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In this paper we present and evaluate a Fourier-based sparse grid method
for pricing multi-asset options. This involves computing multi-dimensional
integrals efficiently and we accomplish it using the fast Fourier transform.
We also propose and evaluate ways to deal with the curse of dimension-
ality by means of parallel partitioning of the Fourier transform and by
incorporating a parallel sparse grid method. Finally, we test the presented
method by solving equations for options that are dependent on up to seven
underlying assets.

1 INTRODUCTION

A parallel method for pricing multi-asset options is presented in this paper. The
core of the method is the computation of a multi-dimensional integral. By means
of the fast Fourier transform (FFT) we can compute this integral efficiently.
Deterministic solvers (as opposed to Monte Carlo methods) on tensor-product
grids for multi-dimensional problems, however, suffer from the so-called “curse
of dimensionality”, ie, the exponential increase in the number of unknowns as the
dimension d increases. This is also true for the FFT-based technique presented here.
In order to reduce the complexity we combine a parallel partitioning method for the
Fourier transform with a sparse grid method. The method is evaluated in terms of
complexity analysis and by means of numerical experiments for multi-asset options
for up to seven dimensions.

FFT-based methods have been successfully applied, initially by Bakshi and Chen
(1997), Scott (1997) and Carr and Madan (1999), in computational finance. In
particular, the method of Dempster and Hong (2000) employs the FFT to price
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options on more than one asset. Another similar approach for pricing coupon-bond
options and swaptions has been presented by Singleton and Umantsev (2002). Here,
we discuss a generalization of the convolution method by Lord et al (2008), which
has been developed in particular for pricing early-exercise options. This pricing
method is applicable to a wide variety of payouts and only requires knowledge of
the characteristic function of the model. As such, the method is applicable within
many regular affine models, among which is the class of exponential Lévy models.

This paper is organized into five sections. In Section 2, we describe the Fourier-
based method for multi-asset options on tensor-product grids, called the multi-
dimensional convolution method. Section 3 discusses the partitioning and corre-
sponding parallelization of the method. This section also contains some parallel
multi-asset results. In Section 4, we combine the method with a parallel sparse grid
technique from Zenger (1990) and present results from numerical experiments on
sparse grids. In Section 5, we draw our conclusions.

The options considered in this paper have their payout given by:

•
(∏d

j=1 S
1/d
j −K

)+
(call on the geometric average of the assets);

•
(∑d

j=1 cjSj −K
)+, with cj the basket weights (basket call);

• options on the minimum or maximum of the underlying assets, for example
(K − maxj Sj )+, put on the maximum of the underlying assets.

2 THE MULTI-DIMENSIONAL CONVOLUTION METHOD

The method presented falls into the category of transform methods. These methods
are based on the risk-neutral valuation formula, which reads, for options on a single
asset, as:

V (t, S(t))= e−r(T−t)
E[V (T , S(T )) | S(t)] (1)

Here V denotes the value of the option, r is the risk-free interest rate, t is the current
time, T is the maturity date and S represents the price of the underlying. The interest
rate, r , is assumed to be deterministic here. Equation (1) is an expectation and
can be valuated directly, using numerical integration, provided that the probability
density function is known. It can be written as:

V (t, x(t))= e−r(T−t)
∫ ∞

K∗
(ex(T ) − eK

∗
)f (x) dx (2)

with K∗ = lnK , x(t)= ln S(t) and f (x) the probability density function. The
value of V (t, x(t)) tends to S(t) as K∗ tends to −∞ and hence the call price is
not square integrable. Therefore, the payout is typically multiplied by a damping
factor exp(αK∗), with α > 0, and the computation of the Fourier transform of the
option value, ψ , can be performed by using the characteristic function, φ(ω) (Carr
and Madan (1999)):

ψ(ω)= e−r(T−t)
∫ ∞

−∞
eiωK∗

∫ ∞

K∗
eαK

∗
(ex − eK

∗
)f (x) dx dK∗

= e−r(T−t)φ(ω − (α + 1)i)

α2 + α − v2 + i(2α + 1)v
(3)
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where the characteristic function of the underlying is defined by:

φ(u)= E[eiu ln S(T )] (4)

To compute the call price, the inverse Fourier transform has to be computed:

V (t, x(t))= e−αK∗

2π

∫ ∞

−∞
e−iωK∗

ψ(ω) dω (5)

Following the same steps for basket options, however, would require the character-
istic function of a log-basket value, which is not known in general. For common
baskets, quite accurate approximations can be obtained by assuming that the basket
itself is an asset following the same distribution as one of the underlying assets
(Gentle (1993)). Here, we discuss a method which does not rely on such an
approximation.

Like all transform-based methods, the convolution method (Lord et al (2008))
is based on the risk-neutral valuation formula (1). In the multi-dimensional version
we need to compute:

V (t, x(t))= e−r(T−t)
∫
Rd

V (T , y)f (y | x) dy (6)

where x = ln S(t) is a vector of the log-asset prices, y = ln S(T ) and f (y | x) is the
probability density function of the transition of x at time t to y at time T .

REMARK 1 (Feynman–Kac theorem) For pricing multi-asset options the partial
differential equation (PDE) approach, ie, solving the multi-dimensional Black–
Scholes equation, is commonly used in the literature (Leentvaar and Oosterlee
(2008); Tavella and Randall (2000)). This approach is connected to the risk-neutral
expectation valuation by means of the Feynman–Kac theorem as follows. Suppose
that we are given the system of stochastic differential equations:

dSi(t)= rSi(t) dt + σiSi dWi(t), i = 1, . . . , d

with E{dWi(t) dWj(t)} = ρij dt and an option, V , such that:

V (t, S(t))= e−r(T−t)
E{V (T , S(T )) | S(t)}

with the sum of the first derivatives of the option square integrable. Then, the value,
V (t, S(t)), is the unique solution of the final condition problem:


∂V

∂t
+ 1

2

d∑
i,j=1

[
σiσjρi,j SiSj

∂2V

∂Si∂Sj

]
+

d∑
i=1

[
rSi

∂V

∂Si

]
− rV = 0

V (S, T )= given

The solution in integral-form of this PDE can be obtained by use of a Green’s
function. The required characteristic function of the multi-dimensional convolution
method is related to the Fourier transform of this Green’s function. As a Fourier
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transform of the Green’s function will only be known for constant coefficient PDEs,
this is also the setting for the multi-dimensional convolution method. Garroni and
Menaldi (1992) provide a good description of Green’s functions in the context of
PDEs in finance.

The main premise of the multi-dimensional convolution method is that the
transition density function f (y | x) is equal to the density of the difference of y
and x:

f (y | x)= f (y − x) (7)

This holds for several models, such as geometric Brownian motion and, more
generally, Lévy processes, which have independent increments. Then with z =
y − x, we have:

V (t, x)= e−r(T−t)
∫
Rd

V (T , x + z)f (z) dz (8)

which is a cross-correlation between V and f . The cross-correlation operator can
be treated as a convolution operator (Gray and Goodman (1995)) and, therefore, the
method is called the convolution method by Lord et al (2008).

