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We consider generalized absolute Lorenz curves that include, as special cases, classical and
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curves are based on strictly stationary and ergodic sequences of random variables. Most of the
previous results were obtained under the additional assumption that the sequences are weakly
Bernoullian or, in other words, absolutely regular. We also argue that the latter assumption can
be undesirable from the applications point of view.
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We consider generalized absolute Lorenz curves that include, as special cases,
classical and generalized L-statistics as well as absolute or, in other words,
generalized Lorenz curves. The curves are based on strictly stationary and
ergodic sequences of random variables. Most of the previous results were ob-
tained under the additional assumption that the sequences are weakly Bernoul-
lian or, in other words, absolutely regular. We also argue that latter assumption
can be undesirable from the applications point of view.

1. INTRODUCTION AND MOTIVATION

Lorenz curves and their various functionals such as Gini indices and L-statistics have been
used by econometricians to measure economic inequality for a century (cf., e.g., Lorenz,
1905, Gini, 1912). These objects (to be defined and discussed rigorously below) are usually
defined in terms of the ordered values X1:n, . . . , Xn:n of some random variables X1, . . . , Xn

that are frequently interpreted as incomes of n randomly selected individuals. Large sample
properties of Lorenz curves, Gini indices, L-statistics, etc., have been thoroughly investigated
when X1, X2, . . . are independent and identically distributed random variables (cf., e.g., Ser-
fling, 1980, Helmers, 1982, Shorack and Wellner, 1986, and references therein). A number
of results in the area have also been obtained when the random variables X1, X2, . . . form
a stationary and ergodic sequence (cf., e.g., Aaronson, Burton, Dehling, Gilat, Hill, Weiss
[ABDGHW], 1996, Gilat and Helmers, 1997, as well as the survey paper by Davydov and
Zitikis, 2004b).

Serfling (1984) introduced a very general class of statistics, called generalized L-statistics.
Various asymptotic properties of the generalized L-statistics were investigated by Helmers,
Janssen, and Serfling [HJS] (1988), including their strong convergence when n tends to infin-
ity. Those results were obtained when X1, X2, . . . are independent and identically distributed
random variables. This assumption was later relaxed by Gilat and Helmers (1997), assuming

1Partially supported by the Netherlands Organization for Scientific Research (NWO), as well as by a Discov-
ery Research Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
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that the sequence (X1, X2, . . . ) is strictly stationary and ergodic, and also that it is weakly
Bernoullian or, in other words, absolutely regular (cf., e.g., Berbee, 1986, on the topic).

The goal of the present paper is to show that strong laws for the aforementioned curves and
statistics can be obtained assuming only that the sequence (X1, X2, . . . ) is strictly stationary
and ergodic, that is, without assuming that it is weakly Bernoullian (or absolutely regular).
This is important since there are situations when it is easy to verify strict stationarity and
ergodicity of the sequences of random variables but it might be difficult to verify, say, their
weak Bernoullianity. Moreover, there are situations – and we have in mind so-called long-
range dependent sequences – where weak Bernoullianity or other mixing assumptions might
not even hold (cf., e.g., Rosenblatt, 1991, and references therein). We shall now introduce
and discuss the main object of the present paper.

Let (X1, X2, . . . ) be a strictly stationary and ergodic sequence. Let m ∈ N be a fixed
integer, and let h : Rm → R be a measurable function. Define

Hn(x) :=
1

(n)m

∑

∗

I {h(Xi1 , . . . , Xim) ≤ x} , x ∈ R,

where the summation
∑

∗
is taken over all different indices 1 ≤ i1, . . . , im ≤ n. The corre-

sponding quantile function is defined by the formula:

H−1
n (s) := inf {x ∈ R : Hn(x) ≥ s} , s ∈ (0, 1).

