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1. Introduction

The research interest in modeling and computing compressible, two-fluid flows is long-
standing, as is reflected from the 25-year old review article by Stewart and Wendroff [30],
which already contains a wealth of literature on the topic.

These days, to model two-fluid flows, seven-equation models are the most complete.
Baer and Nunziato’s [5] is the best known model in this class. For both fluids, it contains
equations for the physical quantities mass, momentum and energy, already implying six
equations. The seventh equation describes the topology of the flow, e.g., the location and
shape of the two-fluid interface. A recent seven-equation model, in which all equations are
based on physical balance laws, has been proposed by Romenski et al. [24]. Important
modeling and numerical work on seven-equation models has been done by Saurel and
Abgrall [25].

Besides completeness, a seven-equation model also implies complexity, both physically
and numerically. Since its general physics is not always necessary, simpler and more
compact models have been proposed and successfully applied. An elegant hierarchy of
reduced models exists, with the numbers of equations ranging from six to three only.
Examples of the latter are the homogeneous equilibrium model [6] and the barotropic
model described in [32]. For a clear and compact overview over existing reduced two-fluid
flow models, we refer to [8].

An important class of reduced models is formed by the five-equation models, in which
velocity equilibrium and pressure equilibrium are assumed. Both equilibria are valid
across two-fluid interfaces modelled as a contact discontinuity, a practically relevant
case. The archetype five-equation model is that of Kapila et al. [13]. It has already found
many applications, a non-exhaustive list of excellent references is [17, 4, 19, 3, 27, 22].
(Recently, Saurel et al. have even derived a six-equation model from a five-equation one
[28].) Kapila’s five-equation model contains four equations for physical quantities: two
for mass (e.g., bulk mass and mass of one of the two fluids), one for bulk momentum, and
one for bulk energy. Like the Baer-Nunziato model, it is also completed by an equation
for a non-physical quantity describing the flow topology, in the Kapila model, a non-
homogeneous convection equation for the volume fraction of one of the two fluids.

In the present paper, we derive a five-equation model for physical quantities only; for
(i) bulk mass, (ii) bulk momentum, (iii) bulk energy, (iv) mass of one of the two fluids,
and (v) energy of the same fluid. As in the barotropic, three-equation two-fluid flow
model presented in [32], also here, no equation is introduced to describe the topology of
the two-fluid interface. The fifth equation mentioned above, the energy equation for one
of the two fluids, is novel. It contains source terms that describe the exchange of energy
between the two fluids. The first four equations are conservation laws. The fifth equation
is an exchange law; it is conservation-law-like though. As a consequence, the entire system
allows for a rather straightforward derivation and application of finite-volume methods
and corresponding numerical tools, such as approximate Riemann solvers. An Osher-
type approximate Riemann solver will be derived for our five-equation model. For the
numerical treatment of the energy-exchange terms, use will also be made of the just
derived approximate Riemann solver. Besides straightforward numerics, another bonus of
the physical five-equation model is the correctness of its numerical solutions, particularly
in the following sense. Last one and a half decade, much research effort has been devoted
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to understanding and avoiding zeroth-order pressure errors (oscillations) at and near
two-fluid interfaces [14, 1, 12, 7, 26, 2, 16]. Our impression is that these errors are (often)
due to the use of a non-physical equation to describe the topology of the flow, i.e., an
equation which is not derived from a physical law. The numerical solutions of the current
physical model appear to be pressure-oscillation-free near two-fluid interfaces, without
any precaution.

The contents of the paper is the following. In section 2, the physical five-equation
model is derived. Most attention is for the derivation and physical interpretation of the
energy-exchange terms. In section 3, the numerical method for the five-equation model is
presented, with – also here – most attention for the energy-exchange terms. In section 4,
numerical results are presented, for three shock-tube problems and two standard shock-
bubble-interaction problems. Section 5 concludes the paper.