The numerical valuation of (8) can be performed immediately for known
probability density functions. For several asset price models, including the Lévy
processes, however, only the characteristic functions are known. When transform-
ing the cross-correlation operator into Fourier space, we have to deal with a product
of the Fourier transform of the payout and the Fourier transform of the probability
density function, which is the characteristic function.

The (continuous) Fourier transform of a function, however, can only be taken if
the function is L1-integrable. This is typically not the case for multi-asset payout
functions but damping techniques (Carr and Madan (1999) and Lord et al (2008))
are not available for multi-asset options in general. As an example we try to
integrate a payout of a two-dimensional basket call, which is damped by eα1x1+α2x2 .
The integral is split into two parts in the x2-direction, one in which the payout
function is only non-zero in a part of the x1-direction and another in which x1 can
take all values:∫

R2
eα1x1+α2x2K(c1 ex1 + c2 ex2 − 1)+ dx1 dx2

=K

∫ −ln c2

−∞

∫ ∞

ln(1−c2 ex2 )−ln c1

eα1x1+α2x2(c1 ex1 + c2 ex2 − 1) dx1 dx2

+K

∫ ∞

−ln c2

∫ ∞

−∞
eα1x1+α2x2(c1 ex1 + c2 ex2 − 1) dx1 dx2 (9)

The second term in (9) is unbounded because of the integration over R for x1. It is
not possible to find a proper value for α1 to bound this integral.

Instead of performing the Fourier transform analytically, however, in the multi-
dimensional convolution method the computation is performed numerically and
therefore the domain of integration has to be truncated. Since the density in (8)
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decays to zero rapidly as z → ±∞, we truncate the infinite integration range
without losing significant accuracy to [log S0/K − Li, log S0/K + Li] ⊂ R

d , i =
1, . . . , d . The direct construction of the discretized multi-dimensional convolution
formula, which we perform in the following, via a Fourier series expansion of the
continuation value replaces L1-integrability on (−∞,∞) with L1-summability
on a truncated computational domain, so that the restriction on α is removed.
Experiments for many options contracts in Lord et al (2008) showed that one can
choose α = 0 in the convolution method and still obtain accurate option values. The
discrete version will, however, resemble its continuous counterpart increasingly as
the domain size increases.

So, our point of departure here will be a truncated domain, 	d . The size of
	d is chosen such that the error made due to truncation is negligible compared
with the discretization error. To show the accuracy of the truncation, we refer the
reader to Appendix A, Table A.1. In that table a numerical experiment with a plain
vanilla call option is included, illustrating the effect of the truncation. It is shown
numerically that a domain of size	i = [log S0/K − Li, log S0/K + Li] withLi =
20σi gives highly accurate results, with σi denoting the standard deviation of the
density. This domain size is set in all experiments to follow.

We now take a Fourier transform of (8) on the truncated domain 	d :

er(T−t)F{V (t, x)}(ω)=
∫
	d

eiωx
[∫

	d

V (T , x + z)f (z) dz
]

dx

=
∫
	d

∫
	d

eiω(x+z)V (T , x + z)f (z)e−iωz dz dx (10)

Here, the multi-dimensional Fourier transform, on the truncated domain, and its
inverse are defined as:

F{h(x)}(ω)=
∫
	d

eiωxh(x) dx,

F inv{H(ω)}(x)= 1

(2π)d

∫
	d

e−iωxH(ω) dω

with, for example:∫
	d

eiωxh(x) dx

=
∫ Ln

−Ln
· · ·

∫ L1

−L1

eiω1x1 · · · eiωdxd h(x1, . . . , xd) dx1 · · · dxd

Changing the order of integration in (10) and using y = x + z, we find:

er(T−t)F{V (t, x)}(ω)=
∫
	d

∫
	d

eiωyV (T , y)f (z) e−iωz dy dz

=
∫
	d

eiωyV (T , y) dy
∫
	d

e−iωzf (z) dz

≈ F{V (T , y)}(ω)φ(−ω) (11)
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with the characteristic function, φ, defined by φ ≡ ∫
Rd

e−iωzf (z) dz. After taking
the inverse Fourier transform, the option price can be approximated by:

V (t, x)≈ e−r(T−t)F inv{F{V (T , y)}φ(−ω)} (12)

In this paper the asset prices are modeled as correlated log-normal distributions.
The characteristic function can be computed via the probability density function:

f (x)= 1√
(2π)d | �| exp

(
−1

2
(x − µ)T�−1(x − µ)

)

where µj = (r − δj − 1
2σ

2
j )(T − t), � is the correlation matrix with [σ ]jk =

ρjkσjσk(T − t) and |�| its determinant. Dividend yields δj , volatilities σj and
the correlation coefficients ρjk are assumed to be constant (as taking the Fourier
transform makes sense for problems with constant coefficients). The characteristic
function reads, using (4):

φ(ω)= exp

(
i
d∑
k=1

µkωk − (T − t)

d∑
j=1

d∑
k=1

ρjkσjσkωjωk

)
(13)

REMARK 2 (Aliasing) Aliasing, a commonly observed feature when dealing with
a convolution of sampled signals by means of the FFT, is not a problem in our
application, as we encounter a convolution of a characteristic function and the
discrete Fourier transform (DFT) of a vector with option values. The DFT is
periodical but this would make the convolution circular only if the characteristic
function would also be obtained by a DFT. However, we work with the analytical
characteristic function, which is not periodic.

With the right to exercise at certain times, tn, before the maturity date, T , the
Bermudan option price is defined by:

V (tn, x(tn))≡ max

{
E(tn, x(tn)), e−r(tn+1−tn)

∫
Rd

V (tn+1, y)f (y | x) dy
}

(14)

with E(tn, x(tn)) the exercise payout at tn.
At each exercise date, tn, the valuation of (14) can be interpreted as the

computation of a European-style contract with maturity time tn+1 and “initial” time
tn, leading to the second term in the max-operator (which is compared with the
payout). For the derivation of the multi-asset convolution method, we can therefore
focus on (6) since this is also the major portion of computation in (14).

