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Abstract

In the last few decades, numerous experiments have showhuheans
do not always behave so as to maximize their material payigbperative
behavior when non-cooperation is a dominant strategy (veisipect to the
material payoffs) is particularly puzzling. Here we propasiovel approach
to explain cooperation, assuming what Halpern and PassS)2@ll translu-
cent playersTypically, players are assumed todgaquein the sense that a
deviation by one player does not affect the strategies ugedher players.
But a player may believe that if he switches from one strateggnother,
the fact that he chooses to switch may be visible to the otlageps. For
example, if he chooses to defect in Prisoner’s Dilemma, therglayer may
sense his guilt. We show that by assuming translucent dayer can re-
cover many of the regularities observed in human behavieval-studied
games such as Prisoner’s Dilemma, Traveler's Dilemma r&sitCompeti-
tion, and the Public Goods game.

1 Introduction

In the last few decades, numerous experiments have showhuimans do not al-
ways behave so as to maximize their material payoff. Mamymdttive models have
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consequently been proposed to explain deviations from theegrmaximization

paradigm. Some of them assume that players are boundeitlgaband/or make

mistakes in the computation of the expected utility of ateggp (Camerer, Ho, and Chong 2004;
Costa-Gomes, Crawford, and Broseta 2001; Halpern and Pads [@cKelvey and Palfrey 1995;
Stahl and Wilson 1994); yet others assume that players Hhee-egarding pref-

erences (Baolton and Ockenfels 2000; Charness and Rabin/B8APand Schmidt 1999);
others define radically different solution concepts, assgrhat players do not try

to maximize their payoff, but rather try to minimize theigret (Halpern and Pass 2012;

Renou and Schlag 20[10), or maximize the forecasts asstdmieoalition struc-

tures [(Capraro 2013; Capraro, Venanzi, Polukarov, anddgn2013), or maxi-

mize the total welfare (Apt and Schafer 2014; Rong and Halg813). (These

references only scratch the surface; a complete biblidgrawuld be longer than

this paper!)

Cooperative behaviour in one-shot anonymous games isplarly puzzling,
especially in games where non-cooperation is a dominaategly (with respect to
the material payoffs): why should you pay a cost to help angigg when no clear
direct or indirect reward seems to be at stake? Neverthdlessecret of success
of our societies is largely due to our ability to cooperate 8 not cooperate only
with family members, friends, and co-workers. A great déaomperation can be
observed also in one-shot anonymous interactions (Car@@@&r), where none of
the five rules of cooperation proposed by Nowak (2006) seerhe at play.

Here we propose a novel approach to explain cooperatiordbas work of
Halpern and Pass (2013) and Salcedo (2013), assuming wipardland Pass call
translucent playersTypically, players are assumed to @y@aque in the sense that
a deviation by one player does not affect the strategies lmgether players. But a
player may believe that if he switches from one strategy titaar, the fact that he
chooses to switch may be visible to the other players. Famei if he chooses
to defect in Prisoner’s Dilemma, the other player may semsguilt. (Indeed, it
is well known that there are facial and bodily clues, suchnaseiased pupil size,
associated with deception; see, elg., (Ekman and Frie€8).1Professional poker
players are also very sensitivetadls—betting patterns and physical demeanor that
reveal something about a player’s hand and strategy.)

We use the idea of translucency to explain cooperation. ffilaig at first seem
somewhat strange. Typical lab experiments of social dilaswegonsider anony-
mous players, who play each other over computers. In thisngethere are no
tells. However, as Rand and his colleagues have argueds(gedRand et al. 2012;
Rand et al. 2014)), behavior of subjects in lab experimenttrongly influenced
by their experience in everyday interactions. People matiere strategies that are
more successful in everyday interactions and use them asltsfrategies in the
lab. We would argue that people do not just internalize egias; they also inter-
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nalize beliefs In everyday interactions, changing strategies certaiffigcts how
other players react in the future. Through tells and leakalsb may affect how
other players react in current play. Thus, we would argueithaveryday interac-
tions, people assume a certain amount of translucency,deathuse it is a way of
taking the future into account in real-world situationstiue repeated and because
itis a realistic assumption in one-shot games that are glaysettings where play-
ers have a great deal of social interaction. We claim thataptathen apply these
beliefs in lab settings where they are arguably inapprogria

There is some additional experimental evidence that cangvesd as support-
ing translucency. There is growing evidence that showirapfgesimple images of
watching eyes has a marked effect on behavior, ranging fieimggmore in Public
Goods games to littering less (sée (Bateson et al.|2013) discaission of some
of this work and an extensive list of references). One waynafaustanding these
results is that the eyes are making people feel more tragrsiuc

We apply the idea of translucency to a particular class ofagathat we call
social dilemmagcf. (Dawes 1980)). A social dilemma is a normal-form gameawi
two properties:

1. there is a unique Nash equilibriusff, which is a pure strategy profile;

2. there is a unique welfare-maximizing profid¥’, again a pure strategy pro-
file, such that each player’s utility ¥V is played is higher than his utility if
sV is played.

Although social dilemmas are clearly a restricted class ashegs, they contain
some of the best-studied games in the game theory literatwading Prisoner’s
Dilemma, Traveler's Dilemma (Basu 1994), Bertrand Contjoetj and the Public
Goods game. (See Sectign 3 for more discussion of these games

There are (at least) two reasons why an agent may be concaooetitransiu-
cency in a social dilemma: (1) his opponents may discoverhbas planning to
defect and punish him by defecting as well, (2) many othempleem his social
group (which may or may not include his opponent) may disctvat he is plan-
ning to defect (or has defected, despite the fact that theegarmanonymous) and
think worse of him.

For definiteness, we focus here on the first point and assuatgithsocial
dilemmas, players have a degree of balig¢hat they are translucent, so that if they
intend to cooperate (by playing their component of the weHaaximizing strat-
egy) and decide to deviate, there is a probabilitthat another player will detect
this, and play her component of the Nash equilibrium stratéghese detections
are independent, so that the probability of, for examplacty two players other
thani detecting a deviation byis a?(1 — «)V=3, whereN is the total number
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of players.) Of course, i& = 0, then we are back at the standard game-theoretic
framework. We show that, with this assumption, we can ajreagblain a number

of experimental regularities observed in social dilemnsze (Sectioh]3). We can
model the second point regarding concerns about transtydarmuch the same
way, and would get qualitatively similar results (see Sued8).

The rest of the paper is as follows. In Sectidn 2, we formalieenotion of
translucency in a game-theoretic setting. In Sedtion 3, efime the social dilem-
mas that we focus on in this paper; in Secfibn 4, we show thasbyming translu-
cency, we can obtain as predictions of the framework a numibegularities that
have been observed in the experimental literature. In @#8tiwe show that most
of the other approaches proposed for explaining human kmhiavsocial dilem-
mas do not predict all these regularities.

In the appendix, we discuss a solution concept that wereaislucent equilib-
rium, based on translucency, closely related to the notianaiidual rationality
discussed by Halpern and Pass (2013), and show how it canpliecap social
dilemmas.

