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CONIC APPROACH TO QUANTUM GRAPH PARAMETERS USING
LINEAR OPTIMIZATION OVER THE COMPLETELY POSITIVE

SEMIDEFINITE CONE∗

MONIQUE LAURENT† AND TERESA PIOVESAN‡

Abstract. We investigate the completely positive semidefinite cone CSn
+, a new matrix cone

consisting of all n× n matrices that admit a Gram representation by positive semidefinite matrices
(of any size). In particular, we study relationships between this cone and the completely positive
and the doubly nonnegative cone, and between its dual cone and trace positive noncommutative
polynomials. We use this new cone to model quantum analogues of the classical independence and
chromatic graph parameters α(G) and χ(G), which are roughly obtained by allowing variables to be
positive semidefinite matrices instead of 0/1 scalars in the programs defining the classical parameters.
We can formulate these quantum parameters as conic linear programs over the cone CSn

+. Using
this conic approach we can recover the bounds in terms of the theta number and define further
approximations by exploiting the link to trace positive polynomials.
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1. Introduction.

1.1. General overview. Computing the minimum number χ(G) of colors needed
to properly color a graph G and computing the maximum cardinality α(G) of an inde-
pendent set of vertices in G are two well studied NP-hard problems in combinatorial
optimization. Recently, some analogues of these classical graph parameters have been
investigated, namely, the parameters αq(G) and χq(G) in the context of quantum
entanglement in nonlocal games and the parameters α�(G) and χ�(G) in the context
of quantum information. In a nutshell, while the classical parameters can be defined
as the optimal values of integer programming problems involving 0/1-valued vari-
ables, their quantum analogues are obtained by allowing the variables to be positive
semidefinite matrices (of arbitrary size).

To make this precise and simplify our discussion we now focus on the quantum
chromatic number χq(G) (introduced in [10]). Given a graph G = (V,E) and an
integer t ≥ 1, consider the following conditions in the variables xi

u (for u ∈ V and
i ∈ [t] = {1, . . . , t}):

(1.1)

∑
i∈[t]

xi
u = 1 ∀u ∈ V, xi

ux
j
u = 0 ∀u ∈ V and ∀i �= j ∈ [t],

xi
ux

i
v = 0 ∀{u, v} ∈ E and ∀i ∈ [t].

If the variables are 0/1-valued, then these conditions are encoding the fact that each
vertex of G receives just one of t possible colors and that two adjacent vertices must
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receive distinct colors. Then the chromatic number χ(G) is equal to the smallest
integer t for which the system (1.1) admits a 0/1-valued solution. On the other hand,
if we allow the variables xi

u to take their values in Sd
+ (the cone of d × d positive

semidefinite matrices) for an arbitrary d ≥ 1 and if in the first condition we let 1
denote the identity matrix, then the smallest integer t for which the system (1.1) is
feasible defines the quantum parameter χq(G). By construction, χ(G) ≥ χq(G).

It is well known that computing the chromatic number χ(G) is an NP-hard prob-
lem and recently this hardness result has been extended to the quantum chromatic
number χq(G) [29]. Therefore it is of interest to be able to compute good approxi-
mations for these parameters. In the classical case, several converging hierarchies of
approximations have been proposed for χ(G) based on semidefinite programming (see
[20, 27]). They refine the well known bounds based on the theta number of Lovász
[38] and its strengthening by Szegedy [52]: χ(G) ≥ ϑ+(G) ≥ ϑ(G). It was shown
recently in [48] that the theta number also bounds the quantum chromatic number:

χ(G) ≥ χq(G) ≥ ϑ+(G) ≥ ϑ(G).

This naturally raises the question of constructing further semidefinite program-
ming based bounds for χq(G), strengthening the theta number. The parameter χq(G)
derives from a specific nonlocal game and the general problem of finding approxima-
tions to the quantum value of any nonlocal game is a very interesting and difficult
one. Positive results in this direction have been achieved in [17, 43], where the authors
introduced semidefinite hierarchies converging to a relaxation of the quantum value
of the game. Whether these hierarchies converge to the quantum value itself is an
open problem in mathematical physics, commonly known as Tsirelson’s problem.

Here we take a different approach exploiting the particular structure of the quan-
tum graph parameters considered. The main idea is to reformulate the quantum
graph parameter χq(G) as a conic optimization problem over a new matrix cone, the
cone CS+, that we call the completely positive semidefinite cone. The study of this
matrix cone and its use for building approximations is the main contribution of this
paper which we explain below in more detail.

Recall that a matrix A ∈ Sn is positive semidefinite (psd), i.e., A ∈ Sn
+, precisely

when A admits a Gram representation by vectors x1, . . . , xn ∈ Rd (for some d ≥ 1),
which means that A = (〈xi, xj〉)ni,j=1. Moreover, A is completely positive when it
admits such a Gram representation by nonnegative vectors. We now call A completely
positive semidefinite when A admits a Gram representation by positive semidefinite
matrices x1, . . . , xn ∈ Sd

+ for some d ≥ 1 (where 〈xi, xj〉 denotes the usual trace inner
product). We let CPn and CSn

+ denote, respectively, the sets of completely positive
and completely psd matrices.

The set CSn
+ is a convex cone (Lemma 3.2), but it is not known whether it is closed.

A related open question is whether any matrix A which admits a Gram representation
by infinite positive semidefinite matrices also admits such a Gram representation by
finite ones (see Theorem 3.3).

It is easy to see that the new cone CSn
+ is nested between CPn and the doubly

nonnegative cone DNN n (consisting of all matrices that are both psd and nonnega-
tive):

CPn ⊆ CSn
+ ⊆ cl(CSn

+) ⊆ DNN n.

In what follows we may omit the superscript and write CP, CS+,DNN when we do not
need to explicitly mention the size n of the matrices. As is well known, DNN n = CPn
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for n ≤ 4 and strict inclusion holds for n ≥ 5 [16, 41]. Frenkel and Weiner [24] give
an example of a 5 × 5 matrix which is doubly nonnegative but not completely psd
and the authors of [22] give an example of a 5 × 5 matrix which is completely psd
but not completely positive. We will show that the above mentioned matrix studied
by Frenkel and Weiner does not lie in the closure of CS5

+, thus cl(CS5
+) � DNN 5.

Moreover, we will present a class of matrices that are doubly nonnegative but not
completely psd (Lemma 3.10). An ingredient for this is showing that for matrices
supported by a cycle, being completely positive is equivalent to being completely psd
(Theorem 3.7).

Using the completely psd cone CS+ we can reformulate the quantum chromatic
number χq(G) as a linear optimization problem over affine sections of the cone CS+.
Notice that such a reformulation, combined with the above mentioned result about
the NP-hardness of the quantum chromatic number, implies that linear optimization
over affine sections of the completely positive semidefinite cone is also an NP-hard
problem. The idea for reformulating χq(G) is simple and goes as follows: linearize
the system (1.1) by introducing a matrix X (defined as the Gram matrix of the psd
matrices xi

u), add the condition X ∈ CS+, and replace the conditions in (1.1) by linear
conditions on X (see sections 4.1–4.3 for details). In this way the whole complexity
of the problem is pushed to the cone CS+.

By replacing in the conic linear program defining χq(G) the cone CS+ by its
closure cl(CS+), we obtain a new parameter χ̃q(G), which satisfies χq(G) ≥ χ̃q(G).
This new parameter χ̃q(G) can be equivalently formulated in terms of the dual conic
program, since strong duality holds (while we do not know if this is the case for the
program defining χq(G)). The dual conic program is over the dual cone CS∗

+. As we
explain below, CS∗

+ can be interpreted in terms of trace positive polynomials, which
naturally opens the way to semidefinite programming based approximations.

The dual cone CSn∗
+ of the completely psd cone CSn

+ has a useful interpreta-
tion in terms of trace positive noncommutative polynomials. A polynomial p is trace
positive if one gets a nonnegative value when evaluating p at arbitrary matrices
X1, . . . , Xn ∈ Sd (for any d ≥ 1) and taking the trace of the resulting matrix. For
a matrix M ∈ Sn, consider the following polynomial pM =

∑n
i,j=1 MijX

2
i X

2
j in the

noncommutative variables X1, . . . , Xn. In section 3.3, we show that M belongs to
the dual cone CSn∗

+ precisely when pM is trace positive. When restricting to scalar
(commutative) variables we find the notion of copositive matrices and the fact that
CSn∗

+ is contained in the copositive cone COPn (the dual of the completely positive
cone CPn).

Trace positive polynomials have been studied in the recent years, in particular in
[6, 9]. A sufficient condition for trace positivity of a polynomial p is that p belongs to
the tracial quadratic module trMball

nc (of the ball). This means that p can be written as
a sum of commutators [g, h] = gh−hg, Hermitian squares gg∗, and terms of the form
g(1−∑n

i=1 X
2
i )g

∗, where g, h are noncommutative polynomials and ∗ is the involution
that reverses the order of the variables in each monomial.

It is shown in [30, 7, 6] that a celebrated conjecture of Connes in operator algebra
is equivalent to showing that, for any noncommutative polynomial p which is trace
positive, the polynomial p + ε belongs to trMball

nc for all ε > 0. This motivates
our definition of the convex set Knc,ε, which consists of all matrices M for which
the perturbed polynomial pM + ε belongs to trMball

nc . Then, we have the inclusion⋂
ε>0 Knc,ε ⊆ CS∗

+, with equality if Connes’ conjecture holds (Lemma 3.17).
Using these sets Knc,ε, we can define the parameters Ψε(G). Namely, Ψε(G)

is obtained by considering the (dual) optimization program over CS∗
+ which defines
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χ̃q(G) and replacing in it the cone CS∗
+ by the convex set Knc,ε (see Definition 4.17).

Note that each parameter Ψε(G) can be obtained as the limit of a converging hierarchy
of semidefinite programs obtained by introducing degree constraints on the terms in
the tracial quadratic module trMball

nc (see section 4.3). We can show that Ψε(G)
relates to the theta number: Ψε(G) ≥ ϑ+(G) (see Lemma 4.18). Unfortunately, as
there is no apparent inclusion relationship between CS∗

+ and Knc,ε, we do not know
how Ψε(G) compares to χ̃q(G) (and even less so to χq(G)). However, if Connes’
conjecture holds, then we have that χ̃q(G) ≤ infε>0 Ψε(G).

Hence devising converging semidefinite approximations for the quantum chro-
matic number seems much harder than for its classical counterpart and our results
can be seen as a first step in this direction. This difficulty should be put in the broader
context of the general difficulty of approximating the quantum value of nonlocal games
as mentioned earlier.

Our main motivation for studying the cone CS+ comes from its relevance to the
quantum graph parameters. Recent works have shown that the cone CS+ can also be
used to study the set of quantum bipartite correlations [39] and the quantum value of
any two-party game [51]. Moreover, there is a further connection of this cone to the
widely studied notion of factorizations of nonnegative matrices. Given a nonnegative
m×n matrix M , a nonnegative factorization (resp., a psd factorization) of M consists
of nonnegative vectors xi, yj ∈ Rd

+ (resp., psd matrices xi, yj ∈ Sd
+) (for some d ≥ 1)

such that M = (〈xi, yj〉)i∈[m],j∈[n]. Note that asymmetric factorizations are allowed,
using xi for the rows and yj for the columns of M . In this asymmetric setting,
the question is not about the existence of a factorization (since such a factorization
always exists in some dimension d) but about the smallest possible dimension d of
such a factorization. There has been a recent surge of interest in these questions,
motivated by the relevance of nonnegative factorizations (resp., psd factorizations) to
linear (resp., semidefinite) extended formulations of polytopes; see, e.g., [23, 26] and
further references therein.

1.2. Organization of the paper. The paper is organized as follows. In the
rest of the introduction we present some notation and preliminaries about graphs and
matrices used throughout.

Section 2 introduces all graph parameters considered in the paper. Section 2.1 re-
calls the classical parameters α(G), χ(G), the theta numbers ϑ(G), ϑ′(G), and ϑ+(G),
and two conic variants ϑK(G) and ΘK(G), where K is a cone nested between CP and
DNN . Section 2.2 introduces the quantum graph parameters αq(G), α�(G), χq(G),
χ�(G) and, in section 2.3, we briefly motivate the use of these parameters for analyzing
the impact of quantum entanglement in nonlocal games and in quantum information.

Section 3 is devoted to the study of the new cone CS+. We discuss its basic
properties (section 3.1), the links with CP and DNN (section 3.2), the dual cone
CS∗

+ and its link to trace positive polynomials (section 3.3), and the convex sets Knc,ε

(section 3.4).

Section 4 shows how to reformulate the quantum graph parameters using linear
optimization over affine sections of the cone CS+. First, we reformulate the quantum
parameters as checking feasibility of a sequence of conic programs over sections of
CS+; this is done in section 4.1 for the quantum stability numbers and in section 4.2
for the quantum chromatic numbers. We also show there how to recover the known
bounds for the quantum graph parameters in terms of the theta number by replacing
the cone CS+ by the doubly nonnegative cone and we establish new bounds given by
the parameters ϑCS+(G) and ΘCS+(G). In section 4.3, we build a single aggregated
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optimization program permitting us to express the quantum parameter χq(G). The
conic dual of this program is then used to define the parameter Ψε(G), which is
obtained by replacing the cone CS∗

+ by the convex set Knc,ε in this program.

Section 5 gives some concluding remarks and closes the paper.

1.3. Notation and preliminaries.

Graphs. Throughout, all graphs are assumed to be finite, undirected, and without
loops. A graph G has vertex set V (G) and edge set E(G). Given two vertices
u, v ∈ V (G), we write u 
 v if u, v are adjacent or equal and we write u ∼ v
when u and v are adjacent, in which case the corresponding edge is denoted as {u, v}
or simply as uv. G is the complementary graph of G, with vertex set V (G) and two
distinct vertices are adjacent in G if and only if they are not adjacent in G.

A stable set of G is a subset of V (G) where any two vertices are not adjacent. The
stability number α(G) is the maximum cardinality of a stable set in G. A clique of G is
a set of vertices that are pairwise adjacent and ω(G) is the maximum cardinality of a
clique; clearly, ω(G) = α(G). A proper coloring of G is a coloring of the vertices of G in
such a way that adjacent vertices receive distinct colors. The chromatic number χ(G)
is the minimum number of colors needed for a proper coloring. Equivalently, χ(G) is
the smallest number of stable sets needed to cover all vertices of G. The fractional
chromatic number χf (G) is the fractional analogue, defined as the smallest value

of
∑k

h=1 λh for which there exist stable sets S1, . . . , Sk of G and nonnegative scalars
λ1, . . . , λk such that

∑
h:v∈Sh

λh = 1 for all v ∈ V (G). Clearly, ω(G) ≤ χf (G) ≤ χ(G).

For t ∈ N, we set [t] = {1, . . . , t}, Kt denotes the complete graph on [t], and Cn

denotes the n-cycle. The graph G�Kt is the Cartesian product of G and Kt. Its
vertex set is V (G) × [t] and two vertices (u, i) and (v, j) are adjacent in G�Kt if
(u = v and i �= j) or if (u ∼ v and i = j).

