
C e n t r u m W i s k u n d e & I n f o r m a t i c a

Modelling, Analysis and Simulation

 Modelling, Analysis and Simulation

Computing controllable sets of hybrid systems

P.J. Collins

REPORT MAS-R0807 OCTOBER 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301658004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3703

Computing controllable sets of hybrid systems

ABSTRACT
In this paper we consider the controllability problem for hybrid systems, namely that of
determining the set of states which can be driven into a given target set. We show that given a
suitable definition of controllability, we can effectively compute arbitrarily accurate under-
approximations to the controllable set using Turing machines. However, due to grazing or
sliding along guard sets, we see that it may be able to demonstrate that an initial state can be
controlled to the target set, without knowing any trajectory which solves the problem.

2000 Mathematics Subject Classification: 93B03; 93-04; 68Q17; 93B40 93-04, %% Explicit machine computation and
programs 68Q17, %% Computational difficulty of problems 93B40. %% Control systems, Computational methods
Keywords and Phrases: Hybrid system; controllable set; computable analysis
Note: This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Vidi
grant 639.032.408.

Computing Controllabl e Sets
of Hybrid Systems

Pieter Collins†

†Centrum Wiskunde en Informatica,
Postbus 94079, 1090 GB Amsterdam, The Netherlands,

Pieter.Collins@cwi.nl ∗

Abstract

In this paper we consider the controllability problem for hybrid systems,
namely that of determining the set of states which can be driven into a given
target set. We show that given a suitable definition of controllability, we can
effectively compute arbitrarily accurate under-approximations to the control-
lable set using Turing machines. However, due to grazing or sliding along
guard sets, we see that it may be able to demonstrate that an initial state can
be controlled to the target set, without knowing any trajectory which solves
the problem.

Key words. Hybrid system; controllable set; computable analysis.
AMS subject classifications. 93B03; 93-04, 68Q17, 93B40.

1 Introduction

In this paper we consider the problem of computing the controllable set of a gen-
eral nonlinear hybrid system. We restrict to hybrid systems without noise, but some
nondeterminism still unavoidably enters the analysis due to difficulties in comput-
ing whether and when a discrete transition should take place.

This controllability problem is dual to the safety problem for noisy closed-loop
systems, but harder since we have to simultaneously deal with choice and nonde-
terminism, whereas for safety we deal only with with nondeterminism. We see that
a forwards approach to controllability is complicated by the need to consider sets
of possible jump times, leading to multiple possibilities for further evolution which
must be considered separately. Instead, a backwards approach yields a simple high-
level algorithm which can still be implemented. The problem of computing the
controllable set is equivalent to computing the unsafe set for a closed-loop system

∗This research was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO) Vidi grant 639.032.408.

1

with nondeterministic noise. For we can consider the nondeterministic noise as
the input of the “environment”, and showing that a state is unsafe is equivalent to
showing that the environment can guide the state into the unsafe set.

Over-approximations to reachable sets of hybrid systems for safety verification
can be computed using various tools, including [HHWT97, HHMWT00, ADM01,
BISC00, Fre05, BCT02] using a forwards analysis. For the controllability problem,
when using a forwards analysis, we need to show that the target can be reached
from all points in the initial state set. For these reasons, backwards analysis meth-
ods based on dynamical programming are usually preferable. A comparison of
forwards and backwards for reachability methods including a discussing of numer-
ical issues is given in [Mit07].

Since the behaviour nonlinear hybrid systems can be extremely complicated, it
is unclear whether it is even possible to compute the controllable set in all cases.
Further, since we deal with objects in continous spaces, it is even unclear how we
should describe such objects in general, and what the meaning of a valid compu-
tation should be. To solve these difficulties, we therefore use the framework of
computable analysis [Wei00], which provides a formal theory of computation on
objects in continuous spaces, including concrete machine representations of funda-
mental types, a basic collection of effectively computable operators on these types,
and conditions under which a function or operator is uncomputable.

The theory is based on topology and analysis, and the concrete representations
of objects in a space correspond to topologies in the space. The fundamental result
is that only continuous operators can be computable. If an operator is uncom-
putable, then we can see if it becomes computable using different representations,
which correspond to strengthening the input data or weakening the requirements
on the output.

