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When do diffusion-limited trajectories
become memoryless?
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Abstract

Stochastic description of cellular dynamics by the chemical master
equation assumes the exponential distribution of intervals between
reaction events. Diffusion-limited reactions violate this assumption.
Using the example of the target search we investigate the conditions
under which a peaked waiting-time distribution can be approximated
by the exponential function. We link the steady-state flux and the
dynamic property of the diffusion, the mean first-passage time.

1 Introduction

Cellular regulation involves processes with reactants occurring at low copy
numbers per cell (e.g. transcription/translation, signaling). Such processes
suffer from thermal noise and diffusion-limitation. The concentration of
species involved in such reactions fluctuates significantly. Recent single-cell,
single-molecule experiments indicate that fluctuations contribute to hetero-
geneity of isogenic populations and may be detrimental to cellular informa-
tion processing [1, 2].

1.1 CME description of biochemical reactions

A conventional modeling approach that accounts for fluctuations in the dis-
crete number of molecules is the chemical master equation (CME) [4, 5].
The equation describes the evolution in time of the probability to occupy
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one of the discrete states. State transitions correspond to chemical reactions
occurrences. The time to the next transition is drawn from an exponential
distribution (CME defines a continuous Markov chain). The mean of the dis-
tribution depends on the number of substrates involved in a given reaction
and the corresponding macroscopic rate constant [3].

The assumption that waiting times for a transition are distributed expo-
nentially has numerous consequences. For example, if a bimolecular reaction
(A+ B — () is described by a single transition, it implies that binding of the
two molecules occurs independently of their relative distance. This applies
only if the diffusion is much faster than the time to overcome the potential
barrier of a chemical reaction (the “well-mixed” assumption [7]).

1.2 Memorylessness of the waiting time distribution

An important property of the exponential distribution is its memorylessness.
In fact, it is the only continuous distribution with that property. Let’s denote
the time to the first reaction as 7" - an exponentially distributed random vari-
able. Suppose that the reaction did not occur during past 77 seconds. The
memoryless character of the exponential distribution implies that the prob-
ability to wait for another 75 seconds before the first reaction commences, is
the same as the probability to wait T, seconds from the initial time 77. In
other words, the random process does not remember for how long it failed to
produce an event.

In the limit of large numbers of reactants the memorylessness is also re-
flected in the Law of Mass Action. Consider a simple decay of N molecules
of species A (A — &). In the stochastic description, the time to decay for
a single molecule is distributed exponentially with an average time 7. The
time for the first decay event in an ensemble of N molecules, and therefore
N reactions, can be computed by multiplying probabilities. The resulting
distribution for the first event is also exponentially distributed, but with a
smaller average, 7/N. This holds only for the exponentials. If the distribu-
tion of waiting times was not memoryless, the dependency of the average first
event time (the mean first-passage time) on the number of sources would be
more complicated.
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Figure 1: The effect of the peaked interarrival time distribution on a decay reaction.
(A) Waiting time distributions for a Poisson process (exponential distribution - solid
line), the sum of two exponentially distributed random variables (gamma distribution
with k = 2 steps - dotted), and the sum of five variables (gamma with k = 5 steps -
dashed). All distributions have the same mean equal 1. (B) Stochastic dynamics of
a decay reaction, A — @. Waiting times are drawn from the exponential distribution
(solid line) and from a 5-step (k = 5) gamma distribution of the same mean equal to
1 (dashed). Averages are taken over 100’000 trajectories. Additionally, three arbitrary
trajectories are drawn for the exponential case (light solid).

1.3 Non-exponential waiting time distributions

Under what circumstances does the distribution of interarrival time loose
its memoryless property? A non-exponential distribution arises if a reaction
results from a sequence of transitions, e.g. sequential degradation of mRNA
transcripts [9]. While each of the steps may have exponential waiting times
the resulting distribution is peaked. It is a gamma distribution characterized
by a shape parameter k, corresponding to the number of steps in a sequence,
and the mean waiting time 7 for each of the steps. If the mean time to
complete the whole sequence is kept fixed, increasing the number of steps
results in a distribution with a smaller variance (Fig. 1A). Hence, compared
to a single-step process, fluctuations in the interarrival time are lower in a
process consisting of steps. As a result, a peaked distribution results in a
more effective overall degradation (Fig. 1B).