2 Rationality with translucent players

In this section, we briefly define rationality in the presentéranslucency, moti-
vated by the ideas in Halpern and Pass (2013).

Formally, a (finite) normal-form gam@is a tuple(P, S1, ..., SN, u1, ..., un),
whereP = {1,..., N} is the set of playersS; is the set of strategies for playgr
andu; is playeri’'s utility function. LetS = 57 x --- x Sy andS_; = H#i S;.
We assume that is finite and thatVv > 2.

In standard game theory, it is assumed that a playeas beliefs about the
strategies being used by other playeérs; rational if his strategy is a best response
to these beliefs. The standard definition of best resportse i®llowing.

Definition 2.1. A strategys; € .S; is a best response to a probabilify on S_; if,
for all strategiess/, for playeri, we have

o msuilsis) = Y palsL)ui(sh, sLy).

Sliésfi Sliesfi

Definition[2.1 implicitly assumes thats beliefs about what other agents are
doing do not change ifswitches frons;, the strategy he was intending to play, to a
different strategy. (In general, we assume traltvays has amtended strategyfor
otherwise it does not make sense to talk abi@witching to a different strategy.)

So what we really have are beliqiéi’s’,i for i indexed by a pair of strategiesand
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s;; we interprety; " asi's beliefs if he intends to play; but instead deviates to
s;. Thus,u;"* represents's beliefs if he plays;; and does not deviate.
We can now define a best response #favith respect to a family of beliefs

!
84,8

)

Definition 2.2. Strategys; € S; is abest response farwith respect to the beliefs
{u"% : st € S} if, for all strategiess, € S;, we have

KA
. 05
E Mf“sl(sl_i)ui(si,sl_i) > E :u: ’ (SL')ui(S;’Sl_i)'

s’ €S s’ €S

We are interested in players who are making best respongesitdeliefs, but
we define best response in terms of Definifiod 2.2, not Dedimifl.1. Of course,
the standard notion of best response is just the specialafabe notion above
wherepf“sg = p;>° for all si: a player's beliefs about what other players are
doing does not change if he switches strategies.

Definition 2.3. We say that a player isanslucently rationaf he best responds to
his beliefs in the sense of Definition2.2.

Our assumptions about translucency will be used to deternflhsg. For ex-
ample, suppose that is a 2-player game, playdr believes that, if he were to
switch froms; to s/, this would be detected by player 2 with probability and

if player 2 did detect the switch, then play2mwould switch tOS;-. Thenufi’sg is

(1 — a)p®*t + oy, wherey' assigns probability 1 te; that is, player 1 believes
that with probabilityl — «, player 2 continues to do what he would have done all
along (as described hy#*) and, with probabilityc, player 2 switches t@;.

3 Social dilemmas

Social dilemmas are situations in which there is a tensidwden the collective

interest and individual interests: every individual hasrarentive to deviate from

the common good and act selfishly, but if everyone deviates, they are all worse
off. Personal and professional relationships, depletioratural resources, climate
protection, security of energy supply, and price competiin markets are all in-

stances of social dilemmas.

As we said in the introduction, we formally define a sociakedima as a
normal-form game with a unique Nash equilibrium and a unigakare-maximizing
profile, both pure strategy profiles, such that each playsiiity if s" is played is
higher than his utility ifs"V is played. While this is a quite restricted set of games,
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itincludes many that have been quite well studied. Here ,omad on the following
games:

Prisoner’s Dilemma. Two players can either cooperat€’)(or defect D). To
relate our results to experimental results on Prisonefsiirna, we think of
cooperation as meaning that a player pays acosb to give a benefib > ¢
to the other player. If a player defects, he pays nothing aveksgiothing.
Thus, the payoff of D, D) is (0,0), the payoff of(C,C) is (b — ¢, b — ¢),
and the payoffs of D, C') and(C, D) are (b, —c) and(—c, b), respectively.
Conditionb > ¢ implies that(D, D) is the unique Nash equilibrium and
(C, C) is the unique welfare-maximizing profile.

Public Goods game.N > 2 contributors are endowed with 1 dollar each; they
must simultaneously decide how much, if anything, to cbaote to a public
pool. (The contributions must be in whole cent amounts.) foked amount
in the pot is then multiplied by a constant strictly betweeant NV, and
then evenly redistributed among all players. So the paybfflayer i is
ui(x1,...,xn) =1 —a; + p(x1 + ... + xN), Wherex; denotesg’s contri-
bution, andp € (%, 1) is themarginal return (Thus, the pool is multiplied
by pN before being split evenly among all players.) Everyone rijouting
nothing to the pool is the unique Nash equilibrium, and eweeycontribut-
ing their whole endowment to the pool is the unique welfage<imizing
profile.

Bertrand Competition. N > 2 firms compete to sell their identical product at a
price between the “price floo> > 2 and the “reservation valug?. (Again,
we assume thaltl and L are integers, and all prices must be integers.) The
firm that chooses the lowest price, sgysells the product at that price, get-
ting a payoff ofs, while all other firms get a payoff of 0. If there are ties, then
the sales are split equally among all firms that choose thedomrice. Now
everyone choosing is the unique Nash equilibrium, and everyone choosing
H is the unique welfare-maximizing profife.

Traveler's Dilemma. Two travelers have identical luggage, which is damaged (in
an identical way) by an airline. The airline offers to recange them for
their luggage. They may ask for any dollar amount betwieand H (where
L and H are both positive integers). There is only one catch. If twshy/for
the same amount, then that is what they will both receive. ¢l if they

"We require thaf, > 2 for otherwise we would not have a unique Nash equilibriumgradition
we imposed on Social Dilemmas. If = 1 and N = 2, we get two Nash equilibria(2, 2) and
(1,1); similarly, for L = 0, we also get multiple Nash equilibria, for all values/éf> 2.



ask for different amounts—say one asks forand the other forn/, with
m < m/—then whoever asks fon (the lower amount) will getn + b (m
and a bonus o), while the other player geta — b: the lower amount and
a penalty ofb. It is easy to see thdtl, L) is the unique Nash equilibrium,
while (H, H) maximizes social welfare, independentof

From here on, we say that a playeooperatesif he plays his part of the
socially-welfare maximizing strategy profile addfectsf he plays his part of the
Nash equilibrium strategy profile.

While Nash equilibrium predicts that people should alwaggedt in social
dilemmas, in practice, we see a great deal of cooperativaviomh that is, people
often play (their part of) the welfare-maximizing profilghiar than (their part of)
the Nash equilibrium profile. Of course, there have been rastieynpts to explain
this. Evolutionary theories may explain cooperative bé&ramong genetically re-
lated individuals[(Hamilton 1964) or when future interaos among the same sub-
jects are likely [(Nowak and Sigmund 1998; Trivers 1971); @déawak 2006) for
a review of the five rules of cooperation. However, we oftesestre cooperation
even in one-shot anonymous experiments among unrelatgerplgrapoport 1965).

Although we do see a great deal of cooperation in these gaweesio not
always see it. Here are some of the regularities that have dieserved:

The degree of cooperation in the Prisoner’s dilemma deppasigively on
the benefit of mutual cooperation and negatively on the cosba@peration
(Capraro, Jordan, and Rand 2014; Engel and Zhurakhovskg|R@poport 1965).

