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We consider robust pre-commitment and time-consistent mean-variance optimal asset
allocation strategies, that are required to perform well also in a worst-case scenario
regarding the development of the asset price. We show that worst-case scenarios for

both strategies can be found by solving a specific equation each time step. In the uncon-
strained asset allocation case, the robust pre-commitment as well as the time-consistent
strategy are identical to the corresponding robust myopic strategies, by which investors
perform robust portfolio control only for one time step and conduct a risk-free strategy
afterwards. In the experiments, the robustness of pre-commitment and time-consistent
strategies is studied in detail. Our analysis and numerical results indicate that the
time-consistent allocation strategy is more stable when possible incorrect assumptions
regarding the future asset development are modeled and taken into account. In some
situations, the time-consistent strategy can even generate higher efficient frontiers than
the pre-commitment strategy (which is counter-intuitive), because the time-consistency
restriction appears to protect an investor in such a situation.

Keywords: Robust optimization; mean-variance optimal asset allocation; target-based
strategy; time-consistent strategy; model prediction error.

1. Introduction

After the introduction of the concept of static mean-variance portfolio optimization
in Markowitz (1952), portfolio optimization theory has received a lot of attention
from academics as well as from the industry. This optimization problem which is
based on two criteria is popular with practitioners because it has a clear and very
informative target function, which explicitly contains a profit term, a risk term and
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the trade-off between these. From the perspective of academic research, this mean-
variance framework forms the basis for many interesting research directions. One
potential way to generalize Markowitz’s mean-variance strategy is to take dynamic
optimal asset allocation into consideration.

Solving a dynamic mean-variance optimization problem is not a trivial task,
however. Due to the nonlinearity of the variance operator, the dynamic mean-
variance optimization problem cannot be solved directly via the Bellman dynamic
programming principle (Bellman 1957). To tackle this issue, two possible directions
are recommended in the literature. One is based on placing the dynamic mean-
variance problem into a dynamic linear-quadratic (LQ) optimization context, using
an embedding technique (Zhou & Li 2000, Li & Ng 2000), and the other direction
is to impose a time-consistency restriction, which also serves as a condition, at all
intermediate time steps (Basak & Chabakauri 2010).

In Basak & Chabakauri (2010), the strategy corresponding to the LQ prob-
lem was termed the pre-commitment strategy and the strategy obtained by intro-
ducing time-consistency conditions was termed a time-consistent strategy. Related
research on the pre-commitment portfolio optimization has been performed in Li
et al. (2002), Zhu et al. (2004), Bielecki et al. (2005), Fu et al. (2010) and Cui et al.
(2014a), where constraints on control variables were introduced in the dynamic
optimization process. Extensions of the time-consistent strategy have been made by
modeling the trade-off parameter between risk and reward as a state-dependent vari-
able, see Hu et al. (2012), Cui et al. (2014b), Björk et al. (2014) and Cui et al. (2015).
Pre-commitment as well as time-consistent strategies constitute important parts of
pension management problems. Discussions about the pre-commitment strategy in
a defined contribution pension scheme can be found for example in Haberman &
Vigna (2002), Gerrard et al. (2004), Vigna (2014) and Sun et al. (2016). For the
time-consistent investment and re-insurance problems, we refer to Zeng & Li (2011)
and Liang & Song (2015). Numerical algorithms for solving the pre-commitment
and the time-consistency problems have been introduced in Wang & Forsyth (2010,
2011), where the solution is obtained by solving the corresponding Hamilton–
Jacobi–Bellman partial differential equation, and in Cong & Oosterlee (2016a,
2016b), where a method based on using simulation and least-squares regression
is introduced. With these numerical algorithms, dynamic mean-variance problems
including various kinds of constraints on the allocations can be solved efficiently.

The work in the above mentioned papers is based on the assumption that the
market evolves exactly as the model prescribes. This may be questionable in reality,
since we can only estimate model parameters from historical data. As mentioned in
Best & Grauer (1991), Black & Litterman (1992) and Britten-Jones (1999), design-
ing an investment strategy based on historical data may lead to significant losses.
One possible way to tackle this problem is to take model uncertainty into account
and to consider robust variants of the optimal asset allocation problem. Garlappi
et al. (2006) extend the classical mean-variance portfolio optimization problem to
allow for the possibility of multiple priors and to incorporate aversion to uncertainty
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regarding the estimated expected returns. They find that the max–min problem
faced by an investor who cares about parameter uncertainty can be reduced to
a maximization-only problem, where the estimated expected returns are adjusted
to reflect parameter uncertainty. A robust utility optimization problem where the
risky asset dynamics follow a diffusion process with misspecified trend and volatil-
ity coefficients is considered by Tevzadze et al. (2013). They propose an explicit
characterization of the solution which was given by the Hamilton–Jacobi–Bellman–
Isaacs equation. In Perret-Gentil & Victoria-Feser (2005), it is suggested to solve
the mean-variance portfolio selection problem using statistically robust estimates.
Noticing that accurately estimating returns may be a difficult task, Kuhn et al.
(2009) recommend to replace the original uncertain return process by a tractable
one. Maccheroni et al. (2006) model a robust dynamic utility optimization problem
by introducing a penalty function on all possible probabilistic models.

Another common way to introduce model uncertainty is to consider an approach,
in which the corresponding optimal strategy is required to perform well even in a so-
called ‘worst-case scenario’. In Tütüncü & Koenig (2004), a worst-case static mean-
variance problem is transformed into a saddle-point problem and is solved using an
interior-point algorithm. In Gülpınar & Rustem (2007), the authors implement a
scenario tree to represent stochastic aspects and introduce uncertainty into a multi-
period mean-variance portfolio problem. For a general discussion on robust opti-
mization, we refer to Bertsimas et al. (2011), where a static robust mean-variance
optimization is discussed as a special case. For more pointers to aspects of robust
portfolio problems, we refer to a review paper Kim et al. (2014) and the references
therein.

To our knowledge, robust pre-commitment and time-consistent mean-variance
optimization problems have not yet been extensively discussed. In this paper, we
will address this issue.

We start our work by analyzing the robust versions of the pre-commitment
and time-consistent asset allocation problems. Following El Ghaoui & Nilim (2005)
and Iyengar (2005), we consider an independent structure for parameter uncer-
tainty, which makes the Bellman backward programming principle feasible within
the robust dynamic optimization context. Without any constraints on the asset
allocations, analytic solutions can be derived. We show that the worst-case sce-
narios are generated by solving a specific equation at each time step for both
the pre-commitment and the time-consistent strategies. The optimal robust pre-
commitment and time-consistent strategies are identical to the corresponding robust
myopic strategies, where an investor derives the optimal allocation for one upcoming
time period without taking future optimal allocations into account. Robustness can
be introduced into the pre-commitment and the time-consistent strategies without
drastically increasing the computational complexity.

