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Abstract. In the mathematical modeling of real-life applications, systems of equations with
complex coefficients often arise. While many techniques of numerical linear algebra, e.g., Krylov-
subspace methods, extend directly to the case of complex-valued matrices, some of the most effective
preconditioning techniques and linear solvers are limited to the real-valued case. Here, we consider
the extension of the popular algebraic multigrid method to such complex-valued systems. The choices
for this generalization are motivated by classical multigrid considerations, evaluated with the tools
of local Fourier analysis, and verified on a selection of problems related to real-life applications.
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1. Introduction. Many real-world physical systems may be modeled mathe-
matically using the tools of partial differential equations. For many such models, the
degrees of freedom are naturally real-valued, for example, displacements in an elas-
tic body or velocities of a fluid. For some models, however, complex-valued degrees
of freedom also arise naturally, as in frequency-domain modeling of electromagnetic
waves or other phenomena. Because of the many interesting real-valued models, devel-
opment of the numerical linear algebra tools needed for the solution of discrete linear
systems has focused on the real-valued case. While some of these techniques may
be easily extended to the complex-valued case (e.g., GMRES and BiCGStab for gen-
eral matrices, or conjugate gradients for complex Hermitian matrices), many require
special consideration to generalize the appropriate principles to the complex-valued
case. Here, we consider the generalization of the algebraic multigrid method [6, 23],
an effective solver (or preconditioner) for many linear systems that arise from the
discretization of elliptic or parabolic differential equations.

The complex-valued linear systems considered here arise from different physical
applications, for example, in modeling electromagnetic waves. Under the assumption
of time-harmonic variation in the electromagnetic fields, Maxwell’s equations may
be reduced into a scalar Helmholtz equation with a complex shift (see, e.g., [16]).
Similarly, when the acoustic (or elastic) wave equation is considered in the frequency
domain, Sommerfeld boundary conditions and attenuation both introduce a complex
component in the resulting Helmholtz equation; multigrid solvers for these (indefinite)
matrices were considered in [15]. In the field of lattice quantum chromodynamics
(QCD), a model of the interactions of fermions (or quarks) on a lattice is given in
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terms of a complex-valued gauge field that directly leads to a complex-valued linear
system of equations [7, 24].

Multigrid methods are a family of techniques known to provide optimal (or near-
optimal) solution of the linear systems that arise in many real-world applications.
Through the careful coupling of a relaxation scheme (to reduce high-frequency errors)
and a coarse-grid correction process (to reduce low-frequency errors), geometric multi-
grid techniques are among the most efficient solvers available for models with slowly
varying coefficients [26]. For problems with significant heterogeneity, either in the co-
efficients of the continuous model or the geometry on which it is discretized, algebraic
multigrid (AMG) techniques often perform as well as geometric techniques do for ho-
mogeneous models. Although first proposed in the 1980s [6, 23], there has been much
recent interest in AMG because of its potential to handle large-scale models with real-
istic material properties and geometries, particularly in parallel environments [7, 16].

The success of AMG for a wide range of models is due to a careful combina-
tion of multigrid principles with more general ideas of numerical linear algebra. This
combination, however, does not automatically yield a black-box approach for solving
all types of linear systems. Effective multigrid performance results from a comple-
mentary choice of local relaxation and coarse-grid correction; AMG is not freed from
these constraints, even though it is no longer dependent on knowledge of many de-
tails of the discrete problem under consideration. AMG performance for problems
of structural mechanics, for example, is greatly improved if AMG is tempered with
knowledge of the block structure of the linear system [23]. Such extensions to AMG
are, in principle, straightforward and are not considered here.

While there has been much development of AMG for real-valued matrices, less
investigation has occurred for complex-valued matrices. Lahaye et al. consider AMG
for the Helmholtz equation with a complex shift and apply AMG to the real part of
the matrix in order to define the coarse grids and interpolation operators [16]. For
these models, the dominant part of the operator (corresponding to the second-order
derivative terms) is entirely real, while the imaginary part represents only a mass
matrix term, and, so, coarsening the complex-valued problem based on its real part
is quite effective. Generalizing this approach, Reitzinger, Schreiber, and van Rienen
propose using a real-valued auxiliary matrix to define the AMG hierarchy [21]. Such
an approach is again appropriate when it is known that the dominant part of the
operator may be represented by a real matrix. Both these approaches, however,
require knowing how to split the given matrix in such a way as to define a real-valued
auxiliary problem. Such an approach, then, is less general than the AMG approach
for real-valued systems, which is based only on the entries in the linear system.

An alternate approach is to consider the equivalent real form of the complex
system, splitting A ∈ C

n×n into its real and complex parts, A = A(R) + ıA(I), and
rewriting Au = b as [

A(R) −A(I)

A(I) A(R)

] [
u(R)

u(I)

]
=

[
b(R)

b(I)

]
.

Day and Heroux consider several possible orderings of the equivalent real form and
show that ILU preconditioners applied to the equivalent real forms may be as effective
as those applied to the complex formulation [13]. Adams uses an approach based on
applying smoothed aggregation multigrid [28] to the equivalent real form [1]; such an
approach was first considered in a two-level setting in [27]. The smoothed aggregation
framework bases the multigrid interpolation operator on a specified set of so-called
rigid body modes for the stiffness matrix (i.e., the dominant differential operator)
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and, so, these modes may be easily extended to match those of the equivalent real
form. The adaptive smoothed aggregation multigrid method [9] is also applied to the
equivalent real form of a system from QCD in [7].

Here, we consider the application of AMG directly to complex-valued linear sys-
tems, which may be more efficient than approaches based on the equivalent real form.
In section 2, we give an introduction into the classical algebraic multigrid method,
as it applies to symmetric real-valued matrices. Then, in section 3, we consider the
extension of this algorithm to complex-valued matrices. These options are then an-
alyzed using local Fourier analysis (LFA) in section 4. Finally, based on the choices
recommended by the analysis in sections 3 and 4, a complex AMG algorithm is tested
for several realistic models in section 5.

2. AMG for symmetric real-valued matrices. Just as in all multigrid meth-
ods, the key to achieving efficiency in algebraic multigrid is an effective partitioning
of the space of errors. In geometric multigrid, this partitioning is based on the ideas
of smooth and oscillatory errors; those that appear smooth (relative to the underlying
grid) are given to the coarse grid for resolution, while oscillatory errors must be ap-
propriately attenuated by the chosen relaxation scheme. In algebraic multigrid, these
roles are reversed; the subspace of errors that are effectively reduced by relaxation is
taken to be fixed, and all complementary errors (the so-called algebraically smooth
errors) must be reduced by an appropriate coarse-grid correction.

An important step in designing an effective AMG approach, then, is to character-
ize the errors that are slow to be attenuated by the chosen relaxation process. AMG
was originally proposed as an extension of the successful geometric multigrid meth-
ods for finite-difference discretizations of Poisson’s equation on irregular meshes [6];
as such, it is easily motivated by considering the performance of a simple relaxation
scheme, such as the Jacobi iteration, for the class of M-matrices. A positive-definite
(real-valued) matrix, A, is said to be an M-matrix if ai,j ≤ 0 for i �= j. Further-
more, for an M-matrix, A, unknown i is said to strongly depend on unknown j if
−aij ≥ θmaxk �=i{−aik} for some θ ∈ (0, 1]. Following these definitions, Jacobi and
Gauss–Seidel relaxation can be shown to be slow to reduce errors that vary slowly
between strongly connected nodes in the M-matrix, A, and that yield small residuals,
b −Au, compared to the errors in u [4].

Consider, then, defining interpolation to a fine-grid node, i, for such an alge-
braically smooth error. Using the small-residual property, localized to node i, we
write

(2.1) (Ae)i =
∑
j

aijej = aiiei +
∑
j∈Fi

aijej +
∑
k∈Ci

aikek ≈ 0,

where adj(i) = {j : aij �= 0} is split into the two sets Ci and Fi, where Ci is the set
of all coarse-grid points on which i strongly depends and Fi = adj(i) \ Ci. Assuming
equality in (2.1) gives

(2.2) aiiei = −
∑
j∈Fi

aijej −
∑
k∈Ci

aikek

so that, if the sum over Fi were not present, (2.2) could be used to directly define an
interpolation stencil for node i in terms of its coarse-grid neighbors, k ∈ Ci. Thus, the
task of defining interpolation is one of eliminating the connections to j ∈ Fi from (2.2).