Cones and matrices. Throughout, Rn
+ denotes the set of (entrywise) nonnegative

vectors, e1, . . . , en denote the standard unit vectors in Rn, and e denotes the all-ones
vector. Rn is equipped with the standard inner product 〈x, y〉 = xT y =

∑n
i=1 xiyi

and the corresponding norm ‖x‖ =
√〈x, x〉.

We denote by Sn the set of n×n real symmetric matrices, which is equipped with
the standard trace inner product 〈X,Y 〉 = Tr(XY ) =

∑n
i,j=1 XijYij and the corre-

sponding Frobenius norm ‖X‖ =
√〈X,X〉. For X ∈ Sn, X is positive semidefinite

(also written as X 
 0) if all its eigenvalues are nonnegative. We let Sn
+ denote the

set of positive semidefinite matrices in Sn and DNN n, the doubly nonnegative cone,
is the set of positive semidefinite matrices in Sn with nonnegative entries. As is well
known, X 
 0 if and only if there exist vectors x1, . . . , xn ∈ Rd (for some d ≥ 1)
such that Xij = 〈xi, xj〉 for all i, j ∈ [n], in which case we say that x1, . . . , xn form
a Gram representation of X and we call X the Gram matrix of x1, . . . , xn. Further-
more, X ∈ Sn is said to be completely positive if X is the Gram matrix of a set of
nonnegative vectors x1, . . . , xn ∈ Rd

+ (for some d ≥ 1). We let CPn denote the set of
completely positive matrices. The sets Sn

+, DNN n and CPn are all convex cones.

For a pair of matrices X,Y , X ⊕ Y = (X 0
0 Y ) denotes their direct sum, X ◦ Y

denotes the entrywise product, where the ijth entry of X ◦ Y is equal to XijYij , and
X ⊗ Y denotes their Kronecker product, defined as the block-matrix

X ⊗ Y =

⎛⎜⎝X11Y . . . X1nY
...

. . .
...

Xm1Y . . . XmnY

⎞⎟⎠
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if X is m × n. If X,Y 
 0, then also X ⊕ Y , X ◦ Y , and X ⊗ Y are positive
semidefinite.

We will also use the following elementary facts. First, nI − J 
 0, where I, J are
the identity and the all-ones matrix in Sn. If X,Y 
 0, then 〈X,Y 〉 = 0 if and only if
XY = 0. Moreover, for X ∈ Sn of the form X =

(
α bT

b A

)
, where b ∈ Rn−1, A ∈ Sn−1

and α > 0,

(1.2) X 
 0 ⇐⇒ A− bbT /α 
 0.

The matrix A− bbT /α is called the Schur complement of A in X w.r.t. the entry α.
Given a cone K ⊆ Sn, its dual cone is the cone K∗ = {X ∈ Sn : 〈X,Y 〉 ≥ 0

for all Y ∈ K}. Recall that the cone Sn
+ is self-dual, i.e., Sn∗

+ = Sn
+. Given C,Aj ∈ Sn

and bj ∈ R for j ∈ [m], consider the following pair of primal and dual conic programs
over a nice cone K (i.e., K is closed, convex, pointed, and full-dimensional):

p∗ = sup 〈C,X〉 s.t. 〈Aj , X〉 = bj ∀j ∈ [m], X ∈ K,(1.3)

d∗ = inf
m∑
j=1

bjyj s.t. Z =
m∑
j=1

yjAj − C ∈ K∗.(1.4)

Weak duality holds: p∗ ≤ d∗. Moreover, assume that d∗ > −∞ and (1.4) is strictly
feasible (i.e., has a feasible solution y, Z, where Z lies in the interior of K∗); then
strong duality holds: p∗ = d∗ and (1.3) attains its supremum.

2. Classical and quantum graph parameters.

2.1. Classical graph parameters. We group here several preliminary results
about classical graph parameters that we will need in the paper. In what follows G is a
graph on n vertices. We begin with the following result of Chvátal [11], which shows
how to relate the chromatic number of G to the stability number of the Cartesian
product G�Kt.

Theorem 2.1 (see [11]). For any graph G and any integer t ≥ 1, χ(G) ≤ t if
and only if α(G�Kt) = |V (G)|. Hence, χ(G) is equal to the smallest integer t for
which α(G�Kt) = |V (G)| holds.

Next we recall the following reformulation for the stability number α(G) as an
optimization problem over the completely positive cone, which was proved by de Klerk
and Pasechnik [32].

Theorem 2.2 (see [32]). For any graph G, its stability number α(G) is equal to
the optimum value of the following program:

(2.1) max 〈J,X〉 s.t. X ∈ CPn, Tr(X) = 1, Xuv = 0 ∀{u, v} ∈ E(G).

In the same vein, Dukanovic and Rendl [20] gave the following reformulation for the
fractional chromatic number χf (G).

Theorem 2.3 (see [20]). For any graph G, its fractional chromatic number χf (G)
is equal to the optimum value of the following program:

min t s.t. X ∈ CPn, X − J 
 0, Xuu = t ∀u ∈ V (G), Xuv = 0 ∀{u, v} ∈ E(G).

A well known bound for both the stability and the (fractional) chromatic numbers is
provided by the celebrated theta number ϑ of Lovász [38], who showed the following
“sandwich” inequalities:

(2.2) α(G) ≤ ϑ(G) ≤ χf (G) ≤ χ(G).
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Between the many equivalent formulations of the theta number, the following will be
appropriate for our setting:

ϑ(G) = max 〈J,X〉
s.t. X 
 0,

Tr(X) = 1,

Xuv = 0 ∀ {u, v} ∈ E(G);

= min t

s.t. Z 
 0, Z − J 
 0,

Zuu = t ∀u ∈ V (G),

Zuv = 0 ∀ {u, v} ∈ E(G).

(2.3)

In view of Theorem 2.2, if in the above maximization program defining ϑ(G) we
replace the condition X 
 0 by the condition X ∈ CP, then the optimal value is
equal to α(G). Similarly, in view of Theorem 2.3, χf (G) is the optimal value of the
above minimization program defining ϑ(G) when, instead of requiring that Z 
 0, we
impose the condition Z ∈ CP.

Several strengthenings of ϑ(G) toward α(G) and χ(G) have been proposed, in
particular, the following parameters ϑ′(G) introduced independently by Schrijver [50]
and McEliece, Rodemich, and Rumsey [42] and ϑ+(G) introduced by Szegedy [52]:

ϑ′(G) = max 〈J,X〉
s.t. X ∈ DNN n,

Tr(X) = 1,

Xuv = 0 ∀ {u, v} ∈ E(G);

ϑ+(G) = min t

s.t. Z ∈ DNN n, Z − J 
 0,

Zuu = t ∀u ∈ V (G),

Zuv = 0 ∀ {u, v} ∈ E(G).

(2.4)

The following inequalities hold, which refine (2.2):

(2.5) α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G) ≤ χf (G) ≤ χ(G).

Following [20], we now introduce the following conic programs (2.6), which are
obtained by replacing in the above programs (2.3) the positive semidefinite cone by
a general convex cone K nested between the cones CP and DNN . Namely, given a
graph G, we consider the following parameters ϑK(G) and ΘK(G), which we will use
later in sections 3.2, 4.1, and 4.2:

ϑK(G) = sup 〈J,X〉
s.t. X ∈ Kn,

Tr(X) = 1,

Xuv = 0 ∀ {u, v} ∈ E(G);

ΘK(G) = inf t

s.t. Z ∈ Kn, Z − J 
 0,

Zuu = t ∀u ∈ V (G),

Zuv = 0 ∀ {u, v} ∈ E(G).

(2.6)

If in the relations from (2.6) we set K = DNN or K = CP, then, using the above
definitions and Theorems 2.2 and 2.3, we find respectively the definitions of ϑ′(G),
α(G), ϑ+(G), χf (G). That is,

(2.7) ϑDNN (G) = ϑ′(G), ϑCP(G) = α(G), ΘDNN (G) = ϑ+(G), ΘCP(G) = χf (G).

Remark 2.4. We observe a monotonicity property for the program defining ϑK(G)
in (2.6), which will be useful later. Set n = |V (G)| and consider scalars 1 ≤ t < T .
Assume that a matrixX is feasible for the program defining ϑK(G) with value 〈J,X〉 =
T . Then the matrix X ′ = t−1

T−1X + T−t
n(T−1)I is again feasible for ϑK(G) and it has

value 〈J,X ′〉 = t.
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2.2. Quantum graph parameters. We now introduce two quantum variants
αq(G) and α�(G) of the stability number and two quantum variants χq(G) and χ�(G)
of the chromatic number, which have been considered in the literature. Here we will
give mathematical definitions. Motivation for these parameters will be given in section
2.3 below.

Definition 2.5 (game entanglement-assisted stability number [48]). For a graph
G, αq(G) is the maximum integer t ∈ N for which there exist positive semidefinite
matrices ρ, ρui ∈ Sd

+ for i ∈ [t], u ∈ V (G) (for some d ≥ 1) satisfying the following
conditions:

〈ρ, ρ〉 = 1,(2.8) ∑
u∈V (G)

ρui = ρ ∀i ∈ [t],(2.9)

〈ρui , ρvj 〉 = 0 ∀i �= j ∈ [t], ∀u 
 v ∈ V (G),(2.10)

〈ρui , ρvi 〉 = 0 ∀i ∈ [t], ∀u �= v ∈ V (G).(2.11)

Definition 2.6 (communication entanglement-assisted stability number [14]).
For a graph G, α�(G) is the maximum t ∈ N for which there exist positive semidefinite
matrices ρ, ρui ∈ Sd

+ for i ∈ [t], u ∈ V (G) (for some d ≥ 1) satisfying the conditions
(2.8), (2.9), and (2.10).

Definition 2.7 (game entanglement-assisted chromatic number [10]). For a
graph G, χq(G) is the minimum t ∈ N for which there exist positive semidefinite
matrices ρ, ρiu ∈ Sd

+ for i ∈ [t], u ∈ V (G) (for some d ≥ 1) satisfying the following
conditions:

〈ρ, ρ〉 = 1,(2.12) ∑
i∈[t]

ρiu = ρ ∀u ∈ V (G),(2.13)

〈ρiu, ρiv〉 = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G),(2.14)

〈ρiu, ρju〉 = 0 ∀i �= j ∈ [t], ∀u ∈ V (G).(2.15)

Definition 2.8 (communication entanglement-assisted chromatic number [5]).
For a graph G, χ�(G) is the minimum t ∈ N for which there exist positive semidefinite
matrices ρ, ρiu ∈ Sd

+ for i ∈ [t], u ∈ V (G) (for some d ≥ 1) satisfying the conditions
(2.12), (2.13), and (2.14).

The parameters αq(G) and χq(G) can, respectively, be equivalently obtained from
the definitions of α�(G) and χ�(G) if we require ρ to be the identity matrix (instead
of 〈ρ, ρ〉 = 1) and the other positive semidefinite matrices to be orthogonal projectors,
i.e., to satisfy ρ2 = ρ (see [48] and [10]). Moreover, if in the programs of Definitions 2.5
and 2.6 we require the variables ρiu to be 0/1 valued, then we obtain the classical
parameter α(G). Similarly, if in Definitions 2.7 and 2.8 we restrict the variables ρiu to
be 0/1 valued, then we obtain program (1.1) and thus the classical parameter χ(G).
Therefore, the following inequalities hold:

α(G) ≤ αq(G) ≤ α�(G) and χ�(G) ≤ χq(G) ≤ χ(G).

It is not known whether the parameters αq(G) and α�(G) are in general equal or
not. The same question holds for χq(G) and χ�(G). Recently, several bounds for the
quantum parameters have been established in terms of the theta number. Namely,
[3, 19] show that α�(G) ≤ ϑ(G), [15] shows the tighter bound α�(G) ≤ ϑ′(G), and [5]
shows that χ�(G) ≥ ϑ+(G). Summarizing, the following sandwich inequalities hold:

(2.16) α(G) ≤ αq(G) ≤ α�(G) ≤ ϑ′(G) and ϑ+(G) ≤ χ�(G) ≤ χq(G) ≤ χ(G).
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Using our approach of reformulating the quantum parameters as optimization prob-
lems over the cone CS+, we will recover these bounds (see section 4, in particular
Corollaries 4.7 and 4.13).

2.3. Motivation. The quantum graph parameters that we have just defined
arise in the general context of the study of entanglement, one of the most important
features of quantum mechanics. In particular, the parameters αq(G) and χq(G) are
defined in terms of nonlocal games, which are mathematical abstractions of a physical
experiment introduced by [12]. In a nonlocal game, two (or more) cooperating players
determine a common strategy to answer questions posed by a referee. The questions
are drawn from a finite set and the referee sends a question to each of the players. The
players, without communicating, must each respond to their question, and the referee
upon collecting all the answers determines according to the rules of the game whether
the players win or lose. We can now study properties of quantum mechanics by asking
the following question: Does entanglement between the players allow for a better
strategy than the best classical one? Surprisingly, players that share entanglement
can (for some games) produce answers correlated in a way that would be impossible
in a classical world. (For an introduction to the topic we recommend the survey [12].)

For a fixed integer t ∈ N, consider a game where two players want to convince a
referee that they can color a graph G with at most t colors. The players each receive
a vertex from the referee and they answer by returning a color from [t]. They win
the game if they answer the same color upon receiving the same vertex and different
colors if the vertices are adjacent. When the players use classical strategies, they
can always win if and only if there exists a t-coloring of the graph. In other words,
the chromatic number χ(G) is the minimum t for which the players can always win
the game using classical strategies. In the entanglement-assisted setting, χq(G) is
the smallest number of colors that the players must use in order to always win the
game (see [10] for details). This parameter has recently received a notable amount of
attention (see, among others, [1, 10, 25, 40, 48, 29, 45]).

Analogously to χq(G), αq(G) is the maximum integer t for which two players
sharing an entangled state can convince a referee that the graph G has a stable set of
cardinality t. For a detailed description of the game we refer to [48].

From the above description, it is not directly clear that Definitions 2.5 and 2.7 are
the proper mathematical formulations for the parameters αq(G) and χq(G) and this
indeed requires a proof (which can be implicitly found in [48] for αq(G) and in [10] for
χq(G)). We also refer the interested reader to [47, sections 6.2, 6.4, and 6.5], where a
direct mathematical proof which does not require quantum information background
is given. Furthermore, note that in the above mentioned references, the matrices ρui
(or respectively ρiu) are required to be projectors and ρ to be the identity matrix. By
replacing each matrix ρui by the projection onto its image, it can be seen that we can
equivalently consider Definitions 2.5 and 2.7.

Another setting where the properties of entanglement can be studied is zero-error
information theory. Here two parties want to perform a communication task (e.g.,
communicating through a noisy channel) both exactly and efficiently. These problems
have led to the development of a new line of research in combinatorics (see [34] for a
survey and references therein). Recently Cubitt et al. [14] started studying whether
sharing entanglement between the two parties can improve the communication. A
number of positive results, where entanglement does improve the communication,
have been obtained [14, 35, 5]. Without getting into details, the parameters α�(G)
and χ�(G) arise in this entanglement-assisted information theory setting. For the full
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description of the problem and its mathematical formulation we refer to [14, Theorem
1] and [5, Definition I.5] for α�(G) and χ�(G), respectively.