The degree of cooperation in the Traveler’s Dilemma depeaedsatively on
the bonus/penalty (Capra, Goeree, Gomez, and Holt|1999).

The degree of cooperation in the Public Goods game depersits/ply on
the constant marginal return (Gunnthorsdottir, Houseat,MnCabe 2007;
Isaac, Walker, and Thomas 1984).

The degree of cooperation in the Public Goods game depersits/ply on
the number of players (Barcelo and Capraro 2014; Isaac,&lakd Williams 1994;
Zelmer 2003).

The degree of cooperation in the Bertrand Competition déperegatively
on the number of players (Dufwenberg and Gneezy 2002).

The degree of cooperation in the Bertrand Competition déperegatively
on the price floor (Dufwenberg, Gneezy, Goeree, and Nagef)200



4 Explaining social dilemmas using translucency

As we suggested in the introduction, we hope to use transtyct explain co-
operation in social dilemmas. To do this, we have to makenaggans about an
agent’s beliefs. Say that an ageritastype («, 5, C) if 7 intends to cooperate (the
parametelC' stands forcooperat¢ and believes that (a) if he deviates from that,
then each other agent will independently realize this withbpbility «; (b) if an
agentj realizes that is not going to cooperate, thgrwill defect; and (c) all other
players will either cooperate or defect, and they will caape with probability3.

The standard assumption, of course, is that 0. Our results are only of
interest ifa > 0. The assumption thatbelieves that agent will defect if she
realizes that is going to deviate from cooperation seems reasonablectitaids
the “safe” strategy. We stress that, for our results, it domsmatter whay actu-
ally does. All that matters arés beliefs about whaj will do. The assumption
that players will either cooperate or defect is triviallpdrin Prisoner’s Dilemma,
but is a highly nontrivial assumption in the other games wasater. While co-
operation and defection are arguably the most salienegiiest, we do in practice
see players using other strategies. For instance, thébdtsbn of strategies in the
Public Goods game is typically tri-modal, concentrated ontibuting nothing,
contributing everything, and contributing half (Caprafordan, and Rand 2014).
We made this assumption mainly for technical conveniertamakes the calcula-
tions much easier. We believe that results qualitativetyilar to ours will hold
under a much weaker assumption, namely, that a type, C) player believes
that other players will cooperate with probabilify (without assuming that they
will defect with probabilityl — 5).

Similarly, the assumptions that a social dilemma has a enitpsh equilibrium
and a unique social-welfare maximizing strategy were madgely for technical
reasons. We can drop these assumptions, although that wemude more com-
plicated assumptions about players’ beliefs.

The key feature of our current assumptions is that the typaayferi deter-

mines the distribution&f“sg. In a social dilemma withV agents, the distribution
p;"% assigns probability3” (1 — 3)V 17" to a strategy profile_; for the players
other than if exactly r players cooperate in_; and the remainingv — 1 —r play-

ers defect; it assigns probability O to all other strategyfifgs. The distributions
157" for s # s; all have the form" sy ivivr vy /i1 = )N,
wherey/ is the distribution that assigns probabilitf (1 — 8)V~I7I=* to a profile
wherek < N — 1 — |J| players not inJ cooperate, and the remaining players

(which includes all the players i) defect. Thusu;f is the distribution that de-
scribes what playei’s beliefs would be if he knew that exactly the players/in



had noticed his deviation (which happens with probabilityf (1 — o)V ~1=I/1). In
the remainder of this section, when we talk about best resgdhis with respect
to these beliefs.

For our purposes, it does not matter where the betied®id 5 that make up a
player's type come from. We do not assume, for example, ttredr @layers are
(translucently) rational. For examplémay believe that some players cooperate
because they are altruistic, while others may cooperateusedhey have mistaken
beliefs. We can think of as summarizing's previous experience of cooperation
when playing social dilemmas. Here we are interested inrtipact of the param-
eters of the game on the reasonableness of cooperation, gpeayer’s type.

The following four propositions analyze the four sociakdimas in turn. We
start with Prisoners Dilemma. Recall thet the benefit of cooperation ards its
cost.

Proposition 4.1. In Prisoner’s Dilemma, it is translucently rational for agjer of
type(a, 8, C) to cooperate if and only &3b > c.

Proof. If player : has type(a, 5, C') and cooperates in Prisoner’'s Dilemma, then
his expected payoff is(b — ¢) — (1 — 5)c, since playet believes thay # i will
cooperate with probabilitys. However, ifi deviates from his intended strategy
of cooperation, then will catch him with probabilitya and also defect. Thus,
if ¢ deviates, ther’s belief that; will cooperate goes down fromi to (1 — «)g.
(We remark that this is the case in all social dilemmas; this #ill be used in all
our arguments.) This means thi& expected payoff if he deviates by defecting is
(1 — ) Bb. So cooperating is a best responsg( — c¢) — (1 — 3)c > (1 — a) 5b.

A little algebra shows that this reducesd6b > c. O

As we would expect, iic = 0, then cooperation is not a best response in
Prisoner’s Dilemma,; this is just the standard argument ded¢ction dominates
cooperation. But itx > 0, then cooperation can be rational. Moreover, if wenfjx
the greater the benefit of cooperation and the smaller thetbes the smaller the
value of3 that still allows cooperation to be a best response.

We next consider Traveler's Dilemma. Recall thas the reward/punishment,
andH andL are the high and low payoffs, respectively.

Proposition 4.2. In Traveler's Dilemma, it is translucently rational for agyjer of
L if o > 3
(o, B, C) to cooperate if and only & < { CH-LB H_L-1\ . 1.
mln( af 134 > if o < 3;

Proof. If player i has type(«, 3, C') and cooperates in Traveler's Dilemma, then
his expected payoff iISH + (1 — 5)(L — b), since player believes thay # i




will cooperate with probabilitys. If ¢ deviates and plays # H, thenj will catch
him with probabilitya and playL. Recall from the proof of Propositidn 4.1 that,
if 7 deviates;’s belief thatj cooperates i§1 — o). This means thats expected
payoff if he deviates te < H is (1—a)f(z+b)+(1—F+af)(L—0b) if > L, and
(1-a)B(L+b)+(1-B+aB)L = L+(B—apf)bif x = L. Itis easy to see that
maximizes his expected payoff eitherit= H—1 orx = L. Thus, cooperation is a
best response #H +(1—53)(L—b) > max((1—«a)B(H+b—1)+(1—p+af)(L—
b),L + (8 — aB)b). Again, straightforward algebra shows that this condii®n
equivalent to the one stated, as desired. (It is easy to dhethkf « > 1/2, then
the condition8H + (1— 8)(L —b) > (1 —a)B(H+b—1)+ (1 — 8+ aB)(L —b)

is guaranteed to hold, which is why we get the two cases dépgrmoh whether
a>1/2) O

Proposition_ 4.2 shows that &s the punishment/reward, increases, a player
must have greater belief that his opponent is cooperatidéoam greater belief
that the opponent will learn about his deviation and/or agnedifference between
the high and low payoffs in order to make cooperation a begtarse. (The fact
that increasing’ increaseéff__—jﬁ)ﬁ follows from straightforward calculus.)