The robustness of the pre-commitment and the time-consistent strategies is
examined in particular when model prediction errors occur, meaning that the
assumptions on the behavior of the stochastic asset process do not reflect accurately

1750049-3



November 8, 2017 13:33 WSPC/S0219-0249 104-IJTAF SPI-J071
1750049

F. Cong & C. W. Oosterlee

the actually observed asset path (in the future). We find that the time-consistent
strategy appears more stable than the pre-commitment strategy.

In the numerical section, we test the robustness of both strategies using the
algorithms proposed in Cong & Oosterlee (2016a, 2016b), that are feasible for both
unconstrained and constrained optimization problems. We show that in the case
of an unexpectedly poor market the time-consistent strategy can be superior to
the pre-commitment strategy. In such a situation, the constrained pre-commitment
strategy even yields a higher frontier than the unconstrained pre-commitment strat-
egy, since the constraints on the allocations act as a form of “protection” when the
model prediction is inaccurate. In the case of two risky assets and one risk-free
asset, we check how the portfolio mean-variance frontier will be impacted given
an inaccurate correlation prediction for the risky assets. The unconstrained pre-
commitment strategy appears vulnerable to such prediction inaccuracies, whereas
the time-consistent strategy appears robust.

The paper is structured as follows. In Sec. 2, we describe the pre-commitment
and the time-consistent strategies and their robust counterparts. Analysis for both
strategies is performed in Sec. 3, where the robustness of the time-consistent strategy
is also studied. Numerical results are presented in Sec. 4. We conclude in the last
section.

2. Problem Formulation

2.1. Multi-period mean-variance portfolio

In this section, we describe the dynamic portfolio optimization problem with mean-
variance criteria. We assume that the financial market is defined on a probability
space (Ω,F , {Ft}0≤t≤T , P) with finite time horizon [0, T ]. The state space Ω is the
set of all realizations of the financial market within the time horizon [0, T ]. F is
the sigma algebra of events till time T , i.e. F = FT . We assume that the filtration
{Ft}0≤t≤T is generated by the price processes of the financial market and augmented
with the null sets of F .

We consider a portfolio consisting of n + 1 assets, one risk-free and n risky.
We assume that the portfolio can be traded at discrete opportunities,a t ∈
{0, ∆t, . . . , T − ∆t}, before terminal time T . At the initial time t0 = 0, an investor
decides a trading strategy to maximize the expectation of the terminal wealth and
to minimize the investment risk. Formally, the investor’s problem is given by

V̂0(W0) = max
{x̂t}T−∆t

t=0

{E[WT |W0] − λ · Var[WT |W0]} (2.1)

with V̂ the value function, subject to the wealth restriction:

Wt+∆t = Wt · (x̂′
tR

e
t + Rf ), t = 0, ∆t, . . . , T − ∆t.

aThe re-balancing times are equidistantly distributed and the number of re-balancing opportunities
before terminal time T equals M . The time step ∆t between two re-balancing days is T

M
.
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Without loss of generality, we assume that {Wt}T−∆t
t=0 will not be zero in the multi-

period optimization process. We use notations with hats in Eq. (2.1), because we will
reserve the plain notations for the formulation of the robust optimization problem,
which forms the main part of this paper. x̂t = [x̂t(1), x̂t(2), . . . , x̂t(n)]′ denotes
the asset allocations of the investor’s wealth in the risky assets in the time period
[t, t+∆t). The prime sign denotes the vector transpose. The admissible investment
strategy x̂t is assumed to be adapted to Ft. The risk aversion attitude of the investor
is denoted by λ, which is a trade-off factor between maximizing the profit and
minimizing the risk. Rf is the return of the risk-free asset in one time step, which is
assumed to be constant for simplicity, and Re

t = [Re
t (1), Re

t (2), . . . , Re
t (n)]′ denotes

the vector of excess returns of the risky assets during [t, t + ∆t). We assume that
the excess returns {Re

t}T−∆t
t=0 are sequentially independent. At each time point t,

Re
t is supposed to follow a distribution with determined parameters. Extending the

problem to a situation where the distribution parameters are uncertain constitutes
the robust counterpart of a dynamic mean-variance problem, which we will elaborate
on in Sec. 2.2.

The difficulty of solving the dynamic mean-variance problem is caused by the
nonlinearity of conditional variances, i.e. Var[Var[WT | Ft] | Fs] �= Var[WT | Fs],
s ≤ t, which makes the well-known dynamic programming valuation approach, Bell-
man (1957), not directly applicable. To tackle this problem, there are basically two
viable approaches: one is to use an embedding technique and replace the dynamic
mean-variance problem by a dynamic quadratic optimization problem (Zhou & Li
2000, Li & Ng 2000), and the other is to introduce a time-consistency restriction
as an additional condition into the backward programming approach (Basak &
Chabakauri 2010, Wang & Forsyth 2011).

Following the first path, we can formulate the dynamic quadratic problem as in
Eq. (2.2):

Ĵ0(W0) = min
{x̂t}T−∆t

t=0

{E[(WT − γ)2 |W0]}, (2.2)

where we use Ĵ to denote the value function. By assigning different values to the
parameter γ and solving the corresponding problems, we can trace out points on
an efficient frontier. In Li & Ng (2000), it is proved that this efficient frontier is the
same as the one obtained by solving Eq. (2.1) with the trade-off parameter λ taking
different values. An advantage of considering dynamic quadratic problem (2.2) is
that the Bellman dynamic programming principle can be applied and the problem
can therefore be solved in a backward recursive fashion. Since parameter γ in (2.2)
acts as an investment target in the dynamic quadratic problem, this kind of opti-
mization problem is also termed target-based optimization by Haberman & Vigna
(2002) and Gerrard et al. (2004).

It is mentioned in Basak & Chabakauri (2010) that prescribing a determined tar-
get for an investor will cause a time-inconsistency. To solve this problem, they sug-
gest to take a time-consistency restriction into account, which forms the other path
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for solving the dynamic mean-variance problem. Since a time-consistency restric-
tion can also be treated as a condition in the dynamic programming framework,
the dynamic mean-variance problem with time-consistency conditions can also be
solved in a backward recursive manner. Basak & Chabakauri (2010) call the strat-
egy obtained by following the first path the pre-commitment strategy and the one
achieved by following the second path the time-consistent strategy. For a dynamic
mean-variance optimization problem, we formally define these two strategies as
follows.

Definition 2.1 (Pre-commitment strategy). The pre-commitment strategy
{x̂∗pc

t }T−∆t
t=0 is defined by the optimal control for Eq. (2.2).