We now briefly summarize some known properties of these parameters. One of
the most interesting questions is to find and characterize graphs for which there is a
separation between a quantum parameter and its classical counterpart. Clearly there
is no such separation when G is a perfect graph since then the inequalities (2.5) and
(2.16) imply α(G) = αq(G) = α�(G) = ϑ(G) and ϑ(G) = χ�(G) = χq(G) = χ(G).
Indeed, if a graph G is perfect, then both α(G) = χ(G) and α(G) = χ(G) hold.
Therefore, equality holds throughout in (2.5) and in (2.16).

A few separation results are known. For instance, there exists a graph for which
χ�(G) = χq(G) = 3 but χ(G) = 4 [25], and a family of graphs exhibiting an ex-
ponential separation between χq and χ [1] (and therefore also between χ� and χ).
This family is composed of the orthogonality graphs Ωn (where n is a multiple of 4)
whose vertices are all the vectors in {±1}n and two vertices are adjacent if the vec-
tors are orthogonal. These graphs have been used to construct graphs that exhibit
an exponential separation between α� and α in [40] and between αq and α in [48].

While for the classical parameters the inequality χ(G)α(G) ≥ |V (G)| holds for
any graphG, interestingly this is not true for the quantum counterparts. As noticed in
[48], if n is a multiple of 4 but not a power of 2, then χq(Ωn)αq(Ωn) < |V (Ωn)| and the
exact same reasoning implies that χ�(Ωn)α

�(Ωn) < |V (Ωn)|. Finally, the chromatic
and stability numbers are NP-hard quantities and recently Ji [29] proved that deciding
whether χq(G) ≤ 3 is an NP-hard problem. Roberson and Mančinska [48, Lemma 4.5]
showed the analogue of Theorem 2.1 for the quantum parameters αq and χq, namely,
that χq(G) ≤ t if and only if αq(G�Kt) = |V (G)|, and thus computing the parameter
αq(G) is NP-hard as well.

3. The completely positive semidefinite cone. In this section we introduce
the completely positive semidefinite cone CS+, we establish some of its basic properties
and its relation with the completely positive cone and with the doubly nonnegative
cone. We also investigate its dual cone CS∗

+ and we introduce the convex sets Knc,ε

aiming to approximate it.

3.1. Basic properties. Recall that for any positive semidefinite matrix A there
exists a set
of vectors x1, . . . , xn ∈ Rd that form its Gram representation, i.e., A =
(〈xi, xj〉)ni,j=1. We now consider Gram representations by positive semidefinite
matrices.

Definition 3.1. A matrix A ∈ Sn is said to be completely positive semidefinite
(completely psd) if there exist matrices X1, . . . , Xn ∈ Sd

+ (for some d ≥ 1) such that
A = (〈Xi, Xj〉)ni,j=1. Then we also say that X1, . . . , Xn form a Gram representation of
A. We let CSn

+ denote the set of all n× n completely positive semidefinite matrices.

Lemma 3.2. CSn
+ is a convex cone.

Proof. Let A,B ∈ CSn
+ and assume that X1, . . . , Xn ∈ Sd

+ and Y1, . . . , Yn ∈ Sk
+

form a Gram representation of A and B, respectively. Then, the matrices X1 ⊕ Y1,
. . . , Xn ⊕ Yn are psd and form a Gram representation of X + Y , thus showing that
X + Y ∈ CSn

+.

Moreover, let λ ≥ 0 and consider the psd matrices
√
λX1, . . . ,

√
λXn. These form

a Gram representation of λA, thus showing that λA ∈ CSn
+. Hence CSn

+ is a convex
cone.

As is well known, both Sn
+ and CPn are closed sets. This is easy for Sn

+, since it
is a self-dual cone. For CPn, this can be proved using the fact that its extreme rays
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are the rank 1 matrices yyT where y ∈ Rn
+. Therefore, any matrix in CPn can be

written as
∑N

i=1 yiy
T
i , where y1, . . . , yN ∈ Rn

+ and N ≤ (n+1
2

)
(using Carathéodory’s

theorem), and thus closedness follows using a compactness argument (see, e.g., [4,
Theorem 2.2] for the full proof). Having an explicit description of the extreme rays of
the CP cone is a key ingredient in many proofs concerning CP. One of the difficulties
in proving properties of the completely psd cone lies in the fact that we do not know
an alternative description for it; for example, we do not know its extreme rays. In
particular, one of the most interesting properties that we do not know is whether the
cone CSn

+ is closed.
As we now see, deciding whether the cone CS+ is closed is related to the following

question: Does the existence of a Gram representation by infinite positive semidefinite
matrices imply the existence of another Gram representation by positive semidefinite
matrices of finite size? More precisely, let SN denote the set of all infinite symmetric
matrices X = (Xij)i,j≥1 with finite norm:

∑
i,j≥1 X

2
ij < ∞. Thus SN is a Hilbert

space, equipped with the inner product 〈X,Y 〉 =∑i,j≥1 XijYij . Call a matrixX ∈ SN

psd (again denoted as X 
 0) when all its finite principal submatrices are psd, i.e.,

X [I] ∈ S|I|
+ for all finite subsets I ⊆ N, and let SN

+ denote the set of all psd matrices in
SN. Finally, let CSn

∞+ denote the set of matricesA ∈ Sn having a Gram representation
by elements of SN

+. As for CSn
+, one can verify that CSn

∞+ is a convex cone. Moreover,
we can show the following relationships between these two cones.

Theorem 3.3. For any n ∈ N, CSn
+ ⊆ CSn

∞+ ⊆ cl(CSn
∞+) = cl(CSn

+) holds.
Proof. The inclusion CSn

+ ⊆ CSn
∞+ is clear, since any matrix X ∈ Sd

+ can be
viewed as an element of SN

+ by adding zero entries.
We now prove the inclusion: CSn

∞+ ⊆ cl(CSn
+). For this, let A ∈ CSn

∞+ and
X1, . . . , Xn ∈ SN

+ be a Gram representation of A, i.e., Aij = 〈Xi, Xj〉 for i, j ∈ [n].
For any 	 ∈ N and i ∈ [n], let X�

i = Xi[{1, . . . , 	}] be the 	 × 	 upper left principal

submatrix of Xi and let X̃�
i ∈ SN be the infinite matrix obtained by adding zero

entries to X�
i . Thus, X

�
i ∈ S�

+ and X̃�
i ∈ SN

+. Now, let A
� denote the Gram matrix of

X�
1, . . . , X

�
n, so that A� ∈ CSn

+. We show that the sequence (A�)�≥1 converges to A
as 	 tends to ∞, which shows that A ∈ cl(CSn

+). Indeed, for any i, j ∈ [n] and 	 ∈ N,
we have

|Aij −A�
ij | = |〈Xi, Xj〉 − 〈X�

i , X
�
j 〉|

≤ |〈Xi − X̃�
i , Xj〉|+ |〈X̃�

i , Xj − X̃�
j 〉|

≤ ‖Xi − X̃�
i ‖‖Xj‖+ ‖X̃�

i ‖‖Xj − X̃�
j‖

using the Cauchy–Schwarz inequality in the last step. Clearly, ‖X̃�
i ‖ ≤ ‖Xi‖ =

√
Aii

for all 	 ∈ N and i ∈ [n]. Hence lim�→∞ |Aij − A�
ij | = 0 for all i, j ∈ [n], concluding

the proof.
Taking the closure in the inclusions CSn

+ ⊆ CSn
∞+ ⊆ cl(CSn

+), we conclude that
cl(CSn

∞+) = cl(CSn
+) holds.

The recent work [8] studies the closure of the cone CS+. In particular it gives an
interpretation of cl(CSn

+) in terms of Gram representations by positive elements in
some von Neumann algebra. We will use this in the next section to show a separation
between the closure of CS5

+ and DNN 5. We also refer to section 5 for some further
comments.

3.2. Links to completely positive and doubly nonnegative matrices.
The following relationships follow from the definitions:

(3.1) CPn ⊆ CSn
+ ⊆ Sn

+ ∩ Rn×n
+ =: DNN n.
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As the cone CPn is full-dimensional, the same holds for the cone CSn
+. That every

completely positive semidefinite matrix is entrywise nonnegative follows from the fact
that 〈X,Y 〉 ≥ 0 for all X,Y ∈ Sn

+. Taking duals in (3.1) we get the corresponding
inclusions:

(3.2) DNN n∗ ⊆ CSn∗
+ ⊆ CPn∗.

The dual of CPn is the copositive cone, which consists of all matrices M ∈ Sn that
are copositive, i.e., satisfy xTMx ≥ 0 for all x ∈ Rn

+. The dual of DNN n is the cone
Sn
+ + (Sn ∩ Rn×n

+ ). We will investigate the dual of CSn
+ in detail in the next section.

We now present some results regarding the inclusions in (3.1) and (3.2). Re-
markably, Diananda [16] and Maxfield and Minc [41] have shown, respectively, that
CPn∗ = DNN n∗ and CPn = DNN n for any n ≤ 4. Hence equality holds through-
out in (3.1) and (3.2) for n ≤ 4. Moreover, the inclusions CPn ⊆ DNN n and
DNN n∗ ⊆ CPn∗ are known to be strict for any n ≥ 5. It suffices to show the strict
inclusions for n = 5, since A ∈ DNN 5 \ CP5 implies Ã ∈ DNN n \ CPn, where Ã is
obtained by adding a border of zero entries to A. This extends to the cone CS+. In-
deed, the matrix A belongs to CP5 (resp., DNN 5, or CS5

+) if and only if the extended

matrix Ã belongs to CPn (resp., DNN n, or CSn
+).

To show strict inclusions, we use some 5× 5 circulant matrices with the following
form:

M(b, c) =

⎛⎜⎜⎜⎜⎝
1 b c c b
b 1 b c c
c b 1 b c
c c b 1 b
b c c b 1

⎞⎟⎟⎟⎟⎠ , where b, c ∈ R.

The matrixH = M(−1, 1) is the well known Horn matrix, which is copositive but does
not lie in the dual of the doubly nonnegative cone (see, e.g., [4]). The strict inclusion
CP5 � CS5

+ is shown in [22] using the matrix L = M(cos2(4π/5), cos2(2π/5)) =

M((3 +
√
5)/8, (3 − √

5)/8). To show that L is completely psd, consider the matrix

L̂ = M(cos(4π/5), cos(2π/5)), so that L is the entrywise square of L̂. Then, the
vectors xi = (cos(4iπ/5), sin(4iπ/5)) ∈ R2 (for i ∈ [5]) form a Gram representation

of L̂ and thus the psd matrices xix
T
i ∈ S2

+ (i ∈ [5]) form a Gram representation of
L, which shows that L is completely psd. However, L is not completely positive,
since its inner product with the Horn matrix is negative: 〈L,H〉 = 5(2−√

5)/2 < 0.
Therefore,

L ∈ CS5
+ \ CP5 and H ∈ CP5∗ \ CS5∗

+ .

Frenkel and Weiner [24] showed that (a multiple of) the matrix W = M((
√
5−1)/2, 0)

is doubly nonnegative but not completely psd, which proves the strict inclusion CS5
+ �

DNN 5. Checking that W is doubly nonnegative is simple and also that W is not
completely positive (since 〈H,W 〉 = 5(2−√

5) < 0). In Theorem 3.7 below, we prove
that for matrices whose pattern of nonzero entries forms a cycle, being completely
positive is equivalent to being completely psd. We can use this result to show that
W �∈ CS5

+ and to construct a class of matrices that are doubly nonnegative but not
completely psd (see Lemma 3.10). Furthermore, at the end of this section, we will
present the proof given in [24] that W �∈ CS5

+ and we will show how we can use their

ideas to prove that, in fact, W does not belong to the closure of CS5
+ (see Theorem 3.11
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and the discussion before it). This shows the strict inclusion cl(CS5
+) � DNN 5 and,

by taking the duals of both sides, the strict inclusion DNN 5∗ � CS5∗
+ (Corollary 3.12).

Given a matrix A ∈ Sn, its support graph is the graph G(A) = ([n], E), where
there is an edge {i, j} when Aij �= 0 and i �= j. Moreover, the comparison matrix of A
is the matrix C(A) ∈ Sn with entries C(A)ii = Aii for all i ∈ [n] and C(A)ij = −Aij

for all i �= j ∈ [n]. We will use the following result characterizing completely positive
matrices whose support graph is triangle-free.

Theorem 3.4 ([18]; see also [4]). Let A ∈ Sn and assume that its support graph
is triangle-free. Then, A is completely positive if and only if its comparison matrix
C(A) is positive semidefinite.

We have the following easy result for matrices supported by bipartite graphs.
Lemma 3.5. Let A ∈ Sn and assume that G(A) is a bipartite graph. Then,

A ∈ CSn
+ if and only if A ∈ CPn.

Proof. Assume A ∈ CSn
+; we show that A ∈ CPn (the reverse implication holds

trivially). Say, X1, . . . , Xn ∈ Sd
+ form a Gram representation of A. As G(A) is

bipartite, consider a bipartition of its vertex set as U ∪W so that all edges of G(A)
are of the form {i, j} with i ∈ U and j ∈ W . Now, observe that the matrices Xi

for i ∈ U and −Xj for j ∈ W form a Gram representation of the comparison matrix
C(A). This shows that C(A) 
 0 and, in view of Theorem 3.4, A ∈ CPn.

The above result also follows from the known characterization of completely pos-
itive graphs. Recall that a graph G is completely positive if every doubly nonnegative
matrix with support G is completely positive. Therefore, for any matrix A,

if G(A) is completely positive, then A ∈ DNN n ⇐⇒ A ∈ CSn
+ ⇐⇒ A ∈ CPn.

Kogan and Berman [33] show that a graph G is completely positive if and only if
it does not contain an odd cycle of length at least 5 as a subgraph. In particular,
any bipartite graph is completely positive. Moreover, odd cycles (of length at least
5) are not completely positive graphs. For example, the above mentioned matrix
W = M((

√
5 − 1)/2, 0) (which has the 5-cycle as support) is doubly nonnegative

but not completely positive since its inner product with the Horn matrix is negative:
〈W,H〉 = 5(2−√

5) < 0.
We will also use the following elementary result about psd matrices.
Lemma 3.6. Let A and B be positive semidefinite matrices with block-form:

A =

(
A1 A2

AT
2 A3

)
and B =

(
B1 B2

BT
2 B3

)
,

where Ai and Bi have the same dimension. If 〈A,B〉 = 0, then 〈A1, B1〉 = 〈A3, B3〉 =
−〈A2, B2〉.

Proof. As A,B 
 0, 〈A,B〉 = 0 implies AB = 0 and thus A1B1 +A2B
T
2 = 0 and

AT
2 B2 +A3B3 = 0. Taking the trace we obtain the desired identities.

We can now characterize the completely psd matrices supported by a cycle.
Theorem 3.7. Let A ∈ Sn and assume that G(A) is a cycle. Then, A ∈ CSn

+ if
and only if A ∈ CPn.