If aij is small, relative to other coefficients in row i of A, then ej does not con-
tribute much to this balance. To define “small,” we return to the definition of strong
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connections; let

Si =

{
j : −aij ≥ θmax

k �=i
{−aik}

}
.

Rather than completely removing connections to Fw
i = Fi \Si from the balance, they

are added to the diagonal by making the approximation that ej ≈ ei. Note that this
is a relatively safe choice; if point j has been wrongly classified as a weak connection,
then ej ≈ ei, since algebraically smooth errors vary slowly along strong connections.
Thus, defining F s

i = Fi ∩ Si and Fw
i = Fi \ F s

i , (2.2) is transformed into

(2.3)

⎛
⎝aii +

∑
j∈Fw

i

aij

⎞
⎠ ei = −

∑
j∈F s

i

aijej −
∑
k∈Ci

aikek.

In the AMG coarse-grid selection process, each strongly connected fine-grid neigh-
bor, j, of point i, is ensured to also be strongly connected to at least one point in
Ci. Then, the value of ej in (2.3) may be approximated by a weighted average of j’s
strongly connected neighbors in Ci. However, since a weak connection between j and
k ∈ Ci is reflected by a small coefficient, ajk, it is safe to take a simpler approach and
approximate ej by a weighted average of all its neighbors in Ci,

(2.4) ej ≈
(∑

k∈Ci

ajkek

)/(∑
k∈Ci

ajk

)
.

Substituting this into (2.3), we arrive at the AMG interpolation formula for the fine-
grid point, i, as

(2.5) ei = −
∑
k∈Ci

⎛
⎝aik +

∑
j∈F s

i

aijajk∑
l∈Ci

ajl

aii +
∑

j∈Fw
i
aij

⎞
⎠ ek.

With this definition of interpolation, the goals of the AMG coarse-grid selection
process are clear. Each fine-grid point, i, should be strongly connected to (at least)
one coarse-grid point, k, in order to take advantage of the property that ei ≈ ek.
Further, the requirement that each strongly connected fine-grid neighbor of i be itself
strongly connected to some strongly connected coarse-grid neighbor of i must also
be enforced. Finally, as with all multigrid schemes, there is the desire to make the
coarse grid as small as possible, such that a good correction to the troublesome error
components on the fine grid is still available. An initial coarse grid is selected as a
maximal independent subset of the graph of strong connections [23]; thus, each fine-
grid point must be strongly connected to at least one coarse-grid point, but the coarse
set does not contain any pairs of strongly connected nodes. Then, a second pass of
coarsening is performed, adding points to the tentative coarse grid from the first pass,
ensuring that the necessary strong connections exist.

Finally, now that we have specified how to choose a coarse grid and interpolation
from it, it remains to be seen how to restrict residuals to that grid and how to define
an operator on the coarse grid. Both questions are answered by making use of the
fact that the symmetric and positive-definite matrix, A, defines an inner-product
and norm. Defining the A-inner product as 〈u,v〉A = vTAu and the A-norm as
‖u‖2

A = uTAu, the coarse-grid correction, Pec, that minimizes the A-norm of the
corrected error satisfies PTAPec = PT (b−Ax). Thus, consistent with this variational
principle, restriction is taken to be PT , where P is the AMG interpolation operator,
and the coarse-grid operator is chosen to be PTAP .
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3. AMG for complex-valued matrices. Here, we consider the needed gener-
alizations of the AMG components in the extension to the complex-valued case. In
making these choices, we would like to design an algorithm that is consistent with
the algorithm from section 2 for the case of a real-valued symmetric operator and
that makes sense for the special cases of a complex-valued symmetric or Hermitian
operator. In this section, we analyze these choices from an operator point of view.

3.1. Relaxation. In generalizing the AMG algorithm to complex-valued matri-
ces, we must ensure that relaxation performs as expected, in particular that (weighted)
Jacobi and Gauss–Seidel relaxation are convergent for a reasonable class of problems
and that they act as appropriate smoothers. Smoothing properties are discussed in
detail in section 4. Just as classical AMG was originally proposed for M-matrices, for
which the convergence of Jacobi and Gauss–Seidel is well understood [31, section 4.5],
we consider here H-matrices, the complex generalization of M-matrices.

Definition 3.1. Let A ∈ C
n×n be such that its comparison matrix,

(M(A))ij =

{
|aii| if i = j,
−|aij | if i �= j,

is an M-matrix. Then, A is called an H-matrix.
For this class of matrices, the convergence of both weighted Jacobi and Gauss–

Seidel relaxation is given in [29].
Theorem 3.2 (Theorem 1 from [29]). For any nonsingular H-matrix, A ∈ C

n×n,
let D be the diagonal of A and −L be the strictly lower triangular part of A (so that
A − (D − L) = U is strictly upper triangular). Taking Jω(A) = I − ωD−1A to be
the error propagation operator for the weighted Jacobi iteration with weight ω and
Gω(A) = I − ω(D − ωL)−1A to be the error propagation operator for the weighted
Gauss–Seidel (SOR) iteration with weight ω, then

• ρ(J1(A)) ≤ ρ(J1(M(A))) < 1,
• for any ω ∈ (0, 2

1+ρ(J1(A)) ), ρ(Jω(A)) ≤ ωρ(J1(A)) + |1 − ω| < 1, and

• for any ω ∈ (0, 2
1+ρ(J1(M(A))) ), ρ(Gω(A)) ≤ ωρ(J1(A)) + |1 − ω| < 1,

where ρ(B) denotes the spectral radius of matrix B.
Note, in particular, that the first point of the theorem, convergence of the un-

weighted Jacobi iteration for both A and M(A), guarantees convergence of the under-
relaxed weighted Jacobi iteration (ω ∈ (0, 1)) as stated in the second point. Similarly,
the convergence of the (unweighted) Gauss–Seidel iteration is also guaranteed.

Obviously, the class of H-matrices is not the only class of complex-valued matrices
for which Jacobi and Gauss–Seidel are convergent. However, as we are primarily
interested in the performance of these schemes as smoothers, we would like to know
more about the spectra of the Jacobi and Gauss–Seidel iteration matrices than simple
bounds like those in Theorem 3.2 can give. As these spectra depend strongly on that
of A, we will use LFA to gain more insight into smoothing in section 4.

3.2. Coarse-grid correction. The definition of a good AMG coarse-grid cor-
rection scheme depends, of course, on the properties of the relaxation that it comple-
ments. While these properties are highly problem dependent, there are still certain
broad principles that can guide AMG development. Central among these is that er-
rors that are slow to be reduced by relaxation must lie in (or near to) the range of
interpolation and that their residuals must be accurately restricted to the coarse grid.
Here, we consider the components of the coarse-grid correction process independently
and the principles that guide their selection.
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Interpolation. Within the multigrid coarse-grid correction process, fine-grid er-
rors are updated by the calculation

enew = (I − PB−1
c RA)eold,

where B−1
c represents the approximate (or exact) inversion of the true coarse-grid

operator, Ac. Such a correction affects only the parts of eold that are in the range of
P . Thus, the first principle for AMG coarse-grid correction does not change from the
real-valued case; algebraically smooth errors must be in the range of P .

To accomplish this, standard AMG principles should be applied. For Hermitian
and positive-definite matrices, the small-residual assumption (residuals of errors that
are slow to be reduced by relaxation are small) again holds for Jacobi and Gauss–
Seidel (see, for instance, [23, section 4.4]). Similarly, for Hermitian and positive-
definite H-matrices, errors that are slow to be reduced by these relaxation schemes
must vary slowly over connections where aij is large within row i of A. Thus, with a
similar definition of strong connections, we can define interpolation for complex-valued
matrices using (2.5), just as in the real-valued case. As for real-valued matrices,
these requirements amount to assumptions on the class of matrices to which the
complex AMG algorithm will be applied. If these assumptions are violated by the
given problem, alternate techniques (such as the adaptive AMG algorithm [10]) should
be used to define interpolation; see section 5.3.

