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Napoli, Italy

e-mail: {francesco.capuano,enricomaria.deangelis,gcoppola}@unina.it

2 Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands

e-mail: b.sanderse@cwi.nl

Keywords: large-eddy simulation, adaptive time stepping, error control, numerical dis-
sipation.

Abstract. Adaptive time stepping can significantly enhance the accuracy and the effi-
ciency of computational methods. In this work, a time-integration strategy with adaptive
time step control is proposed for large-eddy simulation of turbulent flows. The algorithm
is based on Runge-Kutta methods and consists in adjusting the time-step size dynami-
cally to ensure that the numerical dissipation rate due to the temporal scheme is smaller
than the molecular and subgrid-scale ones within a desired tolerance. The effectiveness
of the method, as compared to standard CFL-like criteria, is assessed by large-eddy
simulations of the three-dimensional Taylor-Green Vortex.
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1 INTRODUCTION

Large-eddy simulations (LES) of turbulent flows are typically carried out on spatially
coarse grids and by using correspondingly large time steps. This poses severe challenges
to the numerical method, both in terms of accuracy and stability. From the point of view
of spatial discretization, typical remedies are energy-conserving and/or high-resolution
schemes, which are capable of suppressing nonlinear instabilities while allowing accu-
rate results with only a few points per wavelength [1]. On the other hand, less care is
generally taken to control the time-integration error. Indeed, simulations are usually
time-advanced by means of standard explicit or semi-implicit methods (e.g., multistep
or Runge-Kutta schemes for convection and Crank-Nicolson for diffusion) and the time
step is loosely chosen to satisfy the linear stability constraint [2]. The choice of the
time-integration strategy is regarded as to be more important for the overall efficiency
of the LES solution than for the accuracy [3], and recent trends tend to maximize the
time step by dynamically analyzing the eigenvalues of the semi-discretized system [4].

The concepts of adaptive time stepping and error control in the framework of time
integration of the Navier-Stokes equations have been explored only a few times in
literature, despite the great potential benefits in terms of both accuracy and efficiency.
John and Rang [5] compared different classes of time-integration schemes for the 2D
laminar flow around a circular cylinder, using embedded methods to adjust the time
step. They obtained good efficiency but also reported high sensitivity of the results
with respect to the chosen tolerance. Kay et al. [6] proposed an implicit trapezoidal
rule in conjunction with an explicit Adams-Bashforth method for error control, and
concluded that adaptive time stepping is essential for unsteady flows with multiple time
scales. Using an embedded error control method, Colomes and Badia [7] gained a
42.8% reduction of CPU time with respect to a fixed time step integration, again for
the case of laminar flow around a circular cylinder case. To the authors’ knowledge,
adaptive time-integration methods have not been analyzed thoroughly for turbulent flow
simulations.

The scope of this work is to propose an adaptive time-stepping strategy aimed to
control the temporal error, with the goal of creating an efficient minimum-dissipation
time-integration method for LES of turbulent flows. The proposed strategy is based on
Runge-Kutta methods and relies on the analysis of the global discrete energy balance
induced by the spatial and temporal discretizations. The time-step size is then adjusted
dynamically to ensure that the numerical dissipation rate due to the temporal error is
smaller than the molecular and subfilter-scale model ones within a desired tolerance.
The method is independent of the spatial mesh, and can be implemented with mini-
mum additional computational cost into structured and unstructured energy-preserving
codes.

The paper is organized as follows. Section 2 presents the theoretical framework
and the discretization of the Navier-Stokes equations. The new adaptive time-stepping
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strategy is outlined in Section 3. In Section 4, the effectiveness of the proposed approach
is assessed by large-eddy simulations of the Taylor-Green Vortex. Concluding remarks
are given in Section 5.

2 FULLY DISCRETE NAVIER-STOKES EQUATIONS

In this work, the filtered incompressible Navier-Stokes equations are considered,

∂ui
∂t

+Ni(u) = − ∂p

∂xi
+

1

Re
∂2ui
∂xj∂xj

−Ri (u, u) , (1)

∂ui
∂xi

= 0 , (2)

whereNi(u) is the nonlinear convective term,Ri = Ni(u)−Ni(u) is the subfilter scale
term and the overbar denotes a properly defined filtering operator which provides scale
separation. The use of a subfilter-scale model yieldsRi (u, u)→ Ri (u).

