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A finite-volume method for convection problems with 
embedded moving boundaries 

ABSTRACT 
An accurate method, using a novel immersed-boundary approach, is presented for numerically 
solving linear, scalar convection problems. Moving interior boundary conditions are embedded 
in the fixed-grid fluxes in the direct neighborhood of the moving boundaries. Tailor-made limiters 
are derived such that the resulting scheme is monotone. The results obtained are very accurate, 
without requiring much computational overhead. It is anticipated that the method can readily be 
extended to real fluid-flow equations. 
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A Finite-Volume Method for ConvetionProblems with Embedded Moving-Boundaries
Yunus Hassen1;2 and Barry Koren1;31 Centrum Wiskunde & Informatia, Amsterdam, the Netherlands2 Faulty of Aerospae Engineering, TU Delft, the Netherlands3 Mathematial Institute, Leiden University, the Netherlandsyunus.hassen�wi.nl, barry.koren�wi.nlSummary. An aurate method, using a novel immersed-boundary approah, ispresented for numerially solving linear, salar onvetion problems. Moving interiorboundary onditions are embedded in the �xed-grid uxes in the diret neighborhoodof the moving boundaries. Tailor-made limiters are derived suh that the resultingsheme is monotone. The results obtained are very aurate, without requiring muhomputational overhead. It is antiipated that the method an readily be extendedto real uid-ow equations.Key words: immersed-boundary method; hyperboli onservation laws; high-ordershemes; monotoniity; limiters; time adaptivity.
1 IntrodutionThe immersed-boundary method, in general, is a method in whih boundary on-ditions are indiretly inorporated into the governing equations. It has �rst beenintrodued by Peskin [4℄, and urrently many varieties of it exist.Immersed-boundary methods are very suitable for simulating ows around ex-ible, moving and/or omplex bodies. Basially, the bodies of interest are just em-bedded in non-deforming Cartesian grids that do not onform to the shape of thebody. The governing equations are modi�ed to inlude the e�et of the embeddedbodies (EBs). Doing so, mesh (re)generation diÆulties assoiated with body-�ttedgrids are obviated; and, the underlying regular �xed grid allows to use a simple datastruture as well as simpler numerial shemes over a majority of the domain.Our approah uses a ell-entered �nite-volume disretization. The governingpartial di�erential equations are disretized using a standard �nite-volume method(FVM) away from the EBs. Near the EB, a speial FVM is derived whih takes thepresribed interior boundary onditions into aount.The artile begins with the problem desription and with some standard �nite-volume results. The following setions present: the speial uxes that take the e�etsof the EBs into aount, the temporal disretization, monotoniity domains and



2 Yunus Hassen and Barry Korenlimiters, and time adaptivity, in the respetive order. Finally, some numerial results,based on the present approah, and onluding remarks are given.
2 Model equationConsider the salar, linear onvetion equation:��t + �f�x = 0; f = f() := u; (1)where (x; t) is the salar �eld, u the ow veloity, whih is assumed to be onstantand positive, and f() the ux funtion. The independent variables x and t representspae and time, respetively. We take x 2 [0; 1℄.Eq. (1) is hyperboli. The initial solution (x; 0) = 0(x) simply propagatesunhanged with the veloity u: (x; t) := 0(x�ut). We onsider two initial solutions,eah with two interior, moving EBs. The solution at the left and right of eah EBis presribed. The two moving EBs have arbitrary initial loations (0 � x1 � 1 and0 � x2 � 1, x1 6= x2). The initial solutions read:0(x) = (0; if x1 � x � x2,1; elsewhere, and 0(x) = (0; if x1 � x � x2,1�os(2�x)2 ; elsewhere. (2)The osine funtion in (2) exploits the advantage that higher-order aurate numer-ial shemes have in non-onstant, smooth solution regions. Model equation (1) isapproximated in a periodi domain, allowing us to time-step for as long as we wantfor a given, �nite, spatial domain.2.1 Standard FVM resultsThe unit domain is divided intoN non-overlapping ells of uniform size. Let h = 1=Nbe the ell width, xi = (i � 1=2)h the ell-enter oordinates and xi+ 12 = ih theell-fae oordinates for i = 1; 2; :::; N . Let the fully disrete solution in ell i, attime level n, be denoted as ni = (xi; tn). Then the semi-disrete �nite-volume formof (1) reads: hdidt + f(fi+ 12 (t)� fi� 12 (t)g = 0: (3)Eq. (3) is exat, inside a spei� ell, so far and it is solved by approximating theuxes, at time level n, say fni+ 12 , and by time-stepping the temporal part. The uxesare omputed (dropping the index n, for onveniene) as fi+ 12 = ui+ 12 , where i+ 12is the ell-fae state at i + 12 , whih an be approximated in a variety of ways. Forexample, for u > 0, i+ 12 = i and i+ 12 = i + 1+�4 (i+1 � i) + 1��4 (i � i�1) aretwo lassial ell-fae states, omputed with the �rst-order upwind- and van Leer's�-sheme [6℄, respetively. Note that, with no EB in the neighborhood, � 2 [�1; 1℄.The �-shemes yield non-monotone disretizations. Several algorithms have beenproposed in the literature that yield higher-order aurate, monotone solutions.Most of these algorithms exploit the inherent monotoniity of the �rst-order up-wind sheme. The best known representatives of these algorithms are the limitedshemes following Sweby's total-variation diminishing (TVD) theory [5℄.