Definition 2.2 (Time-consistent strategy). The time-consistent strategy
{x̂∗tc

t }T−∆t
t=0 is defined by the optimal control for Eq. (2.1) with an additional time-

consistency condition requiring that {x̂∗tc
t }T−∆t

t=τ also constitutes an optimal control
for:

V̂ tc
τ (Wτ ) = max

{x̂t}T−∆t
t=τ

{E[WT |Wτ ] − λ · Var[WT |Wτ ]}, (2.3)

for τ = ∆t, 2 · ∆t, . . . , T − ∆t.

2.2. The robust counterpart

In the discussion above, we assumed that the excess returns Re
t of the risky assets

follow a distribution of determined parameters. However, this assumption may not
be realistic. Since we can only assess the returns of risky assets by means of historical
data, the estimated distribution parameters may be biased and may not necessarily
reflect the dynamics of the risky assets in the future. Deriving an investment strategy
based on these estimated parameters can lead to significant losses as pointed out
by Best & Grauer (1991) and Black & Litterman (1992). To make the investment
strategy more reliable, an estimation error in the parameters can be taken into
account. To this end, we consider here the robust counterpart to a dynamic mean-
variance optimization problem. In that case, an investor has a rival, i.e. nature,
that gives rise to difficulties in the optimization process. For the mean-variance
problem, we assume that the rival specifies a mean vector and a covariance matrix
of the excess returns Re

t of the risky assets at time t ∈ {0, ∆t, . . . , T − ∆t}, that
are respectively denoted by ut and

∑
t.

We only assume the uncertainty sets of ut and
∑

t to be bounded and nonempty.
This implies that the uncertainty set can be an ellipsoidal set as discussed in Gold-
farb & Iyengar (2003) or it can be a separable set as considered in Halldórsson &
Tütüncü (2003). Besides, we assume that (ut,

∑
t), t = 0, ∆t, . . . , T − ∆t, is not

stationary. If we consider the robust optimization problem as a game of two play-
ers, the investor and nature, this latter assumption implies that nature does not
necessarily choose the same adverse strategy at each time step. This leads to a
time-varying uncertainty model as termed by El Ghaoui & Nilim (2005).
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In order to make the Bellman programming principle feasible for the robust
dynamic optimization problem, we prescribe the rectangularity assumption as pro-
posed in Iyengar (2005). In this paper, the rectangularity assumptionb is defined
by:

Assumption 2.1 (Rectangularity). The choice of ut and
∑

t at time t, does not
restrict the choice of us and

∑
s at time s ∈ {0, ∆t, . . . , T − ∆t}\{t}.

As mentioned in Iyengar (2005), since the sources of uncertainty in different
time periods are typically independent of each other, the rectangularity assump-
tion, which is also an independence assumption, is appropriate for finite horizon
Markovian problems in most cases. However, if we would consider a stochastic
volatility asset model or a time series asset model, the rectangularity assumption
does not hold any more.

For the pre-commitment and the time-consistent strategies as formed in Sec. 2.1,
we establish their robust counterparts as follows.

Definition 2.3 (Robust pre-commitment strategy). The robust pre-
commitment strategy {x∗pc

t }T−∆t
t=0 is defined by the optimal control for the following

dynamic programming problem:

Jt(Wt) = min
xt

max
ut,

P
t

{E[Jt+∆t(Wt · (x′
tR

e
t + Rf )) |Wt]}, t = 0, ∆t, . . . , T − ∆t

(2.4)

with the terminal condition JT (WT ) = (WT − γ)2. Here the maximization operator
indicates that the worst-case scenario in reality is taken into account.

Definition 2.4 (Robust time-consistent strategy). The robust time-
consistent strategy {x∗tc

t }T−∆t
t=0 is defined by the optimal control for

V0(W0) = max
{xt}T−∆t

t=0

min
{ut,

P
t}T−∆t

t=0

{E[WT |W0] − λ · Var[WT |W0]} (2.5)

with an additional time-consistency condition requiring that {x∗tc
t }T−∆t

t=τ also con-
stitutes an optimal solution for:

V tc
τ (Wτ ) = max

{xt}T−∆t
t=τ

min
{ut,

P
t}T−∆t

t=τ

{E[WT |Wτ ] − λ · Var[WT |Wτ ]}, (2.6)

for τ = ∆t, 2 · ∆t, . . . , T − ∆t. Here the minimization operator indicates that the
worst-case scenario in reality is taken into account.

In order to meet the duality condition as proposed in Halldórsson & Tütüncü
(2003) for a min–max mean-variance optimization problem, we require the asset
allocations to be loosely bounded, i.e. the allocation xt at each time t satisfies −M ≤
xt ≤ M for a large positive number M , where the inequality sign is in element-wise

bFor a more general definition, we refer the readers to Iyengar (2005).
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sense. We use the term “loosely bounded” to emphasize that this restriction does
not have an impact on the choice of the optimal asset allocations since the positive
M can be chosen sufficiently large. Therefore, if we assume the asset allocations
to be loosely bounded, the optimal control performed by an investor can still be
obtained by solving the first-order conditions.

Remark 2.1. It should be emphasized that we form the robust pre-commitment
strategy by directly imposing parameter uncertainty on a plain pre-commitment
strategy as defined in Sec. 2.1. Without the robustness requirement, the equiva-
lence between the pre-commitment strategy and the optimal dynamic mean-variance
strategy has been established in Li & Ng (2000). However, it is not yet clear whether
the robust pre-commitment strategy is equivalent to the robust dynamic mean-
variance strategy. In this paper we will consider the robust pre-commitment strategy
as described in Definition 2.3.

3. Analysis in the Unconstrained Case

Within the framework presented in the last section, we can derive an analytic solu-
tion for the optimal robust pre-commitment and the optimal robust time-consistent
strategy by the Bellman dynamic programming principle. In the former case, we
consider the value function iteration in our proof, while in the latter case we make
use of an essential property of a time-consistent control. Meanwhile, we also gener-
ate the adverse choices taken by nature at each time step. Similar to our findings in
Cong & Oosterlee (2016a, 2016b), we observe that, for either a pre-commitment or
a time-consistent investor, the robust dynamic mean-variance strategy is the same
as a corresponding robust myopic strategy.

In our derivation, we assume that the expectation of the excess return of any
risky asset is larger than the return of the risk-free asset. This means that we do
not consider the trivial case where investment is never in the risky assets. Also we
make the assumption that the covariance of the excess returns of the risky assets is
positive definite.

3.1. Robust pre-commitment strategy

We first consider the robust pre-commitment strategy, which has been formed in
a recursive setting as in Definition 2.3. The optimal control for the robust pre-
commitment strategy can be described by the following proposition.