2. Derivation of five-equation model

2.1. Assumptions

Only fluids, and not phases, are considered. The two fluids are assumed to be immiscible.
They may exchange momentum by exerting forces on each other, and exchange energy
due to work. The amount of momentum and energy exchange depends on the relaxation
speed of pressure and velocity. An important assumption is instantaneous relaxation of
the pressure and the velocity vector, i.e.,

p1 = p2 ≡ p, (1a)

V1 = V2 ≡ V, (1b)

where the subscripts refer to the two fluids. Assumption (1) prescribes that the pressures
and velocity vectors on both sides of the two-fluid interface are equal. It is the known step
to reduce a seven-equation model to a five-equation model, see e.g. [1, 25, 13, 4, 19, 8].
Finally, viscosity and heat conduction are neglected. Since this implies that the two fluids
do not exchange heat, in general, there will be no thermal equilibrium.

2.2. Conservation and exchange laws

Consider a control volume V , which is fixed in space and time. For this volume three
physical principles are known: conservation of bulk mass, bulk momentum and bulk
energy. In integral form this is written as

∂

∂t

∫
V

ρdV +
∮
S

ρV · ndS = 0, (2)

∂

∂t

∫
V

ρVdV +
∮
S

ρV⊗V · ndS +
∮
S

p ndS = 0, (3)

∂

∂t

∫
V

ρEdV +
∮
S

ρEV · ndS +
∮
S

pV · ndS = 0. (4)

Now take a closer look at the content of the control volume. There can be two fluids in
it. The pressure and velocity are equal over the two-fluid interface, but the density and
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total energy do not need to be so; in general ρ1 6= ρ2 and E1 6= E2. The quantities ρ and
E in equations (2) and (3) are the bulk density and bulk total energy.

For each fluid separately we can also write an equation for mass, momentum and
energy. The mass of each fluid is conserved. The conservation of, e.g., mass of fluid 1 can
be written as

∂

∂t

∫
V1(t)

ρ1dV1 +
∮
S1(t)

ρ1 (V −VS1) · ndS1 = 0, (5)

where the volume V1(t) and the surface S1(t) are unknown and may vary in time due to
a possible motion of the interface with velocity VS1 . The momentum equation of fluid
1 is not conservative; fluid 2 can exert a force on fluid 1 and vice versa. We denote the
net force per unit of volume exerted on fluid 1 by F. Since F is a result of both fluids, it
is integrated over the total volume V . Hence, the momentum equation of fluid 1 can be
written as

∂

∂t

∫
V1(t)

ρ1VdV1 +
∮
S1(t)

ρ1V⊗(V −VS1) · ndS1 +
∮
S1(t)

pndS1 =
∫
V

FdV. (6)

An expression for F in terms of the existing unknowns will be derived in section 2.3.
There it will also be shown that the resulting momentum equation of fluid 1 is a depen-
dent equation; it can be directly derived from bulk mass equation (2), bulk momentum
equation (3) and mass equation (5). The cause of this dependence is the assumption
that pressure and velocity are equal over two-fluid interfaces. This is in contrast with
the energy equation of fluid 1, which will be independent, because we do not assume
temperature equilibrium.

The force F also contributes to the energy equation of fluid 1 in the form of rate of
mechanical work performed per unit of volume:

ẆM = F ·V. (7)

Besides mechanical work, also thermodynamic work may be performed. The rate of ther-
modynamic work per unit of volume is denoted by ẆT. The energy equation of fluid 1
then becomes:
∂

∂t

∫
V1(t)

ρ1E1dV1+
∮
S1(t)

ρ1E1 (V −VS1)·ndS1+
∮
S1(t)

pV·ndS1 =
∫
V

(
ẆM + ẆT

)
dV.

(8)
Besides for F, and hence ẆM, in section 2.3, also for ẆT an expression in terms of
existing variables will be derived. The source term

∫
V

(
ẆM + ẆT

)
dV is the net rate

of work performed by fluid 2 on fluid 1. By applying the divergence theorem to the
surface integrals of equations (5), (6) and (8), the unknown integration parameter S1(t)
disappears, still leaving V1(t) as an unknown.