Convetion Problems with Embedded Moving-Boundaries 3The ell-fae state i+ 12 an be written in the limited form as i+ 12 = i +12�(ri+ 12 )(i � i�1), where �(r) is the limiter funtion and ri+ 12 = i+1�ii�i�1 itsmonotoniity argument. Here we spei�ally adopt the limiter proposed by Koren [3℄as the standard limiter. It gives a monotone third-order aurate net ux in a ell,by resembling the � = 13 -sheme.Now, for later omparison purposes, we will show what the solutions are whenusing the standard �nite-volume disretizations desribed above, methods in whihno embedded-boundary onditions are imposed. For the time integration, the three-stage Runge-Kutta sheme RK3b from [2℄ is employed. For both initial solutions (2),we onsider the loations of the EBs to be at x1 = 13 and x2 = 23 . Furthermore, wetake u = 1, and we ompute the solution at t = 1, the time at whih the solution hasmade a single full-period. For both the �rst-order upwind and the � = 13 (unlimitedand limited) shemes, the omputations are performed on a grid with 20 and 40 ells.The solutions are depited in Fig. 1. The time steps have been taken suÆientlysmall to ensure that in all ases the temporal disretization errors are negligiblewith respet to the spatial disretization errors.
3 Fluxes with embedded moving-boundary onditionsThe sharp disontinuities of the initial solutions (2) are onsidered as in�nitely thinbodies going with the ow and the boundary onditions assoiated with these are
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Fig. 1. Standard �nite-volume solutions after one full-period. Red: exat disrete,blue: �rst-order upwind, green: unlimited � = 13 sheme, and blak: limited ditto.Note: the top two are the results on a 20-ell grid and the bottom two are on a40-ell grid.



4 Yunus Hassen and Barry Korenembedded in the �xed-grid uxes. Here, the embedded-boundary onditions areuser-spei�ed and enfored to remain intat to the EB and unhanged at all times.The solution values on the left and right sides of the EB are designated as lEB andrEB, respetively (Fig. 2).
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Fig. 2. EB situated in ell i at time tn, its assoiated solution values (to be usedas `embedded-boundary onditions'), and the three a�eted ell-fae states.
For an EB situated in ell i, with its oordinate xEB(t) = xnEB given, its relativeposition with respet to the ell fae xi� 12 is �h, where:� = xnEB � xi� 12h ; � 2 [0; 1℄: (4)There is no information ow aross the EB. Fluxes on one side of the EB are allomputed based on the information on the same side and the additional interiorboundary ondition on the respetive side of the EB. In general, when onsideringthree-point upwind-biased interpolation for the uxes, three ell-fae states (i� 12 ,i+ 12 and i+ 32 ) are a�eted by the presene of a single EB (in ell i) and these arethe ell-fae states of interest that are espeially modi�ed (Fig. 2). i� 12 and i+ 32are written as optimally blended, three-point upwind-biased interpolation formulae:i� 12 = i�1 + 11 + 2� 1 + �i� 122 (lEB � i�1) + 1� �i� 124 (i�1 � i�2); (5a)i+ 32 = i+1 + 1 + �i+ 324 (i+2 � i+1) + 23� 2� 1� �i+ 324 (i+1 � rEB): (5b)Sine we do not draw information aross the EB, no upwind-biased interpolationformula an be derived for i+ 12 . Non-equidistant entral interpolation is applied toompute i+ 12 .The blending parameters �i� 12 and �i+ 32 are optimized suh that the net uxesin ells i� 1 and i+ 2, respetively, are as aurate as possible. The net ux in elli annot be optimized due to the presene of the EB with its disontinuous solutionbehavior. Deriving the modi�ed equations in ells i� 1 and i+ 2, and equating theleading term of the trunation errors to zero, we get:�i� 12 = 7� 6�9 + 6� ; �i� 12 2 � 115 ; 79� and �i+ 32 = 7� 6�15� 6� ; �i+ 32 2 �19 ; 715� : (6)The reasons to onsider the net ux in ell i+2 instead of that of ell i + 1, foroptimizing �i+ 32 , are given in [1℄. The formulae for the EB-a�eted ell-fae statesare summarized, in terms of the parameter �, as:



Convetion Problems with Embedded Moving-Boundaries 5i� 12 = i�1 + 8(3 + 6�)(3 + 2�) (lEB � i�1) + 1 + 6�18 + 12� (i�1 � i�2); (7a)i+ 12 = rEB + 2� 2�3� 2� (i+1 � rEB); (7b)i+ 32 = i+1 + 11� 6�30� 12� (i+2 � i+1) + 4(9� 6�)(5� 2�) (i+1 � rEB): (7)Note that it is assumed that two suessive EBs are suÆiently far apart, suh thata given ell-fae state is a�eted by only one EB. Reall that all but the EB-a�eteduxes are omputed with a standard sheme.
4 Temporal disretizationAfter substituting the appropriate disretizations for the spatial operator in thesemi-disrete equation (3), it is integrated in time using an expliit method: eitherthe Forward Euler or the RK3b [2℄ sheme. The later gives a third-order aurayin time.4.1 Monotoniity and limitersNoting that the EB-a�eted ell-fae states (7) are higher-order aurate and linear,wiggles are imminent. These wiggles an be suppressed by arefully onstraining theonvetive ell-fae states. Therefore, as explained in detail in [1℄, we de�ne non-standard monotoniity arguments, ~ri� 12 and ~ri+ 32 , and derive the limited forms ofi� 12 and i+ 32 . The ell-fae state i+ 12 , however, is not limited as we an not de�ne amonotoniity argument ~ri+ 12 . Enforing appropriate monotoniity requirements, theresulting EB-sensitive limiter-funtions ~�(~r) beome �-dependent (where � = u�=his the CFL number and � is the time step). The �-dependene, however, is avoidedby taking a stringent restrition � � 12 , to ahieve a monotoniity preserving shemeand a seond-order aurate disrete-solution. Then, the resulting bounds for ~�(~r)are simpli�ed and they are fully onstrained, 8 ~ri� 12 and 8 ~ri+ 32 , as:0 � ~�(~ri� 12 ) � 2 and ~�(~ri� 12 )~ri� 12 � 1 + 2�; (8a)

�1 � ~�(~ri+ 32 ) � 5� 4� and 0 � ~�(~ri+ 32 )~ri+ 32 � 2; (8b)Typial limiters, satisfying the speial bounds (8), are depited in Fig. 3.4.2 Loal adaptivity in timeIf an EB is situated in suh a way that xnEB 2 [xi� 12 ; xi+ 12 ) and xn+1EB 2 [xi+ 12 ; xi+ 32 ),there is an abrupt hange in i+ 12 when going from tn to tn+1 (see Fig. 4). To aountfor this hange, time adaptivity is introdued by �rst omputing the time fration� at whih the EB rosses xi+ 12 , as:
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Fig. 3. Typial EB-sensitive limiters (for � = 1=2), within the orresponding, sim-pli�ed, monotoniity domains, for the EB-a�eted ell-fae states i� 12 (left) andi+ 32 (right).
� = xi+ 12 + �� xnEBu� ; � 2 (0; 1): (9)Next, the intermediate ell-fae state n+�i+ 12 is omputed. Note that the EB is plaedat in�nitesimal distane � o� xi+ 12 , in the diretion of the ow. Then the ell-faestate ni+ 12 is reomputed as the weighted average:ni+ 12 := �ni+ 12 + (1� �)n+�i+ 12 : (10)Finally, solution updating, in Forward Euler, is ontinued everywhere, using thetime-adapted ell-fae state, with the regular time step � . For RK3b, we do not yetresort to the temporal loal-adaptivity. We instead split the regular time step � intosmaller time steps, depending on the number of EBs rossing ell faes, and updatethe intermediate solutions everywhere.
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n+1 Fig. 4. Stenil for loaladaptivity in time. Thestandard, modi�ed andthe intermediate ell-faeuxes are designated ingreen, blue, and red,respetively.
5 Results and onlusionWe present numerial results to validate the immersed-boundary approah intro-dued in this work. We take the same data as in x 2.1. The results obtained, shownin Fig. 5, are remarkably aurate. They show a signi�ant improvement in res-olution over those omputed using the standard methods (Fig. 1). For the more



Convetion Problems with Embedded Moving-Boundaries 7disriminating initial solution, the osine-avity in (2), the numerial results of thelimited higher-order upwind-biased shemes are slightly de�ient at the peripheries.This is due to the property of limiters that they lip physially relevant extrema.Apparently, the de�ieny diminishes with dereasing grid size.
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Fig. 5. Immersed-boundary solutions after one full-period. Æ: exat disrete, �:unlimited higher-order upwind-biased with Forward Euler, �: limited ditto, �: un-limited higher-order upwind-biased with RK3b, �: limited ditto. Note: the top twoare the results on a 20-ell grid and the bottom two are on a 40-ell grid.The essene of the present approah is that moving bodies are embedded in aregular �xed grid and spei� uxes in the viinity of the embedded boundary areintelligently omputed in suh a way that they aurately aommodate the bound-ary onditions valid on the moving EB. Then, over the majority of the domain,where we do not have inuene of the EBs, we use standard methods on the under-lying regular �xed grid. Exellent results are ahieved, without muh omputationaloverhead. We foresee that the numerial methods introdued here an readily beextended to real uid-ow equations.
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