulate the value of
α.

As we mentioned, there have been many other attempts to explain cooperation
in social dilemmas, especially recently. Most of other approaches that we are aware
of are not able to obtain all the regularities that we have mentioned.

• The Fehr and Schmidt (1999) inequity-aversion model assumes that sub-
jects play a Nash equilibrium of a modified game, in which players do
not only care about their monetary payoff, but also they careabout equity.
Specifically, playeri’s utility when strategys is played is assumed to be

Ui(s) = ui(s)−
aFS
i

N−1

∑

j 6=imax(uj(s)−ui(s), 0)−
bFS
i

N−1

∑

j 6=imax(ui(s)−

uj(s), 0), whereui(s) is the material payoff of playeri, and0 ≤ bFS
i ≤ aFS

i

are individual parameters, whereaFS
i represents the extent to which player

i is averse to inequity in favor of others, andbFS
i represents his aversion to

inequity in his favor. Consider the Public Goods game withN players. The
strategy profile(x, . . . , x), where all players contributex gives playeri a
utility of (1 − x) + ρNx. If x > 0 and playeri contributesx′ < x, then his
payoff is(1−x′)+ρ((N −1)x+x′)−bFS

i ρ(x−x′). Thus,(x, . . . , x) is an
equilibrium if bFS

i ρ(x− x′) ≥ (1− ρ)(x− x′), that is, ifbFS
i ≥ (1− ρ)/ρ.

Thus, ifbFS
i ≥ (1− ρ)/ρ for all playersi, then(x, . . . , x) is an equilibrium

for all choices ofx and all values ofN . While there may be other pure and
mixed strategy equilibria, it is not hard to show that ifbFS

i < (1−ρ)/ρ, then
playeri will play 0 in every equilibrium (i.e., not contribute anything). As a
consequence, assuming, as in our model, that players believe that there is a
probabilityβ that other agents will cooperate and that the other agents either
cooperate or defect, Fehr and Schmidt (1999) model does not make any clear
prediction of a group-size effect on cooperation in the public goods game.

• McKelvey and Palfrey’s (1995)quantal response equilibrium (QRE)is de-
fined as follows.3 Takingσi(s) to be the probability that mixed strategyσi
assigns to the pure strategys, givenλ > 0, a mixed strategy profileσ is a

3We actually define here a particular instance of QRE called the logit QRE; λ is a free parameter
of this model.

13



QRE if, for each playeri, σi(s) = eλEUi(s,σ−i)

∑
s′
i
∈Si

e
λEUi(s

′

i
,σ−i)

.

To see that QRE does not describe human behaviour well in social dilem-
mas, observe that in the Prisoner’s Dilemma, for all choicesof parameters
b and c in the game, all choices of the parameterλ, all playersi, and all
(mixed) strategiess−i of player−i, we haveEUi(C, s−i) < EUi(D, s−i).
Consequently, whatever the QREσ is, we must haveσi(C) < 1

2 < σi(D),
that is, QRE predicts that the degree of cooperation can never be larger than
50%. However, experiments show that we can increase the benefit-to-cost
ratio so as to reach arbitrarily large degrees of cooperation (close to 80% in
(Capraro, Jordan, and Rand 2014) withb/c = 10).

• Iterated regret minimization(Halpern and Pass 2012) does not make appro-
priate predictions in Prisoner’s Dilemma and the Public Goods game, be-
cause it predicts that if there is a dominant strategy then itwill be played,
and in these two games, playing the Nash equilibrium is the unique domi-
nant strategy.

• Capraro’s (2013) notion ofcooperative equilibrium, while correctly pre-
dicting the effects of the size of the group on cooperation inthe Bertrand
Competition and the Public Goods game (Barcelo and Capraro 2014), fails
to predict the negative effect of the price floor on cooperation in the Bertrand
Competition.

• Rong and Halpern’s (2013) notion ofcooperative equilibrium(which is dif-
ferent from that of Capraro (2013)) focuses on 2-player games. However, the
definition for games with greater than 2 players does not predict the decrease
in cooperation asN increases in Bertrand Competition, nor the increase as
N increases in the Public Goods Game.