Proposition 3.1. For the robust pre-commitment optimization problem as in
Definition 2.3, an investor at time t with wealth Wt has the following optimal
control :

x∗pc
t (Wt) =

γ − WtR
(T−t)/∆t
f

WtR
(T−t)/∆t−1
f

·
( ∗∑

t

+u∗
t · u∗′

t

)−1

· u∗
t , t = 0, ∆t, . . . , T − ∆t

(3.1)
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with the parameters {u∗
t ,
∑∗

t } for the worst-case scenario solving a minimization
problem: {

u∗
t ,

∗∑
t

}
= arg min

ut,
P

t

{
u′

t

−1∑
t

ut

}
. (3.2)

Proof. At time step T , the value function is known as:

JT (WT ) = (WT − γ)2.

At time step T − ∆t, the value function can be calculated by:

JT−∆t(WT−∆t)

= min
xT−∆t

max
uT−∆t,

P
T−∆t

{E[JT (WT−∆t · (x′
T−∆tR

e
T−∆t + Rf )) |WT−∆t]}

= min
xT−∆t

max
uT−∆t,

P
T−∆t

{E[(WT−∆t · (x′
T−∆tR

e
T−∆t + Rf ) − γ)2 |WT−∆t]}.

Based on Lemma 2.3 in Halldórsson & Tütüncü (2003), perfect duality holds, i.e.
changing the order of minimization and maximization does not influence the value
of the value function. Therefore, we have

JT−∆t(WT−∆t) = max
uT−∆t,

P
T−∆t

min
xT−∆t

{E[(WT−∆t

· (x′
T−∆tR

e
T−∆t + Rf ) − γ)2 |WT−∆t]}.

We define a new function FT−∆t(uT−∆t,
∑

T−∆t, WT−∆t) by

FT−∆t

(
uT−∆t,

∑
T−∆t

, WT−∆t

)

:= min
xT−∆t

{E[(WT−∆t · (x′
T−∆tR

e
T−∆t + Rf ) − γ)2 |WT−∆t]}, (3.3)

where uT−∆t and
∑

T−∆t influence the distribution of Re
T−∆t. The value function

JT−∆t(WT−∆t) can then be written as:

JT−∆t(WT−∆t) = max
uT−∆t,

P
T−∆t

{
FT−∆t(uT−∆t,

∑
T−∆t

, WT−∆t)

}
.

For a given set of parameters {uT−∆t,
∑

T−∆t, WT−∆t}, the optimization prob-
lem with respect to xT−∆t as shown in Eq. (3.3) constitutes a smooth and convex
optimization problem. Therefore, by solving the first-order-conditions for the opti-
mality, we get:

x∗
T−∆t

(
uT−∆t,

∑
T−∆t

, WT−∆t

)
=

γ − WT−∆tRf

WT−∆t
·
( ∑

T−∆t

+uT−∆tu′
T−∆t

)−1

·uT−∆t. (3.4)
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Inserting the optimal control in Eq. (3.4) into Eq. (3.3) gives us:

FT−∆t

(
uT−∆t,

∑
T−∆t

, WT−∆t

)

= (γ − WT−∆tRf )2 ·

1 − u′

T−∆t ·
( ∑

T−∆t

+uT−∆tu′
T−∆t

)−1

· uT−∆t




and

JT−∆t(WT−∆t) = max
uT−∆t,

P
T−∆t


(γ − WT−∆tRf )2

·

1 − u′

T−∆t ·
( ∑

T−∆t

+uT−∆tu′
T−∆t

)−1

· uT−∆t




.

Therefore, the optimal adverse policy taken by nature should solve the minimization
problem:{

u∗
T−∆t,

∗∑
T−∆t

}
= arg min

uT−∆t,
P

T−∆t


u′

T−∆t ·
( ∑

T−∆t

+uT−∆tu′
T−∆t

)−1

· uT−∆t


.

By the Sherman–Morrison formula, Sherman & Morrison (1950), we can simplify
the optimization target and the optimal adverse policy should satisfy:{

u∗
T−∆t,

∗∑
T−∆t

}
= arg min

uT−∆t,
P

T−∆t

{
u′

T−∆t

−1∑
T−∆t

uT−∆t

}
.

So, the proposition is verified at time T − ∆t and the value function at time
T − ∆t reads:

JT−∆t(WT−∆t) = (γ − WT−∆tRf )2

·

1 − u∗′

T−∆t ·
( ∗∑

T−∆t

+u∗
T−∆tu

∗′
T−∆t

)−1

· u∗
T−∆t


.

Since the policy of nature satisfies the rectangularity assumption, the factor 1 −
u∗′

T−∆t · (
∑∗

T−∆t +u∗
T−∆tu

∗′
T−∆t)

−1 ·u∗
T−∆t will not influence the optimality at time

T − 2∆t. Therefore, we can finalize the proof by mathematical induction.

In our proof, in the inner optimization, i.e. the optimization with respect to the
asset allocations, we solve the first-order-conditions to obtain the optimality. This is
feasible since the asset allocations are assumed to be loosely bounded. In the outer
optimization, i.e. choosing the optimal adverse policy, we do not explicitly solve the
problem. However, since the rectangularity assumption holds, this will not affect
the backward programming process.
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3.2. Robust time-consistent strategy

Here, we consider the optimal control for the time-consistent strategy. Different from
the derivation for the robust pre-commitment strategy, we do not utilize the value
function iteration, which will be complicated in the time-consistent case. Instead,
by benefiting from the special structure of a time-consistent optimal control, we
focus on generating the optimal controls directly. A similar approach is considered
in Cong & Oosterlee (2016b). Our findings in the robust time-consistent case can
be described by the following proposition.

Proposition 3.2. For the robust time-consistent optimization problem in Defini-
tion 2.4, an investor at time t with wealth Wt has the following optimal control :

x∗tc
t (Wt) =

∗−1∑
t

u∗
t

2λWtR
(T−t)/∆t−1
f

, t = 0, ∆t, . . . , T − ∆t, (3.5)

with the parameters {u∗
t ,
∑∗

t } for the worst-case scenario solving the minimization
problem (3.2).

Proof. It is not difficult to prove that the proposition is correct at time T − ∆t:

x∗tc
T−∆t(WT−∆t) =

∗−1∑
T−∆t

u∗
T−∆t

2λWT−∆t
, (3.6)

and the optimal adverse policy reads:{
u∗

T−∆t,

∗∑
T−∆t

}
= arg min

uT−∆t,
P

T−∆t

{
u′

T−∆t

−1∑
T−∆t

uT−∆t

}
.

