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High-Order TVD and TVB Linear Multistep Methods

ABSTRACT
We consider linear multistep methods that possess the TVD (total variation diminishing) or TVB
(total variation bounded) properties, or related general monotonicity and boundedness
properties. Strict monotonicity or TVD, in terms of arbitrary starting values for the multistep
schemes, is only valid for a small class of methods, under very stringent step size restrictions.
This makes them uncompetitive to the TVD Runge-Kutta methods. By relaxing these strict
monotonicity requirements a larger class of methods can be considered, including many
methods of practical interest. In this paper we construct linear multistep methods of high-order
(up to six) that possess relaxed monotonicity or boundedness properties with optimal step size
conditions. Numerical experiments show that the new schemes perform much better than the
classical TVD multistep schemes. Moreover there is a substantial gain in efficiency compared to
recently constructed TVD Runge-Kutta methods.
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HIGH-ORDER TVD AND TVB LINEAR MULTISTEP METHODS

STEVEN J. RUUTH ∗ AND WILLEM HUNDSDORFER †

Abstract. We consider linear multistep methods that possess the TVD (total variation dimin-
ishing) or TVB (total variation bounded) properties, or related general monotonicity and bounded-
ness properties. Strict monotonicity or TVD, in terms of arbitrary starting values for the multistep
schemes, is only valid for a small class of methods, under very stringent step size restrictions. This
makes them uncompetitive to the TVD Runge-Kutta methods. By relaxing these strict monotonic-
ity requirements a larger class of methods can be considered, including many methods of practical
interest.

In this paper we construct linear multistep methods of high-order (up to six) that possess relaxed
monotonicity or boundedness properties with optimal step size conditions. Numerical experiments
show that the new schemes perform much better than the classical TVD multistep schemes. Moreover
there is a substantial gain in efficiency compared to recently constructed TVD Runge-Kutta methods.

Key words. Multistep schemes, monotonicity, TVD, TVB, SSP, strong stability

AMS subject classifications. 65L06, 65M06, 65M20

1. Introduction. Apart from the usual linear stability and consistency require-
ments, nonlinear monotonicity and boundedness properties are often essential for
numerical schemes to approximate non-smooth solutions in a qualitatively correct
manner. In this paper we shall be concerned with systems of ordinary differential
equations (ODEs) in R

m,

w′(t) = F (w(t)) , w(0) = w0 .(1.1)

In our applications, the ODE systems will arise from semi-discretization of (hyper-
bolic) partial differential equations (PDEs). Specifically we are interested in the
discrete preservation of monotonicity and boundedness properties by numerical ap-
proximations wn ≈ w(tn), tn = n∆t, generated by linear multistep methods.

In the following we assume that there is a maximal step size ∆tFE > 0 such that

‖v + ∆t F (v)‖ ≤ ‖v‖ for all 0 < ∆t ≤ ∆tFE , v ∈ R
m,(1.2)

where ‖ · ‖ is a given semi-norm, such as the total variation over the components. Of
course, with the forward Euler method this leads to

‖wn‖ ≤ ‖w0‖ for all n ≥ 1 ,(1.3)

whenever the step size restriction ∆t ≤ ∆tFE is valid. Similar properties will be
examined for higher-order methods.

We shall mainly consider explicit linear multistep methods

wn =
k∑

j=1

(
ajwn−j + bj∆tF (wn−j)

)
, n ≥ k ,(1.4)
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2 S.J. RUUTH, W. HUNDSDORFER

where the starting vectors w0, w1, · · · , wk−1 are either given or computed by an appro-
priate starting procedure. A common generalization of (1.3) for multistep methods
is

‖wn‖ ≤ max
0≤j≤k−1

‖wj‖ .(1.5)

However, this property is only valid for a small class of methods under stringent step
size restrictions; see § 2 for a brief review.

It was shown in [6] that methods of practical relevance can be included in the
theory if we consider multistep methods in combination with starting procedures that
generate w1, w2, . . . , wk−1 from w0. Instead of (1.5) we will consider the property

‖wn‖ ≤ M ‖w0‖ for all n ≥ 1 ,(1.6)

where the size of the constant M ≥ 1 will be determined by the starting procedure. In
case M = 1, this will be referred to as monotonicity. If M ≥ 1 this is a boundedness
property. Following [6] we can determine constants CLM such that (1.6) holds under
the step size restriction ∆t ≤ CLM∆tFE.

Example 1.1. The main application of such monotonicity and boundedness results
are found in the numerical solution of hyperbolic PDEs, in particular for conservation
laws. Let us consider as an example the one-dimensional equation

ut + f(u)x = 0 .(1.7)

Spatial discretization will lead to a system of ODEs where the components of w(t)
approximate the PDE solution at grid points or surrounding cells, wj(t) ≈ u(xj , t).
The discrete total variation ‖v‖ = TV(v) is a semi-norm defined as

TV(v) =
∑

j

|vj − vj−1| ,

where e.g. v0 = vm for problems with periodic boundary conditions. For this semi-
norm, the property (1.2) is called the TVD (total variation diminishing) property, and
its generalization (1.6) with M ≥ 1 is called the TVB (total variation bounded) prop-
erty. Conservative schemes with this boundedness property are known to converge
to the correct entropy solutions for hyperbolic conservation laws; see for instance [3]
for details. Finally we note that for hyperbolic problems the step size restriction
∆t ≤ CLM∆tFE is often called a CFL condition and the threshold CLM is then the CFL
coefficient.

In [6] property (1.6) and the step size restriction ∆t ≤ CLM∆tFE was studied for sev-
eral well-known schemes, in particular explicit Adams and extrapolated BDF schemes.
In this paper, high-order methods will be constructed that satisfy the boundedness
property (1.6) with optimal threshold factors CLM.