We are now in the position to define the generalized absolute Lorenz curve

GALCn(t) :=

∫ t

0

H−1
n (s)J(s)ds, t ∈ [0, 1],

where J : (0, 1) → R is an integrable function on the interval (0, 1). We shall later assume
some further assumptions on J , such as integrability of its certain power. We note at the
outset that the (empirical) generalized absolute Lorenz curve GALCn includes, as special
cases, the classical and generalized L-statistics (cf. Examples 1.1 and 1.3 below) and the
absolute Lorenz curve (cf. Example 1.2 below). Several additional notes concerning GALCn

follow.
In order to work out additional intuition on the just introduced generalized absolute Lorenz

curve GALCn, we proceed as follows. We first order all (n)m := n(n−1)×· · ·×(n−m+1)

random variables h(Xi1 , . . . , Xim) with different indices 1 ≤ i1, . . . , im ≤ n in the non-
decreasing order. Denote the ordered values by Y1:(n)m

, . . . , Y(n)m:(n)m
. If we add the t×100%

smallest ordered values and divide the sum by n, we get the value of GALCn(t) when the
weight function J(s) is equal to 1 for all s ∈ [0, 1]. When m = 1, this coincides with the
interpretation of the (classical) absolute Lorenz curve to be discussed in Example 1.2 below.

Instead of Hn we can also use the empirical distribution function Dn corresponding to
the random variables h(Xi1 , . . . , Xim), 1 ≤ i1, . . . , im ≤ n, which is explicitly defined as
follows:

Dn(x) :=
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

I {h(Xi1 , . . . , Xim) ≤ x} , x ∈ R.



3

We shall show below (cf. Theorem 2.2) that, without making any additional assumption, the
main result of this paper (cf. Theorem 2.1 below) also holds with Dn instead of Hn, and
thus it will be shown in particular that the following version of the (empirical) generalized
absolute Lorenz curve

GALCD
n (t) :=

∫ t

0

D−1
n (s)J(s)ds, t ∈ [0, 1],

converges uniformly in t ∈ [0, 1] and almost surely to a deterministic curve, GALCH , to be
defined later in the text.

We have already noted that the generalized absolute Lorenz curve GALCn covers several
classical objects. We shall now define and discuss those objects along with related strong
convergence results that are already available in the literature. We note in passing that in
the current paper we do not consider other convergence modes such as weak convergence or
convergence in distribution; these topics are beyond the scope of the present paper.

Example 1.1 (L-statistics). Let m = 1 and h(x) = 1. Then GALCn(1) is the classical
L-statistic. It can explicitly be written as

Ln :=
n
∑

i=1

ci,nXi:n,

where ci,n :=
∫ i/n

(i−1)/n
J(s)ds and X1:n ≤ · · · ≤ Xn:n are the order statistics corresponding to

X1, . . . , Xn. When X1, X2, . . . are independent and identically distributed random variables,
the L-statistic Ln converges almost surely to

LF :=

∫ 1

0

F−1(s)J(s)ds,

subject to some assumptions on F and J (cf., e.g., van Zwet, 1980, and references therein).
When the sequence (X1, X2, . . . ) is strictly stationary and ergodic, the aforementioned almost
sure convergence of Ln was proved by ABDGHW (1996). Gilat and Helmers (1997) noted
that van Zwet’s (1980) proof of the strong law for L-statistics in the case of i.i.d. observations
remains valid for strictly stationary and ergodic sequences.

Example 1.2 (Absolute Lorenz curves). Let m = 1, h(x) = x, and J(s) = 1. Then
GALCn(t) is the (empirical) absolute Lorenz curve defined by the formula

ALCn(t) :=

∫ t

0

F−1
n (s)ds,

where F−1
n is the quantile function corresponding to X1, . . . , Xn. When X1, X2, . . . are in-

dependent and identically distributed random variables, Goldie (1977) proved that, uniformly
in t ∈ [0, 1], the (empirical) absolute Lorenz curve ALCn(t) converges almost surely to the
(theoretical) absolute Lorenz curve

ALCF (t) :=

∫ t

0

F−1(s)ds,

where F−1 is the quantile function corresponding to the distribution function F of X1. Davy-
dov and Zitikis (2003) proved strong convergence under the assumption that the sequence
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(X1, X2, . . . ) is strictly stationary and ergodic. For a more complete account of develop-
ments in the area, we refer to the survey paper by Davydov and Zitikis (2004b). We conclude
this discussion with the note that Shorrocks (1983) and a number of subsequent authors use
the term “generalized Lorenz curves” for the two curves defined above. Yitzhaki and Olkin
(1991) and Shalit and Yitzhaki (1994) suggest using the term “absolute Lorenz curves,” which
we also use throughout the present paper, and thus use the acronyms ALC and GALC when
defining, respectively, absolute and generalized absolute Lorenz curves.