Here, we use a simple extension of the classical AMG strong-connection measure,
Si = {j : |aij | ≥ θmaxk �=i |aik|}. This choice is justifiable for H-matrices, A, such that∑

j aij ≈ 0 for each i, similarly to the real case, where it is justifiable for M-matrices
that satisfy the same conditions [23]. Under this assumption, it must also be the
case that algebraically smooth errors vary slowly between strongly connected points.
Once this definition is made, AMG coarse grids may be selected using a maximal
independent set algorithm, as in classical AMG [23]. Choice of strong connections,
and AMG coarsening in general, is still an area of active research [5, 8, 18].

It is interesting to note the relationship between multigrid approaches for non-
symmetric real matrices and the equivalent real form of a complex matrix. Writing
A ∈ C

n×n as A = A(R) + ıA(I) for A(R), A(I) ∈ R
n×n, the complex system, Au = b,

can be expressed in terms of its real parts as

(3.1)

[
A(R) −A(I)

A(I) A(R)

] [
u(R)

u(I)

]
=

[
b(R)

b(I)

]
,

where u = u(R) + ıu(I) and b = b(R) + ıb(I).
Dendy [14] suggests that for (nonsymmetric) matrices, interpolation should be

built based on the symmetric part of the operator. This is motivated by consid-
ering convection–diffusion problems, where numerical experiments show that bilinear
interpolation works well (when the second-order term is the constant-coefficient Lapla-
cian), even when the convective term dominates. More recently, LFA has been used
to confirm that this choice of interpolation works well for these problems [30]. For

a Hermitian operator, the equivalent real form is symmetric (as A
(I)
ij = −A

(I)
ji ) and,

so, applying this principle results in no loss of generality. For a complex symmetric
operator, on the other hand, the symmetric part of the equivalent real form is a block-
diagonal matrix, and this principle suggests determining information based only on
the real-part of A. Indeed, this approach has been investigated for complex matrices
several times; cf. [16, 21].
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We could consider generalizing this choice here, for example, by using the Her-
mitian part of the operator (which is the real part of a complex-symmetric matrix);
however, such a choice would prejudice our algorithm toward the case where the dif-
ferentially dominant operator occurs in the real part. In particular, consider a matrix
arising in the discretization of −Δu + ık2u = f . Multiplying this equation by the
complex unity, ı, gives −k2u − ıΔu = ıf . Since the discrete Laplacian is symmetric
(and not Hermitian), the Hermitian part of this operator corresponds only to the mass
matrix, and any information about the diffusion term would be lost in interpolation.
In principle, it seems wise to base interpolation on the differentially dominant term, if
this is easily identified and extracted from the rest of the operator, but such a choice
would not be consistent with the algebraic setting of the multigrid interpolation op-
erator. In sections 4 and 5, we investigate these choices more thoroughly; however,
because of examples such as that above, it appears that using only part of the matrix
to generate interpolation is too restrictive to be applicable in all interesting cases as
a black-box solver. Therefore, in section 5, we use the natural complex extension of
(2.5) to define interpolation.

Restriction. Choosing restriction operators for the non-Hermitian definite case
is more complicated, as no variational principle may be applied. One consideration
for this choice is that the result of applying the rule to Hermitian-definite operators
reduces to a variational approach when appropriate. Here, we propose several tech-
niques for choosing restriction operators, motivated primarily by AMG considerations.

A common assumption in algebraic multigrid is that the residual vector after
relaxation is small (close to zero), particularly at gridpoints associated only with
the fine grid (the so-called F -points). This arises from a reduction-based multigrid
(MGR) viewpoint [17, 22]. In MGR (or AMGr), relaxation is assumed to have an

error propagation operator of the form I −
[
A−1

ff 0

0 0

]
A. After such a relaxation, the

residual is exactly zero at the F -points. As the role of restriction is to transfer the
residual from the fine grid to the coarse grid, this analysis suggests the choice of simple
injection for restriction. Making this choice, however, is based on a rather extreme
assumption that residuals at F -points are so small that they can be neglected entirely
in the coarse-grid problem. The choice of restriction as injection is rarely used in
AMG, particularly in the cases of Hermitian-definite or complex-symmetric operators,
where the use of injection in the Galerkin product often leads to poor convergence.

Dendy suggests that restriction should be determined as the adjoint of inter-
polation for the adjoint of A [14], based on experiments with convection–diffusion
problems. However, this idea may also be justified by considering a two-level (non-
symmetric) multigrid iteration with error-propagation operator,

(3.2) T = (I −M−1
2 A)(I − PB−1

c RA)(I −M−1
1 A),

where M1 and M2 represent the approximate inverses used in the (stationary) pre and
postrelaxation steps and Bc represents the action of the coarse-grid solve process for
some coarse-grid matrix, Ac. For a matrix, A, that is Hermitian definite, the usual
variational conditions (that result in nonzero restriction weighting from the F -points)
provide explicit guidance. In the general case, A itself cannot be used to define an
appropriate norm, but the normal form, A�A, can (where A� denotes the Hermitian
transpose of A). Considering, then, the A�A inner product and norm, we see that the
adjoint of T in the A�A inner product is (A�A)−1T �(A�A) and so

‖T‖A�A = ‖(A�A)−1T �(A�A)‖A�A.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ALGEBRAIC MULTIGRID FOR COMPLEX-VALUED MATRICES 1555

Following (3.2), we can write

T � =
(
I −A�(M−1

1 )
�
)(

I −A�R�(B−1
c )

�
P �

)(
I −A�(M−1

2 )
�
)

= A�
(
I − (M−1

1 )
�
A�

)(
I −R�(B−1

c )
�
P �A�

)(
I − (M−1

2 )
�
A�

)
A�−1

= A�T (A�)−1,

where T takes the form of a two-grid cycle on A�, with the roles of R and P inter-
changed with their Hermitian transposes. Putting these together, we have that

‖T‖2
A�A = max

v

〈
(A�A)−1T �(A�A)v, T �(A�A)v

〉
〈(A�A)v,v〉

= max
v

〈
((A�)−1T �A�)Av, ((A�)−1T �A�)Av

〉
〈Av, Av〉

= max
w

〈Tw, Tw〉
〈w,w〉 = ‖T‖2.

Thus, the multigrid cycle given by T can be an effective cycle for A (measured in
the A�A-norm) if and only if T is an effective cycle for A� (measured in the �2-norm).
But, to design an effective cycle for A�, we should apply the same principles to the
choice of interpolation for this cycle (now R�) as we would for the cycle for A. In
particular, the principle that R� accurately represents the algebraically smooth errors
of A� should be enforced. In other words, R� should be constructed as we would
construct AMG interpolation for A�; R should be the adjoint of interpolation for the
adjoint of A, just as was proposed for the real case in [14].

When A is also symmetric or Hermitian, this argument is consistent with typical
multigrid approaches. If A is Hermitian, then A� = A, and this approach says that
restriction should be the adjoint of AMG interpolation for A, R = P �. This is,
of course, consistent with the variational conditions that typically guide multigrid
development in the Hermitian-definite case. For complex-symmetric A = A(R)+ıA(I),
A� = A(R) − ıA(I). If the rule for creating the AMG-style interpolation preserves this
conjugation, then P �(A�) = PT (A). In other words, the choice of R(A) = P �(A�)
results in R(A) = PT (A) if A is complex symmetric and if

�
(
P (A(R) + ıA(I))

)
= �

(
P (A(R) − ıA(I))

)
(3.3)

and �
(
P (A(R) + ıA(I))

)
= −�

(
P (A(R) − ıA(I))

)
,

where �(M) denotes the matrix whose (i, j)th entry is the real part of mij and �(M)
is defined similarly for the imaginary part. In practice, this means that if the rule
for determining interpolation only involves basic arithmetic operations (over which
complex conjugation can be distributed) and the same points are selected as strong
and weak connections for A and A�, then this rule results in a restriction operator
that is the (non-Hermitian) transpose of interpolation.