2.1 Discretization

Equation (12) can now be solved numerically with the help of multi-dimensional
quadrature rules. A computation using the FFT requires equidistant grids for x, y
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and ω:

xj,kj = xj,0 + kj dxj (15)

yj,kj = yj,0 + kj dyj (16)

ωj,nj = ωj,0 + nj dωj (17)

where the index j denotes the j th coordinate, j = 1, . . . , d , and kj ∈ [0, Nj − 1]
and dxj = dyj . The Nyquist relation has to be fulfilled to avoid aliasing:

dxj · dωj = 2π

Nj
(18)

We use the notation xj,kj = xkj , and denote the subscripts k1, . . . , kd by k, the
transformed vector by:

F{V (T , yk1, . . . , ykd )} = V̂ (T , ωn1 , . . . , ωnd )= V̂n

and the repeated sum by:
N1−1∑
k1=0

· · ·
Nd−1∑
kd=0

=
N−1∑
k=0

Approximating the inner integral of (12) by the trapezoidal rule, with the usual
second-order accuracy, gives:

V̂n :=
∫
	d

V (T , y) eiωy dy

= dY
N−1∑
k=0

ZkVk exp(iωn1yk1 + · · · + iωnd ykd )+ O
( d∑
j=1

dy2
j

)
(19)

with dY = ∏d
j=1 dyj , Zk = ∏d

j=1 Rj(kj ) and the trapezoidal weights:

Rj(kj )=



1

2
kj = 0 ∨ kj = Nj − 1

1 otherwise

The terms exp(iωnj ykj ), j = 1 . . . d , can be rewritten as:

exp(iωnj ykj )= exp(i(ωj,0 + nj dωj )(yj,0 + kj dyj ))

= exp(iωj,0yj,0) exp(i(ωj,0kj dyj + yj,0nj dωj ) exp

(
2π injkj
Nj

)

We choose ωj,0 = − 1
2Nj dωj and yj,0 = − 1

2Nj dyj , meaning that the grids are
centered at the origin. Furthermore, we introduce the standard DFT notation,
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WNj = exp(−2π i/Nj ), and have:

exp(iωnj ykj )= exp(iωj,0yj,0) exp(i(ωj,0kj dyj + yj,0nj dωj))W
−njkj
Nj

= exp

(
2π iNj

4

)
exp(−π ikj ) exp(−π inj )W

−njkj
Nj

= (−1)kj (−1)nj+Nj/2W−nj kj
Nj

Equation (19) can be written as:

V̂n ≈ dY
N−1∑
k=0

GkVk

d∏
j=1

(−1)nj+Nj/2W−nj kj
Nj

(20)

with Gk = Zk
∏d
j=1(−1)kj . Recognizing that:

Dd{fk} =
N−1∑
k=0

fk

d∏
j=1

e2π inj kj /Nj =
N−1∑
k=0

fkW
−nk
N

Dinv
d {Fn} = 1∏d

j=1 Nj

N−1∑
n=0

Fn

d∏
j=1

e−2π inj kj /Nj = 1∏d
j=1 Nj

N−1∑
n=0

FnW
nk
N

are the DFT and inverse Fourier transform, respectively, we have:

V̂n ≈ dY
d∏
j=1

((−1)nj+Nj/2) · Dd [GkVk] (21)

where Dd is the d-dimensional (or d-times repeated) DFT. The outer integral
of (12) is treated by the left-hand rectangle rule in accordance with the error analysis
in Lord et al (2008). So, we have:

V (t, xm)= e−r(T−t)F inv(V̂n · φn)≈ e−r(T−t)

(2π)d

∫
	d

V̂nφn e−iωx dω

= d�
e−r(T−t)

(2π)d

N−1∑
n=0

V̂nφn e−iωn1xm1 −···−iωnd xmd (22)

with φn = φ(−ωn1 , . . . ,−ωnd ), and by using (18):

d� =
d∏
j=1

dωj =
d∏
j=1

2π

Nj dyj
= (2π)d

Nd dY
(23)

Again, we can replace:

e−iωnj xmj = (−1)mj (−1)nj+Nj/2Wnjmj
Nj

(24)
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Combining (22), (23) and (24) gives:

V (t, xm)≈ e−r(T−t)

Nd dY

N−1∑
n=0

V̂n · φn

d∏
j=1

(−1)mj (−1)nj+Nj/2Wnjmj
Nj

(25)

We see that the products (−1)nj+Nj/2 vanish when combining (25) and (20). The
combination of the two discretized integrals leads to the discrete multi-dimensional
convolution method:

V (t, xm)= e−r(T−t)

(2π)d

d∏
j=1

(−1)mjDinv
d [φnDd{VkGk}] (26)

3 PARALLEL PARTITIONING

Equation (26) is set up for tensor-product multi-dimensional grids. For an increas-
ing number of dimensions, however, the total number of points will increase
exponentially. This so-called curse of dimensionality (Bellman (1961)) renders
many sequential algorithms useless. Even on state-of-the-art sequential computers,
the memory is not large enough to store vectors of size N = ∏d

j=1 Nj , for d
sufficiently large. One of the possibilities to solve on finer grids is to partition the
problem and solve the different parts in parallel.

The partitioning chosen here is based on the down-sampling method (Gray and
Goodman (1995)). The basis of this method is a splitting of the input vector (in our
case the Fourier transformed payout) into two parts: one part containing the even
and one containing the odd points. These two DFTs can be computed independently
and their result can be added. A straightforward sequential implementation of
the DFT of size N uses N2 computations, whereas the partitioned version needs
(N/2)2 computations for each DFT plus one summation. This partitioning can be
continued. It will converge to O(N logN) computations, in the same manner as
the FFT. Taking N as a power of two is the most efficient choice. Equation (26)
is based on the transform of the payout and the inverse transform of the product.
This structure complicates the partitioning to some extent, but it can still be used,
as described in the following.

Consider first the one-dimensional version of (26):

Hm =
N−1∑
n=0

φnV̂nW
mn
N (27)

where we omit the discounting factor. As mentioned, we split (27) into two sums
of size M = N/2:

Hm =
M−1∑
n=0

φ2nV̂2nW
2nm
N +

M−1∑
n=0

φ2n+1V̂2n+1W
(2n+1)m
N

=
M−1∑
n=0

φ2nV̂2nW
nm
M +Wm

N

M−1∑
n=0

φ2n+1V̂2n+1W
nm
M (28)
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where we use:

W 2nm
N = e−2π i2nm/N = e−2π imn/M =Wmn

M

The two DFTs in (28) can be solved in parallel. The inner parts φ2n, φ2n+1, V̂2n and
V̂2n+1 can be computed by addressing the appropriate points. Here V̂2n and V̂2n+1

are based on a size N vector, V̂ , which we partition as well.
For the even elements, we can write:

V̂2n =
N−1∑
k=0

GkVkW
2nk
N ,

=
M−1∑
k=0

GkVkW
nk
M +

N−1∑
k=M

GkVkW
nk
M

=
M−1∑
k=0

GkVkW
nk
M +W nM

M

M−1∑
k=0

Gk+MVk+MW nk
M (29)

and for the odd elements:

V̂2n+1 =
M−1∑
k=0

GkVkW
k
NW

nk
M +WM

N W
nM
M

M−1∑
k=0

Gk+MVk+MWk
NW

nk
M (30)

We observe that (29) and (30) are again sums of two DFTs of size N/2. When the
splittings (28), (29) and (30) are combined, we find the one-dimensional partitioned
version of (27).