Assume that at time T −2∆t an investor has wealth WT−2∆t, then, after performing
some control at time T − 2∆t, the corresponding terminal wealth is given by

WT = WT−2∆t · (x′
T−2∆tR

e
T−2∆t + Rf ) · ((x∗tc

T−∆t)
′ · Re∗

T−∆t + Rf ),

where x∗tc
T−∆t and Re∗

T−∆t indicate that the investor will take future optimality into
account while designing the optimal control at time T − 2∆t. Further we have:

WT = WT−2∆t · (x′
T−2∆tR

e
T−2∆t + Rf ) · ((x∗tc

T−∆t)
′ · Re∗

T−∆t + Rf )

=
1
2λ

u∗′
T−∆t

∗−1∑
T−∆t

Re∗
T−∆t + WT−2∆t · (x′

T−2∆tR
e
T−2∆t + Rf ) · Rf

= KT−∆t + WT−2∆t · (x′
T−2∆tR

e
T−2∆t + Rf ) · Rf ,

the second equality is valid since the optimal control is as in Eq. (3.6), which indi-
cates that multiplying the wealth at time T − ∆t with the optimal time-consistent
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control should yield a determined number. In the last line, we define the factor
KT−∆t, which only contains elements from time step T − ∆t. Since we have the
rectangularity assumption and the excess returns are assumed to be sequentially
independent, the optimal control at time T − 2∆t can be obtained by ignoring
factor KT−∆t and by solving:

max
xT−2∆t

min
uT−2∆t,

P
T−2∆t

{E[WT−2∆t · (x′
T−2∆tR

e
T−2∆t + Rf ) · Rf |WT−2∆t]

−λ · Var[WT−2∆t · (x′
T−2∆tR

e
T−2∆t + Rf ) · Rf |WT−2∆t]}.

By solving this static max-min optimization problem, we can verify the proposi-
tion at time T − 2∆t. At the remaining time steps, we can prove the proposition
by mathematical induction. The key point in the proof is that, after taking the
structure of an optimal control into account, the robust time-consistent problem
shares the same optimal control as a robust myopic problem, which can be solved
elegantly.

For the time-consistent case, we do not give details about how the two-layer
optimization problem can be solved, because the basic machinery is the same as in
the pre-commitment case. We find that the robust pre-commitment and the robust
time-consistent strategies share some common features. We will elaborate on them
in Sec. 3.3.

3.2.1. Robust mean-variance efficiency

In the real world, it is impossible to determine the mean ut and the covariance
matrix

∑
t for the future excess return at time step t, since only one realization can

be observed. Usually, the basic strategy is that we specify the excess returns at differ-
ent time steps to follow a stationary distribution with pre-determined mean ũ and
covariance matrix

∑̃
, i.e. we assume ut = ũ and

∑
t =

∑̃
, for t = 0, ∆t, . . . , T −∆t.

Assuming the excess returns to be stationary may not be very restrictive, but pre-
scribing the mean and the covariance may be questionable. For example, if in reality
the risky assets follow a stationary distribution with a mean value û and covariance
matrix

∑̂
, that are significantly different from ũ and

∑̃
, then the corresponding

optimal control on the portfolio will certainly be different from the control result-
ing from the basic strategy. Reflecting on this, the question is: how much different
is a portfolio managed under the basic strategy from a portfolio managed under
an optimal strategy (where we mean by optimal strategy, the case where accurate
asset information is used in the model)? As implied by Proposition 3.3, in some
situations the basic strategy can generate the same mean-variance efficient frontier
as an optimal strategy.

Proposition 3.3. For two investors, Investor A assuming that the excess returns
of risky assets have mean ũ and covariance

∑̃
and Investor B assuming the mean to

be û and the covariance
∑̂

, their time-consistent strategies generate portfolios with
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the same Sharpe ratio (Sharpe 1966) given the risk-free portfolio as the benchmark,
if

• (Condition 1) their strategies are performed in the same market,

• (Condition 2)
∑̃−1

ũ = K · ∑̂−1
û, where K ∈ R

+.

Proof. The proof is straightforward. We first generate the optimal time-consistent
controls of these two investors and then cast the controls on the portfolios starting
with the same amount of wealth.

Following a similar derivation as in the proof of Proposition 3.2, we obtain the
optimal asset allocations for Investors A and B, as:

xA
t (Wt) =

∑̃−1

ũ

2λWtR
(T−t)/∆t−1
f

, xB
t (Wt) =

∑̂−1

û

2λWtR
(T−t)/∆t−1
f

,

at time points t = 0, ∆t, . . . , T − ∆t.
For Investor A, imposing the optimal control on a portfolio starting with initial

wealth W0 will generate terminal wealth:

WA
T = W0R

T/∆t
f +

∑̃−1

ũ

2λ
· (Re

0 + Re
∆t + · · · + Re

T−∆t). (3.7)

For Investor B, the terminal wealth can be written in a similar fashion as:

WB
T = W0R

T/∆t
f +

∑̂−1

û

2λ
· (Re

0 + Re
∆t + · · · + Re

T−∆t). (3.8)

Note that the excess returns {Re
t}T−∆t

t=0 are random numbers, that indicate the
movement of the risky assets in the market. Since we assume that two investors
perform their strategies in the same market, the same notations for the excess
returns are used in Eqs. (3.7) and (3.8).

The Sharpe ratio of the portfolio managed by Investor A is given by

SA =
E[WA

T ] − W0R
T/∆t
f√

Var[WA
T ]

=
E

[(∑̃−1

ũ
)
· (Re

0 + Re
∆t + · · · + Re

T−∆t)
]

√
Var
[(∑̃−1

ũ
)
· (Re

0 + Re
∆t + · · · + Re

T−∆t)
] .

In a similar way, we can calculate the Sharpe ratio of the portfolio managed by
Investor B. Since we have the assumption that

∑̃−1
ũ = K · ∑̂−1

û, we obtain
SA = SB, i.e. the portfolios managed by Investor A and Investor B share the same
Sharpe ratio.
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As shown in Eqs. (3.7) and (3.8), since two investors have different views on the
market, the amounts of their terminal wealth are different. However, when their
insights on the market satisfy a special condition, Proposition 3.3 implies that their
portfolios will share the same return-to-risk ratio. It also means that the mean-
variance efficient frontier generated by Investor A with a basic guess of the market
will be identical to that generated by Investor B with expert knowledge.

Remark 3.1. Based on Proposition 3.3, we can conclude that for a time-consistent
investor managing a portfolio with one risky asset and one risk-free asset, no matter
what is the estimation of the return of the risky asset, the strategy is always mean-
variance efficient.