There are many approaches to computable analysis, including domain the-
ory [Sco82], locale theory [Vic89] and type-two effectivity [Wei00]. However, all
yield equivalent representations and the same computable operators. In this paper,
we shall therefore only list the classes of objects which we need to work with, and
the computable operations, and mostly omit details of how objects are represented
and which operations are computable.

It should be noted that computable analysis is a framework for defining ap-
proximate numerical computations with nonzero errors but known error bounds.
This means that some problems, which are solvable in an exact algebraic frame-
work, become unsolvable in computable analysis. However, typically only specific
instances become decidable in the algebraic setting, and general problem remains
undecidable. In the computable analysis setting, solvability is intimately related to
robustness, and we have the advantage of a richer class of computable operators
to work with. Computable analysis has the advantage over traditional numerical
analysis in that we can write algorithms using high-level operations which have
been shown to be computable, rather than try to work explicitly with error bounds
and epsilon-delta style proofs.

In this paper, as well as the familiar hyperspace of open sets, we also make

2

use of the hyperspace of overt sets. An overt set is a closed set represented by
listing the open boxes it intersects, or equivalently, by a dense sequence of points.
Overt-valued maps are ideal for describing control systems, since we have pre-
cisely enough information to determine whether an initial point can be controlled
into an open target set.

The main contribution of this paper is that we give a notion of robustly con-
trollable set which can be effectively computed, and an algorithm for performing
the computation. We also show that in certain cases, the controllable set cannot be
computed, but that our algorithm gives an under-approximation which is in some
sense optimal. A weaker notion of robust controllability was given in [Col08].

The paper is organised as follows. In Section 2 we give a minimal definition of
a hybrid system and describe its solutions. In Section 3, we sketch the results from
computable analysis which we need. In Section 4, we show that the controllable
set varies discontinuously in system parameters as a result of discontinuities in the
system evolution. In Section 5, we show that the controllable set can be computed
given the correct definitions. Finally, we give some conclusions and suggestions
for further research in Section 6.

2 Hybrid Systems

A hybrid system is a system in which continuous evolution is interspersed with
discrete transitions at which the state jumps discontinuously. There are many hy-
brid system models in the literature; in this paper we choose a framework which is
general enough to exhibit the difficulties which may occur and how these can be
adressed, without introducing additional complications.

Definition 2.1. A hybrid system is a tuple H = (X, E,Φ, {De, Ae, Re | e ∈
E}) where X is the state space, E is a set of events, Φ : X ⇒ C(R+, X) is
a multivalued flow giving the system dynamic, and for each event e ∈ E, Ae

is the set in which e is active, De is the set in which e can be delayed and and
Re : X ⇒ X is the reset map.

Here, the arrows ⇒ indicate that the functions Φ and Re are multivalued, which
takes into account the possibility of being able to choose different continuous dy-
namics or resets from a given point. We assume that Φ and Re are everywhere-
defined.

Notice that in the definition there is no explicit mention of discrete states. How-
ever, we can think of the state space X as being the disjoint union of spaces Xq

for q ∈ Q, where Q is a finite set of discrete states. Also, rather than a global
invariant, we instead give, for each event e, a set De such that event e will occur if
the system is about to leave the set De.

To represent a trajectory of a hybrid system, we need to take into account the
possibility that more than one discrete transition occurs at a given time. To cap-
ture the intermediate states, we use the following definition of hybrid time do-
main [Col04, GHT+04], which is based on work of [LJSE99]:

3

Definition 2.2 (Hybrid trajectory). Let (tn)n<∞ be an increasing sequence in R+∪
{∞} with t0 = 0. Then the tn define a hybrid time domain T ⊂ R+ × Z+ by

T = {(t, n) ∈ R+ × Z+ | tn 6 t 6 tn+1}

=
∞⋃

n=0

[tn, tn+1]× {n}.

A hybrid trajectory is a continuous function ξ : T → X for some hybrid time
domain T . The trajectory ξ is Zeno if limn→∞ tn < ∞, and infinite otherwise.

We can define solutions of a hybrid system as a hybrid trajectory.