We next consider the Public Goods game. Recallgtigethe marginal return
of cooperating.

Proposition 4.3. In the Public Goods game with/ players, it is translucently
rational for a player of typd«, 3, C) to cooperate if and only if5p(N — 1) >

1—p.

Proof. Suppose player, of type(a, 5, C), cooperates. Since he expects a player to
cooperate with probabilitys, the expected number of cooperators among the other
players isg(N — 1). Since he himself will cooperate, the total expected number
of cooperators i + 3(N — 1). Sincei’s payoff is pm if m players including him
cooperate, and thus is linear in the number of cooperat@®xpected payoff is
exactly his payoff if the expected number of players codjger8ince his expected
payoff with 1 + (N — 1) cooperators i®(1 + 5(N — 1)), this is his expected
payoff if he cooperates.

On the other hand, if deviates by contributing < 1, his expected payoff if
m other players cooperate (i — x) 4+ p(m + x). Again, if i deviates, his expected
belief thatj will cooperate i1 — «)3. Thus, the expected number of cooperators
is (1 —«)B(N — 1), and his expected payoff is— = + p((1 — a)5(N — 1) + z).
Sincep < 1, he gets the highest expected payoff by defecting (i.eingak = 0).

Thus, cooperation is a best responsg if+3(N—1)) > 1+p(1—a)B(N—1).
Simple algebra shows that this condition holdsviffp(N — 1) > 1 — p. O
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Proposition 4.8 shows that if = 1, then cooperation is certainly a best re-
sponse (you always get out at least as much as you contribete)fixeda and
5, there is guaranteed to be &y such that cooperation is a best response for
all N > Ny; moreover, for fixedv, asN gets larger, smaller and smallgs are
needed for cooperation to be a best response.

Finally we consider the Bertrand competition. Recall tHais the reservation
value andL is the price floor.

Proposition 4.4. In Bertrand Competition, it is translucently rational forpdayer
of type (o, 3,C) to cooperate iff3¥N~1 > f(y,N)LN/H, where f(y,N) =
oo (TP = )EyN R (k4 1) andy = (1 - a)B.

Proof. Clearly, if playeri cooperates, then his expected payoftis~' H/N, since
he getsH /N if everyone else cooperates (which happens with probwifit—),
and otherwise gets.

Lety = (1—«)B. Again, this is the probability thatascribes to another player
playing H if he deviates. Ifi deviates, then it is easy to see (given his beliefs) that
the optimal choices for deviation afé — 1 and L. In the former case,

i's expected payoff is/N"1(H — 1). In the latter casei’s expected payoff
is ooy (Vo) (@ — )P NEIL/(k 4 1): with probability (1 — )k N k-1,
exactly k other players will playL, andi’s payoff will be L/(k + 1). Moreover,
each possible subset bfdefectors, has to be cout, ') times. Letf(y,N) =

o (Vo (1 = 4)kRyN=R=1)(k 4 1). Note that, as the notation suggests, this
expression depends only gnand N (and not any of the other parameters of the
game). Thusj's expected payoff in this case j§~, N)L, so cooperation is a
best response iV 'H/N > max(yN~1(H — 1), f(y, N)L). While it seems
difficult to find a closed-form expression fgr~y, V), this does not matter for our
purposef Since we clearly have¥ —'H/N > vN—1(H 1), cooperation is a best
response iff3N"1H/N > f(v,N)L, or, equivalently,3N~! > f(~,N)LN/H,

O

Note thatf (v, N) = 33000 (Vo) (=) =k =1/ (k+1) = S50 (V) (-
7)kyN=F/N = 1/N, so PropositiofL 414 shows cooperation is irrationgf- <
L/H. Thus, while cooperation may be achieved for reasonableesadfa: and 3
if NV is small, a player must be more and more certain of cooperatiorder to
cooperate in Bertrand Competition as the number of playereases. Indeed, for
a fixed type(a, 3, C), there existsV, such that cooperation is not a best response
forall N > Ny. Moreover, if we fix the numbelN of players, more values af

2Note that the expected value bf (k+ 1) cannot be computed by plugging in the expected value
of k, in the spirit of our earlier calculations, sinég'(k + 1) is not linear ink.
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and g allow cooperation a&,/H gets smaller. In particular, if we fik and raise
the floor L, fewer values ofx and 5 allow cooperation.

While Propositions 4]1-4.4 are suggestive, we need to mdke asumptions
to use these propositions to make predictions. A simplenagsan that suffices
is that there are a substantial number of translucentlpmatiplayers whose types
have the form(c, 8, C), and for each paifu,v) and (v’,v’) of open intervals
in [0, 1], there is a positive probability of finding someone of type 5, C) with
a € (u,v) andp € (u/,v’). With this assumption, it is easy to see that all the
regularities discussed in Sectioh 3 hold.

5 Discussion

We have presented an approach that explains a number okmailn observations
regarding the extent of cooperation in social dilemmas.dulitaon, our approach
can also be applied to explain the apparent contradictiah firople cooperate
more in a one-shot Prisoner’s dilemma when they do not kn@aother player’s
choice than when they do. In the latter case, Shafir and Ty€i€92) found that
most people (90%) defect, while in the former case, only 63%ewople defect.
Our model of translucent players predicts this behavioplaier 1 knows player
2 choices, then there is no translucency and thus our moddigte that player 1
defects for sure. On the other hand, if player 1 does not knayep 2's choice and
believes that he is to some extent translucent, then, asrsimaropositiorh 4]1, he
may be willing to cooperate. Seen in this light, our model akso be interpreted
as an attempt to formalizguasi-magical thinkingShafir and Tversky 1992), the
kind of reasoning that is supposed to motivate those peopte velieve that the
others’ reasoning is somehow influenced by their own thipkeven though they
know that there is no causal relation between the two. Quasjical thinking has
also been formalized by Masel (2007) in the context of theiP@nods gam and
by Daley and Sadowski (20114) in the context of symmexsi@ games. The notion
of translucency goes beyond these models, since it mayegpdia much larger
set of games.

Besides a retrospective explanation, our model makes nesigbions for so-
cial dilemmas which, to the best of our knowledge, have nbeen tested in the
lab. In particular, it predicts that

¢ the degree of cooperation in Traveler's dilemma increasdbeadifference
H — Lincreases;

o for fixed L and IV, the degree of cooperation in Bertrand Competition in-
creases a#l increases, and what really matters is the ratid{ .
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Clearly much more experimental work needs to be done to atlithe ap-
proach. For one thing, it is important to understand the iptieths it makes for
other social dilemmas and for games that are not social dilesn Perhaps even
more important would be to see if we can experimentally yetifit people believe
that they are to some extent translucent, and, if so, to getisesof what the value
of « is. In light of the work on watching eyes mentioned in the ddtiction, it
would also be interesting to know what could be done to mdaipuhe value of
Q.