In the framework of finite-difference or finite-volume methods, a semi-discrete ver-
sion of Eqs. (1)-(2) can be expressed as

du
dt

+ C(u)u = −Gp +
1

Re
Lu− r (u) , (3)

Mu = 0 , (4)

where u is the filtered discrete velocity vector containing the three components on the
three-dimensional mesh, and the matrices G, M, L are proper spatial discretizations
of the gradient, divergence and Laplacian operators respectively. The convective term
is expressed as the product of a linear convective operator C(u) and u, while r (u)
is the spatially discretized subfilter-scale model. For the sake of simplicity, equally
spaced Cartesian grids will be considered in this work, but this does not come at a
loss of generality. It will also be assumed that the differential operators are discretized
consistently, e.g. GT = −M. Note that Eqs. (3)-(4) constitute an index-2 Differential
Algebraic Equation (DAE) system. Upon enforcing the incompressibility constraint via
the solution of the pressure Poisson equation [8], one obtains the ODE system

du
dt

= Pf (u) ≡ f̃ (u) , (5)

where f = −C(u)u + 1
ReLu − r (u) and P = I − GL−1M, with L = MG, is the

projection operator.
Time advancement of the ODE Eq. (5) is now straightforward and can be accom-

plished by means of any ODE integrator. In this work, Runge-Kutta (RK) methods are
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considered, which can be formulated as

un+1 = un + ∆t
s∑
i=1

bif̃(ui) , (6)

ui = un + ∆t
s∑
j=1

aij f̃(uj) , (7)

where aij and bi are the RK coefficients, and s is the number of stages.
Since the pioneering works from the Stanford group [9], Runge-Kutta methods have

become very popular in the turbulence community due to their favorable properties, such
as their self-starting capability and relatively large stability limit. The overwhelming
majority of turbulence simulations are nowadays performed by using three-stage (par-
ticularly the low-storage Wray’s scheme [10]) or four-stage (the classical RK4) methods
in conjunction with fractional-step procedures.

3 ADAPTIVE TIME-STEPPING STRATEGY

The scope of this work is to propose an accurate and efficient dynamic selection of the
time step size ∆t in Eqs. (6)-(7). In numerical simulations of turbulent flows, the time
step selection is generally guided by two criteria: i) accuracy constraints, i.e. adequate
representation of the smallest time scale of motion τη, and ii) stability constraints due to
convective and diffusive terms (for explicit or semi-implicit schemes). These stability
constraints read, respectively

Umax∆t

∆x
≤ σc , (8)

ν∆t

(∆x)2
≤ σd , (9)

where ∆t and ∆x are the time- and grid-spacing, ν is the kinematic viscosity, Umax the
maximum velocity over the computational domain, and σc and σd are two constants that
depend on the particular combination of the temporal and spatial schemes employed.
In practical computations, explicit schemes are often preferred due to ease of imple-
mentation, lower cost per time step, and efficient parallelization (although this depends
on the stiffness of the problem). The majority of turbulence computations are indeed
performed using explicit time-advancement schemes, and the time step is selected ac-
cording to the stability constraint. This choice can be also justified on the basis of
simple scaling arguments: the stability conditions (8) and (9) can be expressed, in a
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proper nondimensional form, as

∆t

τη
<

U

Umax
Re−1/4∆x

η
, (10)

∆t

τη
<

(
∆x

η

)2

, (11)

where ∆x/η is the ratio between the grid spacing and the Kolmogorov size, and U is the
characteristic velocity of large eddies. In a wide operative range of these parameters,
and especially for LES, in which ∆x/η is typically large, the time step is limited by
Eq. (10), thus justifying the use of fully explicit schemes [4]. Furthermore, the resolu-
tion requirement (i), i.e. ∆t < τη, is often automatically satisfied [2].

The application of criteria (i) and (ii) is in many cases satisfactory, although the
actual time-integration error is not being controlled. This can lead to inaccurate and/or
inefficient simulations, in which the time step is either under- or over-estimated with
respect to the accuracy requirement.