Definition 2.3 (Solution of a hybrid system). A hybrid trajectory is a solution or
execution of the hybrid system H = (X, E,Φ, {De, Ae, Re}) if

1. ξ(t, n) ∈
⋂

e∈E De whenever tn 6 t < tn+1,

2. ξ(·, n) ∈ Φ(ξ(tn, n)),

3. ξ(tn, n−1) ∈ Aen , and

4. ξ(tn, n) ∈ Ren(ξ(tn, n−1)).

In order to ensure that the system is non-blocking, we make the following key
assumption about the active and delay sets.

Assumption 2.4 (Non-blocking). For every event e, we have D◦
e ∪Ae = X .

This assumption is natural in the sense that an event cannot block continuous
evolution if it is not active. We need to take the interior of De since the formal
semantics prohibits event e at a point x 6∈ Ae even if x ∈ ∂Ae. We note that if
D◦

e ∪ A◦
e = X , then the event time is nondeterministic, whereas if D◦

e ∩ A◦
e = ∅,

then the event e occurs as soon as the state touches ∂Ae.

3 Computable analysis

We now outline how to describe objects such as points, sets and functions in
the framework of computable analysis. In this article we use a higher-level
form loosely based on type theory or lambda calculus rather than the low-level
foundational approaches. Much of the material in this section can be found
in [Wei00, Col05]. We say that a representation of a type is a way of describ-
ing objects of that type by infinite binary streams, and a name of an object is a
stream describing it. In a topological space, we consider representations which
are admissible with respect to the topology, which means that the names can be
interpreted as giving increasingly accurate approximations to the object.

4

We consider a state space X , which can be taken as any locally-compact second
countable Hausdorff space, such as Euclidean space. In Euclidean space, we can
describe a point x as a monotone intersection of open rational boxes.

We will be interested in the hyperspaces of open and overt subsets of X , de-
noted O and V respectively. We can describe an open set U as a countable union of
compact rational boxes, and an overt set A by listing all open rational boxes inter-
secting A. If A is overt and U is open, we can prove that A intersects U by finding
a rational box I such that A ∩ I 6= ∅ and I ⊂ U . We space of closed subsets of
X with the lower Fell topology is equivalent to our overt sets; for a more detailed
description of overtness, see [Esc04, Tay08].

Theorem 3.1. We have the following computable operations on sets:

• Finite intersection O ×O → O.

• Countable union ON → O.

and the following computable predicates:

• intersection A ∩ U 6= ∅ as a function V ×O → S,

where S is the Sierpinski space {>, ↑}.

We now consder the space of continuous functions X → Y . We use the
compact-open topology on C(X, Y), which is generated by the sets β(K, U) =
{η ∈ C(X, Y) | η(K) ⊂ U} for compact K and open U . If f : X → Y is
continous and x ∈ X , then we can effectively evaluate f(x) from names of f and
x in the corresponding admissible representations.

We also wish to consder multivalued functions X ⇒ Y i.e. X → P(Y). We
can consider overt-valued functions X → V(Y).

Theorem 3.2. Let F : X → V(Y) an overt function. Then if A ⊂ X is overt and
V ⊂ Y is open, we can compute F (A) ∈ V(Y) and F−1(V) ∈ O(X) from names
of F , A and V .

In other words, if we can compute the image of a point as an overt set, then
we can compute the image of any overt set, or the preimage of any open set. The
condition on the preimages says that the effectively lower-semicontinuous closed-
valued functions are precisely the overt functions.

We now consider continuous-time evolution. Recall that a flow is a function
φ : X × R → X , such that (i) φ(x, 0) = x for all x ∈ X and (ii) φ(x, s + t) =
φ(φ(x, s), t) for all x ∈ X and s, t ∈ R. A flow satisfies the differential equation
ẋ = f(x) if φ̇(x, t) = f(φ(x, t)) for all x, t. Equivalently, we can also think of
a flow as a function φ̂ : X → C(R, X) such that ξ = φ̂(x) if ξ(0) = x and
ξ(t) = φ(x, t).

Analogously, a multivalued flow is a function Φ : X ⇒ C(R, X) which satis-
fies the multiflow conditions (i) ξ(0) = x for all ξ ∈ Φ(x), (ii) if ξ ∈ Φ(x), then

5

the function η defined by η(t) = ξ(t + s) is in Φ(ξ(s)), and (iii) if ξ ∈ Φ(x) and
η ∈ Φ(ξ(s)), then the function ζ given by ζ(t) = ξ(t) for t 6 s and ζ(t) = η(t−s)
for t > s is in Φ(x).