The one approach besides ours that we are aware of that obtains all the regularities
discussed above is that of Charness and Rabin (2002). Charness and Rabin, like
Fehr and Schmidt (1999), assume that agents play a Nash equilibrium of a modified
game, where players care not only about their personal material payoff, but also
about the social welfare and the outcome of the least fortunate person. Specifically,
playeri’s utility is assumed to be(1−aCR

i )ui(s)+aCR
i (bCR

i minj=1,...,N uj(s)+

(1 − bCR
i )

∑N
j=1 uj(s)). Assuming, as in our model, that agents believe that other

players either cooperate or defect and that they cooperate with probabilityβ, then
it is not hard to see that Charness and Rabin (2002) also predict all the regularities
that we have been considering.

Although it seems difficult to distinguish our model from that of Charness and
Rabin (2002) if we consider only social dilemmas, they are distinguishable if we
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look at other settings and take into account the other reasonwe mentioned for
translucency: that other people in their social group mightdiscover how they acted.
We can easily capture this in the framework we have been considering by doubling
the number of agents; for each playeri, we add another playeri∗ that represent’s
i’s social network. Playeri∗ can play only two actions:n (for “did not observe
player i’s action) ando (for “observed playeri’s action”).4 The payoffs of these
new players are irrelevant. Playeri’s payoff depends on the action of playeri∗,
but not on the actions of playerj∗ for j∗ 6= i∗. Now playeri must have a prior
probabilityγi about whether his action will be observed; in a social dilemma, this
probability might increase toγ′i ≥ γi if he intends to cooperate but instead deviates
and defects. It should be clear that, even ifγ′i = γi, if we assume that playeri’s
utilities are significantly lower if his non-cooperative action is observed, with this
framework we would get qualitatively similar results for social dilemmas to the
ones that we have already obtained.

The advantage of taking into account what your social group thinks is that it can
be applied even to single-player games like the Dictator Game (Kahneman, Knetsch, and Thaler 1986).
To do so, we would need to think about what a player’s utility would be if his so-
cial group knew the extent to which he shared the pot. But it should be clear that
reasonable assumptions here would lead to some degree of sharing.

While this would still not distinguish our predictions fromthose of the Charness-
Rabin model, there is a variant of the Dictator Game considered by Capraro (2014)
that does allow us to distinguish between the two. In this game, there are only two
possible allocations of money: either the agent getsx and the other players gets
−x, or the other player getsx and the agent gets−x. In this game, the Charness-
Rabin approach would predict that the agent will choose to keep thex. But the
translucency approach would allow that there would be typesof agents who would
think that their social group would approve of them giving awayx, so, if the action
was observed by their social group, they would get high utility by giving awayx.
And, indeed, Capraro’s results show that a significant fraction (25%) of people do
choose to give awayx.

Of course, we do not have to assumeα > 0 to get cooperation in social dilem-
mas such as Traveler’s Dilemma or Bertrand Competition. Butwe do if we want
to consider what we believe is the appropriate equilibrium notion. Suppose that ra-
tional players are chosen at random from a population and play a social dilemma.
Players will, of course, then update their beliefs about thelikelihood of seeing co-
operation, and perhaps change their strategy as a consequence. Will these beliefs
stabilize and the strategies played stabilize? Bystability here, we mean that (1)