The multiple partitioned version is based on a repetition of this splitting which
we derive for β parts, with β a power of two. The size of the computations is
thenM = β−1N . The points used in the splitting of the inverse transform are given
by βn+ q, with q ∈ [0, β − 1]. So, the multiple partitioned version of (27) reads,
using Wβnm

N =Wnm
M :

Hm =
β−1∑
q=0

M−1∑
n=0

φβn+qV̂βn+qWm(βn+q)
N =

β−1∑
q=0

W
mq
N

M−1∑
n=0

φβn+qV̂βn+qWmn
M (31)

The partitioning into the odd and even parts can now be included:

V̂βn+q =
N−1∑
k=0

VkGkW
−(βn+q)k
N

=
β−1∑
p=0

M−1∑
k=0

Vk+pMGk+pMW
−(βn+q)(k+pM)
N

=
β−1∑
p=0

W
−pq
β

M−1∑
k=0

Vk+pMGk+pMW
−nk
M W

−qk
N (32)
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where we used:

W
−βnpM
N = e2π inp = 1 and W

−pqM
N =W

−pq
β

Combining (31) and (32), we obtain the one-dimensional multiple split version
of (27):

Hm =
β−1∑
q=0

W
mq
N

M−1∑
n=0

φβn+qWmn
M

β−1∑
p=0

W
−pq
β

M−1∑
k=0

Vk+pMGk+pMW
−nk
M W

−qk
N

=
β−1∑
p=0

β−1∑
q=0

W
−pq
β W

mq
N Dinv(φβn+qD[Vk+pMGk+pMW

−qk
N ]) (33)

This partitioning can be generalized to the multi-dimensional case. We then have
a partitioning vector β containing βj parts for each coordinate j . The points in
the outer transform (31) are represented by βn + q = (β1n1 + q1, . . . , βdnd +
qd). The points of the payout addressed in (32) are represented by k + pM =
(k1 + p1M1, . . . , kd + pdMd). When using the multi-dimensional summation, the
multiple partitioned version of (26) reads:

V (t, x)= e−r(T−t)

(2π)d

β−1∑
p=0

β−1∑
q=0

W
−pq
β W

mq
N Dinv

d [φβn+qDd{Vk+pMGk+pMW
−qk
N }]

(34)
We see that if one of the coordinate grids is split into two parts, ie, βk =
2, βj 	=k = 1, the computation of (34) would be a combination of four DFTs of
size (Nk/2)

∏d
j=1,j 	=k Nj . If the same coordinate would be partitioned again, we

would deal with 16 DFTs of size (Nk/4)
∏d
j=1,j 	=k Nj . The parallel efficiency is

low in this case, as the number of processors needed grows quadratically with βj .
Therefore, we rewrite (34) as:

V (t, x)= e−r(T−t)

(2π)d

β−1∑
q=0

W
mq
N Dinv

d

[
φβn+qDd

{β−1∑
p=0

Vk+pMGk+pMW
−qk
N W

−pq
β

}]
(35)

In this case the computations are partitioned over the q sum into B = ∏d
j=1 βj

parts. Each processor now has to compute the p parts of the payout function. The
summation over p could also be performed in parallel with communication among
the processors. A drawback of allowing communication for high-dimensional
problems is the need to transfer very large vectors from one processor to another.
We certainly need the communication when solving early exercise options in
parallel, but not for European options. So, early exercise options would be par-
allelized efficiently on a parallel machine with some form of shared memory. An
alternative to this type of parallelization may be the sparse grid method for which
parallelization is straightforward. We focus on the communicationless version of
this parallel approach and solve European-style options with it.
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3.1 Complexity analysis

We now evaluate the parallelization technique to solve (26) by a complexity
analysis, and first summarize the procedure to solve (26).

1) Compute the payout on the tensor-product grid.
2) Multiply the payout by the functionGk.
3) Take the FFT.
4) Multiply the result by the characteristic function.
5) Take the inverse FFT of the product.
6) Multiply it by the discount factor.
7) For Bermudan options: take the maximum of this value and the payout

function at tn. Repeat the procedure from step 2 until t0 is reached.

The construction of the payout function is a significantly faster procedure than the
computation of the two FFTs and the multiplication by the characteristic function.
We distinguish three portions of time consumption during the solution process of
European options:

• Tpay is the time needed to construct the payout including the multiplication

with the function Zk andW−qk
N in (35);

• Tfour is the time in steps 3 to 6 in the algorithm,
• Tadd is the additional time needed for starting the computation, reading and

writing files.

We assume here that Tadd is negligible. The total time needed to compute (26) is
then Ttot ≈ Tpay + Tfour. We further assume that Tfour = ATpay. If technique (35)
is used and we partition the problem into B parts, the computational time per
processor is:

Ttot,split = Tpay + 1

B
Tfour = A+ B

B
Tpay (36)

with B = ∏d
j=1 βj . If there are Q identical processors available, then the parts B

can be distributed over the Q processors. Ideally Q is a divisor of B. The number
of parallel processes is therefore equal to 
B/Q� and the computational time reads:

Ttot,split =
⌈
B

Q

⌉
A+ B

B
Tpay (37)

So, when B =Q, we see that Tpay is not subdivided in our parallel approach, as
explained above. In our applications, typically, A ∈ [4, 12] for B = 1.

3.2 Full grid experiments

We evaluate the CPU times of the parallel multi-dimensional convolution method
for some multi-dimensional experiments on tensor-product grids. We first evaluate
the option on the geometric average for which we compare the numerical result
with an analytic solution (Berridge and Schumacher (2004)). This solution can be
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TABLE 1 Option prices for the four-dimensional geometric average call option with
the parallel timings (in seconds), Q= B. The last column gives A (36).

Call on the geometric average CPU times with (35)
d = 4

nf Price Error Ratio B = 1 B = 2 B = 4 B = 16 A

3 1.962 2.0 × 10–1 5.3 <0.1 <0.1 <0.1 <0.1
4 2.128 3.8 × 10–2 5.4 <0.1 <0.1 <0.1 <0.1
5 2.156 9.3 × 10–3 4.1 0.5 0.2 0.1 <0.1 4.5
6 2.163 2.3 × 10–3 4.0 9.4 4.9 3.0 1.6 6.2
7 2.165 5.8 × 10–4 4.0 164.1 85.1 45.2 25.2 7.1

obtained by the use of a coordinate transformation y = ∏d
j=1 exj /d . The option

price can then be obtained via the one-dimensional Black–Scholes formula with:

σ̂ =
√√√√ 1

d2

d∑
j=1

d∑
K=1

ρjkσjσk, δ̂ = 1

d

d∑
j=1

(
δi + 1

2
σ 2
i

)
− 1

2
σ̂ 2

In Table 1, the prices for the four-dimensional call option on the geometric
average of the assets are presented for a different number of grid points. The first
column in Table 1 represents the number of grid points per coordinate Nj = 2nf ,
j = 1, . . . , 4. The final computation, nf = 7, requires 4 GB of memory and has a
complexity of 228 points.

The option parameters chosen are r = 0.06, σj = 0.2, δj = 0.04, ρjk = 0.25 if
j 	= k and T = 1. The strike price is €40, as is S(0).

The desired accuracy of errors being less than €0.01 is achieved for nf = 5.
We observe a second-order convergence on the finer grids. The right-hand side of
Table 1 presents timings on a parallel machine, which consists of nodes with two
processors each, with 8 GB of memory. Parameter A, as in (36) is also given.

Based on these results we conclude that the partitioning strategy is useful in
reducing the total CPU time. Parallel efficiency would improve on finer grids and
in higher dimensions.

