
Reachability computation for hybrid
systems with Ariadne

Luca Benvenuti ∗ Davide Bresolin ∗∗ Alberto Casagrande ∗∗∗
Pieter Collins ∗∗∗∗ Alberto Ferrari † Emanuele Mazzi †
Alberto Sangiovanni-Vincentelli †,‡ Tiziano Villa ∗∗

∗Università di Roma “La Sapienza”, Roma, Italy
(luca.benvenuti@uniroma1.it)

∗∗Università di Verona, Verona, Italy (bresolin@sci.univr.it,
villa@univr.it)

∗∗∗Università di Udine, Udine, Italy (casagrande@dimi.uniud.it)
∗∗∗∗ CWI, Amsterdam, The Netherlands (pieter.collins@cwi.nl)

† PARADES, Roma, Italy (aferrari@parades.rm.cnr.it,
emazzi@parades.rm.cnr.it)

‡Dept. of EECS, University of California, Berkeley,
California(alberto@eecs.berkeley.edu)

Abstract: Ariadne is an in-progress open environment to design algorithms for computing
with hybrid automata, that relies on a rigorous computable analysis theory to represent
geometric objects, in order to achieve provable approximation bounds along the computations.
In this paper we discuss the problem of reachability analysis of hybrid automata to decide
safety properties. We describe in details the algorithm used in Ariadne to compute over-
approximations of reachable sets. Then we show how it works on a simple example. Finally,
we discuss the lower-approximation approach to the reachability problem and how to extend
Ariadne to support it.

1. INTRODUCTION

In many applicative fields there is the need to model
systems having a mixed discrete and continuous behaviour
that cannot be characterized faithfully using either only
discrete or continuous models. This is the case, for exam-
ple, of automotive powertrain systems, where a four stroke
engine is modelled by a switching continuous system and
is controlled by a digital controller. Such systems consist
of a discrete control part that operates in a continuous
environment and are named hybrid systems because of
their mixed nature.

In order to model and specify hybrid systems in a formal
way, Alur et al. (1992) and Maler et al. (1991) intro-
duced the notion of hybrid automata. Intuitively, a hybrid
automaton is a “finite-state automaton” with continuous
variables that evolve according to dynamics characterizing
each discrete node.

Of particular importance in the study of a hybrid automa-
ton is the reachable set, which consists of all states that can
be reached under the dynamical evolution starting from a
given initial state set. Hybrid automaton states consist
of a discrete location paired with a vector of continuous
variables, and therefore they have the cardinality of contin-
uum. Because of this, the reachable set is, in general, not
decidable, as it has been proved in Henzinger et al. (1995).
Many papers therefore propose approximation techniques
to estimate the reachable set (see Halbwachs et al. (1994);
Dang and Maler (1998); Asarin et al. (2000); Kurzhanski
and Varaiya (2000); Botchkarev and Tripakis (2000); Silva

et al. (2001)). However, even the computation of approxi-
mations to the reachable set is not straightforward; indeed,
it may not even be possible to compute a sequence of over-
approximations convergent to the reachable set (Collins
(2005)).

Many tools have been developed to compute or approx-
imate reachable sets for hybrid systems, using differ-
ent approaches. Tools like Kronos (Daws et al. (1995);
Yovine (1997)) and UPPAAL (Larsen et al. (1997))
compute the reachability relation for systems based on
timed automata. Other tools, such as, d/dt (Asarin et al.
(2002)), VeriShift (Botchkarev and Tripakis (2000)), and
HyTech (Henzinger et al. (1997)) compute approximations
to the reachable set for hybrid automata with linear con-
tinous dynamics. Another tool is PHAVer (Frehse (2005)),
that can compute approximations of the reachable set for
linear hybrid automata with an arbitrary level of pre-
cision. Additionally, general-purpose tools for set-based
analysis, such as GAIO (Dellnitz et al. (2001)) may be
used. These tools also include many interesting features
such as model checking capabilities or graphical model-
ing interfaces. However, all these tools have two main
disadvantages. Firstly, the class of systems which can be
studied is limited to either timed automata or linear hybrid
systems. Secondly, most of these software packages have
restrictive licences, and some are even closed source. With-
out access to the source code, users can neither customize
or optimize them for a specific class of instances of the
reachability problem, nor check that the algorithms are
correctly implemented.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301658093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To overcome these limitations, in Balluchi et al. (2006)
we have recently proposed a framework for hybrid system
verification. This tool, called Ariadne, is a development
environment in which to construct space representation
techniques and algorithms for reachability analysis. It in-
tegrates and implements existing and new algorithms and
representation techniques with a high degree of flexibility
and customization, to let users choose the best methods for
their needs. The package is released as an open source dis-
tribution, so that different research groups may contribute
with new data structures, algorithms and heuristics. In
this paper we concentrate on the algorithm used in Ari-
adne to compute over-approximations of reachable sets.
Because of the modular structure of the package, it can
work with many different types of numeric representations
of real numbers, continuous functions and regions of space.
It can be also easily extended to cover different classes
of hybrid automata. Furthermore, it relies on a rigorous
computable analysis theory to represent geometric objects,
in order to achieve provable approximation bounds along
the computations.