4Alternatively, we could take playeri’s payoff to depend on the state of the world, where the state
would model whether or not playeri’s action was observed.
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players are all best responding to their beliefs, and (2) players’ beliefs about the
strategies played by others are correct: if playeri ascribes probabilityp to player
j playing a strategysj, then in fact a proportionp of players in the population
play sj. We have deliberately been fuzzy here about whether we mean best re-
sponse in the sense of Definition 2.1 or Definition 2.2. If we use Definition 2.1 (or,
equivalently use Definition 2.2 and takeα = 0), then it is easy to see (and well
known) that the only way that this can happen is if the distribution of strategies
played by the players represents a mixed strategy Nash equilibrium. On the other
hand, ifα > 0 and we use Definition 2.2, then we can have stable beliefs that
accurately reflect the strategies used and have cooperation(in all the other social
dilemmas that we have studied). We make this precise in the appendix using the
framework of Halpern and Pass (2013), by defining a notion oftranslucent equi-
librium. Roughly speaking, we construct a model where, at all states, players are
translucently rational (so we have common belief of translucent rationality), the
strategies used are common knowledge, and we nevertheless have cooperation at
some states. Propositions 4.1–4.4 play a key role in this construction; indeed, as
long as the strategies used satisfy the constraints imposedby these results, we get
a translucent equilibrium.

We have not focused on translucent equilibrium here in the main text because it
makes strong assumptions about players’ rationality and beliefs (e.g., it implicitly
assumes common belief of translucent rationality). We do not need such strong
assumptions for our results.

A Translucent equilibrium

In the main text of this paper we have described how cooperation can be rational if
players are translucent, that is, if they believe that if they switch from one strategy
to another, the fact that they choose to switch may be visibleto the other players.
In this appendix, we show how to use counterfactual structures to define a notion
of equilibrium with translucent players and we observe thatrationality of cooper-
ation shown in the main text corresponds to having a mixed strategy translucent
equilibrium, where cooperation is played with non-zero probability. We start by
reviewing the relevant definitions from (Halpern and Pass 2013).

A.1 Game theory with translucent players

Let G = G(P, S, u) be a (finite) normal form game, whereP = {1, . . . , N} is the
set of players, each of which has finite pure strategy setSi and utility functionui.
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Definition A.1. A finite counterfactual structure appropriate for the gameG is a
tupleM = (Ω, s, f,PR1, . . . ,PRN ), where:

• Ω is a finite space of states;

• s : Ω → S is the function that associates to each stateω the strategy profile
that is supposed to be played atω;

• f is the closest-state function, which describes what would happen if player
i switched strategy tos′i at stateω. Thus,f : Ω× P × Si → Ω has to verify
the following properties:

CS1. si(f(ω, i, s′)) = s′i;

CS2. f(ω, i, si(ω)) = ω.

Property CS1 assures that, at statef(ω, i, s′i), player i playss′i, and Prop-
erty CS2 assures that the state does not change if playeri does not change
strategy.

• PRi are playeri’s beliefs, which depends on the statei is reasoning about.
Specifically, for eachω ∈ Ω, PRi(ω) is a probability measure onΩ satisfy-
ing the following properties:

PR1. PRi(ω)({ω
′ ∈ Ω : si(ω

′) = si(ω)}) = 1 (wheresi(ω) denotes player
i’s strategy ins(ω));

PR2. PRi(ω)({ω
′ ∈ Ω : PRi(ω

′) = PRi(ω)}) = 1.

These assumptions guarantee that playeri assigns probability1 to his actual
strategy and beliefs. ⊓⊔

We can now definei’s beliefs atω if he were to switch to strategys′. Intuitively,
if he were to switch to strategys′ atω, the probability thati would assign to state
ω′ is the sum of the probabilities that he assigns to all the statesω′′ such that he
believes that he would move fromω′′ to ω′ if he used strategys′. Thus we define

PRi,s′(ω)(ω
′) :=

∑

{ω′′:f(ω′′,i,s′)=ω′}

PRi(ω)(ω
′′).

We define the expected utility of playeri at stateω in the usual way as the sum
of the product of his expected utility of the strategy profileplayed at each stateω′

and the probability ofω′: EU i(ω) =
∑

ω′∈Ω PRi(ω)(ω
′)ui(si(ω), s−i(ω

′)).5

5Given a profilet = (t1, . . . , tN), as usual, we definet−i = (t1, . . . , ti−1, ti+1, . . . , tN ).
We extend this notation in the obvious way to functions likes, so that, for example,s−i(ω) =
(s1(ω), . . . , si−1(ω), si+1(ω), . . . , sn(ω)).
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Now we definei’s expected utility atω if he were to switch tos′. The usual
way to do so is to simply replacei’s actual strategy atω by s′ at all states, keeping
the strategies of the other players the same; that is,

∑

ω′∈Ω

PRi(ω)(ω
′)ui(s

′, s−i(ω
′)).