We now consider problems that require more than the maximum available
physical memory per processor. The parallel partitioning is then mandatory. In
Table 2, we present the prices of a digital put on the geometric average of five assets.
As the payout function of the digital option (it will pay an amount of €1 when the
geometric average is less than the strike price in our experiment) has a discontinuity
along the hypersurface

∏d
j=1 exj /d = 1, it is expected that this leads to only first-

order error convergence. Table 2 indeed displays first-order convergence (again the
exact solution is known for the digital put on the geometric average) and we see
that a grid size with nf = 6 is not sufficient to reach the desired accuracy.

Table 3 then presents the solution of a six-dimensional standard basket put with
equally weighted assets (ci = 1

6 ). The error convergence is irregular for this payout,
but at least of second order. The size, nf = 5, is again sufficient to reach the desired
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14 C. C. W. Leentvaar and C. W. Oosterlee

TABLE 2 Option prices for the five-dimensional geometric average digital put, plus
parallel timing results and parameter A from (36).

Digital put on the geometric average CPU times
d = 5

nf Price Error Ratio B = 4 B = 32 A

2 0.81 3.36 × 10–1 1.49 <0.1 <0.1
3 0.32 1.49 × 10–1 2.26 <0.1 <0.1
4 0.40 7.43 × 10–2 2.00 0.2 0.1 4.0
5 0.43 3.71 × 10–2 2.00 1.8 1.1 4.5
6 0.45 1.86 × 10–2 2.00 295.6 91.1 8.7

TABLE 3 Option prices for the six-dimensional basket put, plus parallel timing
results.

Basket put CPU times
d = 6

nf Price Error Ratio B = 4 B = 32

2 1.26 1.25 <0.01 <0.01
3 1.52 2.63 × 10–1 4.7 0.09 <0.01
4 1.51 1.70 × 10–2 15.5 5.02 1.2
5 1.50 2.62 × 10–3 6.5 334.34 111.1

accuracy. The CPU times for B = 32 in Tables 2 and 3 are estimated times when
the number of processorsQ is equal to the number of parts B.

The hedge parameters can easily be obtained using the convolution method. We
refer to Appendix B for the derivation and some numerical results for Delta.

In the next section, we describe the sparse grid technique that we use to solve
multi-asset options. The sparse grid technique can be chosen if the required memory
or the required number of processors for the partitioned full grid version is too
large. However, the efficient use of the sparse grid technique in computational
finance is seriously restricted by the types of multi-asset option contracts in use. An
acceptable accuracy with the sparse grids method can be expected if the solution
has bounded mixed derivatives. The payouts of the examples presented in Tables 1–
3 do not have this property. It may be possible to transform a payout so that the
kink (or discontinuity for a digital option) is aligned with a grid line (Leentvaar
and Oosterlee (2008)), but this cannot be done for every payout. A call or put
option based on the maximum or minimum of the underlying assets has its non-
differentiability along grid lines, see Figure 1. It is therefore expected that these
options can be handled rather well in the sparse grid setting.

4 SPARSE GRIDS

The partitioning of (26) to obtain (35) is not sufficient to deal with the curse
of dimensionality. It helps to obtain problems of moderate size that can fit into
the available memory or to speed up the computation of medium-sized problems.
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FIGURE 1 Payout for two-dimensional options on the maximum or minimum of
assets: (a) call on maximum; (b) put on maximum; (c) call on minimum; (d) put on
minimum.
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(d)

A five-dimensional problem with 26 grid points per coordinate would need vectors
containing 230 elements (about 16 GB of memory). With a maximum of 4 GB of
memory per processor, we could solve the problem on four processors (splitting
the problem twice). However, a seven-dimensional problem with 27 grid points per
coordinate is too large to partition with a moderate number of processors. Vectors
on this grid will consist of 249 elements. If processors with 4 GB memory are avail-
able, the number of splittings required is 21 and we would have 221 subproblems
of a reasonable size. Of course, several subproblems can be solved on a single
processor as the FFT-based computation is typically fast. With 211 subproblems on
one processor, we would need 210 ≈ 1,000 processors. The (computer-dependent)
restrictions on the number of dimensions and the tensor-product grid sizes that can
be efficiently handled in parallel can be calculated easily.

The sparse grid method, developed by Zenger and co-workers (Bungartz and
Griebel (2004); Zenger (1990)), is an approach that allows the solution of problems
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FIGURE 2 Construction of a two-dimensional sparse grid. Combined solution with
different values of b: (a) b = 1; (b) b = 2; (c) b = 3.
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with higher dimensionality. The solution is obtained via a combination of approx-
imations obtained on relatively coarse high-dimensional grids, which are called
subproblems here. The solution of this combination technique mimics the solution
on a full tensor-product grid.

Let us consider a full grid with Nj = 2ns , ie, the number of grid points for
coordinate direction j . The sparse grid method combines subproblems with a
maximum number of 2ns -points in one coordinate. The other coordinates of the
subproblem are discretized with a minimum number of grid points per direction,
2b, called “the base” here. The number of subproblems to combine depends on the
number of dimensions, the base and the number of points of the full grid to mimic.
These subproblems are ordered in d layers with the complexity of each subproblem
within a layer being approximately the same. The combination of the subproblem
solutions, by means of interpolation, at a certain layer �, is just the sum of these
solutions on the grids. The first layer of subproblems consists of grids of size
(2ns × 2b × · · · × 2b). The layer number for this grid is �= ns + (d − 1)b. Grids
of size (2b × 2b × · · · × 2ns) and (2b+2 × 2b × · · · × 2ns−2) are, for example, also
present in this layer. The next layer is of size �= ns − 1 + (d − 1)b. To form the
solution a weighted combination of layers is taken with the binomial coefficients as
the weights (Bungartz and Griebel (2004)):

Vcombined =
d∑
j=1

(−1)j+1
(
d − 1
j − 1

) ∑
q∈Id,�

Vq (38)

where Id,� represents the indices of all d-dimensional grids on layer � and q is
one of its elements. The combined solution leads to the sparse grid solution, see
Figure 2.

EXAMPLE 1 Consider a three-dimensional grid of size 163, whose solution we
would like to mimic using the sparse grid method. Now ns = 4, d = 3 and we have
three layers of subproblems. Suppose that we need a grid that consists of at least
four points per coordinate (b = 2), then we find:
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• first layer, �= 8, with grids (16 × 4 × 4), (8 × 8 × 4), (4 × 16 × 4), (8 ×
4 × 8), (4 × 8 × 8) and (4 × 4 × 16);

• second layer, �= 7, with grids (8 × 4 × 4), (4 × 8 × 4) and (4 × 4 × 8);
• third layer, �= 6, with grid (4 × 4 × 4).