The paper is organized as follows. In Section 2 we briefly
introduce both syntax and semantics of hybrid automata.
In Section 3 we describe the reachability problem and
give possible approaches for its solution. In Section 4 we
describe in details the algorithm used in Ariadne to
compute over-approximations of reachable sets, while in
Section 5 we give a simple example of how the algorithm
works. In Section 6 we discuss the lower-approximation
approach to the reachability problem. Finally, Section 7
ends the paper discussing the current implementation
status and future work.

2. HYBRID SYSTEMS AND AUTOMATA

We first give a formal definition of a hybrid automaton,
based on an underlying discrete automaton.
Definition 1. (Hybrid Automaton). A hybrid automaton
is a tuple H = 〈Q, E, X, Inv , Dyn, Act , Reset〉 such that:

(1) 〈Q, E〉 is a finite directed graph; the vertexes, Q, are
called locations or control modes, and the directed
edges, E, are called control switches;

(2) Each location q ∈ Q is labeled by the predicate
Inv(q) on the set X and the transitive relation Dyn(q)
on X × X × R≥0 such that if Inv(q)[p] is true then
Dyn(q)[p, p, 0] is true;

(3) Each edge e ∈ E is labeled by the predicate Act(e) on
X and the relation Reset(e) on X× X.

The predicate Inv(q) is the invariant condition of q, and
Dyn(q) is the dynamic law of q, while Act(e) is the
activation condition of e and Reset(e) is the reset relation
of e.

Dyn(q) is a transitive relation, i.e., ∀x, y, z ∈ X,
Dyn(q)[x, z, t1 + t2] is true if and only if both Dyn(q)[x, y, t1]
and Dyn(q)[y, z, t2] are true.

We specify Inv , Act and Reset by a formula in some
language over the reals, while we use differential equations
to define Dyn. In this setting the dynamic law Dyn(q) of a
location q can be obtained by integrating the correspond-
ing differential equations, with the intuitive meaning that

if Dyn(q)[z, z′, t] holds, then the continuous flow can reach
z′ from z after time t. This definition of hybrid automata is
quite general. As an example, O-minimal hybrid automata
(see Lafferriere et al. (2000); Brihaye et al. (2004)) are a
subclass of our hybrid automata, since we do not impose
restrictions on the formulæ and on the resets, and rectan-
gular hybrid automata (see Henzinger and Kopke (1996))
can be easily mapped into our definition.
Example 1. Consider a tank that is controlled through a
monitor, which continuously senses the water level and
turns the pump on and off. Water enters the tank from
the top and leaves through an orifice in its base. The rate
at which water leaves is proportional to the water level,
denoted by the variable y, and it is such that ẏ = −0.1y.
When the pump is on, the rate at which water enters is
constant and equal to 2.0. Furthermore, from the time that
the monitor signals to change the status of the pump to
the time that the change becomes effective, there is a 2
seconds delay.