A multivalued flow is overt if it is continuous as a function X → V(C(R, X)).
From Theorem 3.2, we immediately deduce:

Corollary 3.3. If Φ is an overt flow, K a compact interval and U is open, then

Φ−1
(
{η | η(K) ⊂ U}

)
= {x ∈ X | ∃ ξ ∈ Φ(x) s.t. η(K) ⊂ U}

is an open subset of X , and can be computed from names of Φ, K and U .

We can generate multivalued flows by differential inclusions ẋ ∈ F (x). In
this paper, we work directly with flows, and do not consider explicitly consider
differentiable formalisms of the continuous dynamics. This is actually no restric-
tion, since the solution of a locally Lipschitz continuous differential inclusion was
shown to be effectively computable (using different terminology) in [PVB96]. We
can refine this result and consider only lower-semicomputability.

Theorem 3.4 (Computability of differential inclusions). Let Φ : X ⇒ C(R, X)
denote the flow of the differential inclusion ẋ ∈ F (x). If F is locally Lipschitz with
convex overt values, then the solution operator flow Φ is overt-valued, and can be
effectively computed from a name of F

4 Nondeterministic Behaviour at Discontinuities

In this section we consider the evolution of a hybrid system and discontinuities
caused by the discrete events.

Definition 4.1 (Controllability). A hybrid system H is controllable from x0 to T
if there exists a solution ξ of H such that ξ(0, 0) = x0 and ξ(t, n) ∈ T .

A system H is robustly controllable from x0 to T if for any sufficiently small
perturbations x′0 of x0, T ′ of T and H ′ of H , the system H ′ is controllable from
x′0 to T ′.

Example 4.2. Consider a hybrid system on R with flow ẋ = −1, and a single
event with D = (0,∞], A = [−∞, 0]) and reset x′ = x + 3. Then the system is
controllable from x0 = 1 to T = (2, 4) since the hybrid trajectory ξ(t, 0) = 1− t
for t ∈ [0, 1] and ξ(1, 1) = 3 is a solution. However the perturbed system H ′ with
A′ = [−∞,−ε] for ε > 0 is blocking at state x = 0, since no any trajectory must
leave D′ before entering A′. Hence H ′ is not controllable.

The system H ′ in the above example does not satisfy the Assumption 2.4. This
shows that the non-blocking assumption D∪A = X is not a topological condition,
but a logical condition on the flow, and that a numerical approach to computing the
system evolution without explicitly considering this non-blocking assumption will
necessarily fail.

6

Example 4.3. Consider a hybrid system with state space R2, flow ẋ = 1, ẏ = α,
activation A = {(x, y) | y > x2}, domain D = R2 \ A and reset (x′, y′) =
(x + 2, y + β). Suppose the initial state is p0 = (−1, 0) and the target set T is
{(x, y) | (x−2)2+(y−γ)2 6 1/2}. Then if α = 0 and γ = β = 1, the continuous
evolution touches the guard set G = ∂A at p1 = (0, 0) when t = 1 and jumps to
p2 = (2, 1) in T . Now suppose that there is a small negative drift of y in the flow,
so α ∈ (−ε, 0). Then the continuous evolution misses the guard set and so misses
the target. The system is not robustly controllable.

Finally, suppose that γ = β = 0 and there is some small drift in the flow. Then
for α ∈ [0, ε), the continuous evolution hits the guard set at p1 ≈ (0, 0) and jumps
to p2 ≈ (2, 0) in T . For α ∈ (−ε, 0), the continuous evolution misses the guard set,
but continues to reach the target set at p3 = (2, 3α). Hence the system is robustly
controllable from x0 to T , even though we cannot say exactly which trajectory is
follows.

Remark 4.4 (for logicians). The above example shows that we can prove the ex-
istence of a solution reaching the target, even though we cannot compute any tra-
jectory reaching the target which is definitely a solution of the system. This goes
against common notions of constructive existence.