Several methods exist to find the interface location and thus V1(t). An important class
is formed by the level-set methods – see the archival paper [18] and the monographs
[20, 29] – which are interface-tracking methods. Interface tracking requires an extra
transport equation. Here we choose the interface-capturing approach. For this purpose,
the volume fraction of fluid 1,

α =
V1

V
, (9)

is introduced, to enable integration over the volume V instead of over V1(t), simplifying
equations (5) and (8) to:
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∂

∂t

∫
V

αρ1dV +
∫
V

∇ · αρ1VdV = 0, (10)

∂

∂t

∫
V

αρ1E1dV +
∫
V

∇ · αρ1E1VdV +
∫
V

∇ · αpVdV =
∫
V

(
ẆM + ẆT

)
dV. (11)

The same kind of equations can be derived for fluid 2, with 1− α the volume fraction of
fluid 2. By adding these equations for fluid 2 to equations (10) and (11), they must result
in the bulk equations (2) and (4), implying the following expressions for bulk density and
bulk total energy:

ρ = αρ1 + (1− α)ρ2, (12)
ρE = αρ1E1 + (1− α)ρ2E2, (13)

with the total energy for each fluid defined as

E1 = e1 +
1
2
V ·V, (14a)

E2 = e2 +
1
2
V ·V. (14b)

Through the equations of state, the internal energies e1 and e2 can be written as functions
of the density of the corresponding fluid and the pressure:

e1 = e1(ρ1, p), (15a)
e2 = e2(ρ2, p). (15b)

The bulk internal energy e is defined by

ρe = αρ1e1 + (1− α)ρ2e2. (16)

This consistently implies

E = e+
1
2
V ·V. (17)

As soon as the energy-exchange terms ẆM and ẆT are expressed in terms of already
introduced variables (in primitive form: p,V, ρ1, ρ2 and α), the system of equations is
closed. In differential form, the practical form for deriving the rate-of-work terms ẆM

and ẆT, the system reads:

∂ρ

∂t
+∇ · (ρV) = 0, (18a)

∂ (ρV)
∂t

+∇ · (ρV⊗V) +∇p = 0, (18b)

∂ (ρE)
∂t

+∇ · (ρEV) +∇ · (pV) = 0, (18c)

∂ (αρ1)
∂t

+∇ · (αρ1V) = 0, (18d)

∂ (αρ1E1)
∂t

+∇ · (αρ1E1V) +∇ · (αpV) = ẆM + ẆT. (18e)

These equations may be cast into the compact form

∂q
∂t

+∇ · F(q) = S(q). (19)
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2.3. Rate-of-work terms

The derivation of the energy-exchange terms is done for flow solutions for which first-
order spatial derivatives are assumed to exist.

2.3.1. Mechanical work
The rate of mechanical work ẆM is derived using velocity-equilibrium relation (1b). We
start by considering the momentum equation of fluid 1 in differential form:

∂ (αρ1V)
∂t

+∇ · (αρ1V⊗V) +∇ (αp) = F. (20)

Here it already appears that momentum equation (20) is a dependent equation, because
it does not give new time-derivative information; ∂(αρ1)

∂t is already described by equation
(18d), and ∂V

∂t by (18a) and (18b). The purpose of equation (20) is to derive an expression
for the force F.

By expanding (20) and substituting (18d), we get the primitive equation

DV
Dt

+
1
αρ1
∇(αp) =

1
αρ1

F. (21)

The similar can be done for bulk momentum equation (18b); expanding (18b) and sub-
stituting (18a), we find:

DV
Dt

+
1
ρ
∇p = 0. (22)

Eliminating DV
Dt from (21) and (22), we get

F = ∇(αp)− αρ1

ρ
∇p = p∇α+ (α− β)∇p, (23)

where an additional symbol has been introduced, β, the mass fraction of fluid 1,

β =
αρ1

ρ
. (24)

Hence, the rate of energy exchange due to mechanical work can be expressed in terms of
the existing variables as

ẆM = pV · ∇α+ (α− β) V · ∇p. (25)

The two force terms in the righthand side of (23) can still be interpreted.
The term p∇α is best explained by making a comparison with quasi-1D channel-flow,

figure 1a. For a channel flow with variable area, it can be written∮
S

p ndS = p1A1 − p0A0 −
∫ 1

0

pdA, (26)

with S the closed, red contour. In differential form this becomes

p ndS = d(pA)− pdA. (27)

Analogously, in our two-fluid model, figure 1b, we have the forces ∇(αp) and p∇α. The
former represents the net pressure force at the two vertical faces, at x and x + dx. The
latter is the pressure force acting on the upper (in this example curvilinear) two-fluid
interface in between x and x+ dx.
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A0 p0 A1 p1

x x+dx

fluid 2

fluid 1a0 p0

x x+dx

a1 p1

(a) (b)

Fig. 1. Similarity between quasi-1D channel flow (a) and the two-fluid flow model (b).