Remark 3.2. Björk et al. (2014) proposed a time-consistent strategy with a
state-dependent risk aversion parameter. If the market forecast is incorrect and the
state-dependent risk aversion is adopted instead of the constant risk aversion param-
eter, the corresponding time-consistent strategy may become less stable. However,
as shown in Wang & Forsyth (2011) and Cong & Oosterlee (2016b), the time-
consistent strategy with state-dependent risk aversion typically generates a lower
mean-variance efficient frontier than the time-consistent strategy with constant risk
aversion.

3.3. Some reflections

Based on the derivations in Secs. 3.1 and 3.2, we give some insights respectively on
the adverse policy of nature and on the optimal policy of an investor in a dynamic
mean-variance optimization framework.

On the optimal adverse policy. At a given time step, the optimal policy of
nature solves the same optimization problem for either the pre-commitment or the
time-consistent problem. In the case of one risky asset, the optimization problem is
intuitive: the expectation of the excess return is assumed to be as low as possible
and the variance of the excess return as high as possible.

Although the policy of nature may be strictly constrained, we note that con-
straints on the policy of nature do not influence the smoothness of the value function
in the pre-commitment case and we assume that also the smoothness of the value
function in the time-consistent case is not affected. At a given time step, the policy
of nature is independent of the amount of wealth held by the investor.

Moreover, if we assume that at each time step the feasible sets for nature are
identical, we see that the optimal adverse policy is to take a stationary strategy
although it is not required to perform in this manner.

On the optimal policy of an investor. At each time step, for either a robust pre-
commitment or a robust time-consistent investor, the optimal asset allocations can
be obtained by solving the corresponding robust myopic problem, where a myopic
investor is assumed to perform an optimal control only for a next time period and
to adopt the risk-free strategy afterwards. For a nonrobust pre-commitment or a
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time-consistent strategy, similar results have been found respectively in Cong &
Oosterlee (2016a, 2016b). One application of this is that, in the unconstrained case,
the optimal control policy of an investor can be generated efficiently in a forward
fashion.

A recently published paper by Pınar (2016) also deals with the robust dynamic
mean-variance problem. In that model setting, the author also finds that the robust
dynamic strategy is identical to a myopic strategy. Our discussion differs from this
in two aspects. First, the investment risk in Pınar (2016) is required to be bounded
at each time step and is therefore neither related to the pre-commitment nor to the
time-consistent case discussed in this paper. Secondly, as a consequence of choosing
different model settings, our optimal asset allocations are not same. The optimal
choice of nature is included in deriving our optimal strategy, while the optimal
strategy in Pınar (2016) does not take this into account.

As discussed in Wang & Forsyth (2011) and Cong & Oosterlee (2016b), when
the nominal mean and variance of the excess returns are correctly predicted, the
pre-commitment strategy usually generates a higher mean-variance efficient frontier
than the time-consistent strategy, since the time-consistent strategy is restricted
by the time-consistency constraint. However, our derivations in Sec. 3.2.1 suggest
that, when the market does not perform as expected, a time-consistent strategy
appears to be more stable and has the potential to yield higher efficient frontiers
than a pre-commitment strategy. In the special case where a portfolio consists of
one risky asset and one risk-free asset and the risky asset’s return has a stationary
distribution, any time-consistent mean-variance strategy is guaranteed to generate
the same mean-variance efficient frontier as a robust time-consistent strategy.

Of course, all our derivations in Secs. 3.1 and 3.2.1 are based on the assumption
that the asset allocations are loosely bounded. If we impose strict constraints on the
policy of an investor, the value functions will be nonsmooth and our assumption will
be violated. In that case, the optimal strategy of an investor is not the same as an
optimal myopic strategy any more, but we can implement numerical methods similar
to those in Cong & Oosterlee (2016a, 2016b) to generate constrained solutions (as
is done in the numerical section to follow).

Remark 3.3. As in Cong & Oosterlee (2016b), when there is periodic money with-
drawal from (or injection in) the portfolio, a pre-commitment strategy will be very
sensitive to the amount of withdrawal. When the amount is not as expected, a time-
consistent strategy may generate a higher efficient frontier than a pre-commitment
strategy.

4. Numerical Experiments

In the previous sections, we discussed the optimal allocations and the worst-case sce-
narios for the robust mean-variance optimization problem. A robust mean-variance
strategy suggests that an investor should take the worst-case scenario into account
and adopt a conservative strategy. In this paper, we assume that the uncertainty
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sets of parameters at different time steps are identical. Our proof then implies
that the worst-case market, which solves Eq. (3.2) for either an unconstrained pre-
commitment or a time-consistent investor, can be generated by the same model
parameters at each time step. In the constrained case, we make the conjecture that
this choice of model parameters still yields the worst-case scenario. Since the pur-
pose of constructing the worst-cast scenario is to challenge an investor to achieve
good performance of the management strategy, we believe that, even if this conjec-
ture is not correct, this choice of model parameters has a significant influence on the
performance of a portfolio. With these criteria for choosing model parameters, we
can compare the unconstrained and the constrained cases in the same framework.

Different from Gülpınar & Rustem (2007) and Kuhn et al. (2009), we do not con-
sider an uncertainty parameter set in our tests, since a fixed point in the uncertainty
set can already give us the worst-case scenario (see Propositions 3.1 and 3.2). We
perform numerical tests to examine the robustness of the proposed mean-variance
strategies. We assume that a model prediction error is present in our test cases.
Two scenarios are considered, one is the model scenario and the other the real-
world observed scenario. We derive the asset allocations from the model scenario,
adopt those allocations and analyze their impact for the observed real-world sce-
nario. When the model scenario appears conservative, the corresponding strategy
can be seen as a robust strategy.

Numerical Algorithm. We utilize the numerical method in Cong & Oosterlee
(2016a, 2016b) to solve the pre-commitment and the time-consistent problems,
respectively. This numerical method consists of two phases, a sub-optimal solution is
first generated in the forward phase and subsequently updating is performed in the
backward phase to improve the solution. The backward phase is only necessary for
the constrained case. After iterating the forward-backward process for several times,
we obtain highly satisfactory results. In our tests, we always choose the myopic
strategy as the initial guess and report the result obtained after three backward
iterations.

Since we wish to check how a strategy performs if the observed real-world market
does not appear to be as expected by the model assumptions, our simulation-based
optimization algorithms are slightly adjusted. In the forward phase, we generate
paths by using the dynamics of the observed real market; in the backward phase,
we update the path-wise controls only based on the model information.

4.1. 1D problem

Test Setup. We first perform our numerical tests in the one-dimensional case,
where the portfolio contains one risky asset and one risk-free asset. We choose
geometric Brownian motion as the dynamics of the risky asset and assume that
the log-returns of the risky asset are governed by volatility σ and mean rf + ξ ·
σ. Here, rf is the log-return of the risk-free asset and ξ is the market price of
risk. When we consider constrained optimization scenarios, we impose a bounded
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Table 1. Parameter setting.