In this definition, playeri’s beliefs about the strategies that the other players are
using do not change when he switches fromsi(ω) to s′. The key point of coun-
terfactual structures is that these beliefs may well change. Thus, we definei’s
expected utility atω if he switches tos′ as

EU i(ω, s
′) =

∑

ω′∈Ω

PRi,s′(ω)(ω
′)ui(s

′, s−i(ω
′)).

Finally, we can define rationality in counterfactual structures using these no-
tions:

Definition A.2. Playeri is rational at stateω if, for all s′ ∈ Si,

EU i(ω) ≥ EU i(ω, s
′).

⊓⊔

A.2 Translucent equilibrium

In this section, we define translucent equilibrium and we observe that the results
reported in the main text imply that social dilemmas have a counterfactual struc-
ture according to which each player plays, in equilibrium, his part of the welfare
maximizing strategy with non-zero probability.

We start with some preliminary notation. Given a probability measureτ on
a finite setT , let supp(τ) denote the support ofτ , that is, supp(τ) = {t ∈ T :
τ(t) 6= 0}. Given a mixed strategy profileσ, note thatσ−i can can be viewed as
a probability onS−i, whereσ−i(s−i) =

∏

j 6=i σj(sj). Similarly σ can be viewed
as a probability measure onS. In the sequel, we viewσ−i andσ as probability
measures without further comment (and so talk about their support).

Definition A.3. A strategy profileσ in a gameG is translucent equilibriumin a
counterfactual structureM = (Ω, s, f,PR1, . . . ,PRN ) appropriate forG if there
exists a subsetΩ′ ⊆ Ω such that, for each stateω in Ω′, the following properties
hold:

TE1. s(ω) ∈ supp(σ);
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TE2. supp(PRi(ω)) ⊆ Ω′;

TE3. s−i(PRi(ω)) = σ−i (i.e., for each strategy profiles−i ∈ S−i, we have
σ−i(s−i) = PRi(ω)({ω

′ : s−i(ω
′) = s−i})).

TE4. each player is rational atω.

The mixed strategy profileσ is a translucent equilibrium ofG if there exists a coun-
terfactual structureM appropriate forG such thatσ is a translucent equilibrium in
M . ⊓⊔

Intuitively, σ is a translucent equilibrium inM if, for each strategysi in the
support ofσi, the expected utility of playingsi given that other players are playing
according toσ−i is at least as good as switching to some other strategys′i, given
whati would believe about what strategies the other players are playing if he were
to switch tos′i.

This notion of translucent equilibrium is closely related to a condition calledIR
(for individually rational) by Halpern and Pass (2013). The main difference is that
Halpern and Pass considered only pure strategy profiles; we allow mixed-strategy
profiles here. We discuss the relationship between the notions at greater length in
Section A.3.

A.3 Characterization of translucent equilibria

While it is easy to see that every Nash equilibrium is a translucent equilibrium
(see Proposition A.4), the converse is far from true. As we show, for example,
cooperation can be an equilibrium in social dilemmas (see below and Section A.4).
In this section, we provide a characterization of translucent equilibria that will
prove useful when discussing social dilemmas.

Proposition A.4. Every Nash equilibrium ofG is a translucent equilibrium.

Proof. Given a Nash equilibriumσ = (σ1, . . . , σn), consider the following coun-
terfactual structureMσ = (Ω, s, f,PR1, . . . ,PRN ):

• Ω is the set of strategy profiles in the support ofσ;

• s(s) = s;

• PRi(si, s−i)(s
′
i, s

′
−i) =

{

0 if s′i 6= si
σ−i(s

′
−i) if s′i = si;

• f((si, s−i), i, s
′) = (s′, s−i).
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It is easy to check thatσ is a translucent equilibrium inMσ; we simply take
Ω′ = Ω. The fact thatf is an “opaque” closest-state function, which is not affected
by the strategy used by players, means that rationality inM reduces to the standard
definition of rationality. We leave details to the reader.