A subspace decomposition point of view suggests a third approach for choosing
restriction. When A is Hermitian and definite, a natural partition arises for R

n, into
the range of P and its A-orthogonal complement. In a two-level multigrid cycle, the
coarse-grid correction stage exactly eliminates errors that lie in the range of P , while
errors that are A-orthogonal to this space must be adequately reduced by relaxation
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on the fine grid. Let P̂ be the �2-projection onto the range of the full-rank operator,
P , and let A be Hermitian and definite. Then 〈P̂v,w〉A = 〈v, A−1P̂ �Aw〉A. Thus,
by the fundamental theorem of linear algebra, the space R

n may be partitioned as
R

n = R(P̂ ) ⊕A N (A−1P̂ �A). But, since P̂ is a projection onto the range of P ,
R(P̂ ) = R(P ). Furthermore, because P̂ is an �2-projection, it is Hermitian, and since
P has full rank, N (A−1P̂ �A) = N (P �A). Thus, we have that R

n = R(P )⊕AN (P �A).
Analyzing the error within the multigrid iteration using this subspace decompo-

sition, we can identify those errors within the range of P as being the algebraically
smooth errors. Thus, errors that are quickly attenuated by relaxation must lie in the
null-space of P �A. Within the multigrid error propagation operator (as in (3.2)), we
can then identify the role of the residual projection (application of P �A or, in the
non-Hermitian case, RA) as being to filter out those errors that can be easily treated
through relaxation alone. As in this non-Hermitian case, A no longer defines a proper
inner product; we can only consider the �2-adjoint of RA, A�R� to use this analysis.
Requiring that N (RA) includes all errors that are effectively reduced by relaxation is
then equivalent to requiring that R(A�R�) includes the algebraically smooth errors.
Thus, if only algebraically smooth errors are to be in the range of A�R�, then the
small-residual assumption implies that R(A(A�R�)) is small on fine-grid points. But
R(A(A�R�)) = R((AA�)R�), suggesting that R� must be accurate for algebraically
smooth errors of the normal equations, AA�. This leads to another possible rule
for defining restriction, as the Hermitian conjugate of an AMG interpolation for the
normal operator, AA�.

Such a choice, while motivated by typical AMG considerations, is not as attrac-
tive from a cost perspective as those discussed previously. The costs of forming AA�

in order to form restriction are obviously significant and would almost certainly lead
to an increase in complexity of the AMG coarse-grid operators if applied within (2.5).
On the other hand, if the basic AMG interpolation scheme is adapted to such compli-
cations, then this approach can be quite effective. Investigation of a similar approach
within smoothed aggregation multigrid is currently underway [11].

Forming the coarse-grid operator. In many cases, physical intuition may be
used to define an appropriate coarse-grid operator that complements the given choices
of interpolation and restriction, but this is difficult to use consistently in the algebraic
setting considered here. Instead, we choose the obvious generalization of the Galerkin
condition from the symmetric or Hermitian definite case and we define Ac = RAP .
In particular, this can be viewed as a restriction of the fine-grid operator, A, to
exactly those components identified as needing correction from the coarse grid (the
algebraically smooth errors). Multiplication on the right serves to restrict the domain
of A to the range of P that, by assumption, contains these errors. Multiplication on
the left by R restricts the range of A to that of R, which may be chosen, as described
above, based on an understanding of the action of A on algebraically smooth errors.
Using the definition of R discussed above, this choice for the coarse-grid operator
also preserves the Hermitian symmetry or regular symmetry (if conditions (3.3) are
satisfied) of the fine-grid operator. While it is possible to make separate choices of
restriction and interpolation for use in the Galerkin product and in the multigrid
cycle, in this paper we choose the same R and P for both roles.

3.3. Relation to systems AMG. While the proposed approach directly treats
the complex values in the given matrix, it is also possible to implement this approach
indirectly, within an existing AMG code that allows so-called point-based treatment
of systems of equations. Viewing the equivalent real form (3.1) as a system of real-
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valued equations with two unknowns per discrete node point (the real and imaginary
parts of the complex value), decisions within AMG can be made based on the 2 × 2

blocks that represent aij = a
(R)
ij + ıa

(I)
ij as

Aij =

[
a
(R)
ij −a

(I)
ij

a
(I)
ij a

(R)
ij

]
.

In this setting, pointwise relaxation on the complex form of A is equivalent to block
relaxation, simultaneously solving the 2 × 2 blocks associated with each node point.
The definition of strong connections is recovered using the L2-norm of the block
matrices, Aij , in place of |aij |. Interpolation (and, thus, restriction) may be defined
using block matrices (and block inverses), following (2.5) to define the 2 × 2 nodal
blocks of interpolation. Finally, the Galerkin condition also can be computed in this
block form.

The extra costs of such an approach, however, make the complex-valued approach
proposed here attractive, especially for the very large systems that arise in many nat-
urally complex-valued applications. A naive implementation of the block algorithm
would require twice the storage and twice the work to compute a matrix-vector prod-
uct as the complex-valued AMG algorithm does. Furthermore, increased work would
also be necessary in the AMG setup algorithm, unless modifications to the systems
AMG code were made to take advantage of the complex structure. With such modifi-
cations, however, the computations performed by the systems AMG algorithm would
simply mimic those described here.

4. LFA. Since the early days of multigrid, Fourier smoothing and two-grid anal-
yses have been used to make quantitative estimates of the smoothing properties of
basic iterative methods and for quantitative evaluation of the other multigrid com-
ponents in a two-grid method; see, for example [3, 25, 26]. LFA (called local mode
analysis in [3]) is the main multigrid analysis option for problems that do not lead
to Hermitian and positive-definite matrices, such as the complex-valued problems of
interest here. As we are interested in the definition of the coarse-grid correction com-
ponents within a multigrid cycle, smoothing analysis alone is not sufficient, and we
also consider two- and three-grid LFA [30]. Especially in this complex-valued set-
ting, increased insight into the quality of the transfer-operator-dependent Galerkin
coarsening is of value.

Here, three-grid analysis is briefly outlined for two-dimensional problems with
standard coarsening. We consider a discrete problem, Ahuh = fh, where uh represents
the exact discrete solution on a regular grid with mesh size h. The main idea in the
Fourier analysis is to formally extend all multigrid components to an infinite grid,
Gh := {x = (kxh, kyh) : kx, ky ∈ Z}. On Gh, we have a unitary basis of grid
functions called the Fourier components,

ϕh(θ,x) := exp (ıθ · x/h) = exp (ık · θ)

with x ∈ Gh, k = (kx, ky), and Fourier frequencies, θ = (θx, θy) ∈ R
2. These

components are eigenfunctions of any discrete, real- or complex-valued operator, Ah,
on Gh with constant coefficients.
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Recall that the error, emh = um
h −uh, after iteration m is transformed by a two-grid

operator as

em+1
h = T 2h

h emh with
(4.1)

T 2h
h = Sν2

h K2h
h Sν1

h and K2h
h = Ih − Ph

2h(A2h)−1R2h
h Ah,

and, after a three-grid cycle, is given by

em+1
h = T 4h

h emh with
(4.2)

T 4h
h = Sν2

h K4h
h Sν1

h and K4h
h = Ih − Ph

2h(I2h − (T 4h
2h )γ)(A2h)−1R2h

h Ah.

Here, T 4h
2h defined by (4.1) reads T 4h

2h = Sν2

2h(I2h − P 2h
4h (A4h)−1R2h

4h)Sν1

2h. Ah, A2h, and
A4h correspond to discretizations on the h-, 2h-, and 4h-grids, although A2h and A4h

may also be based on Galerkin principles, as described above. Sh and S2h are the
smoothing operators on the fine and the first coarse grid, and νi (i = 1, 2) represents
the number of pre- and postsmoothing steps. R2h

h , R4h
2h and Ph

2h, P 2h
4h denote restriction

and prolongation operators, respectively, between the different grids. Ih and I2h are
the identity operators with respect to the h- and the 2h-grids.