As we mentioned, there have been many other attempts toiexuglaperation
in social dilemmas, especially recently. Most of other apphes that we are aware
of are not able to obtain all the regularities that we havetioead.

e The Fehr and Schmidt (1999) inequity-aversion model assuima sub-
jects play a Nash equilibrium of a modified game, in which ptaydo
not only care about their monetary payoff, but also they edi@ut equity.
Specifically, playeri’s utility when strategys is played is assumed to be

FS FS
Ui(s) = uils) ~ =5 22 max(uy(s)—wi(s), 0) — gy X2, max(ui(s) -
u;(s),0), whereu;(s) is the material payoff of player and0 < b/ < af¥
are individual parameters, wheng“ represents the extent to which player
1 is averse to inequity in favor of others, ahﬁs represents his aversion to
inequity in his favor. Consider the Public Goods game uitiplayers. The
strategy profile(z, ..., x), where all players contribute gives player; a
utility of (1 —z) + pNz. If x > 0 and player contributes:’ < z, then his
payoffis(1—z') + p((N — 1)z +2') — b p(x —2'). Thus,(x, ..., x)is an
equilibrium if b p(z — 2') > (1 — p)(x — '), thatis, ifbS > (1 — p)/p.
Thus, ifbfS > (1 — p)/p for all playersi, then(z, ..., x) is an equilibrium
for all choices ofr and all values ofV. While there may be other pure and
mixed strategy equilibria, it is not hard to show thati® < (1—p)/p, then
playeri will play 0 in every equilibrium (i.e., not contribute anytig). As a
consequence, assuming, as in our model, that players béhat there is a
probability 5 that other agents will cooperate and that the other agethisrei
cooperate or defect, Fehr and Schmidt (1999) model doesak# any clear
prediction of a group-size effect on cooperation in the jguipbods game.

e McKelvey and Palfrey’s (1995quantal response equilibrium (QRIES) de-
fined as follows] Taking o;(s) to be the probability that mixed strategy
assigns to the pure strategygiven\ > 0, a mixed strategy profile is a

%We actually define here a particular instance of QRE calledbiit QRE ) is a free parameter
of this model.
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To see that QRE does not describe human behaviour well ialsditem-

mas, observe that in the Prisoner’'s Dilemma, for all chomfggarameters
b andc in the game, all choices of the paramefgrall playersi, and all

(mixed) strategies_; of player—i, we haveEU;(C,s_;) < EU;(D,s_;).

Consequently, whatever the QRfs, we must have;(C) < 1 < o;(D),

that is, QRE predicts that the degree of cooperation carr fieviarger than
50%. However, experiments show that we can increase thditbtneost

ratio so as to reach arbitrarily large degrees of cooperdtimse to 80% in
(Capraro, Jordan, and Rand 2014) wifte = 10).

QRE if, for each playet, o;(s) =

Iterated regret minimizatiofHalpern and Pass 2012) does not make appro-
priate predictions in Prisoner’s Dilemma and the Public @&ogame, be-
cause it predicts that if there is a dominant strategy thevillitbe played,
and in these two games, playing the Nash equilibrium is thgquendomi-
nant strategy.

Capraro’s [(2013) notion ofooperative equilibrium while correctly pre-
dicting the effects of the size of the group on cooperatiotha Bertrand
Competition and the Public Goods game (Barcelo and Capfr4)2 fails
to predict the negative effect of the price floor on cooperain the Bertrand
Competition.

Rong and Halpern's (2013) notion oboperative equilibriungwhich is dif-
ferent from that of Capraro (20113)) focuses on 2-player gardewever, the
definition for games with greater than 2 players does notigiréite decrease

in cooperation asV increases in Bertrand Competition, nor the increase as
N increases in the Public Goods Game.

The one approach besides ours that we are aware of that®hththe regularities
discussed above is that of Charness and Rabin (2002). Gisaamel Rabin, like
Fehr and Schmidt (1999), assume that agents play a Naskbeiguil of a modified
game, where players care not only about their personal rmbpayoff, but also
about the social welfare and the outcome of the least fortymerson. Specifically,
playeri’s utility is assumed to bél — a$')u;(s) + aSF(bFF minj_1 v uj(s)+
(1 -8R Z;V:l u;(s)). Assuming, as in our model, that agents believe that other
players either cooperate or defect and that they coopeigtigovobability 5, then
it is not hard to see that Charness and Rabin (2002) alsogpratiihe regularities
that we have been considering.

Although it seems difficult to distinguish our model from tlw Charness and
Rabin (2002) if we consider only social dilemmas, they astimjuishable if we
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look at other settings and take into account the other reasomentioned for
translucency: that other people in their social group mitigdover how they acted.
We can easily capture this in the framework we have beenderisg by doubling
the number of agents; for each playewe add another playét that represent’s
1's social network. Playei* can play only two actionsn (for “did not observe
playeri's action) ando (for “observed playet’s action")E‘] The payoffs of these
new players are irrelevant. Playgs payoff depends on the action of playgr
but not on the actions of player for j* # i*. Now playeri must have a prior
probability v; about whether his action will be observed; in a social dilemthis
probability might increase tg, > ~; if he intends to cooperate but instead deviates
and defects. It should be clear that, evenif= ~;, if we assume that playeis
utilities are significantly lower if his non-cooperativetiao is observed, with this
framework we would get qualitatively similar results forcg&d dilemmas to the
ones that we have already obtained.

The advantage of taking into account what your social grbinks is that it can
be applied even to single-player games like the Dictator &@fahneman, Knetsch, and Thaler 1986).
To do so, we would need to think about what a player’s utilipwd be if his so-
cial group knew the extent to which he shared the pot. Butdtikhbe clear that
reasonable assumptions here would lead to some degreerimigsha

While this would still not distinguish our predictions frahmose of the Charness-
Rabin model, there is a variant of the Dictator Game consitlby Caprard (2014)
that does allow us to distinguish between the two. In thisgahere are only two
possible allocations of money: either the agent getsd the other players gets
—x, or the other player gets and the agent getsz. In this game, the Charness-
Rabin approach would predict that the agent will choose &pkbex. But the
translucency approach would allow that there would be typesgients who would
think that their social group would approve of them givingasw, so, if the action
was observed by their social group, they would get hightutily giving awayz.
And, indeed, Capraro’s results show that a significant ivad25%) of people do
choose to give away.