Numerical tests on some scalar conservation laws will show that our new optimal
multistep methods are superior to the optimal schemes of [2, 13, 18] that satisfy
(1.5). In these experiments also monotone (TVD, SSP) Runge-Kutta methods of
[9, 15, 19, 20] will be taken into consideration, and also these methods will be seen to
be less efficient in the tests than our new multistep schemes.

In § 2 a brief review is presented of multistep methods satisfying (1.5), including
some (minor) improvements on the methods listed in [2]. The main section of this
paper is § 3, where optimal methods satisfying (1.6) with order p = 3, 4, 5, 6 and step
number k = p or k = p + 1 will be constructed. Numerical illustrations are given in
§ 4. The final § 5 contains a summary and conclusions.
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2. Monotonicity and TVD with Arbitrary Starting Values.

2.1. Methods with Non-negative Coefficients. Assume that all aj , bj ≥ 0.
By regarding the step (1.4) as a linear combination of scaled forward Euler steps it
easily follows that the monotonicity property (1.5) will be valid under (1.2) with the
step size restriction

∆t ≤ KLM ∆tFE , KLM = min
1≤j≤k

aj

bj
if aj , bj ≥ 0 for all j ,(2.1)

with convention 0/0 = +∞. This result is due to Shu [18], where it was formulated
with total variations. For explicit methods with k ≥ 2, Lenferink [13] showed that

KLM ≤ k − p

k − 1
.(2.2)

Hence KLM > 0 is not possible for any method with p = k.
The optimal schemes of order 2 are given by [13, 18]

a1 =
k(k − 2)
(k − 1)2

, ak =
1

(k − 1)2
, b1 =

k

k − 1
,(2.3)

with the other coefficients zero. Higher-order schemes have been constructed in [13,
18], mainly numerically. Our preferred technique is based on a recent approach of [17]
for optimizing TVD Runge-Kutta methods. Since we shall use this technique below
for deriving new schemes, we describe it here in some detail.

We begin by noting that optimal k-step schemes of order p can be derived by max-
imizing KLM. Here, the order conditions give p + 1 relations for the coefficients aj , bj

[4, 10]. However, this formulation of the nonlinear programming (NLP) problem does
not lend itself easily to numerical solution; see [20] for further discussion. By intro-
ducing a dummy variable z, the nonlinear programming problem can be reformulated
as finding

max
(aj ,bj)

z ,(2.4a)

subject to the p + 1 order conditions and

ai , bi ≥ 0 , i = 1, 2, . . . , k ,(2.4b)
ai − zbi ≥ 0 , i = 1, 2, . . . , k .(2.4c)

This NLP formulation is comprised of factorable objective and constraint functions
and thus is suitable for optimization in Baron [1], which is a commercially-available,
deterministic global branch-and-bound optimization program.

To guarantee optimality in Baron we typically need to supply bounds to all the
variables. Fortunately we know that all the ai are bounded by 1 (because

∑
i ai = 1)

and all the bi are bounded by the inverse of KLM. Finding globally optimal schemes
and guaranteeing their optimality is surprisingly efficient. For example, Baron 5.0
finds the optimal fifty-step, fourth-order scheme and guarantees its optimality in just
0.58 seconds on a 1.2 GHz Athlon machine.

A list of guaranteed globally optimal schemes for k up to six with order p equal to
three or four is given in Table A.1 at the end of this paper. Because the coefficients of
the schemes are all non-negative, we refer to the optimal k-step, order-p TVD linear
multistep scheme as TVD+(k, p).
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Fifth- and sixth-order TVD multistep schemes require at least seven steps and do
not appear in the table. In view of (2.2), all methods in the table have k > p.

The optimal third-order TVD+(4,3), TVD+(5,3) [18, 13] and TVD+(6,3) [13]
schemes have been known for some time and we reproduce them here for convenience.
The remaining TVD+(5,4) and TVD+(6,4) schemes have KLM values that agree with
the bounds provided in [13].

2.2. Schemes with Spatial Downwinding. As noted in [18], the assumption
bj ≥ 0 can be avoided for discretizations of conservation laws (1.7). If bj < 0, then
F (wn−j) in (1.4) should be replaced by F̃ (wn−j), where w′ = −F̃ (w) is the semi-
discretization of the equation with reversed time ut − f(u)x = 0. Its realization
in practice is simply a reversal of the upwind direction in the spatial discretization.
Instead of (2.1) this modification will give the step size restriction

∆t ≤ K̃LM ∆tFE , K̃LM = min
1≤j≤k

aj

|bj | if aj ≥ 0 for all j(2.5)

to achieve (1.5).
The following result gives an upper bound for this threshold factor for second-

order schemes. The proof is given in Appendix B.
Theorem 2.1. For second-order k-step methods we have K̃LM ≤ (k − 1)/k. This

upper bound is achieved for k ≥ 2 by the schemes (1.4) with

a1 =
k2

k2 + 1
, ak =

1
k2 + 1

, b1 =
k3

(k − 1)(k2 + 1)
, bk = − k

(k − 1)(k2 + 1)
,

and all other coefficients equal to zero.
Higher-order schemes have been constructed numerically in [18]. We derive glob-

ally optimal schemes with downwinding by extending our optimizations for non-
negative coefficient schemes.