Although the fact that we can consider arbitrary counterfactual structures (ap-
propriate forG) means that many strategy profiles are translucent equilibria, the
notion of translucent equilibrium has some bite. For example, the strategy profile
(C,D), where player 1 cooperates and player 2 defects, is not a translucent equilib-
rium in Prisoner’s Dilemma: if player 1 believes that player2 is playing defecting
with probability 1, there are no beliefs that 1 could have that would justify cooper-
ation. However, as we shall see, both(C,C) and(D,D) are translucent equilibria.
This follows from the characterization of translucent equilibrium that we now give.

Definition A.5. A mixed-strategy profileσ in G is coherentif for all playersi ∈ P ,
all si ∈ supp(σi), and alls′i ∈ Si, there iss′−i ∈ S−i such that

ui(si, σ−i) ≥ ui(s
′)

(where, of course,ui(si, σ−i) =
∑

s′′
−i∈S

′

−i
σ−i(s

′′
−i)ui(si, s

′′
−i)). ⊓⊔

That is,σ is coherent if, for all pure strategies for playeri in the support ofσi,
if i’s belief about the strategies being played by the other players is given byσ−i,
there is no obviously better strategy thati can switch to in the weak sense that, if
i contemplates switching tos′i, there are beliefs thati could have about the other
players (namely, that they would definitely plays′−i in this case) that would make
switching tos′i better than sticking withsi.

It is easy to see that(C,C) and(D,D) in Prisoner’s Dilemma are both coher-
ent; on the other hand,(C,D) is not.

Halpern and Pass (2013) define a pure strategy profile to beindividually ratio-
nal if it is coherent. Definition A.5 extends individual rationality to mixed strate-
gies. Halpern and Pass prove that a pure strategy profile is individually rational if
there is a model where it is commonly known thatσ is played and there is common
belief of rationality. The definition of translucent equilibrium can be seen as the
generalization of this characterization of IR to mixed strategies. As the following
theorem shows, we get an analogous representation.

Theorem A.6. The mixed strategy profileσ of gameG is coherent iffσ is a translu-
cent equilibrium ofG.

Proof. Let σ be a coherent strategy profile inG. We construct a counterfactual
structureM = (Ω, s, f,PR1, . . . ,PRN ) as follows:
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• Ω = S;

• s(s) = s;

• PRi(ω)(ω
′) =















1 if ω /∈ supp(σi), ω = ω′

0 if ω /∈ supp(σi), ω 6= ω′

σ−i(s−i(ω
′)) if ω ∈ supp(σi), si(ω′) = si(ω)

0 if ω ∈ supp(σi), si(ω′) 6= si(ω);

• f(ω, i, s′i) =































(s′i, s−i(ω)) if ω /∈ supp(σi)
ω if ω ∈ supp(σi), s′i = si(ω)
(s′i, s

′
−i) if ω ∈ supp(σi), s′i 6= si(ω), wheres′i is a

strategy such thatui(si(ω), σ−i) ≥ ui(s
′);

such a strategy is guaranteed to exist since
σ is coherent.

We first show thatM is a finite counterfactual structure appropriate forG; in
particular,PRi satisfies PR1 and PR2 andf satisfies CS1 and CS2. For PR1 and
PR2, there are two cases. Ifω /∈ supp(σ), thenPRi(ω)(ω) = 1, so PR1 and PR2
clearly hold. Ifω /∈ supp(ω), thenPRi(ω)(ω) > 0 iff si(ω) = si(ω

′). More-
over, if si(ω) = si(ω

′), then it is immediate from the definition thatPRi(ω) =
PRi(ω

′), so PR2. holds. That CS1 and CS2 hold is immediate from the definition
of f .