The computation of stochastic processes with non-exponential waiting
times (non-Markovian) becomes more cumbersome. In case of the decay
scheme mentioned above, it is enough to model each of the steps explicitly



with exponential waiting times between events. A standard kinetic Monte
Carlo simulation technique like Gillespie’s direct method can be used [5].
What if the waiting time distribution is not a straightforward result of a
sequence of steps? This is the case if a reaction is affected by diffusion.
In fact, such a reaction is also a sum of small steps (imagine a lattice and
think of diffusion as a first order reaction between two sites of the lattice [5]).
linstead of a single chain there are infinitely many possible paths of different
lengths. Depending on the location of the target, the contribution of short,
approximately direct paths, and very long ones may differ.

2 The effect of diffusion on the search time

Diffusion can be a limiting processes for the response time of a signaling
network especially when the copy numbers of signaling molecules are low. It
is under those conditions that non-exponential waiting times become impor-
tant. To what extent can they be approximated by exponential distributions?
We shall consider a generic model of a prokaryotic two-component signaling
[6]. In order for a cell to respond to an external signal, a response regulator
(a transcription factor) diffuses to the membrane where it is activated by a
receptor. After phosphorylation, it engages in a second random walk and
searches for a binding site on the DNA located in the central area of the
cell. We shall focus on this second diffusion process. Using the first-passage
theory we investigate how diffusion affects the distribution of times to reach
the target, the first-passage time.

In 3-D, the time to travel a distance L from the initial position by a single,
freely diffusing molecule is L?/6D time units (D is the diffusion constant).
However, this relation cannot estimate a diffusion-limited search for a binding
site; it describes the time to reach a sphere of radius L. The model we
consider is a single molecule in a sphere of radius R. It initiates at the
boundary and searches for a spherical target of radius a in the center. Solving
the Smoluchowski diffusion equation with appropriate boundary conditions
we obtain the first-passage time (FPT) probability density function (pdf)
[10]. The FPT pdf is a normalized histogram of the time to reach the target
for the first time. It is the analog of the exponential next reaction time
distribution described in Section 1.2. The mean of this distribution, the



mean first-passage time (MFPT) takes a simple form

|4 a a? — rg
Ttarget = K—D (1 — a) + 6D (1)

where Kp = 4maD (units of volume per time, a is the radius of the DNA
target) is the Smoluchowski diffusion-limited rate constant, and ry is the
initial position. In our case, we set 1o = R. If the size of the absorbing target
relative to the volume decreases, the first term, V/Kp = 7p, dominates the
mean. Below we explain the origin of this very useful fact.

2.1 Smoluchowski diffusion-limited rate constant

Smoluchowski obtained Kp as the rate of the diffusion-limited annihilation
reaction A+ B — @ [10]. In his model the infinite sea of diffusing A’s is fixed
at the low concentration to avoid collisions between them. The steady-state
flux (the rate) is computed at the fixed absorbing sphere B where molecules
annihilate. The ratio V/Kp (units of time) denotes the frequency of arrivals
at the absorbing target in an arbitrary volume containing diffusing molecules.

What is the distribution of interarrival times in the Smoluchowski model?
In the steady-state, positions of the molecules are random. The average
trajectory is so long that the memory of the initial distance is lost entirely.
Thus, we expect that arrivals occur at exponentially distributed intervals. If
the (imaginary) radius around the target is such that, on average, only one
molecule diffuses in V', then the model of Smoluchowski corresponds to our
problem where a single molecule starts at a distance R from the absorbing
sphere.

2.2 The memoryless character of a diffusion search

Fig. 2 illustrates the dependence of 734,4¢+ On the target radius. To answer the
question why 7p approximates the MFPT only for small targets, we need to
realize under what circumstances the FPT pdf of our search model converges
to the exponential.