Proof. One direction is obvious since CPn ⊆ CSn
+. Assume now that A ∈ CSn

+

with G(A) = Cn and let X1, . . . , Xn ∈ Sd
+ be a psd Gram representation of A. We

will show that A ∈ CPn. We consider only the nontrivial case when n ≥ 5. In
view of Theorem 3.4, it suffices to show that the comparison matrix C(A) is positive
semidefinite.
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We first consider the easy case when n is even. Then, the matrices Y 1 = −X1,
Y 2 = X2, Y 3 = −X3, Y 4 = X4, . . . , Y n−1 = −Xn−1, Y n = Xn form a Gram rep-
resentation of C(A), thus showing that C(A) 
 0 and concluding the proof. Notice
that, since even cycles are bipartite graphs, this case follows from Lemma 3.5.

Now suppose that n is odd. As we will see, in order to construct a Gram repre-
sentation of C(A), we can choose the same matrices Y 1, . . . , Y n−1 as above but we
need to look in more detail into the structure of the X i’s in order to be able to tell
how to define the last matrix Y n.

For this, we now show that the matrices X1, . . . , Xn can be assumed to be (n−
2)× (n− 2) block-matrices, where we denote the blocks of Xk as Xk

rs for r, s ∈ [n− 2]
(with Xk

sr = (Xk
rs)

T ) and the index sets of the blocks as I1, . . . , In−2. Indeed, without
loss of generality we can assume that X1 = (X

1
11 0

0 0) where X1
11 is positive definite

and the index set of X1
11 defines the index set I1 of the first block. Next, X2 has the

form (
X2

11 X2
12 0

X2
21 X2

22 0

0 0 0

), where X2
22 � 0 and its index set defines the index set I2 of the

second block. Next, we can write

X3 =

⎛⎜⎜⎝
X3

11 X3
12 X3

13 0

X3
21 X3

22 X3
23 0

X3
31 X3

32 X3
33 0

0 0 0 0

⎞⎟⎟⎠ ,

where X3
33 � 0 and I3 is the index set of X3

33. Hence X3 has its blocks indexed by
I1, I2, I3, and [d]\(I1 ∪ I2 ∪ I3). Iteratively, for each k ∈ {2, 3, . . . , n− 3}, the matrix
Xk has blocks Xk

r,s for r, s ∈ [k] with Xk
k,k � 0 and it has zero entries outside of

these blocks. The index sets of the blocks Xk
kk for 1 ≤ k ≤ n − 3 define the sets

I1, I2, . . . In−3 and the set In−2 := [d]\(I1 ∪ I2 · · · ∪ In−3) collects all the remaining
indices.

By looking at the zero-pattern of the matrix A, we now show some structural
properties of the Xk matrices and that each set Ik is nonempty. As A12 �= 0, we know
that I1 �= ∅. Since A13 = 0 we can conclude that X3

11 = 0 (and thus X3
12 = X3

13 = 0)
and that the only nonzero blocks of X3 are X3

22, X
3
23, X

3
32, and X3

33. Moreover, as
A23 �= 0 we get that I2 �= ∅. With the same reasoning, for each k ∈ {2, 3, . . . , n− 3},
as Ak′,k = 0 for all k′ ∈ [k − 2] we have that all blocks of the matrix Xk are equal to
zero except its blocks Xk

k−1,k−1, X
k
k−1,k, X

k
k,k−1, and Xk

kk. Moreover, the fact that,
for all k ∈ [n−2], Ak,k+1 �= 0 implies that the index set Ik is nonempty. Additionally,
using the fact that An−2,k = 0 for each k ∈ {1, . . . , n− 4} we obtain that each block
Xn−2

kk is equal to zero. Similarly, Xn−1
kk is the zero matrix for every k ∈ {1, . . . , n− 3}

as An−1,k = 0. For the matrix Xn we cannot make any consideration on the presence
of zero blocks.

We now indicate how to construct the (nonsymmetric) matrix Y n from Xn: we
just change signs to its two blocks Xn

n−3,n−2 and Xn
n−2,n−2. In other words, we

let Y n be the (n − 2) × (n − 2) block-matrix with blocks Y n
n−3,n−2 = −Xn

n−3,n−2,
Y n
n−2,n−2 = −Xn

n−2,n−2, and Y n
rs = Xn

rs for all other blocks. Let us stress that in
particular we do not change the sign of the block Xn

n−2,n−3. As in the case when n is

even, for any 1 ≤ i ≤ n− 1, we set Y i = −X i for odd i and Y i = X i for even i.
We claim that Y 1, . . . , Y n form a Gram representation of the comparison matrix

C(A). It is clear that 〈Y i, Y j〉 = C(A)ij for all i, j ∈ [n − 1] and that 〈Y 1, Y n〉 =
−A1n = C(A)1n and 〈Y i, Y n〉 = 0 for 2 ≤ i ≤ n − 3 (since the blocks indexed by
[n− 3] in Y n are the same as in Xn and each block Y i

r,n−2 is equal to 0). Moreover,
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〈Y n, Y n〉 = 〈Xn, Xn〉 = C(A)nn and 〈Y n−1, Y n〉 = −An−1,n = C(A)n−1,n. Finally,
we use Lemma 3.6 to verify that 〈Y n−2, Y n〉 = 0. Indeed, we have that

0 = An−2,n = 〈Xn−2, Xn〉 =
〈(

Xn−2
n−3,n−3 Xn−2

n−3,n−2

Xn−2
n−2,n−3 Xn−2

n−2,n−2

)
,

(
Xn

n−3,n−3 Xn
n−3,n−2

Xn
n−2,n−3 Xn

n−2,n−2

)〉
,

which, by Lemma 3.6, implies that 〈Xn−2
n−3,n−3, X

n
n−3,n−3〉 = 〈Xn−2

n−2,n−2, X
n
n−2,n−2〉.

Therefore,

〈Y n−2, Y n〉 =
〈(−Xn−2

n−3,n−3 −Xn−2
n−3,n−2

−Xn−2
n−2,n−3 −Xn−2

n−2,n−2

)
,

(
Xn

n−3,n−3 −Xn
n−3,n−2

Xn
n−2,n−3 −Xn

n−2,n−2

)〉
is equal to 0.

As an application of Lemma 3.5 and of Theorem 3.7, we obtain the following.
Lemma 3.8. If G is bipartite or an odd cycle, then ϑCS+(G) = α(G) and

ΘCS+(G) = χf (G).
Proof. It suffices to show ϑCS+(G) ≤ α(G) (as the reverse inequality is clear).

For this pick a matrix X ∈ CS+ feasible for the program defining ϑCS+(G). Then
the support of X is contained in G and thus is bipartite or an odd cycle. By Lemma
3.5 and Theorem 3.7, X is completely positive. Using Theorem 2.2, this implies
α(G) ≥ 〈J,X〉 and thus α(G) ≥ ϑCS+(G). The equality ΘCS+(G) = χf (G) follows
analogously using Theorem 2.3.

Using Theorem 3.7, we can conclude that the matrix W = M((
√
5 − 1)/2, 0) is

not completely psd (since its support graph is C5 and W �∈ CP5). Moreover, using
a result from Hamilton-Jester and Li [28] (Theorem 3.9 below) we can construct in
Lemma 3.10 a class of instances in DNN 5 \ CS5

+.
Theorem 3.9 (see [28]). (i) Assume n ≥ 5 is odd and consider a matrix A ∈

DNN n with rank n − 2. Then, A lies on an extreme ray of DNN n if and only if
G(A) = Cn. (ii) Moreover, if A lies on an extreme ray of DNN 5, then A has rank 1
or 3.

Lemma 3.10. For odd n ≥ 5, any matrix A ∈ Sn with support G(A) = Cn and
with rank n−2 is not completely positive semidefinite. Moreover, for n = 5, if A ∈ S5

lies on an extreme ray of DNN 5, then A is completely positive semidefinite if and
only if A is completely positive.

Proof. Suppose that a matrix A ∈ CSn
+ has support G(A) = Cn and rank n−2 for

some odd n ≥ 5. By Theorem 3.7 we know that A ∈ CPn. Moreover, from Theorem
3.9(i), A lies on an extreme ray of DNN n and thus also of CPn. Since the extreme
rays of CP are rank 1 matrices, we get the contradiction 1 = rankA = n− 2. Hence,
A /∈ CSn

+.

For the second claim, assume that A lies on an extreme ray of DNN 5. We show
that if A �∈ CP5, then A �∈ CS5

+ (the reverse implication is clear). By Theorem

3.9(ii), any matrix on an extreme ray of DNN 5 has rank 1 or 3. Recall that a doubly
nonnegative matrix which has rank 1 is completely positive. Hence, if A /∈ CP5, then
A must have rank 3 and support G(A) = C5 (by Theorem 3.9(i)). Now using the first
part of the lemma we can conclude that A �∈ CS5

+.

We now show that the matrix W = M((
√
5 − 1)/2, 0) does not belong to the

closure of CS5
+. For this we use results from [8] and [24], dealing with Gram repre-

sentations by positive elements in a general finite von Neumann algebra (an infinite
dimensional analogue of Gram representations by positive semidefinite matrices). For
our treatment, we only need to know that a finite von Neumann algebraN is equipped
with a trace τ (an analogue of the usual matrix trace) which satisfies the following
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properties: for any A,B ∈ N , τ(AB) = τ(BA), if A is positive, then τ(A) ≥ 0 with
equality if and only if A = 0, and

(3.3) if A,B are positive and τ(AB) = 0, then AB = 0.

On the one hand, it is shown in [8] that there exists a finite von Neumann algebra
M (with trace τ) with the property that any matrix X lying in the closure of CSn

+

admits a Gram representation by positive elements of M, i.e., X = (τ(AiAj))
n
i,j=1

for some positive A1, . . . , An ∈ M. On the other hand, it is shown in [24] that the
matrixW does not admit a Gram representation by positive elements in any finite von
Neumann algebra, see Theorem 3.11 below. Hence, by combining these two results,
we can conclude that the matrix W does not belong to the closure of CS5

+.
Theorem 3.11 (see [24]). Let N be a finite von Neumann algebra with trace

τ . For the matrix W = M((
√
5 − 1)/2, 0), there do not exist positive elements

A1, . . . , A5 ∈ N such that W = (τ(AiAj))
5
i,j=1.

Proof. We give a proof for completeness. Assume that W = (τ(AiAj))
5
i,j=1 for

some positive A1, . . . , A5 ∈ N . Using (3.3), Wi,i+2 = 0 implies AiAi+2 = 0 for all
i ∈ [5] (taking indices modulo 5). As W is a rank 3 positive semidefinite matrix,
there exist vectors u1, . . . , u5 ∈ R3 forming a Gram representation of W and the set
{u1, . . . , u5} has rank 3. Moreover, one can check that the set {u1, u3, u4} is a base
of R3. Hence, u2 = αu1 + βu3 + γu4 for some α, β, γ ∈ R. Using the fact that W =
(uT

i uj)
5
i,j=1 = (τ(AiAj))

5
i,j=1, we obtain the analogous relation A2 = αA1+βA3+γA4.

Multiplying both sides by A1 gives A1A2 = αA2
1. Analogously, expressing u1 in the

base {u2, u4, u5} implies that A1A2 = α′A2
2 for some α′ ∈ R. Thus, αA2

1 = α′A2
2,

implying α = α′ (since W11 = W22 = 1) and thus A1 = A2, a contradiction (since
W12 �= 1).

Corollary 3.12. The inclusions cl(CSn
+) ⊆ DNN n and DNN n∗ ⊆ CSn∗

+ are
strict for any n ≥ 5.

3.3. The dual cone of the completely positive semidefinite cone. The
dual of the completely positive cone CPn is the copositive cone COPn, consisting
of the matrices M ∈ Sn for which the n-variate polynomial pM =

∑n
i,j=1 Mijx

2
ix

2
j

is nonnegative over Rn, i.e.,
∑n

i,j=1 Mijx
2
i x

2
j ≥ 0 for all x1, . . . , xn ∈ Rn. We now

consider the dual of the cone CSn
+.

Lemma 3.13. Given a matrix M ∈ Sn, the following assertions are equivalent:
(i) M ∈ CSn∗

+ , i.e.,
∑n

i,j=1 Mij〈Xi, Xj〉 ≥ 0 for all X1, . . . , Xn ∈ Sd
+ and d ∈ N.

(ii) Tr(
∑n

i,j=1 MijX
2
i X

2
j ) ≥ 0 for all X1, . . . , Xn ∈ Sd and d ∈ N.

Proof. Use the fact that any matrix X ∈ Sd
+ can be written as X = Y 2 for some

Y ∈ Sd. Indeed, write X = PDPT , where P is orthogonal and D is the diagonal
matrix containing the eigenvalues of X , and set Y = P

√
DPT .

In other words, M ∈ CSn∗
+ if the associated polynomial pM =

∑n
i,j=1 MijX

2
i X

2
j

in the noncommutative variables X1, . . . , Xn is trace positive, which means that the
evaluation of pM at any symmetric matrices X1, . . . , Xn (of the same arbitrary size
d ≥ 1) produces a matrix with nonnegative trace. Hence copositivity corresponds to
restricting to symmetric matrices Xi of size d = 1, i.e., to real numbers.

Interestingly, understanding which matrices lie in CSn∗
+ is deeply connected with

Connes’ embedding conjecture [13], one of the most important conjectures in von
Neumann algebra. A reformulation of the conjecture that shows this connection is
given by Klep and Schweighofer [30]; see Conjecture 3.14 below. In order to state it,
we need to introduce some notation.
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We let R[x] (resp., R〈X〉) denote the set of real polynomials in the commutative
variables x1, . . . , xn (resp., in the noncommutative variables X1, . . . , Xn). R〈X〉 is
endowed with the involution ∗ : R〈X〉 → R〈X〉 that sends each variable to itself
and each monomial Xi1Xi2 · · ·Xit to its reverse Xit · · ·Xi2Xi1 and extends linearly
to arbitrary polynomials; e.g., (X1X2 + X2X

2
3 )

∗ = X2X1 + X2
3X2. A polynomial

f ∈ R〈X〉 is symmetric if f∗ = f and SR〈X〉 denotes the set of symmetric polynomials
in R〈X〉. A polynomial of the form ff∗ is called a Hermitian square and a polynomial
of the form [f, g] = fg − gf is called a commutator. A polynomial f ∈ R〈X〉 is
said to be trace positive if Tr(f(X1, . . . , Xn)) ≥ 0 for all (X1, . . . , Xn) ∈ ∪d≥1(Sd)n.
Note that f∗ evaluated at (X1, . . . , Xn) ∈ (Sd)n is equal to f(X1, . . . , Xn)

T ; hence,
any Hermitian square ff∗ is trace positive. Moreover, the trace of any commutator
vanishes when evaluated at any n-tuple of matrices.