In this regard, adaptive time step size selection is a popular remedy in the numerical
community to increase the efficiency of the time-advancement strategy, i.e., to obtain
the same accuracy with fewer steps or better accuracy with the same number of steps
[11]. Adaptive time stepping techinques are mainly based on the idea of computing a
proper (error) controller, and to adjust the step size dynamically and automatically to
ensure that the error is kept within the desired values. In most situations, the controller
is the local truncation error T n+1, and the updating formula for the time step size to
keep it within the desired tolerance δu reads

∆tn+1 = ∆tn
∣∣∣∣ δu

T n+1

∣∣∣∣1/(p+1)

, (12)

where p is the order of the method. In general, the local trucation error is computed
by comparing two numerical solutions, with one being more accurate than the other.
This usually leads to non-negligible increase in computational cost, as for the case of
the Taylor-series method or the Richardson extrapolation [11]. Of particular interest
are methods with built-in error estimates, such as the so-called embedded Runge-Kutta
schemes, which are able to provide two numerical solutions of different accuracy with
little additional computational cost [12]. Embedded methods will be addressed in more
detail in future work.

3.1 Minimum-dissipation criterion

The adaptive time-stepping strategy proposed in this paper is inspired by the principle
of physics-compatible discretizations [13]. A significant amount of research carried out
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in the last two decades has indicated that for convection-dominated, multi-scale prob-
lems, it is fundamental for the numerical discretization to preserve the symmetries and
the invariants of the continuous system. Particularly for the Navier-Stokes equations, it
is now consolidated that kinetic energy, which is an inviscid quadratic invariant of the
NS system, should be preserved also on a discrete level. Besides providing a nonlinear
stability bound to the computed solution, the occurrence of discrete energy conservation
contributes to increase the physical realism of a simulation, by ensuring that the turbu-
lence cascade and/or the subfilter-scale model are not artificially contaminated [14].

A relevant discrete global kinetic energy is defined as E = uTu/2, representing the
energy of the filtered velocity field. A fully discrete evolution equation for E can be
obtained by manipulating Eqs. (6)-(7), to yield

∆E

∆t
=

1

Re

s∑
i=1

biu
T
i Lui︸ ︷︷ ︸

εν

−
s∑
i=1

biu
T
i r (ui)︸ ︷︷ ︸

εSGS

− ∆t

2

s∑
i,j=1

(biaij + bjaji − bibj) f̃Ti f̃j︸ ︷︷ ︸
εRK

, (13)

where ∆E = En+1 − En and f̃i = f̃(ui). The terms in the right-hand side of Eq. (13)
are, in order, the viscous (physical) dissipation rate εν , the subfilter-scale contribution
εSGS, and the temporal error εRK. It is worth to note that neither the pressure gradient nor
the convective term contributions appear in Eq. (13). The former vanishes for staggered
arrangements of flow variables [15], while the latter vanishes as a consequence of the
skew-symmetry of the convective operator [1]. In practice, this requirement is usually
achieved by either discretizing the so-called skew-symmetric form of convection [14],
or by employing the classical second-order staggered method originally proposed by
Harlow and Welch [16]. The resulting discrete spatial conservation of kinetic energy is
beneficial for stable and accurate computation of turbulent flows.

In a LES simulation, it would be desirable to have the filtered energy balance be
modified only by the viscous dissipation and the modeling terms. For standard explicit
methods of order p, the temporal energy error εRK typically decreases with order q = p;
also, it usually has a dissipative character. The dissipative effects of the temporal error
can be more effectively perceived upon definition of an effective Reynolds number [17],
which in the case of no subgrid-scale model reads

Reeff ≡
∑

i biu
T
i Lui

∆E/∆t
. (14)

In [17], it has been demonstrated that without proper remedies, the standard explicit
schemes commonly used in the turbulence community can lead to deviations in the
effective Reynolds number up to 10% with respect to the nominal Reynolds number. It
is thus desirable to keep the temporal error εRK bounded as compared to the physical
and SGS model terms εν and εSGS. The above considerations suggest to introduce a
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minimum-dissipation criterion, based on εRK, stating that

χ =

∣∣∣∣ εRK

εν + εSGS

∣∣∣∣ < δE. (15)

To ensure that Eq. (15) is satisfied at each time step, one can apply Eq. (12) and take χ
as the error estimate, yielding the updating formula

∆tn+1 = ∆tn
∣∣∣∣ δEχn+1

∣∣∣∣1/q , (16)

where δE is the chosen tolerance for χ. Preliminary tests and physical intuition suggest
to take δE = 0.01, i.e., the temporal dissipation rate should not overcome the sum of
physical and modeling terms by more than 1%; of course, lower values for δE can be
selected depending on the required accuracy of the problem under study.