Instead of inverting A2h, as is done in (4.1), the 2h-equations are solved approxi-
mately in a three-grid cycle (4.2) by performing γ two-grid iterations, T 4h

2h , with zero
initial approximation. This is reflected by the replacement of (A2h)−1 from (4.1) by
the expression (I2h − (T 4h

2h )γ)(A2h)−1.
In two-grid Fourier analysis, we distinguish between low and high frequencies,

Θ2g
low = (−π/2, π/2]2 and Θ2g

high = (−π, π]2 \ Θ2g
low,

in such a way that the low-frequency components are “visible” on both grids Gh and
G2h. Each low-frequency component is coupled with three related high-frequency
components that alias on G2h, leading to a splitting of the Fourier space into four-
dimensional subspaces, the spaces of 2h-harmonics:

span{ϕ(θα,x); α = (αx, αy), αx, αy ∈ {0, 1}} with

θ = θ00 ∈ Θ2g
low and θαxαy := (θx − αxsign(θx)π, θy − αysign(θy)π).

T 2h
h is unitarily equivalent to a block diagonal matrix consisting of 4 × 4 blocks.

This simple representation is then used to calculate the corresponding spectral radius
and, thus, the LFA two-grid convergence factor, ρ2g. The smoothing factor, μ, which
measures the reduction of high-frequency error components by relaxation is defined
based on a coarse-grid correction operator in (4.1) that annihilates the low-frequency
error components. K2h

h is thus replaced in (4.1) by a projection, Q2h
h , onto the space

of high frequencies.
Similar to the two-grid case, in three-grid LFA we distinguish between low and

high frequencies, but now with respect to three grids, Gh, G2h, and G4h. It is then
appropriate to divide the Fourier space into a direct sum of 16-dimensional subspaces,
the so-called 4h-harmonics [30]. As a consequence, T 4h

h is unitarily equivalent to a
block diagonal matrix with at most 16×16 blocks. We obtain the LFA three-grid con-
vergence factor, ρ3g, as the supremum of the spectral radii of the block matrices. The
assumptions needed for LFA to be valid seem far from the algebraic setting consid-
ered here; however, the construction of the complex-valued smoothing and coarse-grid
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correction components can still be guided by the LFA results. In particular, the al-
gorithm should also converge well for structured-grid problems, under the usual LFA
restrictions. In this sense, LFA results serve as a first indication of the quality of the
coarse-grid correction proposed.

4.1. LFA results. As Fourier analysis applies only to structured grids, we ana-
lyze a structured-grid variant of the AMG interpolation described above. The natural
structured-grid variant of AMG interpolation is that used in Dendy’s black-box multi-
grid (BMG); for details, see [2, 14]. For restriction, our operator of choice is

(4.3) R2h
h = [Ph

2h]
�
(A�),

as in section 3.2. Next to this choice of restriction, we also include the straight
injection operator in our evaluation. The third option discussed in section 3.2 with
restriction based on AA� is not considered here due to the expense needed to calculate
it.

We start the LFA experiments with a Laplacian-type operator,

A
∧
=

⎡
⎣ −1

ı 4 ı

−1

⎤
⎦ .

We fix two red–black Jacobi relaxation sweeps as the smoother with ω = 0.9 (as
discussed below) and compare the performance of the simple real-valued transfer
operators of full-weighting restriction (FW) and bilinear interpolation (BL) to the
complex-valued BMG interpolation and restriction, based on (4.3) and on injection
(INJ). Table 4.1 gives the LFA two- and three-grid convergence factors. The LFA
smoothing factor for this red–black relaxation is μ2 = 0.217.

We see in Table 4.1 that the complex-valued transfer operators perform satisfac-
torily, slightly better than the real-valued transfer operators. Injection also performs
well on this problem, giving superior results with BMG interpolation, even in com-
bination with red–black relaxation and five point stencils. Similar behavior is seen
when the red–black Jacobi relaxation is replaced by a forward–backward Gauss–Seidel
relaxation.

We next consider a definite Helmholtz operator, −Δu+αu, discretized either by
standard finite differences or by bilinear finite elements on a uniform mesh, leading
to the standard O(h2) discretization stencils.

Figure 4.1 displays smoothing factors for this problem, with α = k2 (real) and
α = k2ı (complex), and their dependence on the relaxation parameter ω (commonly
used in multigrid smoothers). Three smoothers are compared: pointwise damped
Jacobi, damped red–black Jacobi (which is identical to red–black Gauss–Seidel for
five-point stencils) and lexicographical Gauss–Seidel (a forward sweep followed by
a backward sweep) with ν = 2 smoothing steps. One forward–backward pair of
Gauss–Seidel sweeps is considered as two smoothing steps. We compare in each

Table 4.1

LFA two- and three-grid convergence factors for a Laplacian with complex entries.

BL-FW BL-INJ BMG-BMG BMG-INJ

ρ2g 0.217 0.299 0.188 0.158

ρV3g 0.217 0.310 0.188 0.158
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(a) Pointwise Jacobi (b) Red–black Jacobi (c) Forward–backward
Gauss–Seidel

Fig. 4.1. Dependence of LFA smoothing factors (ν = 2) on the relaxation parameter, ω, for
Jacobi, red–black Jacobi, and forward–backward Gauss–Seidel smoothers.

Table 4.2

LFA smoothing, two- and three-grid factors for the FE discrete complex Helmholtz operator.

ω-JAC ω-JAC-RB GS-FWBW
ω = 0.9 ω = 0.9 ω = 1.0

μ2 0.12 0.12 0.18
ρ2g 0.14 0.15 0.17

ρV3g 0.35 0.29 0.17

subfigure the finite difference and finite element stencils for problems with positive
real- or complex-valued Helmholtz terms, α = k2 or α = k2ı. Parameters are set as
h = 1/64, k2 = 1600.

Table 4.2 presents two- and three-grid LFA convergence factors for V(1,1) cy-
cles applied to the FE discretization of the complex-valued Helmholtz operator with
complex-valued transfer operators. The LFA three-grid V -cycle factors show degra-
dation for standard and red–black Jacobi relaxation, which is an indication that the
coarse-grid problems are not defined optimally for these smoothers. A closer look at
the Galerkin coarse-grid operators built with these transfer operators shows that on
the third grid, operators with only positive elements arise. While the convergence
with Jacobi relaxation degrades, Gauss–Seidel relaxation is not influenced by these
coarse-grid discretizations and performs satisfactorily.

Finally, we mention that the use of injection as the restriction operator for this
Helmholtz operator did not lead to satisfactory LFA factors. The two- and three-grid
factors increase to at least 0.56 for different smoothers and interpolation operators,
indicating the advantages of nontrivial restriction.

Remark 1. A remark on the need for complex-valued interpolation follows.
The LFA assumptions of full coarsening and constant stencils are more restrictive

than our expectations for AMG. While LFA does provide useful insight into several
properties of multigrid for complex systems, our analysis cannot distinguish between
the benefits of real-valued and complex-valued interpolation operators. Instead, we
provide a simple example (a special case of the operators considered in section 5.3)
to demonstrate the benefits of a “fully complex” AMG approach.

Consider the Hermitian matrix, A, defined over a two-dimensional mesh by

4ui,j − e−iφi−1,jui−1,j − eiφi,jui+1,j − e−iψi,j−1ui,j−1 − eiψi,jui,j+1 = fi,j ,

where the fields, {φi,j} and {ψi,j}, are chosen randomly. Applying the AMG strength-
of-connection test to this stencil suggests that all neighboring points are strongly
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connected, as all off-diagonal entries are of the same size. As a result, AMG naturally
chooses a structured red–black coarsening pattern. In this setting, two-level AMG

with complex interpolation operators is an exact solver; partitioning A =
[
Aff Afc

A�
fc Acc

]
,

Aff is diagonal, and AMG naturally chooses the complex interpolation operator,

P =

[
−A−1

ff Afc

I

]
.