To show thatσ is a translucent equilibrium inM , let Ω′ = supp(σ). For each
stateω ∈ Ω′, TE1 clearly holds. Note that ifω ∈ supp(σ), thenPRi(ω) =
(si(ω), σ−i(ω)) (identifying the strategy profile with a probability measure), so
TE2 and TE3 clearly hold. It remains to show that TE4 holds, that is, that every
player is rational at every stateω ∈ Ω′.

Thus, we must show thatEU i(ω) ≥ EU (ω, s∗i ) for all s∗i ∈ Si. Note that

EU i(ω) =
∑

ω′∈Ω PRi(ω)(ω
′)ui(si(ω), s−i(ω

′))
=

∑

{ω′∈Ω:si(ω′)=si(ω)}
σ−i(s−i(ω

′))ui(si(ω), s−i(ω
′))

=
∑

s′′
−i∈S−i

ui(si(ω), s
′′
−i)

= ui(si(ω), σ−i).

By definition,

EU i(ω, s
∗
i ) =

∑

ω′∈Ω

PRi,s∗i
(ω)(ω′)ui(s

∗
i , s−i(ω

′))

and
PRi,s′(ω)(ω

′) =
∑

{ω′′:f(ω′′,i,s′)=ω′}

PRi(ω)(ω
′′).
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Now if s∗i = si(ω), thenf(ω, i, s∗i ). In this case, it is easy to check thatPRi,s∗i
(ω) =

PRi(ω), soEU i(ω, s
∗
i ) = EU i(ω) = EU i(si, σ−i), and TE4 clearly holds. On

the other hand, ifs∗i 6= si(ω), then

EU i(ω, s
∗
i ) =

∑

ω′∈Ω

∑

{ω′′:f(ω′′,i,s∗i )=ω′}PRi(ω)(ω
′′)ui(s

∗
i , s−i(ω

′))

=
∑

{ω′∈Ω:si(ω′)=s∗i }

∑

{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)}
σ−i(ω

′′)ui(s
∗
i , s−i(ω

′))

=
∑

{ω′∈Ω:si(ω′)=s∗i }

∑

{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)}
σ−i(ω

′′)ui(f(ω
′′, i, s∗i )).

By definition,ui(f(ω′′, i, s∗i )) ≤ ui(si(ω
′′), σ−i) = ui(si(ω), σ−i). Thus,

EU i(ω, s
∗
i ) ≤

∑

{ω′∈Ω:si(ω′)=s∗i }

∑

{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)}
σ−i(ω

′′)ui(si(ω), σ−i)

= ui(si(ω), σ−i)
∑

{ω′∈Ω:si(ω′)=s∗i }

∑

{ω′′:f(ω′′,i,s∗i )=ω′, si(ω′′)=si(ω)}
σ−i(ω

′′)

= ui(si(ω), σ−i).

This completes the proof that TE4 holds, and the proof of the “only if” direction
of the argument

The “if” is actually much simpler. Suppose, by way of contradiction, thatσ is
not coherent. Then there is a playeri and a strategysi ∈ supp(σi) such that for all
s′−i ∈ Si, we haveui(si, σ−i) < ui(s

′). It follows that, for all counterfactual struc-
turesM , no matter what the beliefs and the closest-state functionsare inM , it is
always strictly profitable for playeri to switch strategy fromsi to s′i. Consequently,
i is not rational at a stateω such thatsi(ω) = si, contradicting TE4.

A.4 Translucent equilibrium in social dilemmas

As we now show, our characterizations of Propositions 4.1–4.4 can be used to pro-
vide conditions on when translucent equilibrium exists in these social dilemmas.

We start our analysis with Prisoner’s Dilemma. We capture the assumption
that β is the probability of cooperation, and that players either cooperate or de-
fect, by assuming that players follow a mixed strategy wherethey cooperate with
probabilityβ and defect with probability1− β.