Risk-free rate rf 0.03
Investment duration T (year) 1
Re-balancing opportunities 12
Initial wealth W0 1
Leverage constraint [xmin, xmax] [0, 1]

leverage constraint x ∈ [xmin, xmax] on the portfolio allocations. The values of the
parameters are presented in Table 1.

In the following tests, σ and ξ represent the parameters used in the model
whereas σreal and ξreal are the parameters in the observed real-world market; the
difference between these values we call the model prediction error.

We design numerical experiments with the following questions in mind:

• Is a time-consistent strategy sensitive to model prediction errors?
• When an unexpectedly poor market is encountered, how are efficient frontiers,

generated by a pre-commitment or a time-consistent strategy, affected?

In order to answer these questions, various choices for (σ, ξ) and (σreal, ξreal) are
made in the following tests.

Robust Mean-Variance Efficiency of Time-Consistent Policy. We first check
whether the time-consistent strategy is sensitive to model prediction errors (i.e.
real-world parameters �= model parameters). We assume that the volatility of the
real-world market is the same as that indicated by the model, σreal = σ = 0.15.
We consider two model settings, ξ = 0.1 and ξ = 1, and two market settings,
ξreal = 0.1 and ξreal = 2. When we choose ξ = 0.1, it yields a robust strategy since
the management strategy is generated in the worst-case scenario. The choices of
ξreal can be explained as follows: ξreal = 0.1 means that the worst-case scenario
indeed appears and ξreal = 2 indicates a good market where the risky asset yields a
high return.

As shown in Fig. 1, in the unconstrained as well as the constrained situation,
the efficient frontiers generated by the time-consistent strategy are not sensitive
to the model prediction errors. The locations of the efficient frontiers only depend
on the real-world market parameters. When the real-world market is booming, the
time-consistent efficient frontiers are high. When the market is poor, the time-
consistent frontiers are low.

Unexpectedly Poor Market. In this numerical test, we check the performance
of the pre-commitment and the time-consistent strategies when the market is not
as expected. We consider two scenarios, one with fixed mean (rf + σ · ξ) and unex-
pected (high) volatilityc of the risky asset return and the other with fixed volatility

cIn case of unexpected volatility, we choose the volatility of the real market to be 50%, which is
similar to the scenario happening after the 2008 financial crisis in the American market Manda
(2010).
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Fig. 1. By choosing different pairs of (ξ, ξreal), we obtain four efficient frontiers generated by the
time-consistent strategy. They are respectively represented by: the red line (ξ, ξreal) = (0.1, 0.1),
the magenta dashed line (ξ, ξreal) = (0.1, 2), the squares (ξ, ξreal) = (1, 0.1) and the circles
(ξ, ξreal) = (1, 2). (a) Unconstrained case and (b) with leverage constraint.

Table 2. Parameters for modeling an unexpectedly
poor market.

Set I: σ = 0.1, ξ = 0.33, σreal = 0.5, ξreal = 0.066.

Set II: σ = 0.15, ξ = 1, σreal = 0.15, ξreal = 0.1.

and unexpected (low) mean of the risky asset return. In these two scenarios, the
parameters are chosen as in Table 2.

As seen in our first experiment, the time-consistent strategy is not sensitive to
the model prediction and yields efficient frontiers that can also be achieved by a
time-consistent investor with correct market information. When a bounded leverage
constraint is introduced, the time-consistent frontier tends to be somewhat lower
than in the unconstrained case.

A surprising finding is that, when the model prediction is inconsistent with
the real market, the pre-commitment strategy may generate lower efficient fron-
tiers than a time-consistent strategy. According to Wang & Forsyth (2011) and
Cong & Oosterlee (2016b), if the market moves according to the model prediction,
a pre-commitment strategy generates a higher frontier than a time-consistent strat-
egy. This is due to the fact that time-consistency can be regarded as a constraint
on a pre-commitment strategy. However, in case of an unexpectedly poor market,
the time-consistency constraint may protect an investor, while a pre-commitment
investor may suffer from the poor market. As presented in Fig. 2, in both situ-
ations, the unconstrained pre-commitment strategy generates the lowest efficient
frontier. When the constraint is introduced into the pre-commitment strategy, the
efficient frontier gets higher than in the unconstrained case. This is not difficult to
understand. When a model yields the correct prediction, introducing a constraint
forms a restriction on a portfolio; when a model generates an incorrect prediction,
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Fig. 2. Comparing the performance of a pre-commitment and a time-consistent strategy when the
market is unexpectedly poor. In the unexpected volatility case, we choose parameters from Set I in
Table 2. In the unexpected mean case, parameters from Set II are used. (a) Unexpected volatility
and (b) unexpected mean.

the constraint acts as a “protection”. Therefore, when market movement is not as
anticipated, the constrained pre-commitment strategy may perform better than its
unconstrained counterpart. The “protection” by means of the portfolio constraints
is also reported in Jagannathan & Ma (2003).
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We also see that the constrained pre-commitment and time-consistent frontiers
coincide at their right ends. When an investor pursues a very high return, the
maximal possible allocation will be set at almost all time steps. Therefore, in this
situation, a constrained pre-commitment strategy will be similar to a constrained
time-consistent strategy.

Remark 4.1. When we consider an unexpectedly booming market (for example
σreal = σ and ξreal > ξ), the pre-commitment strategy generates a higher efficient
frontier than the time-consistent strategy. In this scenario, introducing constraints
makes both the pre-commitment and the time-consistent efficient frontiers lower,
as expected.

Although the time-consistent strategy can generate a robust efficient frontier,
it does not mean that the time-consistent investor, who designs a strategy with
expected return E

∗
0[WT ] = d in mind, will achieve this amount of return in an

unexpected market. When the market is worse than expected, the pre-commitment
investor will attempt to reach the predetermined target by taking more risk. Mean-
while, the time-consistent investor may just be satisfied with a lower mean return
associated with less risk. In this case, it is interesting to examine both strategies
by checking the probability of getting less than, say, 90% of the predetermined
return d. This shortfall probability also reflects the robustness of an investment
strategy.

As shown in Fig. 3, when the market is as expected in the model, both the
time-consistent strategy and the pre-commitment strategy lead to low shortfall
probabilities. When an unexpectedly poor market occurs, the shortfall probabil-
ities increase. It is not easy to say which strategy is more robust with respect to the
shortfall probability criterion. According to Fig. 3(b), the time-consistent strategy
has a higher probability of generating the terminal wealth lower than 90% of the
desired level. However, if we consider the probability of getting the terminal wealth
lower than 60% of the desired target, the time-consistent strategy appears to be
less risky as shown in Fig. 3(c).