The tracial quadratic module trM generated by a set of polynomials p1, . . . , pm ∈
SR〈X〉 consists of all polynomials of the form h+

∑m0

j=1 fjf
∗
j +

∑m
i=1

∑mi

ji=1 gjipig
∗
ji
,

where h ∈ R〈X〉 is a sum of commutators, fj, gji ∈ R〈X〉 and m0,mi ∈ N. We
consider here the tracial quadratic module trMcube

nc generated by the polynomi-
als 1−X2

1 ,. . . , 1 − X2
n and the tracial quadratic module trMball

nc generated by the
polynomial 1 −∑n

i=1 X
2
i . Clearly any polynomial in trMcube

nc (resp., in trMball
nc ) is

trace positive on the (noncommutative version of the) hypercube Qnc (resp., on the
noncommutative ball Bnc), where we set

Qnc =
⋃
d≥1

{
(X1, . . . , Xn) ∈ (Sd)n : I −X2

i 
 0 ∀i ∈ [n]
}
,

Bnc =
⋃
d≥1

{
(X1, . . . , Xn) ∈ (Sd)n : I −

n∑
i=1

X2
i 
 0

}
.

Klep and Schweighofer [30] (see also [7]) showed that Connes’ embedding conjec-
ture is equivalent to the following conjecture characterizing the trace positive polyno-
mials on Qnc.

Conjecture 3.14 (see [30]). Let f ∈ SR〈X〉. The following are equivalent:
(i) f is trace positive on Qnc, i.e., Tr(f(X1, . . . , Xn)) ≥ 0 for all (X1, . . . , Xn) ∈

Qnc.
(ii) For any ε > 0, f + ε ∈ trMcube

nc , i.e., f + ε = g + h, where h is a sum
of commutators and g =

∑m0

j=1 fjf
∗
j +

∑n
i=1

∑mi

ji=1 gji(1 − X2
i )g

∗
ji for some

fj , gji ∈ R〈X〉 and m0,mi ∈ N.
In fact, Connes’ embedding conjecture is also equivalent to Conjecture 3.14, where
we restrict f to have degree at most 4 (see [6, Proposition 2.14]). Note that the poly-
nomials pM involve only monomials of the form X2

i X
2
j . Interestingly, in the proof

that Conjecture 3.14 is equivalent to Connes’ embedding conjecture, these monomi-
als X2

i X
2
j play a fundamental role (due to a result of Rădulescu [46]). Finally, let

us point out that, as observed by Burgdorf [6, Remark 2.8], Connes’ conjecture is
also equivalent to Conjecture 3.14, where the ball is used instead of the hypercube,
i.e., replacing the tracial quadratic module trMcube

nc by the tracial quadratic module
trMball

nc .
While Conjecture 3.14 involves trace positive polynomials on the hypercube, mem-

bership of a matrix M in CSn∗
+ requires that the polynomial pM is trace positive on all

symmetric matrices. To make the link between both settings, the key (easy to check)
observation is that, since pM is a homogeneous polynomial, trace positivity over the
hypercube, over the full space, and over the ball are all equivalent properties. This
gives the following.
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Lemma 3.15. A matrix M ∈ Sn belongs to CSn∗
+ if and only if the associated

polynomial pM is trace positive over the cube Qnc or, equivalently, over the ball Bnc.

3.4. Approximating the dual cone of CS+. For a matrix M ∈ Sn, if its
associated polynomial pM belongs to the tracial quadratic module trMball

nc , then M
belongs to the dual cone CSn∗

+ . We now define the set Knc,ε consisting of all matrices
M for which the perturbed polynomial pM + ε belongs to trMball

nc . To simplify the
notation, in Knc,ε we omit the dependence on the size n of the matrices.

Definition 3.16. For ε ≥ 0, let Knc,ε denote the set of matrices M ∈ Sn for
which the polynomial pM + ε belongs to the tracial quadratic module trMball

nc .
Lemma 3.17. For any ε ≥ 0, Knc,ε is a convex set. Moreover, we have inclusion⋂

ε>0 Knc,ε ⊆ CSn∗
+ , with equality if Connes’ embedding conjecture holds.

Proof. Convexity follows from the fact that pλM+(1−λ)M ′ + ε = λ(pM + ε) + (1−
λ)(pM ′ + ε) for M,M ′ ∈ Sn and λ ∈ [0, 1]. Assume M ∈ ⋂ε>0Knc,ε. Then, for any
ε > 0, the polynomial pM + ε is trace positive on the ball Bnc. By letting ε tend to
0, we obtain that pM is trace positive on Bnc and thus M ∈ CSn∗

+ by Lemma 3.15.
Finally, equality

⋂
ε>0 Knc,ε = CSn∗

+ holds under Connes’ embedding conjecture since,
as mentioned above, by results of [30, 7] Connes’ embedding conjecture is equivalent
to Conjecture 3.14, also when the ball is used instead of the hypercube.

We now point out a connection between the setKnc,ε and the following set Kc, used
in the commutative setting. Let Σ denote the set of sums of squares of (commutative)
polynomials and following [44] define the cone

(3.4)

Kc : =

{
M ∈ Sn : ∃r ∈ N pM

(
n∑

i=1

x2
i

)r

∈ Σ

}

=

{
M ∈ Sn : pM ∈ Σ+

(
1−

n∑
i=1

x2
i

)
R[x]

}

(see [31, Proposition 2] for the equivalence between both definitions). The inclusion
Kc ⊆ COP is clear and Parrilo [44, section 5.3] showed that Kc covers the interior of
COP . Moreover, by adding degree constraints on the terms entering the decomposi-
tion of pM , he defined a hierarchy of subcones of COP , whose first level is equal to
the dual of the doubly nonnegative cone [44, section 5.3]:

K(0)
c := {M ∈ Sn : pM ∈ Σ} = Sn

+ + (Sn ∩ Rn×n
+ ) = DNN n∗.

It turns out that the set Knc,0 is equal to K(0)
c .

Lemma 3.18. We have DNN n∗ = K(0)
c = Knc,0 ⊆ Knc,ε for any ε > 0.

Proof. The inclusion Knc,0 ⊆ Knc,ε is clear.

First we show the inclusion Knc,0 ⊆ K(0)
c . For this, assume M ∈ Knc,0, i.e., pM =

h+g, where h is a sum of commutators and g =
∑m0

j=1 fjf
∗
j +
∑m1

j=1 gj(1−
∑n

i=1 X
2
i )g

∗
j

with fj, gj ∈ R〈X〉. If we evaluate pM at commutative variables x, we see that h(x)
vanishes and thus we obtain pM (x) = g(x) ∈ Σ + (1 − ∑n

i=1 x
2
i )Σ. As pM is a

homogeneous polynomial, we can derive that pM ∈ Σ and thus M ∈ K(0)
c . This

follows from [31, Proposition 4], which shows that, for a homogeneous polynomial of
even degree, membership in Σ + (1−∑n

i=1 x
2
i )Σ implies membership in Σ.

We now show the reverse inclusion K(0)
c ⊆ Knc,0. As K(0)

c = DNN n∗ = Sn
+ +

(Sn ∩ Rn×n
+ ), it suffices to show that if M 
 0 or if M ≥ 0, then pM is a sum

of commutators and of Hermitian squares, which implies that M ∈ Knc,0. Assume
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first that M 
 0 and let u1, . . . , un ∈ Rd be vectors forming a Gram representation
of M . Then, pM (X) =

∑n
i,j=1

∑d
h=1 ui(h)uj(h)X

2
i X

2
j =

∑d
h=1(

∑n
i=1 ui(h)X

2
i )

2 is

a sum of Hermitian squares. Assume now that M ≥ 0. Then each MijX
2
i X

2
j =

Mij([X
2
i Xj , Xj] +XjX

2
i Xj) is a sum of a commutator and a Hermitian square and

thus pM is a sum of commutators and Hermitian squares.
We conclude with some remarks concerning how well Kc and Knc,ε approximate

the cones COP and CS∗
+, respectively. As mentioned above, Parrilo [44] showed that

Kc covers the interior of the copositive cone, i.e., int(COP) ⊆ Kc ⊆ COP, which can
also be derived using the following result of Schmüdgen [49].

Theorem 3.19 (see [49]). If f ∈ R[x] is positive on the sphere, i.e., f(x) > 0
for all x ∈ Rn with

∑n
i=1 x

2
i = 1, then f ∈ Σ + (1−∑n

i=1 x
2
i )R[x].

In the non-commutative case, membership of a matrix M in Knc,ε means that the
polynomial pM + ε belongs to the tracial quadratic module trMball

nc , but there is no
clear link between this and membership in the interior of the cone CS∗

+.
To explain this difference of behavior between Kc and Knc,ε let us point out that,

in the commutative (scalar) case, working with the ball is in some sense equivalent to
working with the sphere. Indeed, as pM is homogeneous, it is nonnegative over Rn if
and only if it is nonnegative over the ball or, equivalently, over the sphere, because
one can rescale any nonzero x ∈ Rn so that

∑n
i=1 x

2
i = 1. However, when working

with matrices X1, . . . , Xn, one can rescale them to ensure that I −∑n
i=1 X

2
i 
 0 but

one cannot ensure equality:
∑n

i=1 X
2
i = I. Hence, in the non-commutative case one

cannot equivalently switch between the ball and the sphere.

4. Conic programs for the quantum graph parameters. In this section
we show how to reformulate the quantum graph parameters as conic optimization
problems using the completely positive semidefinite cone CS+. We first express each
quantum graph parameter through testing the feasibility of a sequence of optimiza-
tion programs over the cone CS+ (Propositions 4.1 and 4.10) and then as a single
aggregated optimization program over CS+ (Proposition 4.16). Moreover, we show
that if in these conic programs we replace the cone CS+ by its subcone CP or by its
supercone DNN , then we find respectively the classical graph parameters and their
corresponding bounds in terms of the theta number (Corollaries 4.6 and 4.12). In
section 4.3, we use the convex sets Knc,ε to define the new parameters Ψε(G).

4.1. Conic reformulation for quantum stability numbers. We begin with
providing an equivalent reformulation for the two quantum stability numbers αq(G)
and α�(G) as conic feasibility programs over the completely positive semidefinite cone
CS+.

Proposition 4.1. For a graph G, the parameter αq(G) is equal to the maximum

t ∈ N for which there exists a matrix X ∈ CS|V (G)|t+1
+ (indexed by V (G) × [t] ∪ {0})

satisfying the following conditions:

X0,0 = 1,(C1) ∑
u∈V (G)

X0,ui = 1 ∀i ∈ [t],(C2a)

∑
u,v∈V (G)

Xui,vi = 1 ∀i ∈ [t],(C2b)

Xui,vj = 0 ∀i �= j ∈ [t], ∀u 
 v ∈ V (G),(O1)

Xui,vi = 0 ∀i ∈ [t], ∀u �= v ∈ V (G).(O2)
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Moreover, the parameter α�(G) is equal to the maximum integer t for which there

exists a matrix X ∈ CS|V (G)|t+1
+ satisfying (C1), (C2a), (C2b), and (O1).

Proof. Observe that if X satisfies (O2), then condition (C2b) is equivalent to the
condition

∑
u∈V (G)Xui,ui = 1 for all i ∈ [t]. We first consider the parameter αq(G).

By Definition 2.5, there exist positive semidefinite matrices ρ, ρui (for u ∈ V (G),
i ∈ [t]) satisfying (2.8)–(2.11). Let X denote the Gram matrix of ρ, ρui , i.e., X0,0 =
〈ρ, ρ〉, X0,ui = 〈ρ, ρui 〉, and Xui,vj = 〈ρui , ρvj 〉 for all u, v ∈ V (G), i, j ∈ [t]. By

construction, X belongs to the cone CS|V (G)|t+1
+ . Moreover, X satisfies the conditions

(C1), (O1), and (O2), which correspond, respectively, to (2.8), (2.10), and (2.11).
Next, using (2.8) and (2.9), we obtain that for any i ∈ [t], 1 = 〈ρ, ρ〉 = 〈ρ,∑u ρ

u
i 〉 =

〈∑u ρ
u
i ,
∑

v ρ
v
i 〉 =

∑
u

∑
v〈ρui , ρvi 〉, which shows that X also satisfies (C2a) and (C2b).

Conversely, assume that X ∈ CS|V (G)|t+1
+ satisfies the conditions (C1), (C2a),

(C2b), (O1), and (O2). As X is completely positive semidefinite, there exist positive
semidefinite matrices ρ, ρui forming a Gram representation of X ; we show that the
matrices ρ, ρui satisfy the conditions of Definition 2.5. It is clear that (2.8), (2.10), and
(2.11) hold. Next, for any i ∈ [t], we have ‖ρ−∑u∈V (G) ρ

u
i ‖2 = 1−2

∑
u∈V (G) X0,ui+∑

u,v∈V (G) Xui,vi = 0, using (C1), (C2a), and (C2b). This shows (2.9) and thus

concludes the proof for αq(G).
The proof is analogous for the parameter α�(G) and is thus omitted.
Next we observe that, in Proposition 4.1, we can restrict without loss of generality

to solutions that are invariant under action of the permutation group Sym(t) (consist-
ing of all permutations of [t] = {1, . . . , t}). We sketch this well known symmetry reduc-
tion, which has been used in particular for the study of the chromatic number in [27].

Given Y ∈ S|V (G)|t+1 and a permutation π ∈ Sym(t), define the new matrix
π(Y ) with entries π(Y )00 = Y00, π(Y )0,ui = Y0,uπ(i), and π(Y )ui,vj = Yuπ(i),vπ(j)

for i, j ∈ [t], u, v ∈ V (G), and the matrix Y ′ = 1
|Sym(t)|

∑
π∈Sym(t) π(Y ), called the

symmetrization of Y under action of Sym(t). Then, Y ′ is invariant under action of
Sym(t), i.e., π(Y ′) = Y ′ for all π ∈ Sym(t), and thus Y ′ has the following block-form:

(4.1)

⎛⎜⎜⎜⎜⎜⎝
α aT aT . . . aT

a A B . . . B
a B A . . . B
...

...
...

. . .
...

a B B . . . A

⎞⎟⎟⎟⎟⎟⎠ for some α ∈ R, a ∈ R|V (G)|, A,B ∈ S|V (G)|.

Notice that the programs described in Proposition 4.1 are invariant under action of
Sym(t); that is, if Y is feasible for one of them, then any permutation π(Y ) is feasible
too and thus its symmetrization Y ′ as well. Therefore both programs have a feasible
solution in block-form (4.1) (assuming some exists).

This invariance property, which holds not only for the cone CS+ but also for
the cones S+, CP, and DNN , will be useful, together with the following lemma, for
proving Proposition 4.5 below.

Lemma 4.2 (see, e.g., [27]). Let Y be a t× t block-matrix of the form

(4.2) Y =

⎛⎜⎜⎜⎝
A B . . . B
B A . . . B
...

...
. . .

...
B B . . . A

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

t blocks

,



COMPLETELY POSITIVE SEMIDEFINITE CONE 2481

having A as diagonal blocks and B as off-diagonal blocks, where A,B ∈ Sk (for some
k ≥ 1). Then, Y 
 0 ⇐⇒ A−B 
 0 and A+ (t− 1)B 
 0.

Next we consider again the programs introduced in Proposition 4.1 for defining
the parameters αq(G) and α�(G), and we investigate what their optimum value is
when replacing the cone CS+ by either of the two cones CP or DNN . We show that
when using CP we find the classical stability number α(G), while when using the cone
DNN , we find the parameter �ϑ′(G)�; see Corollary 4.6 below.