Following [17], we introduce a dummy variable z and we write bi = σib̃i with
b̃i = |bi| and σi = sgn(bi) = ±1. Then the optimization becomes

max
(aj ,b̃j ,σj)

z ,(2.6a)

subject to the p + 1 order conditions and the constraints

ai , b̃i ≥ 0 , i = 1, 2, . . . , k ,(2.6b)
ai − zb̃i ≥ 0 , i = 1, 2, . . . , k .(2.6c)

Notice that this mixed integer nonlinear programming formulation is comprised of fac-
torable objective and constraint functions and that the variables are easily bounded.
Thus this is a suitable mathematical formulation for finding guaranteed optimal solu-
tions in Baron. However, the total computational effort can be reduced substantially
by instead solving 2k NLP problems, each corresponding to one of the possible sign
combinations. This leads to a total of 2k cases each of which only requires a fraction
of a second to solve in Baron 5.0.

Using this approach, a list of guaranteed globally optimal schemes was constructed
for orders p = 3, 4, 5, 6 and k ≤ 6. This is presented in Table A.2 at the end of
this paper. Following the convention described in the previous section, we denote
the optimal k-step, order-p scheme with aj ≥ 0 and unrestricted coefficients bj as
TVD±(k, p).
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The schemes TVD±(4,3), TVD±(5,3), TVD±(5,4), and TVD±(6,6) are new. Our
study for the optimal six-step, third-order scheme is also new; however, there the
non-negative coefficient scheme TVD+(6,3), first presented in [13], is optimal. The
optimal schemes TVD±(3,3), TVD±(4,4) presented in Table A.2 essentially agree with
earlier schemes from Gottlieb, Shu and Tadmor [2]. Some improvements were found
in the remaining three cases over earlier studies [18, 2]. Specifically, 16%, 12% and
1% improvements in K̃LM were found for TVD±(6,4), TVD±(5,5), and TVD±(6,5),
respectively.

Comparing the TVD±(k,p) and the TVD+(k,p) schemes, it should be noted that
for the TVD±(k,p) schemes both function evaluations Fn and F̃n will be needed. If
more than one processor is available, these evaluations can be carried out in parallel.
On a serial machine, however, these schemes will be approximately two times more
expensive per step. Moreover, the use of downwind discretizations may add some
numerical diffusion that will persist even for small step sizes; see the test results in
§ 4.

3. Boundedness and TVB for Higher-Order Methods. The above mono-
tone multistep schemes are not competitive with the Runge-Kutta schemes of [9, 15,
20]. However, by considering the multistep schemes in combination with starting pro-
cedures, it is possible to consider schemes that satisfy the boundedness property (1.6)
with a constant M whose size is determined by the starting procedure [6].

This section contains derivations of optimal boundedness results for explicit linear
multistep methods of order p = 3, 4, 5, 6. To study the boundedness property (1.6),
with M ≥ 1, it is not necessary to specify the starting schemes: while the value of
M may vary according to the starting procedure, the boundedness property itself is
independent of the chosen startup.

3.1. Reformulations. The derivation of boundedness results is largely based
on suitable reformulations of the schemes, whereby a k-step scheme is first rewritten
as an equivalent (k + 1)-step scheme with a free parameter, then as a (k + 2)-step
scheme with two free parameters, etc., up to the starting values. The free parameters
can then be selected such that the scheme has non-negative coefficients.

To keep the presentation concise and clear, we give such reformulation here in
detail only for three-step schemes; the general formulas can be found in [5]. Consider
(1.4) with k = 3. Then by subtracting and adding θ1 . . . θjwn−j , j = 1, 2, . . . , n − 3,
substituting wn−j in terms of wn−j−i, i = 1, 2, 3, and collecting terms, it follows that
wn can be expressed as

wn =
n−3∑
j=1

(
αjwn−j + βj∆tFn−j

)
+

2∑
i=0

(
αR

n,n−iwi + βR
n,n−i∆tFi

)
,(3.1)

where the coefficients αj , βj are given by

α1 = a1 − θ1 , α2 = a2 + a1θ1 − θ1θ2 , α3 = a3 + a2θ1 + a1θ1θ2 − θ1θ2θ3 ,

αj =
( j−3∏

k=1

θk

)(
a3 + a2θj−2 + a1θj−2θj−1 − θj−2θj−1θj

)
, j ≥ 4 ,

β1 = b1 , β2 = b2 + b1θ1 , β3 = b3 + b2θ1 + b1θ1θ2 ,

βj =
( j−3∏

k=1

θk

)(
b3 + b2θj−2 + b1θj−2θj−1

)
, j ≥ 4 .
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For k-step methods with k ≥ 4 we can proceed similarly. In the above reformula-
tion (3.1) we get the same expressions for α1, α2, α3 and β1, β2, β3; the other αj , βj

will then involve more terms.
We shall take θi ≥ 0 such that

αj ≥ 0 , βj ≥ 0 for all j ≥ 1 ,(3.2)

and we define

CLM = max
{θi}i≥1

min
j≥1

αj

βj
.(3.3)

In the search for favourable schemes we will require that θj = θ∗ < 1 for all j ≥ j∗;
see also [5] for some comments on this. Under these assumptions it follows that the
boundedness property (1.6) holds with M ≥ 1 for step sizes ∆t ≤ CLM∆tFE. To obtain
results for genuine monotonicity, that is, M = 1, it is also necessary to study the
coefficients αR

n,n−i and βR
n,n−i of the remainder term in (3.1) and to include specific

starting procedures. For a detailed analysis, we refer to [6] for the case k = 2 and to
[5] for k ≥ 3.

3.2. Optimizations of CLM. Two-step, second order explicit methods can be
studied by hand, as it was done in [6]. Methods involving more steps are more involved,
and naturally lead us to consider numerical optimization techniques. Following § 2.1,
we formulate the optimization problem by introducing a dummy variable z that cor-
responds to CLM; however, now all the αi, βi must be constrained to be non-negative.
We have carried out extensive optimizations in Baron to determine numerically op-
timal schemes. A guarantee of optimality is not sought since the overall complexity
of the optimization problem makes this much more difficult.