To interpret the term (α − β)∇p, consider for example an expansion. Then we know
that the pressure drops (dp < 0) and the velocity rises (dV > 0). Newton’s second law
of motion tells that the amount of acceleration of each of the two fluids is inversely
proportional to their densities. So when the density of fluid 1 is for instance lower than
that of fluid 2, β < α, then the velocity of fluid 1 tends to become higher than that of
fluid 2. The force (α − β)∇p, exerted by fluid 2 on fluid 1, prevents this. It is the force
that ensures velocity equilibrium.

2.3.2. Thermodynamic work
For the derivation of the rate of thermodynamic work ẆT, and also for further analysis
purposes, first some other primitive equations are derived.

2.3.2.1. More primitive equations. With equations (17), (18a) and (22), equation (18c)
for the bulk energy is rewritten as

De
Dt

+
p

ρ
∇ ·V = 0. (28)

For the densities ρ1 and ρ2, the following two primitive equations hold:
Dρ1

Dt
+
ρ1

α

Dα
Dt

+ ρ1∇ ·V = 0, (29a)

Dρ2

Dt
− ρ2

1− α
Dα
Dt

+ ρ2∇ ·V = 0. (29b)

And equation (18a), (18d) and (24) result in the primitive equation for the mass fraction:
Dβ
Dt

= 0. (30)

Hence, the mass fraction is convected with the flow. This is obvious; a fluid blob (possibly
containing both fluids) remains to contain the same fluid particles over time. Finally, with
equations (14a), (18d), (22), (24) and (25), from (18e) the following primitive equation
is derived for the internal energy e1:

De1

Dt
+

p

ρ1
∇ ·V =

ẆT

αρ1
. (31a)

Similarly, for fluid 2 we find:

De2

Dt
+

p

ρ2
∇ ·V = − ẆT

(1− α)ρ2
. (31b)
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2.3.2.2. Isentropic compressibility relations. Here, non-adiabatic processes, like exter-
nal heating, are not considered, as are viscosity, heat conduction and discontinuities.
Hence, the two fluids flow isentropicly;

Ds1

Dt
= 0, (32a)

Ds2

Dt
= 0. (32b)

Equation (32) allows us to also derive primitive equations for the pressure and volume
fraction. The pressure can be expressed in two independent thermodynamic variables. At
first the pressure is expressed as a function of the entropy and the density of both fluids:
p = p(s1, ρ1), p = p(s2, ρ2). Taking the total derivative of the pressure and substituting
equation (32), we get

Dp
Dt

=
(
∂p

∂ρ1

)
s1

Dρ1

Dt
= c21

Dρ1

Dt
, (33a)

Dp
Dt

=
(
∂p

∂ρ2

)
s2

Dρ2

Dt
= c22

Dρ2

Dt
, (33b)

with c1 and c2 the speeds of sound of both fluids. With (29a) and (29b), respectively,
(33a) and (33b) can be rewritten as:

Dp
Dt

+ ρ1c
2
1

(
1
α

Dα
Dt

+∇ ·V
)

= 0, (34a)

Dp
Dt

+ ρ2c
2
2

( −1
1− α

Dα
Dt

+∇ ·V
)

= 0. (34b)

By eliminating the pressure derivatives, the primitive equation for the volume fraction is
found:

Dα
Dt

+ ϕ∇ ·V = 0, ϕ = α (1− α)
1

ρ2c22
− 1

ρ1c21
α
ρ1c21

+ 1−α
ρ2c22

. (35)

Let us take a closer look at equation (35). We follow a fluid blob containing both fluids. To
what extent the volume of each separate fluid in the blob will change under compression
or expansion depends on the compressibilities of the fluids. The terms 1