By contrast, choosing a real-valued interpolation operator, say,

P =

[
A−1

ff |Afc|
I

]
,

where |M | denotes the matrix with entries |mij |, leads to a two-level convergence
factor of 0.585. This discrepancy remains in three-level and multilevel convergence
factors (0.155 with complex interpolation, 0.589 with real interpolation). LFA based
on red–black coarsening may give further insight into this choice and is a question for
future research.

5. Numerical results. All numerical experiments are run on a 64-bit AMD
Athlon 3700+ system, running at 2.2 GHz, with 3 GB of RAM. We use the stan-
dard gnu compiler collection (gcc) C-compiler with appropriate optimization options
enabled for these machines. This compiler supports the C99 complex standard and,
so, we use the native complex arithmetic functions to implement the algorithms de-
scribed above. Systems on the coarsest level of the multigrid hierarchy are solved
using a direct solver (LAPACK’s zgbtrs routine); in all examples, multigrid coars-
ening is continued until the coarsest level is so small that this is a negligible part
of the iteration cost. For all examples, we consider V(1,1) multigrid cycles, using
Gauss–Seidel relaxation ordered so that the coarse-grid points are relaxed first on the
downward sweep of the V-cycle and last on the upward sweep (the so-called CF −FC
ordering) with (complex-valued) interpolation chosen as the generalization of (2.5)
from the real-valued case.

5.1. Simple problems. First, we consider variants of several simple problems
for which standard multigrid and AMG performance are well understood, in order to
demonstrate that the generalization to complex arithmetic maintains these properties.
Additionally, this provides a benchmark for comparison of the costs of AMG in real
arithmetic versus complex arithmetic.

Table 5.1 shows the performance of real-valued AMG for bilinear finite element
discretizations of the positive-definite Poisson equation, with and without a positive-
definite shift, −Δu = f and −Δu + k2u = f , with k = 0.625/h. The coarse-grid

Table 5.1

Real-valued AMG performance for finite-element Poisson, with and without a definite shift.

−Δu −Δu + k2u
standard Si modulus Si standard Si modulus Si

512 × 512
ρMG 0.116 0.116 0.041 0.041

# Iters. 7 7 6 6
tsolve 2.6 2.6 2.6 2.4

1024 × 1024
ρMG 0.136 0.136 0.041 0.041

# Iters. 7 7 6 6
tsolve 10.4 10.4 10.4 9.8
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Table 5.2

Complex-valued AMG performance for simple problems.

−Δu −ıΔu −Δu + k2u −Δu + ık2u

512 × 512
ρMG 0.116 0.116 0.041 0.171

# Iters. 7 7 6 11
tsolve 4.0 4.0 3.8 5.3

1024 × 1024
ρMG 0.136 0.136 0.041 0.172

# Iters. 7 7 6 12
tsolve 17.5 16.6 15.4 22.5

selection is based on a strong-connection definition of either −aij ≥ θmaxk �=i{−aik}
(standard) or |aij | ≥ θmaxk �=i{|aik|} (modulus-based) for θ = 0.25 and, here, we
take R = PT and Ac = PTAP . Shown in Table 5.1 are the maximum convergence
factor observed over (up to) 200 iterations, as well as the iteration count and total
time needed to reduce the �2 norm of the residual by a relative factor of 109 for each
problem.

For the unshifted Poisson problem, there is no difference in the results using the
standard or modulus-based definition of strong connections, due to the M-matrix
structure of the finite-element operators on these regular meshes. This is preserved
on coarse meshes, so that the standard and modulus-based definitions coincide, and
the performance of the two approaches is identical. The same is not true for the
shifted problem, where the coarsening of the mass matrix induces positive off-diagonal
entries in the coarse-grid operators. As a result, the cost of a multigrid V(1,1) cycle
is slightly lower for the modulus-based measure of strength of connection, leading to
slightly faster times for that approach.

Table 5.2 details the performance of the complex-valued AMG algorithm for these
problems, along with two simple complex generalizations. For the real-valued prob-
lems, we see that the complex AMG solver performs the same as the real-valued AMG
solver does (cf. Table 5.1) when measured in terms of convergence factors, ρMG or
iteration counts. In terms of CPU time, however, we see that there is a premium to be
paid for doing complex arithmetic; however, the cost is only 50% to 70% greater than
that of the real-valued AMG algorithm. For the complex Poisson operator, −ıΔu,
performance of complex AMG essentially matches that of both the real and complex
AMG algorithms applied to the usual Poisson operator. Different results are seen for
the complex-shifted Helmholtz operator, −Δu + ık2u, where the convergence factors
(while still bounded nicely away from 1.0) increase somewhat. Comparing to Figure
4.1, we see that the solver performance for the complex-shifted problem is quite close
to that predicted by LFA with lexicographic relaxation order, while the performance
for the real shift is much better. Using lexicographic-ordered Gauss–Seidel relax-
ation for the positive shift leads to performance similar to that predicted by LFA.
For this problem, however, an unsymmetric ordering of relaxation offers a significant
improvement over lexicographic ordering.

The complexity of the algebraic multigrid iterations may be measured in terms
of the AMG grid complexity, cg, and operator complexity, cA. The grid complexity,
defined as the sum of the number of grid points on all levels in the AMG hierarchy
divided by the number of grid points on the first level, gives a measure of the storage
costs needed for coarse-level approximations, residuals, and right-hand sides during
the multigrid iteration. The operator complexity, defined as the sum of the number of
nonzeros in the system matrices defined on all levels of the AMG hierarchy divided by
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the number of nonzeros in the fine-grid operator, gives both a measure of the storage
needed for the coarse-grid operators within the multigrid hierarchy and of the cost
per multigrid V-cycle, relative to that of a fine-grid matrix-vector multiply. For real-
valued AMG, we measure these complexities in terms of real values stored, while for
complex-valued AMG, we measure these complexities by the number of complex values
stored. For the problems considered in this section, all grid and operator complexities
are quite low. Using real-valued AMG with the standard definition of Si for the
shifted problem resulted in the largest complexities, cg = 1.38 and cA = 1.63. For all
other problems considered here, grid and operator complexities were nearly uniform,
with cg = 1.33 and cA = 1.41. These are typical of geometric multigrid complexities
for the regular stencil patterns and structured grids considered in this section.

5.2. Unstructured grid application. In this section, we consider the effect
of unstructured grids on the performance of the complex-valued AMG algorithm.
The discrete problems arise from a linear finite-element discretization of a Helmholtz
problem with complex shift that arises from a reduction of Maxwell’s equations [16].
As a result, the discrete problem is complex symmetric; thus, we consider complex
AMG with the choice of R = PT as discussed above, along with preconditioning of
BiCGStab (as CG is no longer a suitable choice).

In the special case of a time-harmonic source current, Maxwell’s equations may
be reduced to a frequency-domain Helmholtz equation for the z-component of the
Fourier transform of a vector potential, A. Details of this reduction can be found, for
example, in [16], resulting in the equation for Âz,

−∇ ·
(

1

μ
∇Âz

)
+ ıωσÂz = Ĵs,z.

We consider only half an annular domain, as depicted in Figure 5.1, discretized using
standard linear finite elements. Lahaye et al. solve these systems using a real-valued
AMG algorithm (based on the real part of the system matrix) as a preconditioner for
BiCGStab [16].

Fig. 5.1. Mesh geometry for induction motor. Reprinted with permission from D. Lahaye, H.
DeGersem, S. Vandewalle, and K. Hameyer, Algebraic multigrid for complex symmetric systems,
IEEE Trans. Magn., 36 (2000), pp. 1535–1538. Copyright c©2000 IEEE.
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Table 5.3

AMG performance for finite-element models of induction motor.