The schemes that are found this way for given step number k and order p will be
denoted as TVB(k, p). Somewhat surprisingly, seeking optimal schemes often led to
a value θ∗ = 0. This means that all coefficients αj , βj are zero for j ≥ k + j∗, and
hence the reformulation then gives a l-step scheme, l = k + j∗ − 1, with non-negative
coefficients. This extended scheme is reducible to the original k-step method [4], so
it should primarily be regarded for theoretical interest. Schemes with θ∗ = 0 will be
denoted by TVB0(k, p). Finally we note that for all the new schemes presented in
this section the error constants turned out to be of moderate size.

3.3. An Order-Three Scheme. We first optimize CLM over the class of three-
step, third-order linear multistep schemes with fifteen θ-values. This yields a scheme
that satisfies the boundedness property (1.6) with M ≥ 1 provided ∆t ≤ 0.537∆tFE.
The coefficients are given in Table 3.3. It is noteworthy that the optimization leads to
θ10 = 0, implying this scheme can be rewritten as a twelve-step scheme that is TVD
with arbitrary starting values. Because of this property, we will refer to this scheme
as TVB0(3,3).

It is interesting to compare this TVB0(3,3) scheme against the third-order ex-
trapolated BDF scheme (eBDF3)

wn = 18
11wn−1 − 9

11wn−2 + 2
11wn−3 + 18

11∆tFn−1 − 18
11∆tFn−2 + 6

11∆tFn−3 ,(3.4)

which is the best reported third-order scheme in [6]. Because its threshold value is
given by CLM = 7/18, the new scheme TVB0(3,3) gives a 38% improvement over
eBDF3 in allowable (stable) step size, for which (1.6) is ensured.
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The new TVB0(3,3) scheme also has a relatively large linear stability region,
showing where linear stability is valid for the scalar, complex test equation w′ = λw,
z = ∆t λ. The TVB0(3,3) stability region includes a part of the imaginary axis. See
Figure 3.1 for a comparison of the stability region of this scheme and the eBDF3
scheme.

Although the form of the stability regions is not directly related to monotonicity
properties, it seems that for higher-order spatial discretizations violation of the linear
(von Neumann) stability conditions often leads to inaccurate solutions due to numer-
ical compression of smooth solutions; see for instance [7, Sect. 1.3] for an illustration.
Having a portion of the imaginary axis and some region to the left of it in the stability
region ensures that the scheme will be stable under appropriate CFL restriction in
the classical, linear sense for any spatial discretization.

Table 3.1

The coefficients of the numerically optimal three-step, third-order linear multistep scheme.

TVB0(3,3) ai bi CLM

i = 1 1.908535476882378 1.502575553858997 0.537252303224424
i = 2 -1.334951446162515 -1.654746338401493
i = 3 0.426415969280137 0.670051276940255
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Fig. 3.1. Stability regions for the eBDF3 and TVB0(3,3) schemes (left plot) and the eBDF4
and TVB0(5,4) schemes (right plot). The TVB(4,4) region is not shown since it closely agrees with
the TVB0(5,4) region.

3.4. Fourth-Order Schemes.

3.4.1. Four-Step Schemes. We direct our attention next to the class of four-
step, fourth-order linear multistep methods. In the reformulations for this class, we
were unable to find schemes which allowed arbitrary starting values in an extended
version (i.e., θ∗ = 0). Moreover, taking θj = θ∗ for all j ≥ j∗ we found that CLM

increases as θ∗ ∈ [0, 1) increases. Unfortunately the choice θ∗ = 1 does not lead to a
scheme that is stable; the scheme turned out to have two characteristic roots equal
to one, giving weak instability. For θ∗ close to 1, the (scaled) error constants [4,
p. 373] are large. Selecting an appropriate scheme is therefore quite interesting and
subtle, since larger θ∗-values give larger CLM-values while smaller θ∗-values give better
accuracy and also seem to minimize the possibility of oscillations arising from the
startup procedures when M > 1.
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On the balance, we bias our choice towards large time steps by taking θ∗ = 0.7
giving a restriction of ∆t ≤ 0.458∆tFE. This is approximately 15% less than the
limiting case θ∗ = 1 (CLM = 0.537 for θ∗ = 1). We provide the scheme to fifteen
decimal digits in Table 3.2 and remark that the θ15 = 0.7 constraint was active for
this scheme.

It is natural to compare this TVB(4,4) scheme against the fourth-order extrapo-
lated BDF scheme (eBDF4)

wn = 48
25wn−1 − 36

25wn−2 + 16
25wn−3 − 3

25wn−4

+ 48
25∆tFn−1 − 72

25∆tFn−2 + 48
25∆tFn−3 − 12

25∆tFn−4 .

(3.5)

Since the nonlinear time-stepping restriction of eBDF4 is given by CLM = 7/32, the
new scheme provides for a 109% improvement in allowable (stable) step size over the
best reported scheme (eBDF4) in [6]. Once again, the stability region of new scheme
includes part of the imaginary axis and it compares favourably against that of the
eBDF4 scheme; c.f. Figure 3.1.

Table 3.2

The coefficients of the numerically optimal four-step, fourth-order linear multistep scheme.