ρ1c21
and 1

ρ2c22
are

the isentropic compressibilities, τ1 and τ2, of both fluids:

τ1 =
1
ρ1

(
∂ρ1

∂p

)
s1

=
1

ρ1c21
, (36a)

τ2 =
1
ρ2

(
∂ρ2

∂p

)
s2

=
1

ρ2c22
. (36b)

Defining the bulk isentropic compressibility as

τ = ατ1 + (1− α)τ2, (37)

(35) can be compactly written as

Dα
Dt

+ α(1− α)
τ2 − τ1
τ
∇ ·V = 0. (38)
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Equation (38) shows that a difference in compressibility of the two fluids (τ2 − τ1 6=
0), under compression or expansion (∇ · V 6= 0), causes a change in volume fraction.
As an example, suppose the flow element expands, then ∇ · V > 0. If fluid 1 is more
compressible than fluid 2, so τ1 > τ2, then the volume fraction of fluid 1 must increase,
Dα
Dt > 0. Pressure equilibrium under compression or expansion is ensured by a change in
volume fraction.

Finally, as the primitive equation for the pressure it follows by elimination of Dα
Dt from

(34):
Dp
Dt

+
1
τ
∇ ·V =

Dp
Dt

+ ρc2∇ ·V = 0, (39)

where we have written the bulk compressibility τ in terms of the bulk density ρ and a
bulk speed of sound c. With (36) and (37) it follows that c is implicitly defined through
the harmonic mean

1
ρc2

=
α

ρ1c21
+

1− α
ρ2c22

. (40)

2.3.2.3. Thermodynamic work relations. We now choose to express the pressure in
terms of the density and internal energy of both fluids: p = p(e1, ρ1), p = p(e2, ρ2). It
holds:

Dp
Dt

(e1, ρ1) =
Dp
Dt

(e2, ρ2). (41)

The pressure derivatives can be expanded into the thermodynamic variables:(
∂p

∂e1

)
ρ1

De1

Dt
+
(
∂p

∂ρ1

)
e1

Dρ1

Dt
=
(
∂p

∂e2

)
ρ2

De2

Dt
+
(
∂p

∂ρ2

)
e2

Dρ2

Dt
. (42)

With equations (29) and (31), this can be rewritten as

ẆT

(
1
αρ1

(
∂p

∂e1

)
ρ1

+
1

(1− α)ρ2

(
∂p

∂e2

)
ρ2

)
=

Dα
Dt

(
ρ1

α

(
∂p

∂ρ1

)
e1

+
ρ2

1− α

(
∂p

∂ρ2

)
e2

)
+(

ρ1

(
∂p

∂ρ1

)
e1

+
p

ρ1

(
∂p

∂e1

)
ρ1

− ρ2

(
∂p

∂ρ2

)
e2

− p

ρ2

(
∂p

∂e2

)
ρ2

)
∇ ·V.

(43)

Again we make use of the speed of sound of each fluid, but now with the current ther-
modynamic variables used in the equations of state,

c21 =
(
∂p

∂ρ1

)
s1

=
(
∂p

∂ρ1

)
e1

+
p

ρ2
1

(
∂p

∂e1

)
ρ1

, (44a)

c22 =
(
∂p

∂ρ2

)
s2

=
(
∂p

∂ρ2

)
e2

+
p

ρ2
2

(
∂p

∂e2

)
ρ2

. (44b)

From (43), with (44) and primitive equation (35) for α, it then formally follows

ẆT = −pDα
Dt

. (45)

The term −pDα
Dt clearly is a rate of thermodynamic work term. It is the rate of work per-

formed on the two-fluid interface, which causes the interface to move such that pressure
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equilibrium under compression or expansion is ensured. With equation (38), expression
(45) for ẆT can be rewritten in terms of spatial derivatives only:

ẆT = pα(1− α)
τ2 − τ1
τ
∇ ·V. (46)

2.3.3. Complete rate-of-work term and remarks about discontinuities
Addition of equations (25) and (46) finally gives us the total rate of energy exchange per
unit volume between fluid 2 and fluid 1, expressed in existing variables:

Ẇ = ẆM + ẆT = pV · ∇α+ (α− β)V · ∇p+ pα(1− α)
τ2 − τ1
τ
∇ ·V. (47)

The model derived so far is not valid across discontinuities, where locally the derivatives
of the state variables do not exist. To allow discontinuities in the flow, jump conditions
have to be derived that describe the behavior of the two-fluid flow over a discontinuity.
This is not as straightforward as it is in single-fluid Euler flow. For the present five-
equation model, for a simplified case, jump conditions are derived in [34].