The above example illustrates that discontinuity points of the evolution, such
as points of tangential grazing with guard sets, can cause non-robustness of the
controllable set, and hence that it may not be possible to compute the controllable
set using approximative numerical methods. The difficulty is that there are two
possibilities for the evolution, either an event occurs or an event does not occur,
and due to numerical errors we cannot determine which. We need to consider both
possibilities, and can only deduce that the system is controllable if we can continue
from both eventualities to the target set.

Let us consider how to perform forwards reachability analysis from an initial
state. We can formalise the situation as follows. We take a compact set C param-
eterising the different qualitative behaviours which we cannot distinuish between.
We consider a continuous function from C to the hybrid trajectory space such that
every function is a solution, and contains every solution which is effectively equiv-
alent to a solution in C. We can then hope to prove that every trajectory in C leads
to a target state.

Consider a continuous trajectory ξ such that ξ(t) ∈ D for all t 6 τ , and
ξ(t) 6∈ D for τ < t < ε. Then the set τ = ξ−1(A ∩D) is the set of possible event
times for ξ, and is clearly a compact set. We can then attempt to continue from
{η(t) | t ∈ τ} with a locally-continuous selection from each point of C. In other
words, we can partition C into finitely many pieces, and try to prove the existence
of a starting from C.

In the above forwards analysis, we had to consider all possible different qual-
itative behaviours, and show that for each the system could be controlled into the
target set, leading to a complicated procedure for controllability. It turns out that it
is easier to analyse the system using a backwards analysis.

7

5 Computability of the controllable set

In this section, we compute the set of points which can be robustly controlled into a
target set by a recursive backwards construction. The construction is based on the
one-step controllable set, which contains all points which can be controlled into
T either by purely continuous evolution, or by continuous evolution followed by a
single jump.

Definition 5.1. Let T ⊂ X be an open target set. We say that x is one-step
controllable into T if there exists a continuous trajectory η with η(0) = x such
that

1. η(t) ∈
⋂

e∈E De for all t ∈ [0, τ).

2. η(τ) ∈ T ∪
(⋃

e∈E(Ae ∩R−1
e (T))

)
, and

It is clear that the controllable set C can be written as C =
⋃∞

n=0 Cn, where
C0 is the continuously controllable set and Cn+1 is the one-step controllable set
for Cn.

When trying to prove numerically that a point x is one-step controllable into
T , we need to consider a robust verision of the one-step controllable set, which
involves taking the interiors of the sets De and Ae, and also checking the invariant
at time t = τ . Then the conditions for one-step controllability become

1. η(t) ∈
⋂

e∈E D◦
e for all t ∈ [0, τ], and.

2. η(τ) ∈ T ∪
⋃

e∈E(A◦
e ∩R−1

e (T))), and

Unfortunately, this presents us with a problem. For if e is an urgent event, by
which we mean De = X \ Ae, then D◦

e ∩ A◦
e = ∅, so any continuous trajectory

entering A◦
e must first leave D◦

e which is forbidden by the formal semantics. If, on
the other hand, De and Ae are open for all e, then the robustly controllable set and
the one-step controllable set are equal.

In order to solve the problem, we use the conditions of Assumption 2.4 to
analyse the defining formula for the controllable set before passing to the robust
interpretation. Suppose x is one-step controllable into T due to an event which
occurs at time τ . Then

∀t ∈ [0, τ), η(t) ∈
⋂

e∈E De

However, x is also one-step controllable into T if an event occurs at time t < τ for
which we can jump into T . Hence we can weaken the controllability condition to

∀t ∈ [0, τ), η(t) ∈
(⋂

e∈E De

)
∪

(⋃
e∈E(Ae ∩R−1

e (T))
)
.

By taking the sets Ae ∪R−1
e (T) into the first set in the above formula, we have

∀t ∈ [0, τ), η(t) ∈
(⋂

e∈E(De ∪ (Ae ∩R−1
e (T)))

)
∪

(⋃
e∈E(Ae ∩R−1

e (T))
)
.

8

Now since De ∪Ae = X , we have

De ∪ (Ae ∩R−1
e (T)) = (De ∪Ae) ∩ (De ∪R−1

e (T))

= X ∩ (De ∪R−1
e (T))

= De ∪R−1
e (T).

Hence the flow condition for one-step controllability can be changed to

∀t ∈ [0, τ), η(t) ∈
(⋂

e∈E(De ∪R−1
e (T))

)
∪

(⋃
e∈E(Ae ∩R−1

e (T))
)
.