TVB(4,4) ai bi CLM

i = 1 2.628241000683208 1.618795874276609 0.458583744721242
i = 2 -2.777506277494861 -3.052866947601049
i = 3 1.494730011212510 2.229909318681302
i = 4 -0.345464734400857 -0.620278703629274

3.4.2. Five-Step Schemes. If we consider five-step schemes, then it is pos-
sible to find fourth-order schemes that can be rewritten in an extended form that
allows arbitrary starting values. For example, optimizing CLM over the class of five-
step, fourth-order linear multistep schemes with fifteen nonzero θ-values yields the
TVB0(5,4) scheme presented in Table 3.3. This scheme satisfies the boundedness
property (1.6) with M ≥ 1 provided ∆t ≤ 0.45∆tFE. Since θ16 = 0, this scheme can
be rewritten as a twenty-step scheme with non-negative coefficients. The stability
region of TVB0(5,4) includes part of the imaginary axis and essentially coincides with
TVB(4,4). See Figure 3.1.

By increasing the number of nonzero θ-values, we can obtain slightly larger CLM-
values. For example, optimizations using thirty θ-values produced a scheme with
CLM = 0.471. We do not reproduce that scheme here as it had similar behaviour in
numerical tests to TVB0(5,4).

Table 3.3

The coefficients of the numerically optimal five-step, fourth-order linear multistep scheme.

TVB0(5,4) ai bi CLM

i = 1 3.089334754787739 1.629978886421390 0.450202335599730
i = 2 -3.997727108450201 -3.839438825282836
i = 3 2.799704082644115 3.698752623531085
i = 4 -1.069321620028803 -1.688757722449064
i = 5 0.178009891047150 0.305220798719644
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3.5. An Order-Five Scheme. We next study five-step, fifth-order linear mul-
tistep methods. For optimizing CLM over this class we used twenty-five θ-values. This
yields a scheme with M ≥ 1 provided ∆t ≤ 0.377∆tFE. The coefficients of this optimal
scheme are given in Table 3.4. This scheme has θ21 = 0 which implies that it can
be rewritten as a twenty-five step scheme that is monotone with arbitrary starting
values.

As a basis for comparison, we consider the fifth-order extrapolated BDF scheme
(eBDF5), which is given by

wn = 300
137wn−1 − 300

137wn−2 + 200
137wn−3 − 75

137wn−4 + 12
137wn−5

+ 300
137∆tFn−1 − 600

137∆tFn−2 + 600
137∆tFn−3 − 300

137∆tFn−4 + 60
137∆tFn−5 .

(3.6)

The nonlinear time-stepping restriction of eBDF5 is ∆t ≤ 0.0867∆tFE so TVB0(5,5)
gives a 335% improvement in allowable (stable) step size over this extrapolated BDF
scheme. The linear stability of the scheme is also favourable when compared against
eBDF5; see Figure 3.2. However, we know the scheme cannot include the imaginary
axis near the origin since it is impossible for any five-step, fifth-order scheme to
do so [8]. On the other hand, it is seen that the boundary of the stability region
stays very close to a segment of the imaginary axis and the corresponding maximal
amplification factors on the imaginary axis are very close to 1. Because optimizations
using k = 6, 7 gave similar time-stepping restrictions (the CLM-values were 0.379 and
0.395, respectively) and did not produce a stricter linear stability near the origin we
focus our attention on the five-step scheme, TVB0(5,5).

Table 3.4

The coefficients of the numerically optimal five-step, fifth-order linear multistep scheme.

TVB0(5,5) ai bi CLM

i = 1 3.308891758551210 1.747442076919292 0.377052834833475
i = 2 -4.653490937946655 -4.630745565661800
i = 3 3.571762873789854 5.086056171401077
i = 4 -1.504199914126327 -2.691494591660196
i = 5 0.277036219731918 0.574321855183372

3.6. Sixth-Order Schemes.

3.6.1. Six-Step Schemes. The results for the sixth-order extrapolated BDF
method (eBDF6) are less favourable than for lower-order eBDF schemes.

Theorem 3.1. For the eBDF6 scheme no positive CLM value in (3.3) exists.
Proof. To show that we cannot have CLM > 0, note that the first step of the

reformulation (3.1) for eBDF6 will give

wn =
(360

147−θ
)
wn−1+ 360

147∆tFn−1+
(360

147θ− 15
2

)
wn−2+

(360
147θ− 720

147

)
∆tFn−2+· · ·

with θ = θ1. It is impossible for both
(

360
147 − θ

)
and

(
360
147θ − 720

147

)
to be positive; hence

the scheme does not possess a positive threshold value CLM.
Rewriting the general class of six-step methods of order six, using additional steps,

we were unable to find extended schemes that allow for monotonicity with arbitrary
starting values. Taking twenty-five distinct θ-values and θj = θ∗ for all j ≥ j∗ = 25
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Fig. 3.2. Stability regions for the eBDF5 and TVB0(5,5) schemes (left plot) and the eBDF6
and TVB0(7,6) schemes (right plot). The TVB(6,6) region is not plotted since it closely agrees with
the TVB0(7,6) region.

we found that CLM increases as θ∗ ∈ [0, 1) increases. Based on a variety of numerical
tests, it was found that the choice θ∗ = 0.75 gives a relatively large CLM = 0.328 and
moderate error constant, while adequately minimizing the possibility of oscillations
arising from the startup procedures. See Table 3.5 for the coefficients of this scheme
and Figure 3.2 for the linear stability region. Similar to the fifth-order case, the
stability region of the TVB(6,6) scheme does not contain a segment of the imaginary
axis near the origin, but its boundary is for a large part very close to the imaginary
axis.

Table 3.5

The coefficients of the numerically optimal six-step, sixth-order linear multistep scheme.