Proposition A.7. (β1C+(1−β1)D,β2C+(1−β2)D) is a translucent equilibrium
of Prisoner’s dilemma iffβib ≥ c, for i = 1, 2, or β1 = β2 = 0.

Proof. Suppose that(β1C + (1 − β1)D,β2C + (1 − β2)D). If β1 > 0, then by
Theorem A.6, it easily follows we must haveu1(C, β2C+(1−β2)D) ≥ u1(D,D).
Thus, we must haveβ2(b − c) + (1 − β2)(−c) ≥ 0; equivalently,β2b ≥ c. Note
that sincec > 0, this means that we must haveβ2 > 0. Similarly, if β2 > 0, then
β1b ≥ c. By Theorem A.4,(D,D) is a translucent equilibrium, since it is a Nash
equilibrium. Thus, eitherβib ≥ c for i = 1, 2 or β1 = β2 = 0.
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Conversely, ifβib ≥ c for i = 1, 2, then it again easily follows from Theo-
rem A.6 that(β1C + (1 − β1)D,β2C + (1 − β2)D) is a translucent equilibrium.
As we have observed,(D,D) (the case thatβ1 = β2 = 0) is also a translucent
equilibrium.

Proposition A.7 is not all that interesting, since it does not take into account a
player’s beliefs regarding translucency. The following definition is a step towards
doing this. Suppose thatM is counterfactual structure appropriate for a social
dilemmaΓ. Player i has typeαi in M if, at each stateω in M , playeri believes
that if he intends to cooperate inω and deviates from that, then each other agent
will independently realize this with probabilityαi and will defect. Formally, this
means that, at each stateω in M , we have

• if si(ω) = sWi (i.e., i is cooperating inω by playing his component of the
social-welfare maximing strategy profile), then, for eachJ ⊆ P \ {i}, we
havePRi(ω)({ω

′ : f(ω′, i, sNi ) = ω′′, sj(ω
′) = sCj , sj(ω

′′) = sNj ,∀j ∈

J}) = α
|J |
i PRi(ω){ω

′ : sj(ω
′) = sCj ,∀j ∈ J}).

Proposition A.8. (β1C+(1−β1)D,β2C+(1−β2)D) is a translucent equilibrium
of the Prisoner’s dilemma in a structure where playeri has typeαi if and only if
β1 = β2 = 0 or αiβ3−ib ≥ c for i ≥ 1, 2.

Proof. Suppose thatαiβ3−ib ≥ c for i = 1, 2 or β1 = β2 = 0. We show that
(β1C + (1 − β1)D,β2C + (1 − β2)D) is a translucent equilibrium in a struc-
ture where playeri has typeαi. Consider the counterfactual structureM(α1, α2)
defined as follows

• Ω = {C,D} × {0, 1}2. (The second component of the state, which is an
element of{0, 1}2, is used to determine the closest-state function. Roughly
speaking, ifvj = 1, then playerj learns about a deviation if there is one; if
vj = 0, he does not.)

• s((s, v)) = s.

• f((s, v), i, s∗i ) =







(s, v) if si = s∗i ,
(s′, v) if si 6= s∗i , wheres′i = s∗i and forj 6= i,

s′j = sj if vj = 0 ands′j = sNj if vj = 1.

Thus, if playeri changes strategy fromsi to s′i, s
′
i 6= si, then each other

playerj either deviates to his component of the Nash equilibrium or contin-
ues with his current strategy, depending on whethervj is 0 or 1. Roughly
speaking, he switches to his component of the Nash equilibrium if he learns
about a deviation (i.e., ifvj = 1).
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• PRi(s, v)(s
′, v′) =

{

0 if si 6= s′i, or vi 6= v′i,
σ3−i(s3−i)πi(v3−i) if s = s′,

where

σ3−i is the distribution on strategies that puts probabilityβ3−i on C and
probability1 − β3−i onD, while πi is the distribution that puts probability
αi on 1 and probability1 − αi on 0. Thus, ifs = s′, then the probability
of thev′ component is determined by assuming that the other player (3 − i)
independently learns about a deviation byi with probabilityαi.