Note that the practical implementation of Eq. (16) requires the computation of εRK,
εν and εSGS. The last two terms can be easily computed and are commonly stored in
a computer code as useful diagnostic parameters regardless. For what concerns εRK, it
can be obtained by subtraction upon calculation of the global energy, which is another
parameter of interest in numerical simulations. Therefore, the adaptive time stepping
method based on minimum dissipation can be easily implemented in an existing spa-
tially energy-conserving code with minimum additional cost. It is also worth to note
that the method is independent of the spatial discretization method and the underlying
mesh (either structured or unstructured). The minimum-dissipation criterion will be
hereafter referred to also as the δE criterion.

3.2 Symplectic and pseudo-symplectic methods

As mentioned in the previous section, standard Runge-Kutta methods of order p lead
to temporal energy errors which are, in general, of the same order p. However, special
RK schemes exist which are able to eliminate or reduce the magnitude of the temporal
error, on equal time step, as outlined in the following.

So-called symplectic methods satisfy the condition biaij +bjaji−bibj = 0, thus lead-
ing to exact energy conservation in the inviscid limit, see Eq. (13). A notable example
of this class of methods is the one-stage, second-order Gauss scheme, also known as
implicit midpoint. Higher-order, fully implicit methods are also available. Symplec-
tic methods are popular in the context of Hamiltonian systems but have been applied
to the Navier-Stokes equations only recently [18]. The major drawback of symplectic
schemes is their implicit nature, which can lead to unaffordable computational cost for
large-scale turbulent simulations.

Alternatively, the energy-conservation property can be satisfied approximately up
to an order of accuracy q > p, as in the case of pseudo-symplectic methods, which are
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Method s p q σc Symbol
RK3 3 3 3

√
3 ×

RK4 4 4 4 2.85 ◦
3p6q 5 3 6 2.85 �
4p7q 6 4 7 3.71 +

Table 1: Summary of Runge-Kutta methods used in numerical tests.

fully explicit. Pseudo-symplectic methods can be derived by coupling the classical order
conditions to additional nonlinear equations in the coefficients bi and aij [19]. Pseudo-
symplectic methods have been recently analyzed in the context of incompressible flow
simulations, showing that they are able to keep very low numerical dissipation levels,
on equal time step, in comparison to standard Runge-Kutta schemes [17].

While in case of symplectic methods there is clearly no advantage in using the
minimum-dissipation criterion, the pseudo-symplectic schemes will benefit from an
adaptive step size selection.

4 NUMERICAL RESULTS

The selected test case is the canonical Taylor-Green Vortex (TGV) flow, which is
a challenging benchmark involving creation of small scales, transition to turbulence,
and turbulent decay. Being a transient problem, the TGV flow is well suited to analyze
adaptive time-stepping techniques. The initial conditions prescribed in a tri-periodic
box of side 2π are given as follows [20]

u(x, y, z, 0) = U0
2√
3

sin(θ +
2

3
π) sin(x) cos(y) cos(z) , (17)

v(x, y, z, 0) = U0
2√
3

sin(θ − 2

3
π) cos(x) sin(y) cos(z) , (18)

w(x, y, z, 0) = U0
2√
3

sin(θ) cos(x) cos(y) sin(z) , (19)

with θ = 0. The spatial discretization employed in the following sections is based on
a second-order energy-conserving method mentioned earlier. The domain is divided
into 643 mesh points, and the selected Reynolds number is 1600. This combination
corresponds to a typical large-eddy simulation resolution [21].

4.1 Standard and pseudo-symplectic methods

In this section, standard and pseudo-symplectic methods are tested in conjunction
with the minimum-dissipation adaptive time-stepping method outlined in Section 3. The
analyzed Runge-Kutta methods are reported in Table 1, along with their number of
stages s, the order of accuracy on solution p and on energy conservation q, and the
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value of σc to be used in Eq. (8). The scheme denoted as RK3 is the low-storage third-
order scheme of Wray [10], while RK4 is the standard fourth-order RK scheme. The
schemes 3p6q and 4p7q are two pseudo-symplectic schemes (see [17] for details).

Figure 1 shows the evolution of ∆t for the schemes in Table 1, prescribed by

• the convective stability constraint (CFL), Eq. (8);

• the minimum-dissipation criterion (δE), Eq. (16);

• the Kolmogorov time scale τη, which is supposed to be constant in time.