For this we will need two preliminary results, which we will use in the proof of
Proposition 4.5 below. The first one (Theorem 4.3) gives a property of completely
positive matrices, which we will apply later for the choice of B having ( 1 −1

−1 1 ) as its
2× 2 nonzero principal submatrix.

Theorem 4.3 (see [2]). Let A,B ∈ Sn. Assume that A is completely positive,
that B is positive semidefinite with all its entries equal to zero except for a 2 × 2
principal submatrix, and that A+B is a nonnegative matrix. Then A+B is completely
positive.

Given a graph G and an integer t ≥ 1, we introduce the graph Gt which models
the orthogonality conditions (O1) and (O2), i.e., its vertex set is V (G) × [t] and two
distinct vertices are adjacent in Gt if i �= j and u 
 v, or if i = j and u �= v. The
second result (Lemma 4.4) gives a property of the parameter ϑ′ for the graph Gt.

Lemma 4.4. Let G be a graph and let t ≥ 1 be an integer such that ϑ′(G) ≥ t.
Then, ϑ′(Gt) ≥ t.

Proof. Let X be a matrix which is an optimal solution for the program (2.6)
defining ϑ′(G), meaning that 〈J,X〉 = ϑ′(G). We set n = |V (G)| and T = ϑ′(G).
Define the diagonal matrix D ∈ Sn with Duu = Xuu for all u ∈ V and the matrix
M = (T −1)D⊗It−(D−X)⊗(Jt−It) in Snt. Then, M is entrywise nonnegative, its
entries are zero at all positions corresponding to edges of Gt, Tr(M) = (T − 1)t, and
〈J,M〉 = (T − 1)t2. Hence, if we can show that M 
 0, then the matrix M̃ = M

t(T−1)

is feasible for the program defining ϑ′(Gt) with 〈J, M̃〉 = t, thus showing the desired
inequality ϑ′(Gt) ≥ t.

We now show that M 
 0. We may assume that all diagonal entries of X
are positive (else replace X by its principal submatrix having only positive diagonal
entries). Then, D � 0 and define M ′ = (D−1/2 ⊗ It)M(D−1/2 ⊗ It) = (T − 1)Int −
(In−D−1/2XD−1/2)⊗(Jt−It). Clearly, M 
 0 if and only if M ′ 
 0, which in turn is
equivalent to checking that the eigenvalues of the matrix Y = (In−D−1/2XD−1/2)⊗
(Jt−It) are at most T−1. Let 0 ≤ λ1 ≤ · · · ≤ λn denote the eigenvalues of the positive
semidefinite matrix D−1/2XD−1/2. Then, the eigenvalues of Y are (1−λi)(t−1) and
(1 − λi)(−1) for i ∈ [n]. Clearly, (1 − λi)(t − 1) ≤ t − 1 ≤ T − 1 for all i ∈ [n]
and thus it suffices to show that (1 − λi)(−1) = λi − 1 ≤ T − 1 for all i ∈ [n] or,
equivalently, that λn ≤ T . To this end, notice that since the matrix D−1/2XD−1/2

is nonnegative, by Perron–Frobenius it admits a nonnegative (unit) eigenvector u
for its largest eigenvalue λn. Define the matrix X ′ = D−1/2XD−1/2 ◦ uuT ∈ Sn

(taking the entrywise product). Then, X ′ ∈ DNN n, X ′
uv = 0 if {u, v} ∈ E(G),

Tr(X ′) = ‖u‖2 = 1, and 〈J,X ′〉 = uTD−1/2XD−1/2u = λn. As X ′ is feasible for the
program defining ϑ′(G), it follows that λn ≤ ϑ′(G) = T .

Proposition 4.5. Let G be a graph, let t ≥ 1 be an integer, and let K denote
the cone DNN or CP. The following statements are equivalent:

(i) There exists a matrix X ∈ K|V (G)| satisfying �〈J,X〉� = t, Tr(X) = 1, and
Xuv = 0 for all {u, v} ∈ E(G).

(ii) There exists a matrix X ∈ K|V (G)|t+1 satisfying the conditions (C1), (C2a),
(C2b), (O1), and (O2).
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(iii) There exists a matrix X ∈ K|V (G)|t+1 satisfying the conditions (C1), (C2a),
(C2b), and (O1).

Proof. Set n = |V (G)|. We will show the implications (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
Notice that statement (i) is equivalent to ϑK(G) ≥ t. First we consider the case
K = DNN .

(i) ⇒ (iii) Assume first t = 1. If (i) holds with t = 1, then by Remark 2.4
there exists a matrix X ∈ DNN n with Tr(X) = 〈J,X〉 = 1 and thus Xuv = 0 for
all u �= v ∈ V (G). Let xu (for all u ∈ V (G)) be a Gram representation of X , set
x0 =

∑
u∈V (G) xu, and define the matrix Y ′ ∈ Sn+1 with Gram representation x0, xu

(u ∈ V (G)). Then, Y ′ satisfies (iii).
Assume now t ≥ 2. If (i) holds, then ϑ′(G) ≥ t and from Lemma 4.4 we can

conclude that ϑ′(Gt) ≥ t. Thus, by Remark 2.4, there exists a matrix X ∈ Snt

feasible for the program (2.4) defining ϑ′(Gt) with value 〈J,X〉 = t. Hence the
matrix Y = tX ∈ DNN nt satisfies 〈J, Y 〉 = t2, Tr(Y ) = t, and Yui,vj = 0 for all edges
{(u, i), (v, j)} of Gt. Moreover, after symmetrization by Sym(t), we can assume that Y
has the block-form (4.2), where A is a diagonal matrix and Buv = 0 for all edges {u, v}
of G. Then, t = Tr(Y ) = tTr(A) = t〈J,A〉 and t2 = 〈J, Y 〉 = t〈J,A〉+ t(t− 1)〈J,B〉,
implying Tr(A) = 〈J,A〉 = 〈J,B〉 = 1 (since t ≥ 2).

Let {yiu : u ∈ V (G), i ∈ [t]} be a Gram factorization of Y , i.e., Yui,vj = 〈yiu, yjv〉
for all i, j ∈ [t] and u, v ∈ V (G). Fix i0 ∈ [t] and define the vector y =

∑
u∈V (G) y

i0
u .

Then, 〈y, y〉 = ∑v∈V (G)〈y, yi0v 〉 = ∑u,v∈V (G)〈yi0u , yi0v 〉 = 〈J,A〉 = Tr(A) = 1 and, for

any j ∈ [t]\{i0}, we have
∑

v∈V (G)〈y, yjv〉 =
∑

u,v∈V (G)〈yi0u , yjv〉 = 〈J,B〉 = 1. Define

Y ′ to be the Gram matrix of the vectors y, yiu (for u ∈ V (G), i ∈ [t]). From the
properties just explained, we see that Y ′ ∈ DNN nt+1 satisfies (iii).

(iii) ⇒ (ii) Assume that Y ′ satisfies (iii); we construct a new matrix Y satisfying
(ii). For this, consider the (i, i)th diagonal block Y ′[ii] = (Y ′

ui,vi)u,v∈V (G) of Y ′. It
suffices to show how to modify each Y ′[ii] in such a way that its off-diagonal entries
become zero. The idea is simple: just “move” the value of each off-diagonal entry
Y ′
ui,vi to the diagonal entry Y ′

ui,ui. Formally, for any u �= v ∈ V (G), define the matrix
Fuv ∈ Sn with entries Fuv(uv) = Fuv(vu) = −1, Fuv(uu) = Fuv(vv) = 1 and all
remaining entries zero. Then, Fuv 
 0. Moreover, for i ∈ [t], define the matrix
Fuv
i ∈ Snt+1 with Fuv as its (i, i)th diagonal block and all remaining entries equal to

0, so that Fuv
i 
 0. Fix an arbitrary ordering of the vertices of G. Define the new

matrix

(4.3) Y = Y ′ +
∑
i∈[t]

∑
u<v∈V (G)

Y ′
ui,viF

uv
i .

By construction, the sum of entries of the (i, i)th diagonal block of Y is equal to
the sum of entries of the (i, i)th diagonal block of Y ′ and thus to 1. The matrix Y
is entrywise nonnegative and it is a sum of positive semidefinite matrices. It then
follows that Y satisfies (ii).

(ii) ⇒ (i) Let Y be a matrix satisfying (ii). As Y 
 0, there exists vectors
y, yui (for u ∈ V (G), i ∈ [t]) forming a Gram representation of Y . For i ∈ [t], we
have ‖y − ∑u∈V (G) y

u
i ‖2 = Y0,0 − 2

∑
u∈V (G) Y0,ui +

∑
u,v∈V (G) Yui,vi = 0 (using

(C1), (C2a), (C2b)), which implies that y =
∑

u∈V (G) y
u
i for all i ∈ [t]. Define the

vectors xu =
∑

i∈[t] y
u
i for all u ∈ V (G) and let X ∈ S|V (G)| denote their Gram

matrix. Then, X 
 0, 〈J,X〉 = ‖∑u∈V (G)

∑t
i=1 y

u
i ‖2 = ‖ty‖2 = t2, and Tr(X) =∑

u∈V (G) ‖xu‖2 =
∑

i,j∈[t]

∑
u∈V (G)〈yui , yuj 〉 =

∑
i∈[t]

∑
u∈V (G) Yui,ui = t. Moreover,

Xuv = 〈xu, xv〉 =
∑

i,j∈[t]〈yui , yvj 〉 =
∑

i,j∈[t] Yui,vj ≥ 0 for any u, v ∈ V (G), with
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equality for {u, v} ∈ E(G). Rescaling the matrix X by 1/t, we obtain a feasible
solution for (i). This concludes the proof in the case K = DNN .

We now consider the case K = CP.
(i) ⇒ (iii) Let X be a matrix that satisfies (i). Applying Theorem 2.2, we obtain

that α(G) ≥ t. Let S ⊆ V (G) be a stable set of cardinality t, say, V (G) = [n] and
S = {1, . . . , t}. Define the vector y ∈ Rnt+1

+ with block-form y = (1, e1, . . . , et), where
e1, . . . , et are the first t standard unit vectors in Rn. Define the matrix Y ′ = yyT ,
which, by construction, belongs to CPnt+1. It is easy to verify that Y ′ satisfies (iii).

(iii) ⇒ (ii) We can mimic the above proof of this implication in the case of the
cone DNN . The only thing to notice is that the new matrix Y in (4.3) is completely
positive, which can proved by applying Theorem 4.3. Indeed, Y ′ ∈ CP, each term
Y ′
ui,viF

uv
i is a positive semidefinite matrix whose entries are all zero except for a 2× 2

principal submatrix, and one gets a nonnegative matrix at each intermediate step
of the summation. Hence, Theorem 4.3 can be applied at every step and one can
conclude that Y ∈ CP.

(ii) ⇒ (i) The proof is analogous to the above proof of this implication for
DNN .

As an application, if in Proposition 4.1 we replace the cone CS+ by the cone
DNN in the definition of αq(G) or of α�(G), then we obtain the parameter �ϑ′(G)�;
analogously, if we replace the cone CS+ by the cone CP, then we obtain α(G).

Corollary 4.6. For any graph G, the maximum integer t for which there exists
a matrix X ∈ K|V (G)|t+1 satisfying the conditions (C1), (C2a), (C2b), (O1), and
(O2) (or, equivalently, the conditions (C1), (C2a), (C2b), and (O1)) is equal to the
parameter �ϑ′(G)� when K = DNN and it is equal to the stability number α(G) when
K = CP.

Proof. This follows by applying Proposition 4.5 combined with the definition of
ϑ′ in (2.4) when K = DNN and with Theorem 2.2 when K = CP.

In turn this permits us to derive the following “sandwich inequalities” for the
quantum analogues of the stability number.

Corollary 4.7. For any graph G, α(G) ≤ αq(G) ≤ α�(G) ≤ �ϑ′(G)�.
The bound α�(G) ≤ �ϑ′(G)� was shown recently, with a different method, by

Cubitt et al. [15]. The inequality α(G) ≤ αq(G) can be strict (see [48]), but it is not
known whether the other two inequalities can be strict.

Observe that if one could prove that the two conditions (ii) and (iii) in Propo-
sition 4.5 are equivalent also when setting K = CS+, then this would imply that
equality αq(G) = α�(G) holds. This would work if we could show the analogue of
Theorem 4.3 when replacing the condition of being “completely positive” by the con-
dition of being “completely positive semidefinite,” since then the reasoning used in
the proof of Proposition 4.5 for the implication (iii) ⇒ (ii) would extend to the case
of CS+. However, the following example shows that Theorem 4.3 does not extend to
the cone CS+.

Example 4.8. Consider the matrix L = M(cos2(4π5 ), cos2(2π5 )), which was pre-
sented in section 3.2 as an example of a matrix which is completely psd but not
completely positive. For i �= j ∈ [5], let F ij ∈ S5

+ be the matrix with all zero

entries except F ij
ii = F ij

jj = 1 and F ij
ij = F ij

ji = −1. Define the matrix L′ =

L + cos2(2π5 )(F 13 + F 24 + F 35 + F 14 + F 25). Then, L′ is not completely posi-
tive, since its inner product with the Horn matrix is negative. Indeed, 〈H,L′〉 =
5(1 + 2 cos2(2π5 )) − 10 cos2(4π5 ) = 5(2 − √

5)/2 < 0. As the support of L′ is equal
to the 5-cycle, we can conclude using Theorem 3.7 that L′ is not completely positive
semidefinite.
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Thus, although one gets nonnegative matrices at each step of the summation
defining L′ starting from L ∈ CS5

+, the final matrix L′ does not belong to the cone

CS5
+.
Finally, we relate the quantum stability number αq(G) with the generalized theta

number ϑCS+(G), obtained when selecting the cone K = CS+ in the definition (2.6).
Proposition 4.9. For any graph G, αq(G) ≤ �ϑCS+(G)� ≤ �ϑcl(CS+)(G)� ≤

�ϑ′(G)�.
Proof. The equality ϑDNN (G) = ϑ′(G) (from (2.7)) and the inclusions CS+ ⊆

cl(CS+) ⊆ DNN give ϑCS+(G) ≤ ϑcl(CS+)(G) ≤ ϑ′(G) and thus the two rightmost
equalities.

We now show the inequality αq(G) ≤ �ϑCS+(G)�. For this, we revisit the proof
of Proposition 4.5. First we observe that the implication (ii) ⇒ (i) remains true in
Proposition 4.5 if we select the cone K = CS+. (Indeed, the same proof applies as in
the case K = DNN , except that y, yui are now psd matrices.) By definition, αq(G) is
the largest integer t for which Proposition 4.5(ii) holds with K = CS+. In turn, by the
above, this largest number is at most the largest integer t for which Proposition 4.5(i)
holds with K = CS+, the latter being equal to �ϑCS+(G)�. Thus αq(G) ≤ �ϑCS+(G)�
holds.

We do not know whether ϑCS+(G) also provides an upper bound for α�(G), since
we cannot show that Proposition 4.5(iii) implies Proposition 4.5(i) in the case K =
CS+. The proof used for the case K = DNN and CP indeed does not extend to the
case K = CS+ since Theorem 4.3 does not hold if we consider matrices in CS+ (as
shown in Example 4.8).