Our numerical treatment of the rate-of-work terms, to be presented in the next section,
does not need jump conditions though. It makes a neat, smooth approximation of jumps.
Anticipating to the numerical results for two-fluid shock-tube problems with known exact
solutions, we can already state that this smooth approximation of discontinuities in
evaluating the work terms, gives very good results.

3. Numerical method

3.1. Equations

We consider the equations in integral form, i.e., (19) is rewritten as:

∂

∂t

∫
Ω

qdΩ +
∮

Γ

F · ndΓ =
∫

Ω

SdΩ, (48a)

with, in 3D, writing the velocity vector in its three components, V = (u, v, w):

q =



ρ

ρu

ρv

ρw

ρE

αρ1

αρ1E1


, (48b)

F(q) = (f(q),g(q),h(q)) ,
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f =



ρu

ρu2 + p

ρuv

ρuw

ρu

(
E +

p

ρ

)
αρ1u

αρ1u

(
E1 +

p

ρ1

)



, g =



ρv

ρvu

ρv2 + p

ρvw

ρv

(
E +

p

ρ

)
αρ1v

αρ1v

(
E1 +

p

ρ1

)



, h =



ρw

ρwu

ρwv

ρw2 + p

ρw

(
E +

p

ρ

)
αρ1w

αρ1w

(
E1 +

p

ρ1

)



,

(48c)

S(q) =



0

0

0

0

0

0

Ẇ


=



0

0

0

0

0

0

pV · ∇α+ (α− β)V · ∇p+ pα(1− α)
τ2 − τ1
τ
∇ ·V


. (48d)

In our numerical method, Ω is a cell-centered finite volume, fixed in space, with contour Γ
and unit normal n = (nx, ny, nz) on Γ. We proceed by describing the numerical treatment
of the lefthand side of this equation, in section 3.2, and next the righthand side, in section
3.3.

3.2. Flux evaluation and time integration

The lefthand side of (48a) is treated with well-proven numerical methods. For the flux
evaluation an Osher-type approximate Riemann solver [21] is constructed, in the so-called
P(hysical) variant [10]. The Riemann solver gets limited higher-order accurate left and
right cell-face states as input (MUSCL approach). The limiter applied is the one of the
second author [15]. It corresponds to the maximal possible extent with Van Leer’s κ = 1

3
scheme [33], within Sweby’s TVD domain [31]. Its accuracy properties are known to be
good [35].

3.2.1. Flux evaluation
The system of equations is fully hyperbolic. For the 1D case, the wave speeds are:

λ1 = u− c, λ2,3,4 = u, λ5 = u+ c. (49)

A finite volume containing both fluids, has only one speed of sound, the bulk speed of
sound. In the seven-equation model of Baer and Nunziato [5], two different speeds of
sound may occur in a single finite volume.
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The Riemann invariants ψk of the system of equations are prescribed by the following
set of differential equations:

dψ1 = du− dp
ρc
, dψ2 = dp− c2dρ, dψ3 = dβ,

dψ4 = ρdα− ϕdρ, dψ5 = du+
dp
ρc
.

(50)

Three of the five equations, those for ψ1, ψ2 and ψ5, also occur in the single-fluid Euler
model. The equations for ψ3 and ψ4 contain the fraction variables that are specific for this
two-fluid model. The Riemann invariants ψ3 and ψ4 show again that the mass fraction
is convected with the flow, whereas the volume fraction is not. Along the wave path in
solution space, with the subpaths in P-variant ordering [10], the Riemann invariants are
distributed as shown in figure 2.

l1k=2,3,4,5

y = constantk

y
 k=1,5

k

l2,3,4

k=1,2,3,4

y = constantk

l5

= constant

Fig. 2. Wave path in solution space, for 1D physical space, in P-variant ordering, with corresponding
Riemann-invariant ordering.