Example 1.3 (Generalized L-statistics). The value of the curve GALCn(t) at the point t = 1

defines the generalized L-statistic GLn. When X1, X2, . . . are independent and identically
distributed random variables, HJS (1988) proved that GLn converges almost surely to

GLH :=

∫ 1

0

H−1(s)J(s)ds,

where H denotes the distribution function of the random variable h(X1, . . . , Xm), subject
to some assumptions on F , J , and h. Gilat and Helmers (1997) proved the aforemen-
tioned strong convergence result assuming that the strictly stationary and ergodic sequence
(X1, X2, . . . ) is weakly Bernoullian or, in other words, absolutely regular. In this case the
distribution function H is that of the random variable h(Y1, . . . , Ym), where Y1, . . . , Yn are
independent copies of X1.

We conclude this section with the note that various generalizations and extensions of the
aforementioned results are also available in the literature. For example, van Zwet (1980) and
Gilat and Helmers (1997) consider (classical and generalized) L-statistics when the function
J depends on the sample size n. Davydov and Zitikis (2002, 2004a) consider absolute Lorenz
curves when the random variables X1, X2, . . . are influenced by (additive and multiplicative)
deterministic noises. To save the space, we do not consider such generalizations in the present
paper, concentrating mainly on showing that strong convergence of the generalized absolute
Lorenz curve GALCn holds for strictly stationary and ergodic sequences (X1, X2, . . . ) with-
out imposing the assumption of absolute regularity. This situation is in agreement with the
case m = 1 investigated thoroughly in the literature (cf., e.g., Davydov and Zitikis, 2004b,
and referenced therein).

2. MAIN RESULTS

Let (X1, X2, . . . ) be a strictly stationary and ergodic sequence, and let F denote the distri-
bution function of X1. As we have noted above, our main goal is to prove that there exists a
distribution function H such that, almost surely and uniformly in t ∈ [0, 1],

(2.1) GALCn(t) → GALCH(t),

where the (theoretical) generalized absolute Lorenz curve GALCH is defined by the formula

GALCH(t) :=

∫ t

0

H−1(s)J(s)ds, t ∈ [0, 1].
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We shall prove below (cf. Theorem 2.1) that the function H is defined by the formula (cf.
Gilat and Helmers, 1997):

(2.2) H(x) := P {h(Y1, . . . , Ym) ≤ x} ,

where Y1, . . . , Yn are independent copies of X1.
Note that statement (2.1) follows if the integral

∫ 1

0
|H−1

n (s) − H−1(s)| |J(s)|ds converges
to zero almost surely when n tends to infinity. In turn, the latter statement follows if the
following two conditions are satisfied: first,

(2.3)
∫ 1

0

∣

∣H−1
n (s) − H−1(s)

∣

∣

p
ds →a.s 0, n → ∞,

and, second,
∫ 1

0
|J(s)|qds < ∞ for the q such that p−1 + q−1 = 1 when p > 1, and

sups∈[0,1] |J(s)| < ∞ when p = 1. Naturally, we need to assume that the distribution function
H has a finite pth absolute moment. This condition, however, is automatically satisfied since
throughout the paper (unless explicitly stated otherwise) we assume the following, stronger
one: the kernel h is such that, for all y1, . . . , ym ∈ R,

(2.4) |h(y1, . . . , ym)| ≤ φ(y1) × · · · × φ(ym),

where φ : R → [0,∞) is a function satisfying the condition
∫

R
|φ(x)|p dF (x) < ∞. We

shall comment on the condition later, after our main result (cf. Theorem 2.1 below) has been
formulated.