Although we do not have an exponentially growing number of points with this
method, the number of subproblems to be solved, Md,�, increases significantly for
increasing dimensions. For a given ns, b and d it reads:

Md,� =
(
�− d(b− 1)− 1

d − 1

)
(39)

The total number of points on this layer reads, N� = 2�+(d−1) · Md,�, and the total
number of points in a sparse grid computation, mimicking a full grid of size 2ns in
each direction, reads:

Ntotal = 2ns−d+1+(d−1)b
d∑
j=1

2d−j
(
ns − j − b + d

d − 1

)
(40)

If, however, even a sparse grid subproblem does not fit into the memory,
we additionally have to make use of the parallelization strategy from Section 3,
partitioning the multi-dimensional convolution method for all of the subproblems
in a sparse grid layer. Let us consider, as an example, a seven-dimensional problem
with ns = 10 and b = 2. This problem requires 228 grid points for the subproblems
in the top layer. The total number of subproblems in that layer is 1,716, but these
subproblems need to be partitioned once according to the splitting in Section 3.
Therefore, we deal with 3,432 subproblems of roughly 227 points. The full grid
problem would require 270 grid points (243 GB), which is infeasible. The overall
sparse grid complexity is 239 points, subdivided into 5,147 subproblems.

The accuracy of the convolution method can help to gain some insight in the
error for the sparse grid case. For a single-asset option with the asset modeled by
geometric Brownian motion a second-order full grid convergence was derived by
Lord et al (2008). We also assume an error of O(
x2) for the multi-dimensional
problem, discretized on an equidistant grid with mesh size 
x. For the sparse grid
integration technique, it was shown, for example, by Gerstner and Griebel (1998)
that the order of convergence is O(
x2(log(
x−1))d−1), with 
x the smallest
mesh size occurring, for problems with bounded mixed derivatives. We assume
here that this sparse grid error expansion is also valid for the contracts evaluated
in the next section. A required sparse grid accuracy, connected to the maximum
number of grid points in one direction NS = 2ns , can be related “globally” to the
number of grid points, Nj = 2nf , in the full grid case, as follows:

Cf2
−2nf = Cs2

−2nsnd−1
s (41)
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with constants Cf and Cs. The solution to this equation is given by:

ns = exp

(
−L

(
− ln 4

d − 1
exp(D)

)
−D

)

D = −nf ln 4 + ln Cf − ln Cs

d − 1

and L is the Lambert W function.1 With this expression, we can compute the
required number of grid points for a sparse grid computation to mimic a certain
full grid problem with grid size nf, given the desired accuracy ε, constant Cf and
number nf and the upper-bound of Cs. The constants Cf and Cs can be determined
from a small-sized experiment taking into account that, in particular, Cs is problem
dependent.

4.1 Sparse grid computations

In the sparse grid setting, we can use the convolution algorithm as in the full grid
case. In fact, the sparse grid method can be coded as an outer loop running over
all subproblems. Within the loop, the convolution method is called with the desired
grid parameters. We developed the algorithm so that if the subproblems in the sparse
grid are additionally partitioned as described in Section 3, the number of parallel
tasks increases to U = NB, where B is the number of parts of a subproblem. The
algorithm loops over all tasks U . Every task is sent to a different processor as soon
as the processor is available. The maximum number of tasks in a problem is limited
to 231 on a 32-bit machine and 263 on a 64-bit machine. As soon as a subproblem is
solved, the solution (an option value) is returned to the master process and summed.
After this task is performed, a new task can be assigned to this processor. This
kind of parallel coding is not straightforward, due to the three different types of
partitioning within the algorithm, but it can be used on a heterogeneous cluster.

We now perform numerical experiments with option contracts on the maximum
or minimum of the underlying assets. The option parameters for these experi-
ments are:

• K = 100, T = 1 year, r = 0.045;
• σ1 = 0.25, σ2 = 0.35, σ3 = 0.20, σ4 = 0.25, σ5 = 0.20, σ6 = 0.21 and
σ7 = 0.27;

• δ1 = 0.05, δ2 = 0.07, δ3 = 0.04, δ4 = 0.06, δ5 = 0.04, δ6 = 0.03 and
δ7 = 0.02;

• R =




1.00 −0.65 0.25 0.20 0.25 −0.05 0.05
−0.65 1.00 0.50 0.10 0.25 0.11 −0.016

0.25 0.50 1.00 0.37 0.25 0.21 0.076
0.20 0.10 0.37 1.00 0.25 0.27 0.13
0.25 0.25 0.25 0.25 1.00 0.14 −0.04

−0.05 0.11 0.21 0.27 0.14 1.00 0.19
0.05 −0.016 0.076 0.13 −0.04 0.19 1.00




with R the matrix with the correlation coefficients ρjk .

1The Lambert W function is the solution of L(x) eL(x) = x.
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TABLE 4 European and Bermudan four-dimensional put option on the maximum
of the underlying assets on a full grid. The Bermudan contract has 10 exercise
dates.

European Bermudan
d = 4

nf Price Error Ratio Price Error Ratio

3 0.38 7.38 × 10–1 0.61 5.06 × 10–1

4 0.87 2.51 × 10–1 2.94 0.53 9.25 × 10–1 0.55
5 1.05 6.82 × 10–2 3.67 1.87 3.36 × 10–1 2.75
6 1.10 1.76 × 10–2 3.88 1.85 2.88 × 10–2 11.67
7 1.11 4.51 × 10–3 3.90 1.84 5.37 × 10–3 5.36

We start with the four-dimensional problem and compare the sparse and the full
grid results. The parameters for this experiment are listed above, where we take the
first four subscript entries. In Table 4, the results for the full grid experiment are
presented for a European and a Bermudan contract. The Bermudan contract has 10
exercise dates during the lifetime of the option contract. The results are presented
for grids with Nj = 2nf , j = 1, . . . , d , points. We see a smooth convergence for
this type of European contract and an accuracy better than €0.01 when nf = 7. For
the Bermudan contract, the convergence ratio is less smooth, but the accuracy is
again satisfactory.

REMARK 3 (Smooth fit principle) It is well-known that in the case of American
options under Black–Scholes dynamics the derivative of the value function is
continuous (smooth fit principle). However, this is not the case when pricing
Bermudan options, for which the function V will have a discontinuous first
derivative. Although at the final exercise time the location of this discontinuity
is known, this is not the case at previous exercise times. This may hamper the
numerical treatment of options in the present context.

REMARK 4 (American options) In order to price American options, based on
the present approach for Bermudan options, there are basically two approaches.
One can compute a Bermudan option with many exercise dates, and thus very
small time steps, as an approximation of an American option, or one can apply
a repeated Richardson extrapolation. These two approaches have been applied to
the univariate case by Lord et al (2008), in which it was shown that the Richardson
extrapolation was superior in terms of accuracy and CPU time. The convergence of
the Bermudan approach with many exercise dates was only of first order, whereas
the Richardson extrapolation was significantly better than that. However, Lord et al
(2008) achieved a very regular convergence of the pricing for Bermudan options
with the convolution method by shifting the grids, so that the option value where
the continuation and the payout values coincide was placed at a grid point. This
was the reason for the accurate American options prices of Lord et al (2008). In the
multivariate case, however, it is no longer possible to place an “early -exercise line”,
or even a higher-dimensional entity, completely on a grid line. Therefore, we cannot
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achieve a regular convergence for Bermudan options and extrapolation cannot be
used to price American options. American multi-asset options are, however, still
rare financial contracts.