TVB(6,6) ai bi CLM

i = 1 4.113382628475685 1.825457674048542 0.328491643359885
i = 2 -7.345730559324184 -6.414174588309508
i = 3 7.393648314992094 9.591671249204753
i = 4 -4.455158576186636 -7.583521888026967
i = 5 1.523638279938299 3.147082225022105
i = 6 -0.229780087895259 -0.544771649561925

3.6.2. Seven-Step Schemes. If we consider seven-step schemes, then it is pos-
sible to find schemes of order six that can be rewritten as a scheme with larger step
number and non-negative coefficients, giving monotonicity for arbitrary starting val-
ues.

Optimization of CLM over the class of seven-step, sixth-order linear multistep
schemes with twenty-five nonzero θ-values yields the TVB0(7,6) scheme presented in
Table 3.6. This scheme satisfies the boundedness property (1.6) with M ≥ 1 provided
∆t ≤ 0.309∆tFE. Since θ26 = 0, this scheme can be rewritten as an 32-step scheme
with non-negative coefficients. The stability region of TVB0(7,6) essentially coincides
with TVB(6,6) and does not contain a segment of the imaginary axis near the origin.
The stability region is displayed in Figure 3.2.

4. Numerical Illustrations. In this section, we examine the numerical be-
haviour of our new TVD and TVB linear multistep methods and compare with
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Table 3.6

The coefficients of the numerically optimal seven-step, sixth-order linear multistep scheme.

TVB0(7,6) ai bi CLM

i = 1 4.611532883607545 1.861015137800509 0.309253747416378
i = 2 -9.451321766751356 -7.511070082780818
i = 3 11.294453144657830 13.266237470507250
i = 4 -8.568419982721693 -13.059962115416270
i = 5 4.138363606421970 7.520216192319446
i = 6 -1.174917528050790 -2.389309837695513
i = 7 0.150309642836489 0.325922452117498

more classical TVD schemes, mentioned in § 2, and some optimal TVD Runge-Kutta
schemes, denoted as RK(s, p) where s is the number of stages and p the order. Our
focus here is to illustrate the monotonicity and stability behaviour of the schemes
rather than to provide a detailed accuracy study. If a study of the temporal accuracy
was desired it would be more appropriate to consider systems with smooth solutions
where the spatial discretization errors are dominated by the time stepping errors.

4.1. Linear Monotonicity Test. As a first, simple test we consider the maxi-
mum principle for the linear advection problem

ut + ux = 0

on spatial interval 0 ≤ x ≤ 1, with inflow boundary condition u(0, t) = 0 and initial
step function u(x, 0) = 1 on (0, 1/2] and 0 elsewhere. The semi-discrete system in R

m

is obtained by first-order upwind discretization in space with constant mesh width
∆x = 1/m. For the test m = 100 is taken.

The PDE solution satisfies the maximum principle 0 ≤ u(x, t) ≤ 1 and the same
holds for the semi-discrete system. This property will be examined for the fully
discrete solutions. The maximum principle could be replaced equivalently by max-
norm monotonicity by considering an equivalent advection problem with v(x, t) =
2u(x, t) − 1.

Starting values for the multistep schemes were computed by the forward Euler
method (FE) and the classical fourth-order Runge-Kutta method (RK4). Note that
for this simple linear problem the classical Runge-Kutta method is monotone. For
actual applications, a natural choice would be to use a monotone starting scheme of
order p−1 or p for a multistep scheme of order p, in combination with a suitable spatial
discretization. For this monotonicity test, using the first-order upwind discretization,
only the choices FE and RK4 were considered for convenience.

Subsequently, the largest Courant numbers ν = ∆t/∆x ∈ {0.01, 0.02, . . .} were
determined such that

−ε ≤ wn ≤ 1 + ε for n = 1, 2, . . . , 1000 ,

with inequalities for the vectors wn ∈ R
m component-wise. Of course, if ε = 0 this is a

genuine maximum principle. In exact arithmetic we could take ε = 0 for a monotone
scheme with rational coefficients. To cater for round-off and the fact that our schemes
are not genuinely monotone we took as standard value ε = 10−15. However for the
TVB(4,4) scheme ε-values larger than this default value were needed; those results
were obtained with ε = 10−12. In the following tables the maximal Courant numbers
are listed for the most interesting optimal schemes. For comparison, also the entries
for the eBDF-schemes are presented.
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Table 4.1

Linear monotonicity test: Maximal Courant numbers for the optimal k-step methods, k = 3, 4.
The results for TVB(4,4) were obtained with ε = 10−12; this is indicated by the entries(∗).

eBDF3 TVD+(3,2) TVB0(3,3) eBDF4 TVD+(4,3) TVB(4,4)

CLM 0.39 0.50 0.53 0.22 0.33 0.45

Exper.(FE) 0.41 0.50 0.53 0.26 0.34 0.46(∗)

Exper.(RK4) 0.43 0.50 0.53 0.30 0.35 0.51(∗)

Table 4.2

Linear monotonicity test: Maximal Courant numbers for the optimal k-step methods, k = 5, 6, 7.

eBDF5 TVB0(5,5) TVB0(5,4) eBDF6 TVB(6,6) TVB0(7,6)

CLM 0.08 0.37 0.45 0.00 0.32 0.30
Exper.(FE) 0.17 0.37 0.47 – 0.32 0.32
Exper.(RK4) 0.21 0.38 0.50 – 0.37 0.34

4.2. Nonlinear Test : Burgers’ Equation. To further investigate the behav-
ior of our time-stepping schemes, we consider one of Laney’s five test problems [11],
the evolution of a square wave by Burgers’ equation

∂u

∂t
+

∂

∂x

(1
2u2

)
= 0

on the spatial interval −1 ≤ x ≤ 1 with periodic boundary conditions. In this test
case, the discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3 ,

−1 for 1/3 < |x| ≤ 1 ,

are evolved to time t = 0.3 using a constant grid spacing of ∆x = 1/320. In this
example, the jump at at x = 1/3 remains a steady shock and the jump at x = −1/3
creates a simple centered expansion fan between c1 = −1/3 − t and c2 = −1/3 + t.
Until the shock and expansion fan intersect, at time t = 2/3, the exact solution is [11]

u(x, t) =




−1 + 2 x−c1

c2−c1
for c1 < x < c2 ,

1 for c2 < x < 1/3 ,

−1 elsewhere.