Theorem 2.1. Let X1, X2, . . . be a strictly stationary and ergodic sequence. Assume that
h satisfies condition (2.4) and is such that the set of its discontinuity points has Q-measure
zero, where Q is the m-fold product of the probability law of X1. Then statement (2.3) holds
with the distribution function H defined in (2.2). In particular, the (empirical) generalized
absolute Lorenz curve GALCn converges uniformly and almost surely to the (theoretical)
generalized absolute Lorenz curve GALCH .

We shall now comment on conditions of Theorem 2.1 and start with the note that condi-
tion (2.4) has already been used in the literature on U - and L-statistics (cf., e.g., ABDGHW,
1996, Gilat and Helmers, 1997) where we also find comments and examples indicating that
the condition is a minor one from the practical point of view. Nevertheless, it is worth noting
that – as our proofs below as well as results by, for example, Arcones (1998) and Borovkova,
Burton, and Dehling [BBD] (1999) suggest – condition (2.4) can be removed at the expense
of assuming that the sequence (X1, X2, . . . ) is weakly Bernoullian (or absolutely regular) in
addition to being strictly stationary and ergodic. Weak Bernoullianity, however, is less de-
sirable from the practical point of view than imposing condition (2.4) on the kernel h, since
the kernel is chosen by the statistician. Furthermore, we note that Theorem U (ii) on p. 2849
in ABDGHW (1996) and our proof of Theorem 2.1 indicate that, under condition (2.4), the
assumption that “the set of h discontinuity points has Q-measure zero” can be removed from
Theorem 2.1 at the expense of assuming that the sequence (X1, X2, . . . ) is weakly Bernoul-
lian. However, it is important to keep in mind that the kernel h is chosen by the statistician
who, on the other hand, might not have control over the population distribution and/or the
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dependence structure between random variables. Hence, condition (2.4) and the aforemen-
tioned continuity condition on h should be preferred to assuming weak Bernoullianity of
(X1, X2, . . . ). The final note – following BBD (1999) – concerning conditions of Theorem
2.1: If instead of almost sure convergence we are only interested in convergence in prob-
ability, then instead of condition (2.4) we can require that the family of random variables
|h(Xi1 , . . . , Xim)|p, i1, . . . , im ≥ 1, is uniformly integrable. The latter condition holds if, for
example, the supremum of E(|h(Xi1 , . . . , Xim)|p+δ) over all indices i1, . . . , im ≥ 1 is finite
for some δ > 0.

As we have already hinted at, a counterpart of Theorem 2.1 holds if we use the distribution
function Dn instead of Hn. We now formulate this claim as the following theorem.

Theorem 2.2. Under the assumptions of Theorem 2.1, we have that the statement

(2.5)
∫ 1

0

∣

∣D−1
n (s) − H−1(s)

∣

∣

p
ds →a.s 0, n → ∞,

holds with the distribution function H in (2.2). In particular, the corresponding (empirical)
generalized absolute Lorenz curve GALCD

n converges uniformly and almost surely to the
(theoretical) generalized absolute Lorenz curve GALCH .

In the following section we shall see that, at least notationally, it is easier to first prove
Theorem 2.2 and then derive Theorem 2.1 using a few additional arguments.

3. PROOFS

Proof of Theorem 2.2. Bickel and Freedman (1981) showed that, for every p ≥ 1, statement
(2.5) holds if, almost surely,

(3.1) Dn ⇒ H

and, almost surely,

(3.2)
∫

R

|x|p dDn(x) →

∫

R

|x|p dH(x).

Assume for the time being that statement (3.1) holds on some subset Ω0 ⊆ Ω of probability
one, that is, for every ω ∈ Ω0, we have that Dω

n ⇒ H with the obvious notation for Dω
n .