Of course, we do not have to assume- 0 to get cooperation in social dilem-
mas such as Traveler's Dilemma or Bertrand Competition. viButo if we want
to consider what we believe is the appropriate equilibriwgtiam. Suppose that ra-
tional players are chosen at random from a population andgkocial dilemma.
Players will, of course, then update their beliefs aboutikedihood of seeing co-
operation, and perhaps change their strategy as a consequfill these beliefs
stabilize and the strategies played stabilize? sBbility here, we mean that (1)

“Alternatively, we could take playeis payoff to depend on the state of the world, where the state
would model whether or not playés action was observed.
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players are all best responding to their beliefs, and (2)guta beliefs about the
strategies played by others are correct: if plaiyascribes probability to player

j playing a strategys;, then in fact a proportion of players in the population
play s;. We have deliberately been fuzzy here about whether we mestnrée-
sponse in the sense of Definition]2.1 or Definifiod 2.2. If we Definition 2.1 (or,
equivalently use Definition 2.2 and take= 0), then it is easy to see (and well
known) that the only way that this can happen is if the digtiin of strategies
played by the players represents a mixed strategy Nashl@guit. On the other
hand, ifa > 0 and we use Definitioh 2.2, then we can have stable beliefs that
accurately reflect the strategies used and have coopefatiaii the other social
dilemmas that we have studied). We make this precise in therajix using the
framework of Halpern and Pass (2013), by defining a notiotrasfslucent equi-
librium. Roughly speaking, we construct a model where, at all stptagers are
translucently rational (so we have common belief of traceshi rationality), the
strategies used are common knowledge, and we nevertheleschoperation at
some states. Propositions 4.114.4 play a key role in thistoaction; indeed, as
long as the strategies used satisfy the constraints impgmsé#iese results, we get
a translucent equilibrium.

We have not focused on translucent equilibrium here in the teat because it
makes strong assumptions about players’ rationality afidfde.g., it implicitly
assumes common belief of translucent rationality). We doneed such strong
assumptions for our results.

A Translucent equilibrium

In the main text of this paper we have described how coomeratn be rational if
players are translucent, that is, if they believe that if/teeitch from one strategy
to another, the fact that they choose to switch may be visitbtee other players.
In this appendix, we show how to use counterfactual stresttw define a notion
of equilibrium with translucent players and we observe thibnality of cooper-

ation shown in the main text corresponds to having a mixeategjy translucent
equilibrium, where cooperation is played with non-zerohadaility. We start by

reviewing the relevant definitions frorn (Halpern and Pask320

A.1 Game theory with translucent players

LetG = G(P, S, u) be a (finite) normal form game, whefe= {1,..., N} is the
set of players, each of which has finite pure strategyssand utility functionu;.
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Definition A.1. A finite counterfactual structure appropriate for the gaynis a
tuple M = (s, f,PR1,..., PRnN), Where:

e () is a finite space of states;

e s: ) — Sisthe function that associates to each siatbe strategy profile
that is supposed to be played.gt

e fis the closest-state function, which describes what woafupken if player
i switched strategy te] at statev. Thus,f : Q x P x S; — 2 has to verify
the following properties:

CS1.si(f(w,i,8")) = si;

CS2. f(w,i,si(w)) = w.

Property CS1 assures that, at stéte, 7, s,), player: plays s;, and Prop-
erty CS2 assures that the state does not change if plaj@es not change
strategy.

e PR, are playeri's beliefs, which depends on the statis reasoning about.
Specifically, for eachv € Q, PR;(w) is a probability measure dn satisfy-
ing the following properties:

PR1. PR;(w)({w € Q:s;(w') =s;(w)}) = 1 (wheres;(w) denotes player
i's strategy ins(w));
PR2. PRZ(W)({Q)/ e PRZ(W/) = PRZ(M)}) = 1.

These assumptions guarantee that playessigns probabilityt to his actual
strategy and beliefs. O

We can now definés beliefs atw if he were to switch to strategy. Intuitively,
if he were to switch to strategy atw, the probability that would assign to state
w' is the sum of the probabilities that he assigns to all theestalt such that he
believes that he would move front’ to w’ if he used strategy’. Thus we define

PRio(w)(W) := > PR;(w)(w").
{w”: f(w",i,s")=w'}

We define the expected utility of playeat statev in the usual way as the sum
of the product of his expected utility of the strategy profilayed at each state/
and the probability ofs”: EU;(w) = 3", cq PRi(w) (W )ui(si(w), s_i(w’))E

SGiven a profilet = (t1,...,tn), as usual, we define_; = (t1,...,ti—1,tit1,...,tN).
We extend this notation in the obvious way to functions likeso that, for examples_;(w) =
(Sl(w)7 s 7Si*1(w)7si+1(w)7 (R Sn(w))'
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Now we definei's expected utility atv if he were to switch tas’. The usual
way to do so is to simply repladés actual strategy at by s’ at all states, keeping
the strategies of the other players the same; that is,

> PRiw) (@ )uils' s_i(w)).

w'eN

In this definition, playeri’s beliefs about the strategies that the other players are
using do not change when he switches freffw) to s’. The key point of coun-
terfactual structures is that these beliefs may well chanfjeus, we defing’s
expected utility at if he switches tas’ as

EUi(w, ') = Y PRig(w)(w)ui(s',s_i(w)).

w'eN

Finally, we can define rationality in counterfactual stures using these no-
tions:

Definition A.2. Playeri is rational at statew if, for all s’ € S;,

EU;(w) > EU;(w,s).

A.2 Translucent equilibrium

In this section, we define translucent equilibrium and weeolss that the results
reported in the main text imply that social dilemmas have interfactual struc-
ture according to which each player plays, in equilibriuns, part of the welfare
maximizing strategy with non-zero probability.

We start with some preliminary notation. Given a probapifteasurer on
a finite setT’, let supg™) denote the support of, that is, suppr) = {t € T :
7(t) # 0}. Given a mixed strategy profile, note thato_; can can be viewed as
a probability onS_;, whereo_;(s—;) = [[,; 0;(s;). Similarly o can be viewed
as a probability measure dfi In the sequel, we view_; ando as probability
measures without further comment (and so talk about thepa).

Definition A.3. A strategy profilec in a gameg is translucent equilibriumn a
counterfactual structurg/ = (Q,s, f,PR1,...,PRy) appropriate fog if there
exists a subse®’ C Q) such that, for each statein €', the following properties
hold:

TEL. s(w) € supgo);
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TE2. supgPR;(w)) C ;

TE3. s_;(PRi(w)) = o_; (i.e., for each strategy profile_; € S_;, we have
o_i(s—i) = PRi(w)({w' : s_;(w) = s_})).

TE4. each player is rational at

The mixed strategy profile is a translucent equilibrium @ if there exists a coun-
terfactual structur@/ appropriate foiG such thaw is a translucent equilibrium in
M. O

Intuitively, o is a translucent equilibrium id/ if, for each strategy; in the
support ofo;, the expected utility of playing; given that other players are playing
according tos_; is at least as good as switching to some other strateggiven
whati would believe about what strategies the other players angng if he were
to switch tos,.

This notion of translucent equilibrium is closely relatedatcondition callediR
(for individually rationa) by Halpern and Pass (2013). The main difference is that
Halpern and Pass considered only pure strategy profiles|lowe mixed-strategy
profiles here. We discuss the relationship between themstad greater length in
SectiorfA.3B.

A.3 Characterization of translucent equilibria

While it is easy to see that every Nash equilibrium is a trazesht equilibrium
(see Proposition_Al4), the converse is far from true. As wansHor example,
cooperation can be an equilibrium in social dilemmas (sémband Sectioh Al4).
In this section, we provide a characterization of transttiaquilibria that will
prove useful when discussing social dilemmas.

Proposition A.4. Every Nash equilibrium of is a translucent equilibrium.