Although the results are satisfactory in the four-dimensional case, the Bermu-
dan option contract, for example, cannot be computed with nf = 7 in higher-
dimensional cases without any form of communication. In Section 4, we derived an
expression to compute the number of grid pointsNs = 2ns needed for mimicking the
solution with sparse grid, given the accuracy and the number of grid pointsNf = 2nf

in the full grid. The number of grid points is a rough estimate and we assume the
value of Cf as an upper bound for Cs. With a desired accuracy of approximately
10−3, we would need nf = 8 in the full grid case. From the results in Table 4, we
haveCf ≈ 74 with nf = 7. Solving (41), the number of grid points for the sparse grid
computation is ns = 13, to have an accuracy of 10−3. The choice of the base b in
the sparse grid technique has a major influence on the complexity. The convolution
method does not work if one of the coordinates is discretized in only two points,
so b ≥ 2. It is also reasonable for accuracy reasons to use a higher base (Leentvaar
and Oosterlee (2008)), for example b = 3 which means at least eight points per
coordinate. This, however, also has a significant impact on the costs of the method.

In Table 5, the results for the put option and the maximum of the underlying
assets are presented for the four- and five-dimensional case and for European and
Bermudan options based on a sparse grid technique with b = 3. In this table, the first
column represents the mimic of the full grid. With ns = 13, the desired accuracy of
10−3 is reached. The sparse grid method also converges to the same value as the
full grid case (see Table 4), although the convergence tends to be of first order and
irregular. For the five asset problem (right-hand side of Table 5), we see the same
behavior of the four asset problem by means of accuracy and convergence. Finally,
the Bermudan option contract also reaches the desired accuracy when ns = 13.

REMARK 5 (Irregular sparse grid convergence) The sparse grid convergence in
Table 5 is somewhat irregular. Option pricing problems are typically characterized
by payout functions that do not have bounded mixed derivatives. The max option,
however, has this feature only along its axes (see Figure 1). So, in principle,
we would expect the asymptotic theoretical optimal sparse grid convergence of
O(h2(log h−1)d−1). However, for the multi-dimensional Poisson equation and a
smooth solution, bin Zubair et al (2007) showed that the theoretical sparse grid
convergence was only achieved on relatively fine grids. Here we have the same sit-
uation. For the four-dimensional case of Table 5 we observe significantly improved
sparse grid convergence rates on finer grids: ns = 14 : the error is 5.0 × 10−4 with
convergence ratio 2.43, for ns = 15 : we have error 1.9 × 10−4 and ratio 2.79, for
ns = 16, the error equals 6.0 × 10−5, and ratio 3.1, while for ns = 17 the error is
1.8 × 10−5 and the ratio is 3.36.

The interesting point is the CPU time. In Table 4, we have an accuracy
of 4.5 × 10−3 when nf = 7 for the full grid European four-dimensional option.
The CPU time on 16 equivalent processors for the full grid problem (see Table 1)
is 25 seconds. We have an accuracy of 4.68 × 10−3 with ns = 11 in Table 5 for
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TABLE 5 Sparse grid results of a four- and five-dimensional put option on the
maximum of the assets.

European 4D European 5D

ns Price Error Ratio Price Error Ratio

7 1.0488 5.25 × 10–2 0.7407 3.48 × 10–2

8 1.0785 2.97 × 10–2 1.77 0.7696 2.90 × 10–2 1.20
9 1.0992 2.06 × 10–2 1.44 0.7875 1.79 × 10–2 1.62

10 1.1061 6.88 × 10–3 3.00 0.7967 9.21 × 10–3 1.94
11 1.1107 4.68 × 10–3 1.47 0.8015 4.77 × 10–3 1.93
12 1.1134 2.62 × 10–3 1.79 0.8035 2.04 × 10–3 2.34
13 1.1146 1.22 × 10–3 2.15 0.8046 1.09 × 10–3 1.34

Bermudan 4D Bermudan 5D

ns Price Error Ratio Price Error Ratio

10 1.830 1.34 × 10–2 3.68 1.389 5.65 × 10–2 0.32
11 1.838 5.09 × 10–3 2.63 1.380 8.49 × 10–3 6.66
12 1.840 3.18 × 10–3 1.60 1.375 5.16 × 10–3 1.65
13 1.841 2.56 × 10–3 1.24 1.378 2.24 × 10–3 2.30

the same option, but now in sparse grid case. In Table 6, the details are presented
for the four-dimensional sparse grid case with ns = 11. Each row in Table 6
represents a layer of the combination technique with the complexity, value of �
and number of subproblems. Columns four to six of Table 6 give the CPU times
for each subproblem of a specific layer, the layer’s total sequential CPU time and
parallel CPU time when 12 CPUs are used. The total time on a single computer is
124.2 seconds and on a heterogeneous cluster 11.1 seconds. The efficiency is 11.23,
which is high when 12 is the ideal case. We also see that the CPU time in the sparse
grid context on 12 CPUs is lower than the CPU time for the full grid case on 16
CPUs (25 seconds, see Table 1). So, the sparse grid technique is an efficient method
to use in parallel on a small number of CPUs, whereas the problem size of the
partitioned full grid is still large. For example, the problem size of a subproblem in
the top layer of the five-dimensional 213 mimic in Table 5 has a total complexity of
225 or 512 MB.

We conclude this section with sparse grid results with some higher-dimensional
examples of the option contracts on the maximum or minimum of the assets. In
Table 7, the results of the sparse grid computation are presented for a put option
on the maximum and minimum of six or seven underlying assets. We again see a
satisfactory accuracy with ns = 10 but a highly irregular convergence. The seven-
dimensional sparse grid problem with ns = 10 uses the sparse grid technique as well
as the partition technique in Section 3, because the maximum available memory is
2 GB on the heterogeneous cluster. The problem size of this experiment in the top
layer is 4 GB and therefore it is partitioned with B = 2. Again the base of the sparse
grid technique is set to b = 3. The hedge parameters can also be computed with the
sparse grid technique. See Appendix B for the results for
 and �.
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TABLE 6 Details of the four-dimensional sparse grid computation with four layers
(mimic of the four-dimensional 211 full grid): the complexity of a single subproblem
on layer �, the number of subproblems, the CPU time for a subproblem and a layer
(sequential and parallel with Q= 12).

Details CPU times

Complexity Number of Parallel
Layer of problems For a Total performance

� a subproblem per layer subproblem for the layer Q = 12

17 220 165 0.51 82.5 7.3
16 219 120 0.24 28.8 2.5
15 218 84 0.12 10.1 1.0
14 217 56 0.05 2.88 0.3

Total 425 124.2 11.1

TABLE 7 Sparse grid results of two types of six- and seven-dimensional European
contracts.