Taking a robust version of this predicate gives

∀t ∈ [0, τ], η(t) ∈
(⋂

e∈E(D◦
e ∪R−1

e (T))
)

∪
(⋃

e∈E(A◦
e ∩R−1

e (T))
)
.

At the final time, the robust condition is

η(τ) ∈ T ∪
(⋃

e∈E(A◦
e ∩R−1

e (T))
)
.

Note that the improvement in the condition for being controllable occurs only in
the robust version, and not in the formal version.

Definition 5.2. Let T ⊂ X be an open target set. We say that x is robustly one-step
controllable into T if there exists a continuous trajectory η with η(0) = x such that

1. η(t) ∈
⋂

e∈E(D◦
e ∪R−1

e (T)) for all t ∈ [0, τ], and

2. η(τ) ∈ T ∪
(⋃

e∈E A◦ ∩R−1(T))
)
.

Note that we take R−1
e (T) in the whole space X , and not just in the set of

points for which an action is possible. This is in order to keep the sets open, and
does not cause any difficulties since if no transition is possible at a time t, then the
conditions ensure that either a transition is possible at some time t′ > t, or that the
target may be reached without transitions.

Theorem 5.3 (Robustly controllable set). Let H = (X, E,Φ, {De, Ae, Re | e ∈
E}) be a hybrid system such that Φ is an overt multiflow and the Re are overt
multimaps. Suppose further that D◦

e ∪ Ae = X for all e, so the system is non-
blocking. Let T be an open set. Then the robustly controllable set C is an open set,
and can be effectively computed from names of T , Φ, Re, D◦

e and A◦
e.

Proof. Let C0 be the set of points which are continuously controllable into T ,
and Cn+1 be the set of points which are one-jump controllable into Cn. Note
that trivially, every point of Cn is single-step controllable into Cn. Recall that by
β(K, U) we mean {f | f(K) ⊂ U}.

9

Then C0 is effectively computable since we can write

C0 =
{
x ∈ X | ∃η ∈ Φ(x), τ ∈ Q+ s.t. η(τ) ∈ T

and η([0, τ]) ⊂
⋂

e∈E D◦
e

}
=

⋃
τ∈Q+Φ−1

(
β({τ}, T) ∩ β([0, τ],

⋂
e∈E D◦

e)
)
.

which is a computable open set.
Further, if Cn is computable, then Cn+1 is also effectively computable since

we can write

Cn+1 = {x ∈ X | ∃η ∈ Φ(x), τ ∈ Q+

s.t. η(τ) ∈
⋃

e∈E(A◦
e ∩R−1

e (Cn))
and η([0, τ]) ⊂

⋂
e∈E(D◦

e ∪R−1
e (Cn))

=
⋃

τ∈Q+Φ−1
(
β({τ},

⋃
e∈E(A◦

e ∩R−1
e (Cn)))

∩ β([0, τ],
⋂

e∈E(D◦
e ∪R−1

e (Cn)))
)
,

demonstrating that Cn+1 is a computable open set.
The result follows since C =

⋃∞
n=0 Cn and countable union of open sets is

computable.

Since the above proof gives an explicit formula for the robustly controllable
set in terms of computable operations, we have an algorithm for computing this
set which can be effectively implemented. If the sets De and Ae are open then we
immediately obtain:

Theorem 5.4 (Interior controllable set). Let H = (X, E,Φ, {De, Ae, Re | e ∈
E}) be a hybrid system such that Φ is an overt multiflow, the Re are overt mul-
timaps, and the De and Ae are open sets. Suppose further that De ∪ Ae = X for
all e, so the system is non-blocking. Let T be an open set. Then the controllable
set equals the robustly controllable set, so is an open set, and can be effectively
computed from names of T , Φ, Re, De and Ae.

6 Concluding Remarks

We have considered the effective computability of controllable sets for a hybrid
system using techniques from computable analysis. We have seen that conver-
gent under-approximations to the robustly controllable set can be computed from
the system data, and that for some systems, the robustly controllable set equals
the controllable set. The algorithm is based on a backwards computation of the
controllable set, and is easy to write down in terms of fundamental computable
operations. The algorithm can also be seen as computing the set of unsafe initial
states of a closed-loop hybrid system with nondeterministic noise.