Proof. Given a Nash equilibriurer = (074, .., 0,), consider the following coun-
terfactual structurd/, = (,s, f,PR1,..., PRnN):

e () isthe set of strategy profiles in the supporbof
o s(s)=s;

0 if s #£s;

o_i(s;) ifsi=si;

o PRi(s1,5_)(sls! ) = {

o f((8i,8-4),1,8) = (s,5_;).
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It is easy to check that is a translucent equilibrium id/Z,; we simply take
Q' = Q. The fact thatf is an “opaque” closest-state function, which is not affdcte
by the strategy used by players, means that rationalify ireduces to the standard
definition of rationality. We leave details to the reader. O

Although the fact that we can consider arbitrary countéut@cstructures (ap-
propriate forG) means that many strategy profiles are translucent edailibre
notion of translucent equilibrium has some bite. For exantble strategy profile
(C, D), where player 1 cooperates and player 2 defects, is notslu@mt equilib-
rium in Prisoner's Dilemma: if player 1 believes that plagas playing defecting
with probability 1, there are no beliefs that 1 could have ¥hauld justify cooper-
ation. However, as we shall see, bo@ C') and(D, D) are translucent equilibria.
This follows from the characterization of translucent érium that we now give.

Definition A.5. A mixed-strategy profiler in G is coherentf for all playersi € P,
all s; € supgo;), and alls; € S;, there iss’_; € S_; such that

wi(si,0-;) > u;(s')
(where, of coursey;(s;,0_;) = Zs’jieSLi o_i(s" ) ui(si, ")) O

That is,o is coherent if, for all pure strategies for playdn the support of;,
if ¢’s belief about the strategies being played by the othergotais given by _;,
there is no obviously better strategy thatan switch to in the weak sense that, if
i contemplates switching tef, there are beliefs thatcould have about the other
players (namely, that they would definitely plaly; in this case) that would make
switching tos, better than sticking witls;.

It is easy to see tha(C, C') and(D, D) in Prisoner’s Dilemma are both coher-
ent; on the other hand(, D) is not.

Halpern and Pass (2013) define a pure strategy profile toddadually ratio-
nal if it is coherent. Definitiol Ab extends individual ratiditya to mixed strate-
gies. Halpern and Pass prove that a pure strategy profileligdnally rational if
there is a model where it is commonly known thas played and there is common
belief of rationality. The definition of translucent egbiium can be seen as the
generalization of this characterization of IR to mixed tetgies. As the following
theorem shows, we get an analogous representation.

Theorem A.6. The mixed strategy profile of gameg is coherent iftr is a translu-
cent equilibrium of.

Proof. Let o be a coherent strategy profile ¢h We construct a counterfactual
structureM = (Q,s, f,PR1,...,PRy) as follows:
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e s(s)=s;
1 if w¢ supfo;), w=w'
~n_ ) O if w¢ supo;), w # W'
* PRi(w)(w') = { o_i(s_;(w") if w e supfo;), s;(w) = s;(w)
0 ifwe SUpF(O',), Sz(w/) 7é Si(w)§
(sirs—i(w)) if w ¢ supro)
w if w € supfoy), s, = s;(w)
sh,s)) if w € supfo;), s, # s;(w), wheres, is a

o
o flwis) = strategy such that;(s;(w),o_;) > u;(s');

such a strategy is guaranteed to exist since
o is coherent.

We first show that\/ is a finite counterfactual structure appropriate §otin
particular,PR; satisfies PR1 and PR2 arfdsatisfies CS1 and CS2. For PR1 and
PR2, there are two cases.df¢ supgo), thenPR;(w)(w) = 1, so PR1 and PR2
clearly hold. Ifw ¢ suppw), thenPR;(w)(w) > 0iff s;(w) = s;(w’). More-
over, if s;(w) = s;(w'), then it is immediate from the definition th&R;(w) =
PR;i(w'), so PR2. holds. That CS1 and CS2 hold is immediate from theitiefi
of f.

To show that is a translucent equilibrium i/, let ' = supg(c). For each
statew € €/, TE1 clearly holds. Note that it € supfo), thenPR;(w) =
(si(w),o_;(w)) (identifying the strategy profile with a probability measyrso
TE2 and TE3 clearly hold. It remains to show that TE4 holdaf th, that every
player is rational at every statec .

Thus, we must show th&U;(w) > EU (w, s7) for all s} € S;. Note that

BUi(w) = Yo PRi(w)(w)ui(si(w),s—i(w))
= Z{w 1eus; (w')= sz(w)} —i(s—i(W))ui(si(w),s—i(w'))
= 2 es, wi(si(w)s%y)

= u,(s,(w) a_)
By definition,
=) PRyl ui(st,s_i(w'))
w'eN

and
PR (w) (W) = > PR (w)(w”).
{w”:f(w”iiisl):wl}
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Now if s} = s;(w), thenf(w, 4, s7). Inthis case, itis easy to check tRR; s: (w) =
PRi(w), SOEU(w,s}) = EU;(w) = EU;(s;,0-;), and TE4 clearly holds. On
the other hand, i§] # s;(w), then

EU; (w7 S;k) = Zw’GQ Z{w”:f(w”,i,s;‘):w’} PR; (w)(w//)ui(sjﬂ S (w/))
= Z{w’GQ:si(w’):sj} Z{w”:f(w”,i,s;‘):w’,si(w”):si(w)} U_i(w’/)ui(sf, S—i(w/))
Z{w’GQ:si(w’):sj} Z{w”:f(w”,i,s;‘):w’, si(w”)=s;(w)} U—i(w//)ui(f(w//, 1, S;k))

By definition, u;(f(w”, i, s})) < u;i(si(w”),0-;) = wi(si(w),o_;). Thus,

EU; (w7 S;k) < Z{w’GQ:si(w’):sf} Z{w”:f(w”,i,s;‘):w’, si(w")=s;(w)} U—i(w//)ui (Si (w)7 U—i)
= ui(si (w)7 U—i) Z{w’GQ:si(w’):s;‘} Z{w”:f(w”,i,s;‘):w’,si(w”)zsi(w)} U—i(w//)
= u(si(w),0-).

This completes the proof that TE4 holds, and the proof of tdy'if” direction
of the argument

The “if” is actually much simpler. Suppose, by way of contcéion, thato is
not coherent. Then there is a playeand a strategy; € supgo;) such that for all
s’ ; € S;, we haveu;(s;,0_;) < u;(s’). It follows that, for all counterfactual struc-
tures M, no matter what the beliefs and the closest-state functoasn M, it is
always strictly profitable for playerto switch strategy from; to s;. Consequently,
i is not rational at a state such thats;(w) = s;, contradicting TE4. O

A.4  Translucent equilibrium in social dilemmas

As we now show, our characterizations of Propositlons[44ledn be used to pro-
vide conditions on when translucent equilibrium existshieste social dilemmas.

We start our analysis with Prisoner's Dilemma. We captuee absumption
that 5 is the probability of cooperation, and that players eitheoperate or de-
fect, by assuming that players follow a mixed strategy wlieey cooperate with
probability 5 and defect with probability — 5.