An hybrid automaton H = 〈Q, E, X, Inv , Dyn, Act ,
Reset〉, that models this example, is depicted in Figure 1.
The automaton has four locations: in locations q0 and q1

the pump is turned on, while in locations q2 and q3 the
pump is turned off. The continuous state variable x is used
to model the delays, while the continuous state variable y
is the water level. The monitor signals to stop the pump
when the water level raises to 10 and signals to start the
pump when the level decreases to 4.5.

q0

y ≤ 10
ẋ = 1

ẏ = 2− 0.1y

q1

x ≤ 2
ẋ = 1

ẏ = 2− 0.1y

q2

y ≥ 4.5
ẋ = 1

ẏ = −0.1y

q3

x ≤ 2
ẋ = 1

ẏ = −0.1y

y = 10
x := 0

x = 2

y = 4.5
x := 0

x = 2

Fig. 1. Water level monitor.

In Section 5 we will show how this hybrid automaton can
be analyzed using Ariadne.

To formalize the semantics of hybrid automata, we first
need to define the concept of hybrid automaton’s state.
Definition 2. (Hybrid Automaton - States). Let H be a
hybrid automaton. A state ` of H is a pair 〈v, r〉, where
v ∈ Q is a location and r ∈ Rk is an assignment of values
for the continuous variables. A state 〈v, r〉 is said to be
admissible if Inv(v)[r] holds.

Intuitively, an execution of a hybrid automaton corre-
sponds to a sequence of transitions from a state to an-
other. Hybrid automata have two kinds of transitions: con-
tinuous reachability transitions, capturing the continuous
evolution of a state, and discrete reachability transitions,
capturing the changes of location. More formally, we can
define hybrid automaton semantics as follows.
Definition 3. (Hybrid Automaton - Semantics). Let H be
a hybrid automaton. The continuous transition relation

t−→C between admissible states, where t ≥ 0 is the elapsed
time of the transition, is defined as follows:

〈v, r〉 t−→C 〈v, s〉 ⇐⇒
∃ continuous f : R≥0 → Rk s.t. r = f(0), s = f(t), and

∀ t′ ∈ [0, t], Inv(v)[f(t′)] ∧Dyn(v)[r, f(t′), t′] (1)
Such a function f is called a flow function.

The discrete transition relation e−→D between admissible
states, where e ∈ E, is defined as follows:

〈v, r〉 〈v,u〉−−−→D 〈u, s〉 ⇐⇒
〈v, u〉 ∈ E ∧ Inv(v)[r] ∧Act(〈v, u〉)[r]

∧ Reset(〈v, u〉)[r, s] ∧ Inv(u)[s]. (2)

This semantics allows us to define the reachability rela-
tion.

3. THE REACHABILITY PROBLEM

Definition 4. (Hybrid Automaton - Reachability). Let H
be a hybrid automaton. A state 〈qr, r〉 reaches a state
〈qs, s〉 if there exist a sequence (`i)i∈I of states such that
`0 = 〈qr, r〉, `n = 〈qs, s〉 and either `i−1

t−→C `i or
`i−1

e−→D `i, for some t ∈ R≥0, and e ∈ E.

We use ReachSetH(〈qr, r〉) to denote the set of states
reachable from 〈qr, r〉. Moreover, given a set of states
R ⊆ Q × X we use ReachSetH(R) to denote the set
∪〈qr,r〉∈RReachSetH(〈qr, r〉).

Checking safety properties on hybrid automata reduces to
the reachability problem. Suppose we wish to verify that
a safety property ϕ holds for a hybrid automaton H; in
other words, that ϕ remains true for all possible executions
starting from a set R of initial states. Then we only need
to prove that ReachSetH(R) ⊆ Sat(ϕ), where Sat(ϕ) is the
set of states where ϕ is true.

Unfortunately, the reachability problem is not decidable
in general; there exists at least a hybrid automaton H
and two sets of its states, R and T , such that there is no
algorithm to decide whether T ∩ ReachSetH(R) is empty
or not (see Henzinger et al. (1995)). Some tools avoid these
difficulties by restricting to classes of hybrid systems for
which the reachable set is computable by algebraic means,
and so the reachability relation is decidable.

Nevertheless, formal verification methods can be applied
to hybrid automata. Suppose we can compute an over-
approximation S to ReachSetH(R). Then if S is a subset
of Sat(ϕ), then so is the reachable set.