In further research, we plan to give an implementation of the algorithm as part
of the hybrid systems reachability tool Ariadne. This will complement the existing
functionality for reachability analysis and safety verification.

10

References
[ADM01] Eugene Asarin, Theo Dang, and Oded Maler. d/dt: A verification tool for hybrid

systems. In Proceedings of the 40th IEEE Conference on Decision and Control, New
York, 2001. IEEE Press.

[BCT02] Alexandre M. Bayen, Eva Crück, and Claire Tomlin. Guaranteed overapproximations
of unsafe sets for continuous and hybrid systems: Solving the hamilton-jacobi equa-
tion using viability techniques. In Claire Tomlin and Mark R. Greenstreet, editors,
HSCC, volume 2289 of Lecture Notes in Computer Science, pages 90–104. Springer,
2002.

[BISC00] Bruce Krogh B. Izaias Silva, Keith Richeson and Alongkrit Chutinan. Modeling and
verification of hybrid dynamical system using CheckMate. In Proceedings of the 4th
International Conference on Automation of Mixed Processes, pages 189–194, 2000.

[Col04] Pieter Collins. A trajectory-space approach to hybrid systems. In Proceedings of
the International Symposium on the Mathematical Theory of Networks and Systems,
Katholiek Univ. Leuven, Belgium., August 2004, 2004.

[Col05] Pieter Collins. Continuity and computability of reachable sets. Theoret. Comput. Sci.,
341(1-3):162–195, 2005.

[Col08] Pieter Collins. Semantics and computability of the evolution of hybrid systems.
Technical report, Centrum voor Wiskunde en Informatica, 2008. CWI Report MAS-
R0801.

[Esc04] Martı́n Escardó. Synthetic topology of data types and classical spaces. Electronic
Notes in Theoretical Computer Science, 87:21–156, 2004.

[Fre05] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In
Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Con-
trol, volume 3414 of Lecture Notes in Computer Science, pages 258–273. Springer,
2005.

[GHT+04] Rafal Goebel, Joao Hespanha, Andrew R. Teel, Chaohong Cai, and Ricardo Sanfe-
lice. Hybrid systems: Generalized solutions and robust stability. In Proceedings of
the Symposium on Nonlinear Control Systems. Elsevier, 2004.

[HHMWT00] Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard Wong-
Toi. Beyond hytech: Hybrid systems analysis using interval numerical methods. In
N. Lynch and B. Krogh, editors, Hybrid Systems: Computation and Control, number
1790 in Lecture Notes in Computer Science, pages 130–144, Berlin Heidelberg New
York, 2000. Springer-Verlag.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model
checker for hybrid systems. In CAV ’97: Proceedings of the 9th International Confer-
ence on Computer Aided Verification, pages 460–463, London, UK, 1997. Springer-
Verlag.

[LJSE99] John Lygeros, Karl Henrik Johansson, Shankar Sastry, and Magnus Egerstedt. On the
existence of executions of hybrid automata. In Proceedings of the 38th IEEE Confer-
ence on Decision and Control, pages 2249–2254, New York, 1999. IEEE Press.

[Mit07] Ian M. Mitchell. Comparing forward and backward reachability as tools for safety
analysis. In Hybrid systems: computation and control, volume 4416 of Lecture Notes
in Comput. Sci., pages 428–443. Springer, Berlin, 2007.

[PVB96] Anuj Puri, Pravin Varaiya, and Vivek Borkar. Epsilon-approximation of differential
inclusions. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors,
Hybrid Systems III, volume 1066 of LNCS, pages 362–376, Berlin, 1996. Springer.

11

[Sco82] Dana S. Scott. Domains for denotational semantics. In Automata, languages and
programming (Aarhus, 1982), volume 140 of Lecture Notes in Comput. Sci., pages
577–613. Springer, Berlin, 1982.

[Tay08] Paul Taylor. A lambda calculus for real analysis. http://www.monad.me.uk/, 2008.

[Vic89] Steven Vickers. Topology via logic, volume 5 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge, 1989.

[Wei00] Klaus Weihrauch. Computable analysis. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, Berlin, 2000. An introduction.

12