Proposition A.7. (8,C+(1—31)D, 3.C+(1— ;) D) is a translucent equilibrium
of Prisoner’s dilemma iff;b > ¢, fori = 1,2, or 51 = B2 = 0.

Proof. Suppose thatsC + (1 — 51)D, 52C + (1 — B2)D). If By > 0, then by
Theoreni A6, it easily follows we must haue(C, 52C+(1—£2)D) > ui (D, D).
Thus, we must havéx (b — ¢) + (1 — B2)(—c) > 0; equivalently,52b > c. Note
that sincec > 0, this means that we must hage > 0. Similarly, if 55 > 0, then
B1b > ¢. By Theorem A#(D, D) is a translucent equilibrium, since it is a Nash
equilibrium. Thus, eitheB;b > cfori =1,20r 5, = B3 = 0.
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Conversely, ifg;b > c for ¢ = 1,2, then it again easily follows from Theo-
rem[A.6 that(3,C + (1 — 81)D, S2C + (1 — 52) D) is a translucent equilibrium.
As we have observed,D, D) (the case that; = 5, = 0) is also a translucent
equilibrium. O

Propositior_A.Y is not all that interesting, since it does taie into account a
player’s beliefs regarding translucency. The followindjimi&on is a step towards
doing this. Suppose that/ is counterfactual structure appropriate for a social
dilemmal'. Playeri has typex; in M if, at each states in M, playeri believes
that if he intends to cooperate inand deviates from that, then each other agent
will independently realize this with probability; and will defect. Formally, this
means that, at each staten M, we have

e if s;(w) = sV (i.e., i is cooperating inu by playing his component of the
social-welfare maximing strategy profile), then, for eatlc P \ {i}, we
havePR;(w)({w' : f(W',i,s) = W, sj(w') = sjc,sj(w”) = sé-V,Vj €

T = a'/PRy(w){w’ : 55(o) = 57,V € J}).

Proposition A.8. (8:C+(1—/51)D, B2C+(1—B2)D) is a translucent equilibrium
of the Prisoner’s dilemma in a structure where playdras typex; if and only if
B1=0B2=00rq;pB3_;b> cfori> 1,2.

Proof. Suppose thaty;55_;b > cfori = 1,2 or 5y = [, = 0. We show that
(61C + (1 = p1)D, 52C + (1 — B2)D) is a translucent equilibrium in a struc-
ture where playei has typen;. Consider the counterfactual structuv&(a, as)
defined as follows

e O = {C,D} x {0,1}2. (The second component of the state, which is an
element of{0, 1}?, is used to determine the closest-state function. Roughly
speaking, ifv; = 1, then playerj learns about a deviation if there is one; if
v; = 0, he does not.)

e s((s,v)) =s.

(s,v) if s; =5,
o f((s,v),i,8F)=1q (' v) ifs; # s}, wheres, = s; and forj # i,
s = s; if v; = 0 ands :sé-vifvj =1.

Thus, if playeri changes strategy from to s, s, # s;, then each other
player; either deviates to his component of the Nash equilibriumoaitio-
ues with his current strategy, depending on whethes 0 or 1. Roughly
speaking, he switches to his component of the Nash equitibif he learns
about a deviation (i.e., if; = 1).
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;. 0 if s; # s, orv; # v,
* PRi(s;0)(s',v) = { 03—i(s3—i)mi(v3—;) if s =,
o3—; Is the distribution on strategies that puts probability ; on C' and
probability 1 — 83_; on D, while 7; is the distribution that puts probability
a; on 1 and probabilityl — «; on 0. Thus, ifs = s, then the probability
of thev’ component is determined by assuming that the other playerj
independently learns about a deviation:itwith probability «;.

where

Clearly, M (aq, a) is a structure where playéras typex;, fori = 1,2. We
claim that(8,C + (1 — 81)D, 2C + (1 — B2)D) is a translucent equilibrium in
the counterfactual structute (o, aa).

There are two cases. H; = 5 = 0, then letQ)’ consist of all states of the
form ((D, D),v). Itis easy to check that TE1—4 hold.df53_;b > cfori > 1,2,
let Q' = Q. Itis immediate that TE1, TE2, and TE3 hold. Siregss_;b > ¢, it
follows from Propositioi 4]1 that playéris rational at each state in; thus, TE4
holds.

For the converse, suppose thdtis a structure where playeéhas typex;, for
i=1,2,and(5,C + (1 — p1)D, p2C + (1 — B2) D) is a translucent equilibrium in
M. Ifitis not the case that eitheély = 5, = 0 ora;53_;b > cfor¢ = 1, 2, without
loss of generality we can assume that> 0 and thaiv; 52b < c. Letw be a state in
the set)’ where player 1 cooperates. Since player 1 must be ratiofi) ate must
haveul(C’, 520+(1—52)D) > ((1—ﬁ2)—|—a1ﬁ2)u1(D, D)—|—(1—Oé1)52ul(D, C)
Simple calculations show that this inequality holds#{b — ¢) + (1 — 82)(—¢) >
(1 — aq)pBeb or, equivalentlyo; 52b > c. This gives the desired contradiction

The following propositions can be proved in a similar fashi@/e leave details
to the reader.

Proposition A.9. (81 H+(1—51)L, B2 H+(1— ) L) is a translucent equilibrium
of the Traveler’s dilemma if and onlydf< % fori =1,2,0r5, = B = 0.
0

Proposition A.10. (81 H+(1—/51)L, f2H+(1—52)L) is a translucent equilibrium
of the Traveler's dilemma in a structure where playédras typec; if and only if
pr=pB=0o0r

(H-L)B3—; P |

b < 1—041'53?:2' ifa; > 2
= . ((H=L)B3—i H—-L-1 ; 1
mm( 1—042-63; T ) if a; < 3.
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In the following propositions, let C and D denote, respetyivthe full con-
tribution and the null contribution in the Public Goods gant&iven anN-tuple
(r1,...,rn) of real numbersy_; denotes the average of the numbeys with

J# 1.
Proposition A.11. (8:C + (1 — p1)D,...,nC + (1 — Bn)D) is a translucent

equilibrium of the Public Goods game if and onlyf#_;(N — 1) > 1 — p for all
i, or 3; = 0 forall i. O

Proposition A.12. (5;C + (1 — p1)D,...,nC + (1 — Bn)D) is a translucent
equilibrium of the Public Goods game in a structure whereypta has typev; if
and only if3; = 0 for all i or a;pB_; > 1 — pfor all . O

Proposition A.13. (81H + (1 — B1)L,...,BvH + (1 — By)L) is a translucent
equilibrium of the Bertrand competition if and only5if = 0 for all 4, or H#i Bj >

L .
I for all . O

Proposition A.14. (81H + (1 — B1)L,...,BvH + (1 — By)L) is a translucent
equilibrium of the Bertrand competition in a structure whglayer: has typex;
if and only if 3; = 0 for all ¢, or H#i B > f(v; N)LN/H for all i, where
figs N) =2 sep—ianULiep—ugy) Vi Ljes (T =7i3)) /(| J] + 1) and~; j =
(1 —ay)B;. O
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