For these reasons, tools for reachability analysis of general
hybrid automata are based on approximation techniques.
The challenge is to find the “best” approximations of
continuous regions. Some tools simply compute approx-
imations to the reachable set, without any control of
the errors; these may solve many practical problems, but
the user cannot have absolute confidence in the answer.
More sophisticated tools compute over-approximations to
the reachable set, but work with fixed precision, and so
may not be able to verify systems which are indeed safe.
Even so, it is not possible, in general, to compute over-

approximations to the reachable set to arbitrary accuracy
in an approximative framework Collins (2005).

Ariadne can compute convergent over-approximations to
the chain-reachable set, which contains all points that can
be reached by introducing an arbitrarily small amount of
noise and can be proved to be the best possible over-
approximation to the reachable set (see Collins (2007)).
This means that, given an hybrid automaton H and an
inital set R ⊆ Q × X, it can compute a set S ⊆ Q × X
such that ReachSetH(R) ⊆ S. Moreover, by increasing the
precision of the approximation, the set S can be made
arbitrarily close to the chain-reachable set.

4. THE REACHABILITY ALGORITHM

Before discussing the reachability algorithm in details,
we briefly describe how we represent regions of space in
Ariadne. For a more accurate description, see Balluchi
et al. (2006).

Compact subsets of the Euclidean space Rn are approx-
imated in Ariadne by finite unions of simple sets, such
as intervals, simplices, cuboids, parallelotopes, zonotopes,
polytopes, spheres and ellipsoids, defined using rational
coefficents. Since they form a base for the topology, they
are called basic sets. The sets that can be represented
exactly as a finite union of basic sets of a given type are
called denotable sets.

Fig. 2. Examples of approximations of a set.

Regions of space can be also represented in Ariadne by
means of grids. Grids are subdivision of Rn into cells of
fixed size. A set can be represented on a grid as a union
of cells. Figure 2 shows how a non-denotable set can be
over-approximated by using ellipsoids or grids.

In the case of hybrid automata we need to represent hybrid
sets, which are regions in the space Q × Rn. Hybrid sets
are represented in Ariadne starting from hybrid basic
sets that pair a location of the automaton with a single
basic set. Hence, we can have hybrid intervals, hybrid
simplices, hybrid cuboids, hybrid parallelotopes, hybrid
zonotopes, hybrid polytopes, hybrid spheres and hybrid
ellipsoids. Finite unions of hybrid basic sets are called
hybrid denotable sets. Ariadne can also use hybrid grids,
that consist of a grid for every location of the automaton.
Hybrid sets are then represented by marking the cells of
the different grids.

The chain-reachability algorithm of Ariadne takes as
inputs an hybrid automaton, a finite (hybrid) grid, an
initial set and a bounding set (represented as sets of cells of
the hybrid grid). It computes an over approximation of the
infinite-time chain-reachable set of the automaton starting
from the initial set and staying withing the bounding set.

Since the infinite-time chain-reachable set of an hybrid
automaton is (in general) not computable, we need to
constrain the search space of the algorithm to assure
termination. In our case, by giving a bounding set we
restrict the algorithm to a bounded region of space that
can be represented by a finite number of cells of the grid.
The grid is used also to control the precision of algorithm
(the finer the grid, the more accurate the computed region)
and to store inputs, outputs and intermediate results by
using a constant amount of memory (a region in a grid is
represented by marking the corresponding cells).

The chain-reachability algorithm alternates continuous
evolution and discrete evolution of the automaton until
a fixpoint is reached, and it proceeds as follows.

(1) Start from the initial set and compute the continuous
evolution of the automaton as long as possible. Mark
the cells of the grid that are touched during the
continuous evolution.

(2) When no more cells can be marked, compute a single
discrete evolution step. Mark the new cells of the grid
that are reached by the discrete step.

(3) If new cells are reached, go to (1). Otherwise, stop.

The algorithm terminates since the bounding set is divided
into a finite number of cells by the underlying grid. Hence,
after a finite number of steps either no more cells are
marked or the whole search space is marked. In the
following we describe in details how the continuous and
the discrete evolution of an hybrid automaton is computed
in Ariadne.