Hence,

(3.3)
∫

R

f(x)dDω
n(x) →

∫

R

f(x)dH(x)

for every bounded and measurable function f : R → R whose set of discontinuity points
has H-measure zero. We want to apply statement (3.3) in the special case when the function
f(x) is |x|p; this would give us statement (3.2). The just noted function f is not bounded,
and so we choose a positive number K > 0 such that both one-point sets {−K} and {K}

have H-measure zero. We decompose the function as the sum hK + gK of two functions
hK(x) = |x|pI{|x| ≤ K} and gK(x) = |x|pI{|x| > K}. The function hK is bounded,
measurable, and its two discontinuity points have H-measure zero. Hence, we get from (3.3)
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that, for every ω ∈ Ω0, the integral
∫

R
hK(x)dDω

n(x) converges to
∫

R
hK(x)dH(x). In view

of this fact we have that, for every ω ∈ Ω0,

(3.4) lim sup
n→∞

∣

∣

∣

∣

∫

R

|x|p dDω
n(x) −

∫

R

|x|p dH(x)

∣

∣

∣

∣

≤ lim sup
n→∞

∫

R

gK(x)dDω
n(x) +

∫

R

gK(x)dH(x).

Now we assume that there is a sequence of numbers 0 < K → ∞ such that each one-point set
{K} has H-measure zero. Since H has the finite pth moment, the integral

∫

R
gK(x)dH(x)

can be made as small as desired. Next, we want to show that an analogous statement holds
for lim supn→∞

∫

R
gK(x)dDω

n(x) on a subset Ω1 ⊆ Ω that has probability one and does not
depend on K. Certainly, it is enough to prove the statement for a subset Ω1,K that possibly
depends on K and has probability one, since the intersection of all such subsets Ω1,K with
respect to K has probability one. This we accomplish as follows. Using assumption (2.4),
we obtain that

(3.5)
∫

R

gK(x)dDn(x)

≤
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

|φ(Xi1)|
p × · · · × |φ(Xim))|p I {|φ(Xi1)| × · · · × |φ(Xim))| > K} .

The indicator on the right-hand side of (3.5) does not exceed the sum of the m indicators
I{|φ(Xi1))| > K1/m}, . . . , I{|φ(Xim))| > K1/m}. We now choose the first indicator and
show that the quantity

∆n,K(1) :=
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

|φ(Xi1)|
p · · · |φ(Xim))|p I{|φ(Xi1))| > K1/m}

=

(

1

n

n
∑

i=1

|φ(Xi))|
p

)m−1(

1

n

n
∑

i=1

|φ(Xi))|
p
I{|φ(Xi))| > K1/m}

)

(3.6)

can be made as small as desired by taking K sufficiently large. (Number 1 in the brackets in
∆n,K(1) refers to the fact that we consider the first indicator.) We also want to specify a set of
probability one on which the aforementioned statement holds. To start with, we note that, by
the ergodic theorem, there is a subset Ω2 ⊆ Ω of probability one such that, for every ω ∈ Ω2,
the arithmetic mean n−1

∑n
i=1 |φ(Xω

i ))|p converges to the expectation E(|φ(X1))|
p), which

is finite by assumption. Furthermore, we have that there is a subset ΩK(1) ⊆ Ω of probability
one such that, for every ω ∈ ΩK(1), the arithmetic mean n−1

∑n
i=1 |φ(Xω

i ))|p I{|φ(Xω
i ))| >

K1/m} converges to the expectation E(|φ(X1))|
p
I{|φ(X1))| > K1/m}), which in turn con-

verges to zero when K → ∞ since E(|φ(X1))|
p) is finite. Combining the statements above,

we have that Ω3 := ∩m
j=1 ∩K (Ω2 ∩ΩK(j)) is a set of probability one and such that, for every

ω ∈ Ω3,

(3.7) lim
K→∞

lim sup
n→∞

∫

R

gK(x)dDω
n(x) = 0.
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From this result and also from (3.4) we have that, for every ω ∈ Ω0 ∩ Ω3, the integral
∫

R
|x|p dDω

n(x) converges to
∫

R
|x|p dH(x). This completes the proof of statement (3.2).

We shall now prove statement (3.1). We start with the equations (cf., e.g., Davydov and
Zitikis, 2003, for similar ideas):

(3.8) Dn(x) =
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

I
{

(Xi1, . . . , Xim) ∈ h−1(−∞, x]
}

= Qnh
−1(−∞, x],

where the probability measure Qn is defined by the formula

Qn :=
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

δ(Xi1
,...,Xim

)

with δa(A) being 1 if a ∈ A and 0 otherwise. The program for finishing the proof of (3.1)
is as follows. First, we check that Qn ⇒ Q a.s. for the probability measure Q specified in
the formulation of Theorem 2.1. Second, we check that Qnf−1(−∞, x] → Qf−1(−∞, x]

a.s. under appropriate assumptions on f and x. Rigorous statements and proofs of these facts
now follow.