Problem Solver cg cA tsetup tsolve # Iters.
real AMG 1.80 2.17 0.0 0.0 19

1028 nodes complex AMG 1.80 2.17 0.0 0.0 20
nnz = 6520 AMG-BiCGStab 1.80 2.17 0.0 0.0 6.5

cAMG-BiCGStab 1.80 2.17 0.0 0.0 6

real AMG 1.85 2.67 0.0 0.1 29
3959 nodes complex AMG 1.85 2.67 0.0 0.1 39
nnz = 26601 AMG-BiCGStab 1.85 2.67 0.0 0.1 8.5

cAMG-BiCGStab 1.85 2.67 0.0 0.1 9

real AMG 1.83 2.86 0.1 0.6 29
15302 nodes complex AMG 1.82 2.85 0.2 0.7 32
nnz = 104926 AMG-BiCGStab 1.83 2.86 0.1 0.4 9

cAMG-BiCGStab 1.82 2.85 0.2 0.3 8

real AMG 1.81 2.91 0.4 1.7 31
34555 nodes complex AMG 1.81 2.91 0.4 1.7 30
nnz = 239661 AMG-BiCGStab 1.81 2.91 0.4 1.0 8.5

cAMG-BiCGStab 1.81 2.91 0.4 1.0 8.5

real AMG 1.77 2.87 1.0 4.5 31
75951 nodes complex AMG 1.77 2.87 1.1 4.2 29
nnz = 529317 AMG-BiCGStab 1.77 2.87 1.0 2.6 8.5

cAMG-BiCGStab 1.77 2.87 1.1 2.5 8

We consider five different resolutions on the half-annulus geometry of Figure 5.1.
The triangulation on the coarsest mesh has 1028 nodes, while subsequent meshes
are refinements of this initial triangulation. The finest mesh has 75,951 nodes and
approximately 530,000 nonzero entries in the system matrix. For each mesh, we
consider the performance of ILU-preconditioned BiCGStab, AMG based on the real-
part of the matrix and based on the complete, complex matrix, both as a standalone
solver and as a preconditioner for BiCGStab.

The performance of the AMG variants for these problems is detailed in Table 5.3.
For each problem and each AMG approach, we measure both the grid complexity,
cg, and operator complexity, cA, of the complex AMG solver. Additionally, we report
setup and solve times (in seconds), as well as the number of iterations needed to reduce
the �2-norm of the residual by a relative factor of 109. Because of the small sizes of
the least-refined meshes, some times are below the threshold that can be accurately
measured; such times are reported as 0.0.

Table 5.3 shows that the complex-valued AMG achieves performance similar to
that seen with the real-valued AMG preconditioning investigated in [16]. In particular,
the number of iterations required to reduce the residual from a zero initial guess by
a relative factor of 109 are quite close to those of an AMG algorithm based solely
on the (real) differential part of the operator. In timing these results, we have not
optimized the distribution of real- and complex-valued arithmetic in the real-valued
AMG case. This means that, in practice, preconditioning based solely on the real part
of the operator is more efficient, given the added efficiency possible using real-valued
storage for the interpolation operators.

For comparison, we consider the performance of BiCGStab preconditioned with
ILU(0) for these problems. Note that because of the fixed nonzero structure in the
preconditioner (matching that of A), the effective operator complexity for these pre-
conditioners is 2, as both the original matrix and its ILU factors must be computed
and stored. Because of the simple calculation of this factorization, setup times for
these preconditioners are negligible. Iteration costs, however, are significant, with
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over 6000 iterations needed for the second-largest grid and stalling convergence on
the largest problem.

5.3. Gauge Laplacian. While examples such as the problems considered in
the previous subsections are interesting, they do not require the full strength of the
complex AMG algorithm introduced here. In order for a complex-valued approach
to be a necessity, the dynamics of the problem must be somehow inherently complex
valued, whereas for problems such as the complex-shifted Helmholtz equation, the
dominant part of the operator is, in the end, real-valued. In this section, we discuss
model problems from a large class of applications with inherently complex dynamics,
related to the numerical simulation of quantum field theory [20, 24].

Quantum chromodynamics (QCD) is the part of the standard model of physics
that describes the strong interaction between quarks and gluons within particles such
as protons and neutrons. In order to test the validity of the standard model, QCD is
used to make predictions of properties of known particles, which may be independently
measured using a particle accelerator [12]. Discretizing QCD requires the computation
of a Feynman path integral over certain Grassmann (anticommuting) variables, which
may be simplified by introducing an effective gauge field [20]. Such a simplification,
however, introduces an inverse of the Dirac operator. A full description of this problem
is beyond the scope of this work; we refer the interested reader to [20, 24] and will
concentrate here on a model problem that displays many of the same complications
as the discretization of the full Dirac operator.

The Dirac equation is a first-order system of 12 coupled PDEs posed on a four-
dimensional space. The 12 variables (scalar-functional degrees of freedom), however,
appear as a tensor-product of a four-dimensional space (associated with the quan-
tum dynamical spin) with a three-dimensional space (associated with the quantum
dynamical color). The Dirac operator is thus block-structured, with differential cou-
pling between variables of the same spin index but only algebraic coupling between
variables of different spins. Exploiting this structure, the Dirac operator may be
written as

M(A) =
4∑

μ=1

(γμ ⊗ (I3∂μ − ıAμ)) −mI12,

where μ = 1, . . . , 4 denote the four canonical space–time directions, {γμ}4
μ=1 are

four fixed unitary matrices with all entries 0,±1, and ±ı, ∂μ is the standard partial
derivative in the μ-direction, I3 and I12 are the 3 × 3 and 12 × 12 identity matrices,
respectively, the constant, m, is a mass parameter, and ⊗ denotes a standard tensor
product of operators. The field of complex 3×3 matrices, Aμ(x), is known as the gauge
potential and is chosen through a Monte Carlo process in the numerical simulation of
QCD.

Here, we consider a two-dimensional model related to the Dirac equation, with
a scalar potential, a(x, μ) (where x now varies over a two-dimensional lattice, and
μ = 1, 2). Considering the covariant derivative term, Dμ = ∂μ − ıa(x, μ), we can
discretize this term over the lattice by integrating its action along the edge between
two lattice points. Just as

∫ xj

xi
∂μψ(x)dxμ = ψ(xj)−ψ(xi) leads to a standard finite-
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difference discretization of the first derivative, ∂μ, we may approximate

∫ xj

xi

(∂μ − ıa(x, μ))ψ(x)dxμ =

∫ xj

xi

eıa(x,μ)∂μ

(
e−ıa(x,μ)ψ(x)

)
dxμ

≈ eıa(x̂,μ)
(
e−ıa(xj ,μ)ψ(xj) − e−ıa(xi,μ)ψ(xi)

)
.

Choosing x̂ = xi leads to the approximation

Dμψ(x) ≈ 1

h

(
eı(a(xi,μ)−a(xj ,μ))ψ(xj) − ψ(xi)

)
,

while choosing x̂ = xj leads to

Dμψ(x) ≈ 1

h

(
ψ(xj) − eı(a(xj ,μ)−a(xi,μ))ψ(xi)

)
.

Defining α(xi,xj) = a(xi, μ)−a(xj , μ) to be the weighting of the covariant derivative
over the lattice edge between nodes i and j, we see that these two choices of x̂ lead
to closely related forward and backward difference formulae. Defining the second
derivative stencil as the weighted difference of these forward and backward differences
(to define the first derivatives at xi± 1

2
, assuming nodes xi, xi±1 are adjacent), we

have

−D2
μψ(xi) ≈

1

h2

(
−e−ıα(xi−1,xi)ψ(xi−1) + 2ψ(xi) − eıα(xi,xi+1)ψ(xi+1)

)
.

Proper specification of the gauge potential is needed in order to appropriately
model QCD applications. Here, we consider the case of a unit lattice spacing (h = 1)
and take α(xi,xj) to be a random variable of the form α(xi,xj) = 2πβθ(xi, μ), where
β is a temperature parameter and θ(xi, μ) is chosen independently for each node, xi,
and direction, μ, on the lattice from a normal distribution with mean 0 and variance
1. We consider doubly periodic two-dimensional lattices. For β = 0, this recovers the
positive-semidefinite five-point finite-difference Laplacian; for β > 0, the matrices are
positive definite and Hermitian.