The example is particularly interesting because it illustrates the behaviors near sonic
points (u = 0) that correspond to an expansion fan and a compressive shock.

Similar to [20, 15], we choose the finite-difference Shu-Osher schemes (ENO-type)
for spatial discretization of the equation. These discretizations are derived using flux
reconstruction and have a variety of desirable properties. For example, they naturally
extend to an arbitrary order of accuracy in space, and they are independent of the
time discretization, thus allowing experimentation with different time discretization
methods. Moreover, educational codes are also freely available [11, 12], an attribute
which is desirable for standardizing numerical studies. In our simulations we take
the spatial order of accuracy in ∆x to be the same as the temporal order of accu-
racy p. Flux splitting is taken as in [20, 15]. For further details on the underlying
discretization as well as a code for the spatial discretization, see [11, 12].
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4.2.1. Third-Order Experiments. To quantify the accuracy of the computed
solution, we use the logarithm of the discrete L1 errors at time tn = 0.3

log10

( 1
m

m∑
i=1

|wn
i − u(xi, tn)|

)
,

where m is the number of grid points and wn
i is the fully discrete solution in grid

point xi at time tn. A plot of the error for a selection of third-order methods is given
in Figure 4.1. To ensure a fair comparison for methods with a different number of
function evaluations, the error is plotted as a function of the effective CFL number,
∆t/(s∆x) for a method taking s function evaluations per step, rather than the CFL
number itself. This implies that for a particular plot, the total number of function
evaluations at a particular abscissa value will be the same for each scheme. We
started the computations with an effective CFL number of 0.02 and continued until
the numerical scheme produced overflow (complete instability).

In this test example, we compare a number of three-step, third-order linear mul-
tistep schemes and the optimal three-stage, third-order TVD Runge-Kutta method
RK(3,3) [9, 20]. All the multistep schemes are started using the RK(3,3) scheme.
Of the schemes considered, the best performance is given by the new TVB0(3,3)
scheme and the poorest performance is given by the classical TVD multistep scheme
TVD±(3,3). In particular, the TVB0(3,3) scheme allows a 284% increase in the effec-
tive time step over TVD±(3,3) and 22% increase over the popular RK(3,3) scheme.
The extrapolated BDF scheme also performs well, providing a 15% increase in the
effective timestep over RK(3,3).

The oscillations in the error plots suggest that oscillations in the solutions arise for
large enough time steps (and before the methods produce overflow). An examination
of the total variation (TV) of the solutions verifies this conjecture and also leads us
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Fig. 4.1. Burgers’ equation: L1 errors as a function of the effective CFL number for selected
third-order schemes.



14 S.J. RUUTH, W. HUNDSDORFER

to recommend the new TVB0(3,3) scheme. In particular, we remark that the TV-
increase for TVB0(3,3) remains very small (less than 10−12) up to an effective CFL
number of 0.375. This represents an improvement in the time step-size of 213%, 25%,
and 23% over the TVD±(3,3), eBDF3, and RK(3,3) schemes, respectively.

Numerical experiments for the TVD+(4,3) were also carried out. Use of this
scheme is not generally recommended, however, because it requires more steps than
the other multistep schemes under consideration and because it was found to develop
oscillations and complete instability for smaller effective CFL numbers than any of
RK(3,3), eBDF3 and TVB0(3,3).

4.2.2. Fourth-Order Experiments. For a selection of fourth-order schemes
the L1 errors as a function of the effective CFL number are plotted in Figure 4.2.
All the multistep schemes are started using the optimal TVD RK(5,4) scheme [9, 20].
We remark that the TVB(4,4) scheme gave similar results to TVB0(5,4), so its plot
is omitted for clarity. The TVD+(5,4) scheme was also tested, but its plot is not
included since its stability is not competitive with TVD±(4,4).

Of the schemes considered here, the best performance is given by the new scheme
TVB0(5,4) and the weakest performance is given by the classical TVD multistep
scheme TVD±(4,4). More specifically, the TVB0(5,4) scheme allows a 600% increase
in the effective time step over TVD±(4,4), a 13% increase over the RK(5,4) scheme,
and a 2% increase over TVB(4,4). The extrapolated BDF scheme is not competitive
with either RK(5,4) or TVB0(5,4), although its performance is much better than
TVD±(4,4).

Our TVB0(5,4) and TVB(4,4) results develop oscillations, but these remain small
(i.e., the final TV-increase is always less than 5 × 10−9 for TVB(4,4) and 2 × 10−10

for TVB0(5,4)) provided the effective CFL number is less than 0.34. The RK(5,4)
scheme gives a negligible increase in the total variation (i.e., less than 3×10−15) until
an effective CFL number of 0.325, at which point it also exceeds 10−8.

In most applications the small, bounded oscillations produced by TVB0(5,4) and
TVB(4,4) should be quite acceptable. However, fifth- and higher-order schemes pro-
duce larger oscillations. The source of these oscillations receives some attention in the
next subsection.