4.2. Conic reformulation for quantum chromatic numbers. Analogously
to what we did for the quantum stability numbers, we can reformulate the two quan-
tum variants χq(G) and χ�(G) of the chromatic number as conic feasibility programs
over the cone CS+. The proof is omitted since it is easy and along the same lines as
for Proposition 4.1.

Proposition 4.10. For a graph G, χq(G) is equal to the minimum integer t for

which there exists a matrix X ∈ CS|V (G)|t+1
+ satisfying the following conditions:

X0,0 = 1,(C1) ∑
i∈[t]

X0,ui = 1 ∀u ∈ V (G),(C3a)

∑
i,j∈[t]

Xui,uj = 1 ∀u ∈ V (G).(C3b)

Xui,vi = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G),(O3)

Xui,uj = 0 ∀i �= j ∈ [t], ∀u ∈ V (G).(O4)

Moreover, the parameter χ�(G) is equal to the minimum integer t for which there

exists a matrix X ∈ CS|V (G)|t+1
+ satisfying (C1), (C3a), (C3b), and (O3).

We now show an analogue of Proposition 4.5 for the chromatic parameters. How-
ever, as pointed out in Remark 4.14 below, when chosing the cone K = CP, the
statements (i) and (ii) in Proposition 4.11 are not equivalent.

Proposition 4.11. Let G be a graph and t ≥ 1 be an integer, and let K denote
the cone DNN or CP. Consider the following three assertions:
(i) There exists a matrix X ∈ K|V (G)| such that �Xuu� = t for every u ∈ V (G),

Xuv = 0 for all {u, v} ∈ E(G), and X − J 
 0.
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(ii) There exists a matrix X ∈ K|V (G)|t+1 satisfying the conditions (C1), (C3a),
(C3b), (O3), and (O4).

(iii) There exists a matrix X ∈ K|V (G)|t+1 satisfying the conditions (C1), (C3a),
(C3b), and (O3).

Then, (i) ⇐⇒ (ii) ⇐⇒ (iii) if K = DNN , and (iii) ⇐⇒ (ii) =⇒ (i) if K = CP.
Proof. Notice that statement (i) is equivalent to saying that ΘK(G) ≤ t holds.
Assume first K = DNN . We show (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (iii) Let X be a matrix that satisfies the conditions of (i). By adding a

nonnegative diagonal matrix to X we can assume that Xuu = t for all u ∈ V (G). Set
X ′ = X − J ∈ S|V (G)|. Then, X ′ 
 0, X ′

uu = t− 1 for all u ∈ V (G) and, for u �= v,
X ′

uv = Xuv − 1 ≥ −1 with equality when {u, v} ∈ E(G). Moreover, X ′
uv ≥ −(t − 1)

since X ′ 
 0 with diagonal entries equal to t− 1.
In the case t = 1, we have X ′ = 0; hence G is the empty graph and the all-ones

matrix satisfies (iii). We now assume t ≥ 2. We define the matrices Ã = 1
t2X

′,
B̃ = − 1

t2(t−1)X
′, A = Ã + 1

t2J , and B = B̃ + 1
t2J ∈ S|V (G)|. We let Y ∈ S|V (G)|t be

the block-matrix as in (4.2) with A as diagonal blocks and B as off-diagonal blocks

and Y ′ = (
1 1

t
eT

1
t
e Y

). We now show that Y ′ ∈ S|V (G)|t+1 satisfies (iii).

By construction, (C1), (C3a), and (O3) hold; (C3b) follows from the simple ob-
servation that tA+ t(t − 1)B = J and thus

∑
i,j∈[t] Y

′
ui,uj = tAuu + t(t − 1)Buu = 1

for every u ∈ V (G). At last we argue that Y ′ ∈ DNN . Notice that A,B ≥ 0 and
thus Y, Y ′ ≥ 0. Moreover, doing the Schur complement of Y in Y ′ w.r.t. its (0, 0)th
entry (recall (1.2)), we obtain that Y ′ 
 0 if and only if Ỹ = Y − 1

t2J 
 0. Now,

Ỹ has the block structure of (4.2) with Ã and B̃ as diagonal and off-diagonal blocks,
respectively. Moreover, Ã + (t − 1)B̃ = 0 and Ã − B̃ = 1

t(t−1)X
′ 
 0 and thus, by

Lemma 4.2, we deduce that Ỹ 
 0 and therefore Y ′ 
 0.
(iii) ⇒ (ii) Letting Y ′ be a feasible matrix for (iii), we construct a new matrix

Y satisfying (ii). As in the proof of the implication (iii) ⇒ (ii) in Proposition 4.5,
it suffices to modify each (u, u)th diagonal block of Y ′ in such a way that all its off-
diagonal entries become zero. For this, for i �= j ∈ [t], consider the matrix F ij ∈ St

with entries F ij(ij) = F ij(ji) = −1, F ij(ii) = F ij(jj) = 1, and all remaining entries
equal to 0. Moreover, for u ∈ V (G), define the matrix F ij

u ∈ Snt+1 with F ij as its
(u, u)th diagonal block and all remaining entries equal to 0, so that F ij

u 
 0. The new
matrix

(4.4) Y = Y ′ +
∑

u∈V (G)

∑
1≤i<j≤t

Y ′
ui,ujF

ij
u

is entrywise nonnegative and positive semidefinite and satisfies all the conditions in
(ii).

(ii) ⇒ (i) Let Y ∈ DNN satisfy (ii). Without loss of generality, we can assume
that Y has the block-form (4.1). Then, α = Y00 = 1 by (C1), a = 1

t e by (C3a),
Auu = 1

t for all u ∈ V (G) by (C3b) together with (O4), Auv = 0 for {u, v} ∈ E(G)

by (O3), and Buu = 0 for u ∈ V (G) by (O4). Let Z ∈ S|V (G)|t denote the principal
submatrix of Y obtained by deleting its first row and column indexed by the index
0, so that Z has the block-form (4.2). Let Z ′ denote the Schur complement of Z in
Y w.r.t. its (0, 0)th entry (recall (1.2)). Using the fact that a = e/t, we obtain that
Z ′ = Z − 1

t2J . Moreover, Y 
 0 implies Z ′ 
 0. Now, Z ′ has again the block-form
(4.2) with diagonal blocks A′ = A− 1

t2 J and with off-diagonal blocks B′ = B − 1
t2 J .

Applying Lemma 4.2, we deduce that A′−B′ 
 0 and A′+(t−1)B′ 
 0, which implies
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A − B 
 0 and A + (t− 1)B − 1
t J 
 0. Now observe that Tr(A + (t − 1)B − 1

t J) =
Tr(A− 1

t J) = 0 and that this implies A+(t− 1)B− 1
t J = 0 as A+(t− 1)B− 1

t J 
 0.

We can now construct a matrix X ∈ S|V (G)| satisfying (i). Namely, set X = t2A.
Thus, X ∈ DNN , Xuu = t for u ∈ V (G), and Xuv = 0 for {u, v} ∈ E(G). Moreover,
X − J 
 0, X − J = t2A − J = t(t − 1)(A − B) which follows from A − B 
 0 and
the identity A+ (t− 1)B = 1

t J . This concludes the proof in the case K = DNN .

We now consider the case K = CP. The implication (ii) ⇒ (iii) is clear.

(iii) ⇒ (ii) We can mimic the above proof of this implication in the case of the
DNN cone. We only need to observe that the new matrix Y in (4.4) is completely
positive. This is the case because Theorem 4.3 can be applied at every step of the
summation, since one gets a nonnegative matrix at each step.

(ii) ⇒ (i) Again we can mimic the above proof of this implication in the case of

DNN . Indeed, we can assume that there exists a matrix Y ∈ CP |V (G)|t+1 satisfying
(ii) and with block-form (4.1), where A,B satisfy the identity A + (t − 1)B = 1

t J .

Then, the matrix X = t2A belongs to CP |V (G)| and satisfies (i).

Corollary 4.12. For any graph G, the minimum integer t for which there
exists a matrix X ∈ K|V (G)|t+1 satisfying the conditions (C1), (C3a), (C3b), (O3),
and (O4) (or, equivalently, the conditions (C1), (C3a), (C3b), and (O3)) is equal to
the parameter �ϑ+(G)� when K = DNN and it is equal to the chromatic number
χ(G) when K = CP.

Proof. In the case K = DNN , the result follows using Proposition 4.11 combined
with the definition of ϑ+(G) from (2.4).

Consider now the case K = CP. In view of Proposition 4.11, we know that the
two conditions (ii) and (iii) are equivalent. Let t denote the minimum integer for
which the condition (ii) of Proposition 4.11 holds; we show that χ(G) = t. First,

we show that χ(G) ≤ t. For this, consider a matrix Y ∈ CP |V (G)|t+1 satisfying (ii)
which has block-form (4.1) and let Z be its principal submatrix obtained by deleting

its row and column indexed by 0. Then, Z ∈ CP |V (G)|t and let A and B denote its
diagonal and off-diagonal blocks, respectively. As in the proof of implication (ii) ⇒
(i) in Proposition 4.11, we can deduce that A− B 
 0, A + (t− 1)B = 1

t J and that
Tr(A) = |V (G)|/t. This then implies that Tr(Z) = |V (G)| and 〈J, Z〉 = |V (G)|2.
Now we use the result of Theorem 2.2 for computing the value of α(G�Kt). For

this, set Z ′ = 1
|V (G)|Z ∈ CP |V (G)|t. We see that Z ′ satisfies the conditions of the

program (2.1) applied to the graph G�Kt. Indeed the orthogonality conditions (O3)
and (O4) correspond exactly to the edges of G�Kt. Therefore, we can deduce that
α(G�Kt) ≥ |V (G)|. As the reverse inequality also holds (since G�Kt can be covered
by |V (G)| cliques Kt), we have α(G�Kt) = |V (G)|. Using the reduction of Chvátal
in Theorem 2.1, we can conclude that χ(G) ≤ t.

We now prove the reverse inequality: t ≤ χ(G) =: s. It is easy to see that G�Ks

can be properly colored with s = χ(G) colors. Therefore, χ(G�Ks) = s holds. We

construct a matrix Y ∈ CP |V (G)|s+1 satisfying the conditions of (ii), which will imply
t ≤ s and thus conclude the proof. For this, select s subsets S1, . . . , Ss ⊆ V (G�Ks)
which are stable sets in G�Ks and partition the vertex set of G�Ks. For k ∈ [s], let
xk ∈ R|V (G)|s denote the incidence vector of Sk and set yk = (1, xk) ∈ R|V (G)|s+1.

Finally, define the matrix Y = 1
s

∑s
k=1 y

k(yk)T . By construction, Y ∈ CP |V (G)|s+1

and Y satisfies conditions (O3) and (O4). Moreover Y0,0 = 1, Y0,ui = Yui,ui =
1
s for

every u ∈ V (G) and i ∈ [s] and thus Y also satisfies (C1), (C3a), and (C3b). Hence
Y is feasible for (ii). This concludes the proof.
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As an application we obtain the following “sandwich” inequalities for the quantum
variants of the chromatic number.

Corollary 4.13. For any graph G, �ϑ+(G)� ≤ χ�(G) ≤ χq(G) ≤ χ(G).
The inequality �ϑ+(G)� ≤ χ�(G) was shown recently in [5]. Moreover, there is a

graph for which χq(G) < χ(G) [10] and one for which �ϑ+(G)� < χq(G) [15]. Note
also that the quantum chromatic numbers are not upper bounded by the fractional
chromatic number. For instance, for the 5-cycle Cn, χf (C5) = 5/2 while χq(C5) = 3.
To see that χq(C5) = 3 we use the result of [10] showing that χq(G) ≤ 2 if and only
if G is bipartite.

We further observe that, in Proposition 4.11, the implication (i) ⇒ (ii) does not
hold when selecting the cone K = CP.

Remark 4.14. As we just saw in Corollary 4.12, the smallest integer t for which
there exists a matrix X ∈ CP |V (G)|t+1 satisfying Proposition 4.11(ii) is equal to the
chromatic number χ(G). On the other hand, as a direct application of Theorem 2.3,

we see that the smallest integer t for which there exists a matrix X ∈ CP |V (G)| satis-
fying Proposition 4.11(i) is equal to �χf (G)�, where χf (G) is the fractional chromatic
number of G. The inequality �χf (G)� ≤ χ(G) is consistent with the inequality t ≤ s
corresponding to the implication (ii) ⇒ (i) in Proposition 4.11.

Moreover, the parameters �χf(G)� and χ(G) can differ significantly. For n ≥ 2r,
consider the Kneser graph K(n, r), whose vertices are the subsets of size r of [n] and
where two vertices are adjacent if the sets are disjoint. Then, χf (K(n, r)) = n

r [38]
and χ(K(n, r)) = n− 2r+2 [37]. This shows that the implication (i) ⇒ (ii) does not
hold in Proposition 4.11 in the case K = CP.

We conclude with a comparison of the quantum chromatic numbers with the
generalized theta number ΘCS+(G), obtained by selecting the cone K = CS+ in the
definition (2.6).

Proposition 4.15. For any graph G, �ϑ+(G)� ≤ �Θcl(CS+)(G)� ≤ �ΘCS+(G)� ≤
χ�(G) ≤ χq(G).

Proof. Combining the equality ΘDNN (G) = ϑ+(G) (from (2.7)) with the inclu-
sions CS+ ⊆ cl(CS+) ⊆ DNN , we obtain the two leftmost inequalities.

We now show the inequality �ΘCS+(G)� ≤ χ�(G). For this, we use the fact that
�ΘCS+(G)� is the minimum integer t for which Proposition 4.11(i) holds when selecting
K = CS+ and that χ�(G) is by definition the minimum integer t for which Proposition
4.11(iii) holds with K = CS+. Therefore, in order to prove that �ΘCS+(G)� ≤ χ�(G)
holds, it suffices to show that Proposition 4.11(iii) implies Proposition 4.11(i) also in
the case K = CS+. This is what we do next.

Let Y ∈ CS+ satisfy Proposition 4.11(iii) with K = CS+. Again we may assume
without loss of generality that Y has the block-form (4.1). First we observe that we
can use the initial part of the proof (ii) ⇒ (i) to show that A+(t−1)B− 1

t J = 0. The
key observation is that condition (C3b) still implies that Tr(A+ (t− 1)B − 1

t J) = 0.
Next, following the proof of (ii) ⇒ (i), we consider the matrix X = t2A. Then
X ∈ CS+, Xuv = 0 for every {u, v} ∈ E(G) and X − J 
 0. Since we started with
a solution Y of (iii) (instead of a solution for (ii)), we can only derive that Xuu ≤ t
for any u ∈ V (G). We now build a solution X ′ by adding to X a diagonal matrix D
with entries Duu = t−Xuu ≥ 0 for any u ∈ V (G). Hence X ′ ∈ CS+ and satisfies all
the conditions of (i). This concludes the proof.

4.3. Approximating the quantum graph parameters. In this section we
show how one can use the convex sets Knc,ε introduced earlier in section 3.4 to define
parameters that approximate the quantum graph parameters. We give the details only
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for the quantum chromatic number χq(G), but the same reasoning can be extended
to the other parameters χ�(G), αq(G), and α�(G).