Figure 5.2 shows the convergence factors for three variants of multigrid applied
to the discrete covariant Laplacian on a 513 × 513 grid as β increases. The simplest

Fig. 5.2. Convergence factors for covariant Laplacian with varying β.
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variant is multigrid based on full coarsening, with bilinear interpolation and full-
weighting restriction. The method of [16, 21] is also considered, where the classical
(Ruge–Stüben) AMG coarsening and interpolation are performed based on the real
part of the matrix, denoted by “real AMG.” Finally, the complex AMG proposed here
is also tested. For β = 0, the matrix is the usual five-point periodic Laplacian, and all
three methods perform well. As β increases, however, the performance of geometric
multigrid and real AMG quickly degrade, confirming that important information is
lost when the imaginary part of A is discarded. Only performance of the fully complex
AMG remains consistently good as β increases. In particular, note that complex AMG
converges roughly twice as fast as real AMG. The complex AMG operator complexities
remain steady for β away from 0; when β = 0.25, cA = 3.04, while cA = 3.05
for β = 1.0. Operator complexities for geometric multigrid are approximately 1.60
for all grids, while real AMG generates complexities that are similar to those of
complex AMG for small β but that are somewhat smaller for larger β; when β = 0.25,
cA = 2.63, while cA = 2.06 for β = 1.0. Thus, even with the performance advantage
of real arithmetic over complex arithmetic, the complex AMG solver proposed here
is more efficient than the use of a solver with real-valued transfer operators for these
problems.

As β increases, the effect of the randomness in the definition of the covariant
Laplacian becomes more pronounced. An interesting test problem arises when the
covariant Laplacian appears in combination with a Helmholtz term,

−
∑
μ

D2
μψ(x) + mψ(x),

where the coefficient, m, is chosen so that the matrices remain positive definite but
match the conditioning of the usual Laplacian. Such a shift mimics the behavior of the
mass term in the Dirac operator. To do this, we compute the maximum-magnitude
eigenvalue, λ, of the matrix, M , obtained by taking

∑
μ D

2
μ (so that the off-diagonal

entries have positive sign) and setting the diagonal to zero. By Gerschgorin’s theorem,
we expect the largest eigenvalue of −

∑
μ D

2
μ to be approximately 4 + λ ≈ 8, while

the smallest should be roughly 4 − λ, where 0 ≤ λ ≤ 4. Then, m is chosen so that
8

4−λ+m = 1
h2 , i.e., m = 8h2 − (4−λ). We then diagonally scale the matrix by 1

4+m so
that it has constant unit diagonal.

Even for large h, the effect of such a shift on AMG performance can be dramatic.
The eigenvector approximation criterion [4, 19] states that for AMG to be effective,
each eigenvector of A must be approximated by something in the range of interpolation
with accuracy proportional to its eigenvalue. For large eigenvalues of A, the shift by
m has little effect on this approximation property. For the smallest eigenvalues,
however, the shift by m has a significant effect and these modes may be very slow
to be resolved by a simple AMG cycle, as very accurate interpolation is needed to
complement the very slow performance of relaxation on the modes associated with
the smallest eigenvalues of A. Table 5.4 shows some representative AMG convergence
factors.

However, this shift is relatively significant for only a few modes of the matrix
and, thus, the poor AMG performance is easily overcome through the use of a Krylov
subspace accelerator. As A is Hermitian and positive definite (and the AMG cycle can
easily also be made so), we consider here the performance of an AMG-preconditioned
conjugate gradient algorithm. Figure 5.3 shows the convergence histories of geometric
multigrid and AMG (both based on the real part and the complex AMG proposed
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Table 5.4

Complex AMG convergence factors for the shifted covariant Laplacian, with variation in β and
grid size.

β = 0.0 β = 0.25 β = 0.5 β = 0.75 β = 1.0
65 × 65 0.104 0.988 0.993 0.993 0.990

129 × 129 0.143 0.998 0.997 0.997 0.998
257 × 257 0.166 0.9992 0.9996 0.9995 0.9993
513 × 513 0.231 0.99986 0.99987 0.99985 0.99988

Fig. 5.3. Convergence histories for geometric multigrid, AMG based on the real part of the
matrix, complex AMG and adaptive complex AMG for the 513 × 513 shifted covariant Laplacian
operator with β = 1.0. Solid lines indicate unaccelerated performance, while dashed lines indicate
MG-PCG performance.

here) for β = 1.0. For all three methods, slow (and stalling) convergence is seen
for the unaccelerated solvers, while the MG-PCG combinations converge (relatively)
quickly. Notice that the complex-AMG-PCG combination beats the real-AMG-PCG
technique for convergence to any fixed tolerance by a factor of roughly 2.

An alternative to preconditioning to overcome the slowing down of convergence
for the shifted covariant Laplacian is the use of adaptive multigrid techniques [9, 10].
In adaptive AMG [10], the approximation (2.4) used to collapse a strong connection
between two fine-grid points, i and j, is replaced by one that takes into account
the form of a representative algebraically smooth error exposed by adding an initial
relaxation phase to the AMG setup algorithm. Thus, on each level in the AMG setup,
we first relax on the homogeneous problem, Au = 0, with a random initial guess for
u to expose errors that relaxation is slow to resolve. This prototypical algebraically
smooth error is then used in the definition of interpolation, in place of the AMG
assumption that such errors vary slowly along strong connections. When this error is
very different from the constant, the improvement in performance of adaptive AMG
over classical AMG may be significant, as the classical AMG algorithm aims to satisfy
the eigenvector approximation criteria for the constant vector only.

Figure 5.4 shows the algebraically smooth error found by performing 200 iterations
of Gauss–Seidel relaxation on Au = 0 (so that the error is well resolved), with a
random initial guess for u, on the shifted covariant Laplacian with β = 1.0 on a
65 × 65 grid. Thus, we expect a significant benefit of using adaptive AMG over the
classical AMG assumption. Indeed, in Figure 5.3, the adaptive AMG convergence,
both with and without PCG acceleration, is significantly better than that of any of the
other methods. Table 5.5 shows adaptive AMG setup times and convergence factors
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Fig. 5.4. Algebraically smooth error for the shifted covariant Laplacian with β = 1.0 on a
65 × 65 mesh with the real part shown at left and the imaginary part shown at right.

Table 5.5

Adaptive AMG setup times and convergence factors for the shifted covariant Laplacian.

β = 0.5 β = 0.75 β = 1.0
tsetup ρ tsetup ρ tsetup ρ

65 × 65 0.04 s 0.431 0.04 s 0.375 0.03 s 0.454
129 × 129 0.2 s 0.341 0.2 s 0.308 0.2 s 0.440
257 × 257 0.8 s 0.467 1.1 s 0.463 0.9 s 0.391
513 × 513 5.3 s 0.576 3.5 s 0.442 3.6 s 0.457

for several grid sizes and values of β.
The convergence factors in Table 5.5 do not appear to degrade as β increases and

degrade only slightly with increase in problem size. It is not immediately clear if this
degradation is due only to the increase in grid size or if it is related to the changes in
the random sample taken for the gauge field on each grid. Setup times scale nearly
with problem size, although a slight increase in the work needed (relative to problem
size) for the adaptive AMG setup stage is required for each finer grid. In comparison,
setup time for regular AMG on the 513× 513 grid is 3.2 s, while approximately 0.36 s
are required for a single V(1,1) cycle on that grid. Thus, the increase in cost of the
adaptive AMG setup phase over the regular AMG setup phase (3.5-5.3 seconds versus
3.2 seconds) is roughly equivalent to the cost of one to six V-cycles, much less than
the expected improvement offered in the adaptive AMG solve phase.

6. Conclusions. A natural extension of the algebraic multigrid method for
complex-valued matrices is presented. Unlike previous extensions, our approach is
completely algebraic in nature and relies on no special structure of the complex-
valued matrix. Choices for the generalization are motivated by a combination of clas-
sical multigrid considerations and local Fourier analysis. Numerical results confirm
the performance on simple model problems, realistic complex Helmholtz problems
on unstructured meshes, and, in combination with Krylov acceleration or adaptive
multigrid ideas, for ill-conditioned matrices based on covariant derivatives.
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