The insets of Fig. 2 contain the FPT pdfs for extreme values of the target
size. Both functions are peaked, a feature typical for the distribution of
the time required to cover a given distance by a diffusing molecule (the
most notable example being the inverse Gaussian distribution). Plotting the
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Figure 2: Two estimates of the MFPT to the absorbing sphere as function of the
trap radius a: inverse of the Smoluchowski diffusion-limited rate constant 7p (solid
line), exact solution for a molecule starting at the outer boundary, Tigrget(r0 = R)
(dashed). A single molecule diffuses in a sphere of radius R (reflective boundary) with
diffusion constant D = 1 L2/T. Insets: FPT pdf for two extreme trap sizes, a = 0.01
and 0.8 R. Curves obtained by numerical inversion of the Laplace transform of the
analytical flux at the absorbing target.

distributions in the log-log scale reveals two time scales. The left part of the
pdf corresponds to the shortest time required to reach the target from R.
The right part indicates the duration of the longest search trajectories.

The two pdfs differ significantly with respect to their variance. This re-
flects the obvious fact that the search of the small target involves a significant
amount of long trajectories which possibly cover a large volume before reach-
ing the trap. For such trajectories a slight variation in the initial distance
from the target does not affect the time to reach it. The situation is different
in case of a large trap. The time to reach it is short enough for a trajectory to
be heavily dependent on the starting point. One could say that it is harder
to get lost, when the target is close.

A large variance of the pdf for the small target results from long trajecto-
ries without the memory of the initial point. This brings us inevitably to the
exponential distribution, the only memoryless continuous pdf. As shown in
Fig. 3A the pdf for a single molecule can be very well approximated by the
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Figure 3: (A) The FPT pdf for searching the inner sphere of radius a = 0.01R for a
different number N of molecules starting simultaneously at a distance R. For a single
walker, N = 1, the pdf is approximated by the exponential (dots). Triangles denote
the mean of the distributions. (B) The MFPT as function of the number of molecules
for different target sizes a. Solid lines denote the exponential-like scaling 1/N, circles
are computed using the order statistics for the analytical result.

exponential function with mean 74,4+ computed from Eq. 1. The difference
in the left-most part is not significant for the mean, as it constitutes less than
1% of the total area under the FPT pdy.

From the order statistics we obtain the pdf for many independent walkers
[8]. Increasing the number of molecules enhances the peaked character of the
distribution. However, as seen in the panel B, the scaling of the mean with
the inverse of the number of walkers holds well up to 100 independent walkers
if the target is small.

3 Discussion

The property of memorylessness of the next reaction time in a chemical
reaction is a very desired feature for modeling. It allows to construct a
Markov chain for a stochastic process and to describe the evolution of the
system by the CME. However, waiting times of some processes fail to obey
exponential dependence. One of them is a reaction limited by diffusion.
Understanding conditions under which waiting times can be approximated
by the exponential distribution alleviates the necessity to perform costly
spatial simulations.



Using the first-passage theory and the Smoluchowski theory of diffusion-
limited kinetics we investigated a random walk towards a spherical tar-
get. This process is, for example, part of the response pathway in a two-
component signaling network. We find that for a small target (relative to
the total volume), the first-passage time probability density function (FPT
pdf) can be very well approximated by an exponential function. Hence, the
scaling of the mean first-passage time (MFPT) for many diffusing molecules
as 1/N is possible. For a large target, a correction is required for the MFPT
approximated by the Smoluchowski diffusion-limited rate constant. This may
be relevant in case of cells with large organelles, e.g. vacuoles.

The inverse of the steady-state flux of molecules towards the absorbing
target approximates the MFPT of a single diffusing molecule. This holds
only if the random walk trajectory is memoryless; well approximated by the
exponential FPT pdf. Usually the steady-state flux can be computed much
easier than a dynamic property as the MFPT.

In this work we apply the first-passage theory to describe the distribution
of times to reach the target. A detailed description like this is required when
events are rare and involve single molecules, e.g. a binding site on DNA [6].
In a signaling network, the first-passage time estimates the time to respond
to the external signal and turn on the gene expression. Variation in this time
transmits directly to downstream processes if the lifetime of the cell is too
short to average over fluctuations [11, 12]. Mean first passage time theory has
an important role to play in cell biology. It allows to understand the design
and physical constraints of biological networks in much the same way as the
analysis of noise [13] influences our thinking about molecular networks.
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