4.1 Computing the continuous evolution

The continuous evolution of the system is computed by
means of an integrator. Ariadne’s modularity allows
the user to choose between different types of integrators
included in the tool (we currently have an integrator
for affine systems, the Euler integrator, and the Lohner
integrator), or to add new custom integration methods.

Given a location q ∈ Q of the hybrid automaton, the
computation of the continuous evolution in q starts from
a set of cells of the hybrid grid and proceeds as follows.
First, the initial set of cells is approximated as a union of
basic sets. Then each basic set is integrated for a number
of integration steps using the dynamic law Dyn(q). The
length of the integration step is adaptively determined,
between user-specified minimum and maximum values. If
a basic set becomes too large, the error in the evolution
step becomes large, and the basic set may be subdivided
to avoid catastrophic loss of accuracy. Finally, after a
specified number of integration steps, the evolved sets are
over-approximated or “locked” back to the grid. Figure 3
depicts this procedure.

Locking to the grid causes a loss of accuracy due to the
over-approximation, but it is necessary for termination.
After locking to the grid, the algorithm checks if new
cells have been reached or not. In the former case, it
continues with the integration phase starting from the
newly reached cells. In the latter case, a fixpoint in the
continuous evolution of the system has been reached and
a number of “snapshots” of the system evolution have
been computed, one for each locking-to-grid phase. The

Fig. 3. Integration of a basic set with integration step h.

algorithm ends with a reachability step that computes an
over approximation of the flow of the system starting from
such snapshots. This last step is explained in Figure 4.

Fig. 4. Computing the flow of the system.

4.2 Computing the discrete evolution

Computing the discrete evolution of an hybrid automaton
is simpler than computing its continuous evolution. Given
an hybrid set of reached cells, we proceed as follows.

(1) For every control switch e ∈ E we determine the set
of cells that intersects with Act(e);

(2) if such set is not empty, we apply the reset function
Reset(e) to obtain the set of cells reached by the
transition.

The discrete evolution of the system is computed using
upper semantics: when there are multiply enabled tran-
sitions, or when the system exhibits grazing (tangential
contact between a reached region and an activation set),
the system evolves nondeterministically with all possible
courses of action being taken. This guarantees that every
point that can be reached by the automaton is included
in the result, and thus that the algorithm computes an
over-approximation of the reachable set.

5. AN EXAMPLE

In this section, we present a test case of reachability
analysis for the hybrid automaton H defined in Example 1.
The automaton models a water level monitor system:
suppose that we start from an empty tank and that we
want to guarantee that the water level is always between
3 and 13, except for the initial phase.

To this end, we start the reachability algorithm of Ari-
adne from the initial location q0 with initial values for
the continuous variables x = 0 and y = 0. The first
step of the algorithm is the computation of the continuous
evolution of the system in the location q0, that is depicted
in Figure 5a. During this phase, the water level increases
up to 10, since Inv(q0) is y ≤ 10. Then, the algorithm

checks if there are active transitions. In this case, we have
that the transition 〈q0, q1〉 is active: the controller signals
to switch off the pump and goes to location q1. The reset
function of 〈q0, q1〉 is applied: x is reset to 0, y keeps its
value (10) and the computation of the continuous evolution
starts again from location q1. Figure 5b portraits the reach
set after the computation of the continuous evolution in
q1.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

q0

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

q0

q1

(b)

Fig. 5. Computing the continuous evolution in q0 and q1.

The water level continue to increase during the 2 seconds
delay, then the transition 〈q1, q2〉 is activated: the pump
is switched off and the water level decreases following the
dynamics of location q2, until it reaches 4.5 (see Figure 6a).
Then the controller signals to switch on the pump: tran-
sition 〈q2, q3〉 is activated and the continuous evolution
of the system proceeds in location q3. When the compu-
tation of this last continuous evolution is terminated the
algorithm activates the transition 〈q3, q0〉. By doing this
the system reaches a region that has been reached already
during the computation of the continuous evolution in q0.
Hence, a fixpoint has been reached: the algorithm stops
and returns the reached set depicted in Figure 6b.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

q0

q1

q2

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

q0

q1

q2

q3

(b)

Fig. 6. Computing the continuous evolution in q2 and q3.

It is easy to see that, except for the initial phase, the water
level is always between 3 and 13, and thus that the safety
property we want to check is verified.