4.2. 2D problem with unexpected correlation

An advantage of using the simulation-based numerical algorithms from Cong &
Oosterlee (2016a, 2016b) is that they can be generalized to higher-dimensional sce-
narios. In this part, we consider a portfolio with two risky assets and one risk-free
asset. In terms of model uncertainty, we consider a scenario where the correlation
between two risky assets is not as predicted. The parameters for risky assets A and
B are respectively shown in Table 3, where ρ denotes the correlation between the
two risky assets in the model and ρreal denotes the observed real-world correlation
in the market. In the constrained case, we consider bounded leverage constraints
[xmin, xmax] = [0, 0.5] on both risky assets. For the other parameters, we set them
as in Table 1.

1750049-20



November 8, 2017 13:33 WSPC/S0219-0249 104-IJTAF SPI-J071
1750049

Robust Pre-Commitment and Time-Consistent Portfolio Optimization

1.03 1.035 1.04 1.045 1.05 1.055 1.06 1.065
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b[
W

* T <
 0

.9
d]

Desired Wealth d

Constrained PC
Constrained TC

(a)

1.03 1.035 1.04 1.045 1.05 1.055 1.06 1.065
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b[
W

* T <
 0

.9
d]

Desired Wealth d

Constrained PC
Constrained TC

1.03 1.035 1.04 1.045 1.05 1.055 1.06 1.065
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b[
W

* T <
 0

.6
d]

Desired Wealth d

Constrained PC
Constrained TC

(b) (c)

Fig. 3. The shortfall probability of the pre-commitment and the time-consistent strategies in the
constrained case. The x-axis displays the desired target wealth and the y-axis the shortfall prob-
ability. For “an unexpectedly poor market”, we use the parameters from Set I in Table 2. For
“an expected market”, the same model parameters are used and the real-world market parame-
ters are assumed to be identical to the model parameters. (a) In an expected market, (b) in an
unexpectedly poor market and (c) in an unexpectedly poor market.

Table 3. Parameters for two risky assets A and B.

σA = 0.2, ξA = 0.5, σB = 0.4, ξB = 0.5

ρ = −0.9, ρreal = 0.9.

In the unconstrained case, we first check what kind of results a correlation
prediction error can bring. We compare the efficient frontiers generated by the pre-
commitment and time-consistent strategies, when the correlation is inaccurately
predicted, as shown in Table 3, as well as the frontiers generated by both strategies
when the observed real-world correlation is predicted accurately (ρ = ρreal). As
shown in Fig. 4, when accurate information is available, the pre-commitment fron-
tier is slightly higher than the time-consistent frontier. However, when the model
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Fig. 4. Comparison of the efficient frontiers generated by the pre-commitment and the time-
consistent strategies in cases with or without accurate information of the correlation between
risky assets.

correlation is not accurate, the pre-commitment strategy degrades, while the time-
consistent strategy does not change significantly in terms of mean-variance effi-
ciency. The time-consistent strategy with inaccurate information generates almost
the same frontier as the one with accurate information. When we consider a test
case with a longer investment horizon or fewer re-balancing opportunities, the differ-
ence between these two time-consistent frontiers will be more pronounced. However,
in general, the time-consistent strategy is more robust than the pre-commitment
strategy in terms of an inaccurate prediction of the assets correlation.

In Fig. 5, we show the frontiers generated by the pre-commitment and the
time-consistent strategies in the unconstrained and the constrained cases, when
the asset correlation is not correctly predicted by the model. When the constraints
are introduced on the allocations, the pre-commitment frontier increases and the
time-consistent frontier decreases. In our test setting, when the mean return is not
large, the time-consistent frontier is higher than its pre-commitment counterpart.

However, please note that when the misprediction of the correlation is not very
significant, for example [ρ, ρreal] = [−0.2, 0.2], the constrained pre-commitment
strategy still generates higher frontiers. This is as expected, since the pre-
commitment strategy should generate higher frontiers when the market information
is known exactly.

In Fig. 6, we show the asset allocations of both strategies over time. We choose
a scenario where both strategies generate mean returns that are equal to 1.13. As
shown in Fig. 5, this is approximately the point where the time-consistent and the
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Fig. 5. Comparison of the efficient frontiers when the correlations between risky assets are inac-
curately predicted.
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Fig. 6. Comparison of asset allocations in the two-dimensional case. The red lines represent the
allocations in asset A and the blue lines the allocations in asset B, which exhibits higher volatility
than asset A. The straight lines denote the allocations for the time-consistent strategy and the
dashed lines for the pre-commitment strategy.
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pre-commitment frontiers cross. The presented allocations are the average values of
the allocations on all simulated paths. Although both strategies generate returns
with the same mean and also similar variances, their allocations are significantly
different. By adopting the pre-commitment strategy, an investor assigns more money
to the risky assets initially and shifts to risk-free asset allocations at the end of the
investment period. This is due to the fact that this investor has a target in mind
and close to the target she may not take risk to achieve higher wealth levels. For a
time-consistent investor, the optimal asset allocations are quite different. Since the
time-consistent investor is not satisfied with a target, the strategy does not reduce
to a risk-free strategy. Initially, a time-consistent investor is more risk-averse than a
pre-commitment investor; however, at the end, the time-consistent investor appears
to be more risk-seeking.

5. Conclusion

In this paper, we considered the robust pre-commitment and the robust time-
consistent mean-variance optimization problems. In the unconstrained case, a spe-
cific equation for determining the worst-case scenario was derived for the robust
pre-commitment and the robust time-consistent strategies. At a given time step, the
optimal allocations generated by both strategies are then identical to their myopic
counterparts, where an investor derives the optimal allocation for one upcoming
time period, assuming that a risk-free strategy will be taken in the future.

The robustness of the pre-commitment and the time-consistent strategies is
checked. Our analysis and the corresponding numerical experiments suggest that
a time-consistent strategy appears to be more robust in terms of model prediction
errors. When an unexpectedly poor market is encountered, the time-consistent strat-
egy may generate higher efficient frontiers than the pre-commitment strategy. Intro-
ducing constraints into the robust pre-commitment strategy can even increase the
frontiers, since the constraints may serve as a “protection”. In the two-dimensional
case, the influence of inaccurately predicting the correlation between risky asset
returns was examined. Again we found that the pre-commitment strategy may be
vulnerable to such prediction errors and constraints on asset allocations can increase
a pre-commitment frontier. Meanwhile, the time-consistent strategy still performed
in a robust way. We checked the asset allocations of both strategies when they
generate similar mean-variance pairs, and found that a pre-commitment investor
prefers to bear more risk at the beginning of an investment period while a time-
consistent investor appears to be more risk-seeking than a pre-commitment investor
at the end of the period.
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