We start with the note that statement Qω
n ⇒ Q follows if

∫

fdQω
n →

∫

fdQ for every
function f : R

m → R which is continuous and has a compact support (cf., e.g., Billingsley,
1968, p. 41, problem 7). The class of these functions h can be restricted (cf., e.g., Davydov
and Zitikis, 2004a, for more details) to a countable class of product functions

(3.9) f = h1 ⊗ · · · ⊗ hm,

where each hi is an element of a countable class {φl} of continuous functions φl having
compact supports. For the function f in (3.9) we have the equalities:

∫

fdQω
n =

∫

h1(x1) × · · · × hm(xm)dQω
n(x1, . . . xm)

=

{

1

n

n
∑

i=1

h1(X
ω
i )

}

× · · · ×

{

1

n

n
∑

i=1

hm(Xω
i )

}

.(3.10)

By the ergodic theorem, there is a subset Ω(hk) ⊆ Ω of probability one such that, for every
ω ∈ Ω(hk) the arithmetic mean n−1

∑n
i=1 hk(X

ω
i )) converges to the expectation E(hk(X1)),

which is finite since hk is bounded. Since hk is an element of {φl} and the latter class is
countable, we have that the set Ω4 := ∩lΩ(φl) is of probability one and such that, for every
ω ∈ Ω4, the right-hand side of (3.10) converges to the product E(h1(X1))×· · ·×E(hm(X1)),
which can obviously be written as E(h1(Y1) × · · · × hm(Ym)) with Y1, . . . , Ym denoting
independent copies of the random variable X1. The equality

E(h1(Y1) × · · · × hm(Ym))) =

∫

fdQ

implies that the measure Q is the m-fold product of the probability law L of X1, as stated
in the formulation of the theorem. Hence, we have verified that Qω

n ⇒ Q holds for every
ω ∈ Ω4. From this we in turn obtain that Qω

nf−1 ⇒ Qf−1 because the Q-measure of the
discontinuity points of f is zero by assumption. This finishes the proof of Theorem 2.2. �
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Proof of Theorem 2.1. We shall closely follow the proof of Theorem 2.2 and make the
necessary changes. Note at the outset that there were only two instances in the above proof
of Theorem 2.2 where we used the special structure of the distribution function Dn. We shall
now discuss these instances in detail.

The first instance occurred when we showed that
∫

R
gK(x)dDn(x) can be made as small

as desired by taking n and K sufficiently large. When proving Theorem 2.1, we now need
to verify a similar claim for the quantity

∫

R
gK(x)dHn(x). The quantity, however, does not

exceed, up to a constant,
∫

R
gK(x)dDn(x). Since we have already proved the smallness of

the latter integral, the desired smallness of
∫

R
gK(x)dHn(x) follows.

The second instance occurred in (3.10). We now need to prove an analogous statement for
∫

hdRω
n , where the probability measure Rn is defined by the formula

Rn :=
1

(n)m

∑

∗

δ(Xi1
,...,Xim

).

In this case we have the equality

(3.11)
∫

hdRω
n =

1

(n)m

∑

∗

h1(X
ω
i1
) × · · · × hm(Xω

im).

Note that the only difference between the right-hand side of (3.11) and the sum

(3.12)
1

nm

n
∑

i1=1

· · ·
n
∑

im=1

h1(X
ω
i1
) × · · · × hm(Xω

im
)

is that the latter one contains terms with at least two indices equal. The sum of all such terms
(which have at least two indices equal) is over-normalized by 1/n, and hence converges to
zero when n tends to infinity. Since we have already verified that the sum in (3.12) conver-
gences to E(h1(Y1) × · · · × hm(Ym)), the proof of Theorem 2.1 is complete. �
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