Ariadne supports many other types of analysis. For
instance, it can be used to compute an over-approximation
of the system evolution for a certain time. Figure 7
represents the evolution of the water level for 40 time
units. As one can expect, the system presents an oscillating
behaviour that keeps the water level into the desired
boundaries. The solution’s loss of precision over time
is caused by over-approximation errors, and cannot be
completely eliminated even by increasing the precision of
the algorithm.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

W
at

er
 L

ev
el

Time

Fig. 7. Evolution of the water level with respect to time.

6. LOWER APPROXIMATION

In the previous sections we have described how Ariadne
computes over-approximations of reachable sets. However,
there are some cases where over-approximations are not
sufficient to determine if a system is safe or not. Let
ϕ be a safety property, R ⊆ Q × X an initial set, and
suppose that we have computed an over-approximation S
of ReachSetH(R). If S ⊆ Sat(ϕ), we can conclude that
the system is safe. However, if S * Sat(ϕ) we cannot say
anything about the safety of the system: it could be the
case that the system is safe, but the points in S \ Sat(ϕ)
have been included in S because of over-approximation
errors.

A possible way to determine if a system is unsafe is to
compute an under-approximation of the reachable set, that
is, a set S ⊆ ReachSetH(R). In this case, if S * Sat(ϕ) we
can conclude that the system does not satisfy the safety
property ϕ. Unfortunately, in most cases, it is not possible
to compute an under-approximation of the reachable set,
or we have that the only possible under-approximation
is the empty set (this is the case, for instance, of single
points and single trajectories). To overcome the problems
with under-approximations, in order to establish whether
a system respect a safety property in a sufficiently large
class of practical applications, we are currently extending
Ariadne to support lower-approximations of reachable
sets. Given a set T ⊆ Q × X, a lower-approximation of
T is any finite union of basic sets S =

⋃n
i=1 Si such that

for every i = 1, . . . , n, Si ∩ T 6= ∅ (there is at least one
point of T in each Si). Now, let ϕ be a safety property
and R ⊆ Q × X be an initial set. If S =

⋃n
i=1 Si is a

lower-approximation of ReachSetH(R) and there exists an
Si that is completely disjoint from Sat(ϕ), we can conclude
that there is at least one point of ReachSetH(R) that sits
outside Sat(ϕ), and thus that the system is unsafe.

Computing lower-approximations of reachable sets is
harder than computing over-approximations. Additional
care should be taken in order to guarantee that the com-
puted set is indeed a lower-approximation of the reachable
set. The main problems that arise are the following.

• During the computation of the continuous evolution
basic sets cannot be split. If B is a basic set of a
lower-approximation of ReachSetH(R) (that is, B is
such that B∩ReachSetH(R) 6= ∅) and we split it into

B1 and B1, it is not guaranteed that both B1 and B2

satisfy the lower-approximation property.
• During the computation of the discrete evolution of

the system, if there are multiply enabled transitions,
or if the system exhibits grazing (tangential contact
between a flow line and an activation set), it may
be impossible to determine exactly what transition is
activated.

All these problems should be considered and correctly
solved in order to obtain an algorithm that computes
a lower-approximation of the reachable set of an hybrid
automaton.

7. CONCLUSION

In this paper we described the algorithm used in Ari-
adne to compute over-approximations of reachable sets of
hybrid automata. We discussed also how to extend it to
support lower-approximations as well.

Currently Ariadne supports both linear and non-linear
discrete-time systems, continuous-time systems and hybrid
systems in its C++ kernel. For all these systems it can
compute over-approximations of the evolution and of the
reachable set. A Python scripting interface is available
and can be used for a fast and easy modeling and testing
of real-world applications. We are working on extending
the evaluation engine in order to fully support lower-
approximations.

REFERENCES

R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H.
Ho. Hybrid Automata: An Algorithmic Approach to
the Specification and Verification of Hybrid Systems. In
Hybrid Systems, LNCS, pages 209–229. Springer, 1992.

E. Asarin, T. Dang, O. Maler, and O. Bournez. Approx-
imate Reachability Analysis of Piecewise-Linear Dy-
namical Systems. In Proceedings of Hybrid Systems:
Computation and Control (HSCC’00), volume 1790 of
LNCS, pages 20–31. Springer, 2000.