The Kolmogorov time scale is computed by classical relations [22]. The black curves
correspond to no-model LES, while the red ones to computations with the standard
dynamic Smagorinsky model [22]. The ∆t selected at each time step is chosen to be
the minimum among the ones prescribed by the three criteria. The behaviour is very
different for the various schemes, proving that the step size selection is not trivial. For
the RK3, the ∆t is initially dictated by stability, but starting from t∗ ≈ 5 the minimum-
dissipation criterion prevails. This change in behaviour can be attributed to the fact that
the initial energy is cascading to smaller scales, reaching the maximum wavenumber of
the grid at approximately t∗ = 5 and thus enhancing the numerical dissipation, which
is active mostly at the smallest resolved scales. The δE criterion provides time steps
that are approximately one-half of the one imposed by stability, indicating that the CFL
criterion alone would lead to significant temporal dissipation. These observations are
confirmed in the cases with the dynamic Smagorinsky model, with the ∆t provided
by the δE and CFL criteria being generally higher than the corresponding ones in the
no-model case. The higher time steps are attributed to the additional dissipation of the
SGS model, which smoothes the velocity field (thus reducing Umax in the CFL criterion)
and reduces the impact of the temporal dissipation in the global energy budget. For
the higher-order methods, the time step is initially constrained by the Kolmogorov time
scale. However, while for the RK4 the δE criterion is still prevailing after t∗ = 5,
the pseudo-symplectic methods show comparable time-step sizes and the stability limit
is eventually the determinant one. This is due to the inherent reduction of temporal
dissipation error of these schemes. It is also worth noting that the time step based on δE

leads to larger step sizes as the accuracy of the RK method is increased.
Figure 2 shows the time evolution of the error controller χ. The adaptive step size

selection based on the minimum-dissipation criterion starts to operate from t∗ ≈ 5 and
is able to bound the error to the selected tolerance, δE = 0.01. Note that for simplicity,
Eq. (16) has been implemented in an explicit fashion, i.e., using the value χn; this leads
to few time steps in which χ > δE . Refined approaches in which Eq. (16) is properly
iterated within one time step will be considered in future work.

Interestingly, in the performed simulations the four schemes of Table 1 provided
similar efficiency, namely the r.h.s. evaluations needed to integrate until t∗ = 12 were
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Figure 1: Time-step size dictated by the CFL criterion, the δE criterion, and the Kolmogorov time scale.
Black: no model simulations; red: simulations with dynamic Smagorinsky model.

roughly the same. The higher order pseudo-symplectic schemes in combination with
error estimation and control are therefore the preferred methods for performing this
type of turbulence simulations.

It is worth to mention that other simulations (not shown here) performed at higher
spatial resolutions provided similar results.

5 CONCLUSIONS

A new adaptive time-stepping strategy for large-eddy simulations of turbulent flows
has been developed. The method is based on the analysis of the discrete global energy
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Figure 2: Time evolution of the error controller χ for no-model case (left) and dynamic Smagorinsky
simulations (right). Also shown in gray is the selected tolerance δE .

equation, and consists in adjusting the time-step size dynamically to ensure that the
temporal dissipation does not overcome the sum of the physical and SGS model terms
by more than a desired tolerance. This minimum-dissipation time-advancement method
can be easily implemented in an existing spatially energy-conserving code with negligi-
ble additional cost, provides a simple mean to control the time-integration error and can
significantly increase the efficiency of time integration.

The adaptive time-stepping strategy has been preliminarily tested on a canonical
Taylor-Green vortex case, in conjunction with both standard RK schemes and recently
developed pseudo-symplectic methods. The new adaptive step size selection has been
compared to more standard criteria based on a CFL-like condition, or on the Kol-
mogorov time scale. In all cases, the time step selection criterion changed during the
time evolution. The new strategy proved to reduce the temporal dissipation below the
desired tolerance; also, for standard third-order and fourth-order RK schemes, the time
step sizes dictated by the minimum-dissipation criterion turned out to be lower than the
ones imposed by the stability constraint, showing that standard criteria can lead to a
significant amount of temporal dissipation.

Future work includes the application of the minimum-dissipation time-stepping strat-
egy to more complex test cases, as well as the simultaneous control of the local trunca-
tion error of the velocity field by means of embedded Runge-Kutta methods.
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