4.2.3. Higher-Order Experiments. The L1 errors as a function of the ef-
fective CFL number are plotted for a selection of fifth-order schemes in Figure 4.3.
Our tests include the new TVB0(5,5) scheme and the eBDF5 scheme. As a basis
for comparison, we also include a recent nine-stage, fifth-order TVD Runge-Kutta
method [15] that utilizes both upwind- and downwind- biased operators. For theoret-
ical purposes, results for the twenty-five step TVD extension of the TVB0(5,5) scheme
are also included. Since fifth-order TVD Runge-Kutta methods must use downwind-
biased discretizations [9, 16], we have taken a fourth-order TVD Runge-Kutta scheme,
RK(5,4), as the startup procedure for all fifth-order multistep methods.

In this test we find a complete loss of stability for TVB0(5,5) at an effective CFL
number of about 0.35, which about 15% larger than RK(9,5) and 56% larger than
eBDF5.

Surprisingly, the errors for TVB0(5,5) are noticeably larger than for the extended
scheme TVDext(25, 5), in particular for small CFL numbers. This is because the
TVB0(5,5) scheme, in combination with the fifth-order ENO discretization, generates
some oscillations (the TV-increase averages 0.015 for effective CFL numbers less than
0.335) whereas the TVDext(25, 5) scheme does not (the TV-increase there always
remains less than 3 × 10−15 for effective CFL numbers less than 0.335). We are
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Fig. 4.2. Burgers’ equation: L1 errors as a function of the effective CFL number for selected
fourth-order schemes.

investigating the source of this numerical behaviour. As a part of this work, we are
considering improved startup procedures and methods which combine good linear and
nonlinear stability. Our hope is to derive simple, efficient, high-order schemes which
more strictly preserve the total-variation-diminishing property.

Tests for sixth-order schemes on this Burgers problem were also carried out. The
overall conclusions were quite similar to those for fifth-order: the new TVB0(7,6) and
TVB(6,6) gave the largest steps before producing overflow. However, in combination
with sixth-order ENO discretizations, both schemes produced oscillations. Also the
extension of TVB0(7,6) to a TVD scheme with step number thirty-two showed quite
large errors (larger than for the lower-order results in the previous figures) so here
it seems that the combination of very high-order time stepping with the ENO dis-
cretizations is not entirely successful. Modifications and other spatial discretizations
are currently under study.

5. Summary and Conclusions. In this paper new multistep methods are con-
structed that satisfy the TVB property with optimal step size restrictions. For several
cases this actually leads to methods that are TVD in an extended sense: there is an
equivalent multistep method, with larger step number, that is TVD with arbitrary
starting values. In general, the size of the constant M in (1.6) will depend on the
starting procedure.

Our theoretical and numerical studies show the superiority of these new methods
over the classical TVD multistep schemes with non-negative coefficients of [18, 13, 2].
The new multistep methods are also more efficient in our tests than the optimal TVD
(or SSP) Runge-Kutta schemes of [9, 15, 20].

In particular the third- and fourth-order schemes TVB0(3,3), TVB(4,4) and
TVB0(5,4) gave very clear and good results. For these methods a substantial gain
may be expected in situations where both monotonicity and high accuracy are sought.
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Fig. 4.3. Burgers’ equation: L1 errors as a function of the effective CFL number for selected
fifth-order schemes.

For fifth- and sixth- order, theoretically optimal schemes were derived that per-
formed very well on a linear monotonicity test. We also found that the combination
of the TVB0(5,5) with a fifth-order ENO spatial discretization gave good stability
on a Burgers’ equation example, but with some visible oscillations. Since sixth-order
schemes showed this behaviour in an even more pronounced way, we continue to study
fifth- and sixth- order combinations of spatial discretization and time stepping that
are appropriate for hyperbolic conservation laws.

For many applications an order of accuracy up to four will be sufficient, and then
the new TVB multistep methods are recommended in combination with the ENO
discretizations. These schemes produce accurate results that are essentially free of
oscillations.

Appendix A. Tables of optimal monotone schemes for arbitrary starting
values. In this appendix optimal monotone schemes with non-negative coefficients
are listed for number of steps up to six and order three and four. Also optimal schemes
with non-negative aj and some bj < 0 are listed for number of steps up to six and
order up to six, complementing and improving some of the entries in [2]. See § 2 for
a discussion.

Appendix B. The proof of Theorem 2.1. The conditions on the coefficients
for having order 2 are

k−1∑
j=0

ak−j = 1 and
k−1∑
j=0

(
jqak−j + q jq−1bk−j

)
= kq , q = 1, 2 .

Let σj = sgn(bj) and cj = aj − K|bj | with K = K̃LM. Note that all cj ≥ 0. In terms
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of these coefficients, the order conditions can also be written as

k−1∑
j=0

(
ck−j + K|bk−j |

)
= 1 ,

k−1∑
j=0

(
j ck−j + (Kj + σk−j)|bk−j |

)
= k ,

k−1∑
j=0

(
j2ck−j + (Kj2 + 2σk−jj)|bk−j |)

)
= k2 .

By taking a linear combination of these relations, it is easily seen that

k−1∑
j=0

(
k +(k− 1)j − j2

)
ck−j = −

k−1∑
j=0

(
K(k +(k− 1)j − j2)−σk−j(1−k +2j)

) |bk−j | .

All terms in the sum of the left-hand side are non-negative. Hence, at least one of the
terms in the sum of the right-hand side has to be non-positive. Since σk−j = ±1, it
follows that

K ≤
∣∣∣∣ 1 − k + 2j

k + (k − 1)j − j2

∣∣∣∣
for some index 0 ≤ j ≤ k − 1. The maximum value is (k − 1)/k, obtained with
j = 0, k − 1.
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