E. Asarin, T. Dang, and O. Maler. The d/dt tool for
verification of hybrid systems. In CAV ’02: Proceed-
ings of the 14th International Conference on Computer
Aided Verification, pages 365–370, London, UK, 2002.
Springer-Verlag.

A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa,
and A. Sangiovanni-Vincentelli. Ariadne: a framework
for reachability analysis of hybrid automata. In Pro-
ceedings of the 17th International Symposium on Mathe-
matical Theory of Networks and Systems (MTNS 2006),
Kyoto, Japan, July 2006.

O. Botchkarev and S. Tripakis. Verification of hybrid sys-
tems with linear differential inclusions using ellipsoidal
approximations. In Proceedings of Hybrid Systems:
Computation and Control (HSCC’00), volume 1790 of
LNCS, pages 73–88. Springer, 2000.

T. Brihaye, C. Michaux, C. Rivière, and C. Troestler. On
O-Minimal Hybrid Systems. In Proceedings of Hybrid
Systems: Computation and Control (HSCC’04), volume
2993 of LNCS, pages 219–233. Springer, 2004.

P. Collins. Continuity and computability of reachable sets.
Theoretical Computer Science, 341:162–195, 2005.

P. Collins. Optimal semicomputable approximations to
reachable and invariant sets. Theory Comput. Syst., 41
(1):33–48, 2007.

T. Dang and O. Maler. Reachability analysis via face
lifting. In Proceedings of Hybrid Systems: Computation
and Control (HSCC’98), volume 1386 of LNCS, pages
96–109, 1998.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool
Kronos. In Proceedings of Hybrid Systems: Computation
and Control (HSCC’95), volume 1066 of LNCS, pages
208–219. Springer, 1995.

Michael Dellnitz, Gary Froyland, and Oliver Junge. The
algorithms behind GAIO-set oriented numerical meth-
ods for dynamical systems. In Ergodic theory, analysis,
and efficient simulation of dynamical systems, pages
145–174, 805–807. Springer, Berlin, 2001.

G. Frehse. PHAVer: Algorithmic verification of hybrid
systems past HyTech. In Hybrid Systems: Computation
and Control, 8th International Workshop, HSCC 2005,
volume 3414 of LNCS, pages 258–273, Zurich, Switzer-
land, 2005. Springer.

N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification
of linear hybrid systems by means of convex approxi-
mations. In Static Analysis Symposium, pages 223–237.
Springer-Verlag, 1994.

T. A. Henzinger and P. W. Kopke. State Equivalences
for Rectangular Hybrid Automata. In Proceedings of
CONCUR’96, volume 1119 of LNCS, pages 530–545.
Springer, 1996.

T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata? In Proceed-
ings of the 27th Annual ACM Symposium on the Theory
of Computing (STOCS ’95), pages 373–382, New York,
NY, USA, 1995. ACM Press.

T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HYTECH: a
model checker for hybrid systems. International Journal
on Software Tools for Technology Transfer, 1(1–2):110–
122, 1997.

A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques
for reachability analysis. In Proceedings of Hybrid
Systems: Computation and Control (HSCC’00), volume
1790 of LNCS, pages 202–214, 2000.

G. Lafferriere, G. J. Pappas, and S. Sastry. O-Minimal
Hybrid Systems. Mathematics of Control, Signals, and
Systems, 13:1–21, 2000.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
nutshell. International Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, 1997.

O. Maler, Z. Manna, and A. Pnueli. From timed to
hybrid systems. In J. W. de Bakker, C. Huizing,
W. P. de Roever, and G. Rozenberg, editors, Real-
Time: Theory in Practice, volume 600, pages 447–484.
Springer-Verlag, 3–7 June 1991.

B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell.
An assessment of the current status of algorithmic
approaches to the verification of hybrid systems. In
Proceedings of the Fortieth IEEE Conference on Deci-
sion and Control (CDC ’01), pages 2867–2874, Orlando
(Florida), 2001.

S. Yovine. Kronos: a verification tool for real-time systems.
International Journal on Software Tools for Technology
Transfer, 1(1–2):123–133, 1997.