6D Put on minimum 6D Put on maximum

ns Price Error Ratio Price Error Ratio

7 27.093 1.43 × 10–1 0.375 2.33 × 10–2

8 27.183 9.02 × 10–2 1.58 0.396 2.13 × 10–2 1.09
9 27.141 4.21 × 10–2 2.14 0.412 1.50 × 10–2 1.42

10 27.158 1.73 × 10–2 2.43 0.420 8.89 × 10–3 1.69

7D Put on minimum 7D Put on maximum

ns Price Error Ratio Price Error Ratio

7 26.153 1.22 × 10–1 0.179 1.45 × 10–2

8 26.217 6.31 × 10–2 1.93 0.194 1.50 × 10–2 0.96
9 26.189 2.72 × 10–2 2.32 0.206 1.14 × 10–2 1.31

10 26.203 1.34 × 10–2 2.02 0.213 7.21 × 10–3 1.58

5 CONCLUSIONS

The multi-dimensional convolution method is a powerful and fast method. It is
able to efficiently price multi-asset options, especially those of European type,
under Lévy price dynamics, including geometric Brownian motion, and to compute
the hedge parameters. The inclusion of jumps in the underlying dynamics implies
that we need to substitute another characteristic function in the multi-dimensional
integration which is an easy exercise. However, the multi-dimensional models with
jumps need insight into the correlation between the different assets, which is a non-
trivial research question.

The partitioning of the method enables us to distribute some multi-dimensional
split parts over a system of parallel computers, which speeds up the computation.
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Since we chose to avoid communication in the parallel system, and thus require
some additional computation, the parallel efficiency is not optimal.

With the help of the sparse grid technique, we can climb in the number of
dimensions of the multi-dimensional contracts. The size of the target problem
depends, of course, on the number of parallel processors that are at one’s disposal.
An important remark is, however, that the basic sparse grid technique, without any
enhancements, can only be successfully applied for certain payouts, ie, solutions
should have bounded mixed derivatives. We show that the min- and max-asset
options exhibit a satisfactory sparse grid convergence. The parallel efficiency
of the sparse grid method is excellent, as each subproblem can be computed
independently. For high-dimensional problems it becomes necessary to combine
the parallel sparse grid method with the parallel version of the convolution method.

For Bermudan options the convergence is irregular in the full grid case and
rather slow in the sparse grid case. Bermudan options generally do not exhibit a
smooth pasting between continuation value and early exercise payout. This hinders
an efficient treatment, as at the early exercise point second derivatives do not exist
and, in particular, mixed derivatives are not bounded. This is a prerequisite for an
efficient sparse grid treatment. A logical next step in our research is to evaluate the
resulting parallel method on a machine containing a significant number of parallel
processors.

Although we have presented some positive results for the use of sparse grids
for multi-asset options, the results also give rise to some serious thoughts on the
applicability of the sparse grid method. Satisfactory sparse grid accuracy can be
achieved for option values that exhibit bounded mixed derivatives. This may not,
however, be possible for highly complex payout structures, as are usually encoun-
tered in the financial industry. For those, there is little hope for satisfactory sparse
grid accuracy without any enhancements (making the method more complicated).

APPENDIX A TRUNCATION OF THE COMPUTATIONAL DOMAIN

Here we perform a numerical experiment in order to check numerically the
influence of truncating the computational domain on the accuracy of option prices.
We choose a single-asset option for this purpose. The option parameters used are
r = 0.06, σ = 0.25, δ = 0.04 and T = 1. The strike price is €40, as is S(0), so
log S0/K = 0. In Table A.1 we vary the size of the computational domain, 	d , and
determine the error generated, where Smin =K exp (−L) and Smax =K exp (L).

We use 220 discretization points, so that the discretization error is negligible. It
is shown numerically that a domain of size 	d = [−L1, L1] with L= 20σ gives
highly accurate results.

APPENDIX B HEDGE PARAMETERS

The hedge parameters can be computed in an analytic way by using the derivative
properties of the Fourier transform Gray and Goodman (1995):

F
(

df

dx

)
= −iωF(f )
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TABLE A.1 At-the-money error caused by truncation to 	d with 220 discretization
points for a European call.

L Smin Smax Error

σ 31.15 51.36 2.45 × 100

2σ 24.26 65.95 1.42 × 100

4σ 14.72 108.73 1.92 × 10–1

8σ 5.41 295.56 2.40 × 10–4

12σ 1.99 803.42 7.54 × 10–9

16σ 0.73 2,183.91 6.86 × 10–10

20σ 0.27 5,936.47 2.07 × 10–10

Now the hedge parameters are:


j(t, x)= ∂V

∂Sj
= −e−r(T−t)

Sj
F inv{iωjF{V (T , y)}φ(−ω)} (B.1)

�j (t, x)= ∂2V

∂S2
j

= e−r(T−t)

S2
j

F inv{(iωj + ω2
j )F{V (T , y)}φ(−ω)} (B.2)

These equations can be discretized similarly to (26) into:


k(t, xm)= −e−r(T−t)

(2π)dSk

d∏
j=1

(−1)mjDinv
d [iωnkφnDd{VkGk}] (B.3)

�k(t, xm)= e−r(T−t)

(2π)dS2
k

d∏
j=1

(−1)mjDinv
d [(iωnk + ω2

nk
)φnDd {VkGk}] (B.4)

Table B.1 shows the numerical convergence results for the delta parameter in four-
and five-dimensional basket call computations, obtained on a full grid. Table B.2
finally presents a comparison of the full and sparse grid numerical values for the
parameter 
.

TABLE B.1 Hedge parameters of a standard 4D and 5D basket call on a full grid of
2nf points per coordinate (option parameters are in Section 4.1)

4D 5D

nf �1 Error �1 Error

3 0.1369 0.1087
4 0.1370 8.90 × 10–4 0.1119 3.29 × 10–3

5 0.1371 1.16 × 10–4 0.1116 3.40 × 10–4

6 0.1372 2.22 × 10–5 0.1116 1.90 × 10–5
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TABLE B.2 Hedge parameters for the four-dimensional put option on the minimum
of the assets; full and sparse grid solutions.

Full grid put on the minimum

nf �1 Error �1 Error

3 −0.2821 1.27 × 10–1 1.126 × 10–2 2.91 × 10–3

4 −0.2322 4.99 × 10–2 1.024 × 10–2 1.03 × 10–3

5 −0.2232 8.99 × 10–3 9.823 × 10–3 4.12 × 10–4

6 −0.2223 9.91 × 10–4 9.765 × 10–3 5.80 × 10–5

7 −0.2222 9.97 × 10–5 9.751 × 10–3 1.47 × 10−5

Sparse grid put on the minimum

ns �1 Error �1 Error

3 −0.2545 1.126 × 10–2

4 −0.2295 2.50 × 10–2 9.262 × 10–3 2.00 × 10–3

5 −0.2209 8.63 × 10–3 9.487 × 10–3 2.25 × 10–4

6 −0.2232 2.38 × 10–3 9.661 × 10–3 1.74 × 10–4

7 −0.2211 2.18 × 10–3 9.672 × 10–3 1.14 × 10–4

8 −0.2222 1.14 × 10–3 9.774 × 10–3 1.01 × 10–4

9 −0.2224 2.14 × 10–4 9.755 × 10–3 1.86 × 10–5

10 −0.2222 1.63 × 10–4 9.752 × 10–3 3.13 × 10–6
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