The construction will go as follows. In a first step we reformulate χq(G) as a
single aggregated minimization program over an affine section of the cone CS+. When
replacing the cone CS+ by its closure cl(CS+) we get the parameter χ̃q(G), satisfying
χ(G) ≥ χ̃q(G). The second step will consist of writing the dual of this aggregated
conic program over the cone cl(CS+), which is thus a maximization program over the
dual cone CS∗

+, and we show that strong duality holds. Finally we define the new
graph parameters Ψε(G) by replacing in this dual conic program the cone CS∗

+ by the
convex sets Knc,ε.

We start with the formulation of χq(G) from Proposition 4.10. For convenience,
we introduce the matrix At

u ∈ Snt+1 (for u ∈ V (G), t ∈ [n]), with entries At
u(0, 0) =

At
u(ui, uj) = 1 for all i, j ∈ [t], At

u(0, ui) = At
u(ui, 0) = −1 for all i ∈ [t] and zero

elsewhere, and we set At =
∑

u∈V (G) A
t
u. Observe that each matrix At

u is positive

semidefinite (with rank 1). These matrices are useful to formulate the constraints
defining χq(G). Indeed, if (C1) holds, then the two conditions (C3a), (C3b) are
equivalent to 〈At, X〉 = 0. Therefore, by Proposition 4.10, χq(G) is equal to the
smallest t ∈ N for which there exists X ∈ CSnt+1

+ satisfying the conditions (C1),
(O3), (O4), and 〈At, X〉 = 0. We can now reformulate χq(G) as the optimal value of
a single conic optimization program over the cone CS+.

Proposition 4.16. Let G be a graph and set n = |V (G)|. The quantum chro-
matic number χq(G) is equal to the optimal value of the following program:

(4.5)

min
∑

t∈[n] tX
t
0,0 s.t. Xt ∈ CSnt+1

+ ∀t ∈ [n],∑
t∈[n]X

t
0,0 = 1,

∑
t∈[n]〈At, Xt〉 = 0,

Xt
ui,vi = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G), ∀t ∈ [n],

Xt
ui,uj = 0 ∀i �= j ∈ [t], ∀u ∈ V (G), ∀t ∈ [n].

Proof. Set t = χq(G) and let μ denote the optimal value of the program (4.5).
Let (t,X) be a solution for the program from Proposition 4.10 defining χq(G).

We obtain a solution X1, . . . , Xn to the program (4.5) by setting Xt = X and X i = 0
if i ∈ [n] \ {t}. This shows that μ ≤ t.

Conversely, letX1, . . . , Xn be a feasible solution for the program (4.5) and let s be
the minimum i ∈ [n] such that X i

0,0 �= 0. Then, the matrix X = Xs/Xs
0,0 is feasible

for the program in Proposition 4.10. Moreover, we have t ≤ s = s
∑

i∈[n]X
i
0,0 =

s
∑

i≥s X
i
0,0 ≤ ∑

i≥s iX
i
0,0 =

∑
i∈[n] iX

i
0,0 = μ. This shows that t ≤ μ and thus

equality χq(G) = μ holds. This also shows that program (4.5) indeed has an optimal
solution, thus justifying writing “min” rather than “inf” in (4.5).

As the problem of deciding whether χq(G) ≤ 3 is NP-hard [29], it follows that
linear optimization over affine sections of the completely positive semidefinite cone is
an NP-hard problem.

It is convenient to rewrite program (4.5) in a more compact way. For this set
N =

∑n
t=1(nt + 1), where n = |V (G)|, and define the matrix A = ⊕n

t=1A
t ∈ SN .

Let Et
0,ui, E

t
ui,vj denote the elementary matrices in Snt+1 and let Ẽt

0,ui, Ẽ
t
ui,vj denote

their extensions to SN obtained by adding zero entries. Moreover, set C = ⊕n
t=1tE

t
0,0

and B = ⊕n
t=1E

t
0,0 ∈ SN . Then we can rewrite the program (4.5) as follows:

(4.6)

χq(G) = min 〈C,X〉 s.t. X ∈ CSN
+ , 〈B,X〉 = 1, 〈A,X〉 = 0,

〈Ẽt
ui,vi, X〉 = 0 ∀i ∈ [t], ∀{u, v} ∈ E(G), ∀t ∈ [n],

〈Ẽt
ui,uj , X〉 = 0 ∀i �= j ∈ [t], ∀u ∈ V (G), ∀t ∈ [n].
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If we replace the cone CS+ by its closure cl(CS+) in the program (4.6), then its
optimal value is equal to χ̃q(G) and we have χ̃q(G) ≤ χq(G). Note that it is not clear
whether these two parameters coincide. This is because the matrix A is psd so that
it belongs to the dual cone CS∗

+, and thus the constraint 〈A,X〉 = 0 implies that
any feasible solution X of (4.6) lies on the border of the cone CS+. On the other
hand, it is easy to verify that the result of Proposition 4.16 (and its proof) extend
to the case when the cone CS+ is replaced by its closure cl(CS+). Hence, χ̃q(G) can
be equivalently defined by using the program from Proposition 4.10 after replacing
the cone CS+ by its closure cl(CS+). Using this, Corollary 4.12, and the fact that
CS+ ⊆ cl(CS+) ⊆ DNN , we have the following inequalities:

(4.7) �ϑ+(G)� ≤ χ̃q(G) ≤ χq(G).

The dual program of (4.6) reads

(4.8)
λq(G) := sup λ

s.t. M = C − λB − μA−
∑

ytu,v,iẼ
t
ui,vi −

∑
ztu,i,jẼ

t
ui,uj ∈ CSN∗

+ ,

where the variables are λ, μ, ytu,v,i and ztu,i,j , the first summation is over t ∈ [n],
i ∈ [t] and {u, v} ∈ E(G), and the second summation is over t ∈ [n], i �= j ∈ [t] and
u ∈ V (G). By weak duality, we obtain the inequality λq(G) ≤ χ̃q(G) ≤ χq(G).

Moreover, the program (4.8) is strictly feasible, hence there is no duality gap
and the optimal value of (4.8) is equal to χ̃q(G); that is, λq(G) = χ̃q(G) ≤ χq(G).
To see that (4.8) is strictly feasible, define the matrix M t = (t + n2)Et

0,0 + At −∑
u∈V (G)

∑
i
=j∈[t] E

t
ui,uj and set M = ⊕n

t=1M
t. Then, M is feasible for the program

(4.8). Moreover, M lies in the interior of CS∗
+ since M � 0, as M t � 0 for all t.

(Indeed note that the entries are M t
0,0 = n + t+ n2, M t

0,ui = −1, M t
ui,ui = 1 and all

other entries are zero, and take a Schur complement to see that M t � 0.)
We now introduce the new parameter Ψε(G), which is obtained by replacing in

the program (4.8) the cone CS∗
+ by the convex set Knc,ε.

Definition 4.17. For ε ≥ 0, let Ψε(G) denote the optimal value of the program

(4.9) sup λ s.t. M = C − λB − μA−
∑

ytu,v,iẼ
t
ui,vi −

∑
ztu,i,jẼ

t
ui,uj ∈ Knc,ε.

First we relate the parameter Ψε(G) to the classical theta number.
Lemma 4.18. For ε ≥ 0, we have �ϑ+(G)� ≤ Ψε(G) with equality if ε = 0.
Proof. By Lemma 3.18, we have the inclusion DNN ∗ ⊆ Knc,ε with equality

if ε = 0. Hence the lemma will follow if we can show that the optimal value of the
program (4.9) is equal to �ϑ+(G)� when we replace the set Knc,ε by its subset DNN ∗.

In other words, let us consider the program (4.8), where we replace the cone CS∗
+

by the cone DNN ∗. Using the same argument as above, we can conclude that its
optimal value is equal to the optimal value of the program (4.6) where we replace the
cone CS+ by the cone DNN (strong duality holds and we use the fact that the cone
DNN is closed). Next, observe that this latter value (which is equal to the optimal
value of the program (4.5) when we replace CS+ by DNN ) is equal to �ϑ+(G)�. This
can be seen by combining Proposition 4.11 together with the fact that the result of
Proposition 4.16 (and its proof) extends to the case when we replace the cone CS+

by the cone DNN .
As the sets Knc,ε aim to approximate the dual cone CS∗

+, the parameters Ψε(G)
aim to approximate the quantum coloring number χq(G). However, as there is no
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apparent inclusion relationship between CS∗
+ and Knc,ε, we do not know the exact

relationship between Ψε(G) and χq(G). Moreover, as the cone CS+ is not known to
be closed, there is a possible gap between the two parameters χq(G) and χ̃q(G). Nev-
ertheless, what we can claim is the following relationship under Connes’ embedding
conjecture.

Lemma 4.19. Assume that Connes’ embedding conjecture holds. Then, we have
χ̃q(G) ≤ infε>0 Ψε(G).

Proof. If Connes’ conjecture holds, then CS∗
+ ⊆ Knc,ε for any ε > 0 (Lemma 3.17).

The result now follows using the definition of Ψε(G) and the definition of χ̃q(G) as
the optimal value of (4.8).

Finally, let us observe that the parameter Ψε(G) can be obtained as the limit
of a sequence of semidefinite programs. For this, recall that M lies in Knc,ε if the
polynomial pM + ε admits a decomposition of the form pM + ε = g + h, where
g =

∑m0

j=1 fjf
∗
j +

∑n
i=1

∑mi

ji=1 gji(1−X2
i )g

∗
ji
for some fj , gji ∈ R〈X〉 and m0,mi ∈ N,

and h is a sum of commutators. Now, fixing an integer k and restricting to those
decompositions of pM + ε where all terms fjf

∗
j and gji(1−X2

i )g
∗
ji
have degree at most

2k, we get a parameter Ψk
ε (G) which can be computed via a semidefinite program

(see, e.g., [6] for details). Moreover, Ψk
ε (G) tends to Ψε(G) as k goes to infinity.

5. Concluding remarks. We have introduced the cone CS+ of completely pos-
itive semidefinite matrices and studied some basic properties. However, the structure
of this cone remains largely unknown. The first fundamental open question is to settle
whether the cone CS+ is closed. A closely related open question is whether the exis-
tence of a Gram representation by infinite psd matrices in SN implies the existence of
another Gram representation by finite psd matrices; the answer is positive if CS+ is
closed (in view of Theorem 3.3). A first step has been made recently in [8], where it
is shown that the closure of the cone CS+ consists of the matrices admitting a Gram
representation by positive elements in a specific finite von Neumann algebra M. This
algebra M is constructed as the tracial ultraproduct of the usual matrix algebras
Rk×k (k ≥ 1) and represents a natural extension of the algebra SN

+.
The closedness question for CS+ is quite similar in spirit to several open problems

in the quantum information literature (see, e.g., [36, 45]). For instance, it is not
known whether the set of quantum bipartite correlations is closed (see [53]). The
recent work [39] shows that the set of quantum bipartite correlations can be obtained
as the projection of an affine section of the cone CS+ and that it would be closed if
CS+ is closed.

If in the definition of the quantum chromatic number χq(G) from Definition 2.7,
instead of requiring that ρ, ρiu lie in Sd

+ (for some d ≥ 1), we require that ρ, ρiu lie in SN
+,

we obtain a (possibly different) parameter that we denote by χ∞
q (G). Equivalently,

χ∞
q (G) can be formulated as linear optimization over an affine section of the cone

CS∞+ (the analogue of the fact that χq(G) can be formulated as linear optimization
over an affine section of CS+). Hence, χ

∞
q (G) ≤ χq(G), with equality if CS+ = CS∞+.

Moreover, as CS∞+ ⊆ cl(CS+) (by Theorem 3.3), we also have that χ̃q(G) ≤ χ∞
q (G).

Hence we have the possible variations of the quantum chromatic number,

(5.1) χ̃q(G) ≤ χ∞
q (G) ≤ χq(G),

with equality throughout if the cone CS+ is closed.
Moreover, observe that if in the definition of χq(G) we would require that ρ, ρiu

are positive compact operators on a Hilbert space H and we rewrite the orthogonality
conditions as ρiuρ

i
v = 0 (for {u, v} ∈ E(G), i ∈ [t]) and ρiuρ

j
u = 0 (for i �= j ∈ [t],
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u ∈ V (G)), then we would get again the parameter χ∞
q (G). Indeed, by the first

Hilbert–Schmidt theorem (see, e.g., [21, Theorem 6.2.3]), the Hilbert space H can be
decomposed as H = kerρ⊕H ′, where H ′ is the closure of the image of ρ and admits
an orthonormal base {fk : k ∈ N} consisting of the eigenvectors of ρ. Let ρ′, ρ′iu denote
the restrictions of ρ, ρiu to H ′. Then, ρ′ �= 0 and ρ′, ρ′iu are positive operators on H ′.
Moreover, the operators ρ′iu satisfy the same orthogonality conditions as the operators
ρiu (since ker ρ ⊆ ker ρiu for all u, i, which follows from positivity and the fact that
ρ =

∑
i ρ

i
u for all u). Finally, using the base {fk : k ∈ N} of H ′, the operators ρ′, ρ′iu

can be identified with matrices in SN
+.

As we already observed in the preceding section, we do not know whether we can
replace the cone CS+ by its closure, for instance, in Proposition 4.16. Denoting by A
the affine space defined by the affine conditions in program (4.5), χq(G) is the min-
imum value of the objective function taken over CS+∩A, which in turn is equal to the
minimum value taken over the closure of CS+∩A. Clearly, cl(CS+ ∩ A) ⊆ A ∩ cl(CS+).
However, we cannot prove that equality holds. If we could prove equality, then this
would imply that equality holds throughout in (5.1).

We have studied quantum analogues of several classical graph parameters. In
particular, we have extended the known lower bound χ(G) ≥ ϑ+(G) to the quantum
setting. We showed that χq(G) ≥ ΘCS+(G) and studied analogous relationships
between the other quantum graph parameters and the various theta numbers. As
a step toward further approximations for the quantum chromatic number, we have
introduced parameters Ψε(G) defined by replacing the dual cone CS∗

+ with the convex
sets Knc,ε in the dual program of χ̃q(G), where χ̃q(G) ≤ χq(G). However, the exact
relationship between Ψε(G) and χ̃q(G) is unknown and only if Connes’ embedding
conjecture holds we can claim that χ̃q(G) ≤ infε>0Ψε(G). In the recent work [8],
a different approach was investigated, based on the construction of a hierarchy of
polyhedral cones that covers the interior of the cone CS+. This can be used to show
the existence of a linear program expressing the quantum parameter χ̃q(G) (after
rounding). We hope that these results will stimulate further research leading to a
better understanding of the quantum graph parameters.

We believe that the cone CS+ is an intrinsically very interesting cone, whose struc-
ture deserves to be better understood. To conclude we mention another interesting
problem about this cone: given a matrix A ∈ CS+, find upper bounds on the smallest
dimension d of the matrices forming a Gram representation of A. This corresponds
to giving an upper bound on the amount of entanglement needed to perform certain
protocols [12] and to finding low dimensional factorizations of nonnegative matrices
[23, 26], which are currently attracting much attention.
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