Clearly,M(α1, α2) is a structure where playeri has typeαi, for i = 1, 2. We
claim that(β1C + (1 − β1)D,β2C + (1 − β2)D) is a translucent equilibrium in
the counterfactual structureM(α1, α2).

There are two cases. Ifβ1 = β2 = 0, then letΩ′ consist of all states of the
form ((D,D), v). It is easy to check that TE1–4 hold. Ifαiβ3−ib ≥ c for i ≥ 1, 2,
let Ω′ = Ω. It is immediate that TE1, TE2, and TE3 hold. Sinceαiβ3−ib ≥ c, it
follows from Proposition 4.1 that playeri is rational at each state inΩ; thus, TE4
holds.

For the converse, suppose thatM is a structure where playeri has typeαi, for
i = 1, 2, and(β1C +(1−β1)D,β2C +(1−β2)D) is a translucent equilibrium in
M . If it is not the case that eitherβ1 = β2 = 0 orαiβ3−ib ≥ c for i = 1, 2, without
loss of generality we can assume thatβ1 > 0 and thatα1β2b < c. Letω be a state in
the setΩ′ where player 1 cooperates. Since player 1 must be rational atΩ′, we must
haveu1(C, β2C+(1−β2)D) ≥ ((1−β2)+α1β2)u1(D,D)+(1−α1)β2u1(D,C).
Simple calculations show that this inequality holds iffβ2(b− c)+ (1−β2)(−c) ≥
(1− α1)β2b or, equivalently,α1β2b ≥ c. This gives the desired contradiction.

The following propositions can be proved in a similar fashion. We leave details
to the reader.

Proposition A.9. (β1H+(1−β1)L, β2H+(1−β2)L) is a translucent equilibrium
of the Traveler’s dilemma if and only ifb ≤ (H−L)βi

1−βi
, for i = 1, 2, or β1 = β2 = 0.

⊓⊔

Proposition A.10. (β1H+(1−β1)L, β2H+(1−β2)L) is a translucent equilibrium
of the Traveler’s dilemma in a structure where playeri has typeαi if and only if
β1 = β2 = 0 or

b ≤







(H−L)β3−i

1−αiβ3−i
if αi ≥

1
2

min
(

(H−L)β3−i

1−αiβ3−i
, H−L−1

1−2αi

)

if αi <
1
2 .

⊓⊔
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In the following propositions, let C and D denote, respectively, the full con-
tribution and the null contribution in the Public Goods game. Given anN -tuple
(r1, . . . , rN ) of real numbers,̄r−i denotes the average of the numbersrj , with
j 6= i.

Proposition A.11. (β1C + (1 − β1)D, . . . , βNC + (1 − βN )D) is a translucent
equilibrium of the Public Goods game if and only ifρβ̄−i(N − 1) ≥ 1 − ρ for all
i, or βi = 0 for all i. ⊓⊔

Proposition A.12. (β1C + (1 − β1)D, . . . , βNC + (1 − βN )D) is a translucent
equilibrium of the Public Goods game in a structure where player i has typeαi if
and only ifβi = 0 for all i or αiρβ̄−i ≥ 1− ρ for all i. ⊓⊔

Proposition A.13. (β1H + (1 − β1)L, . . . , βNH + (1 − βN )L) is a translucent
equilibrium of the Bertrand competition if and only ifβi = 0 for all i, or

∏

j 6=i βj ≥
L
H

for all i. ⊓⊔

Proposition A.14. (β1H + (1 − β1)L, . . . , βNH + (1 − βN )L) is a translucent
equilibrium of the Bertrand competition in a structure where playeri has typeαi

if and only if βi = 0 for all i, or
∏

j 6=i βj ≥ f(γi,j, N)LN/H for all i, where
f(γi,j, N) =

∑

J⊆P−{i}(
∏

j∈P−(J∪{i}) γi,j
∏

j∈J(1− γi,j))/(|J |+1) andγi,j =
(1− αi)βj . ⊓⊔
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