Unlike the Riemann invariants of, e.g., the single-fluid, perfect-gas Euler equations, it is
not possible to write explicit expressions for the current Riemann invariants ψk, along
all three subpaths of the wavepath, not even for perfect gases. For the middle subpath
we can, but for the left and right subpath we can not. We rewrite (50) into a system
of ordinary differential equations which has to be solved numerically to compute the
intermediate solutions qLM and qRM (figure 3).

  c
/c
/cj

r
rp

r

a

u=constant
p=constant

d
du

p = −
  c
/c
/cj

d
du

=

l1

l2,3,4

l5

qL qLM qRM qR

=constantb =constantb

r r
r

a

Fig. 3. Wave path in solution space, for 1D physical space, with intermediate solutions qLM and qRM,

ordinary differential equations along left and right subpath, and explicit Riemann invariants along the
three subpaths.

As independent variable for the system of differential equations, we may choose the
velocity component u. This results in:

dp
du

= ±ρc, dρ
du

= ±ρ
c
,

dα
du

= ±ϕ
c
, β = constant, (51)
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where the ‘+’ sign stands for a right running wave and the ‘−’ sign for a left running
wave. Alternatively, we may integrate with the pressure p as independent variable. This
gives the following set of differential equations:

du
dp

= ± 1
ρc
,

dρ
dp

=
1
c2
,

dα
dp

=
ϕ

ρc2
, β = constant. (52)

Here we choose to integrate the form (51). The integration is done by the standard ex-
plicit, four-stage Runge-Kutta scheme. The differential equations to be integrated along
the left and right subpaths, using the solutions qL and qR as the respective initial solu-
tions, are summarized in figure 3, together with the explicit Riemann invariant β. The
middle subpath in figure 3 shows the explicitly computed Riemann invariants. The latter
two imply

uLM = uRM = uM, (53a)

pLM = pRM = pM. (53b)

For 2D and 3D computations we simply follow the locally 1D approach (directional
splitting). For 3D, this implies the wave paths depicted in figure 4. Along the left and right
subpaths, the extra Riemann invariants v (2D and 3D) and w (3D only) appear. Along
the middle subpath, only the multiplicity of the eigenvalue increases with increasing
dimensionality.

p = −
  c
/c
/cj

r r
r

a

  c
/c
/cj

r
rp

r

a
=

u=constant
p=constant

d
du

d
du

l1

l2,3,4,5,6

l7

qL qLM qRM qR

=constantb
v=constant
w=constant

=constantb
v=constant
w=constant

Fig. 4. Wave paths in solution space, for 3D physical space, with intermediate solutions qLM and qRM,

ordinary differential equations along left and right subpaths, and explicit Riemann invariants along the

subpaths.

3.2.2. Time integration
For the time integration, use is made of the explicit, third-order accurate, three-stage
TVD Runge-Kutta scheme RK3b from [11].

3.3. Source-term evaluation

For the evaluation of the righthand side of (48a),∫
Ω

ẆdΩ =
∫

Ω

(pV · ∇α+ (α− β)V · ∇p+ pϕ∇ ·V) dΩ, (54)

we need the spatial distribution of the discrete state variables. For convenience, we start
by considering the 1D case. For each of the three terms in the righthand side of (54),
two qualitatively different types of contributions may arise when integrating over a finite
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volume: (i) contributions from the continuous solution in the cell and (ii) contributions
from the discontinuous solutions at the two cell faces (figure 5a). The solution at the cell
face is denoted by qF. The cell-face contributions can not be ignored. This is obvious
when considering the integral over, e.g., the bi-cell Ωi−1 ∪ Ωi, in which the integral at
cell face i − 1

2 is included and thus must be evaluated. Since the bi-cell integral can be
partitioned as ∫

Ωi−1∪Ωi

Sdx =
∫

Ωi−1

Sdx+
∫

Ωi

Sdx, (55)

this proves that cell-face contributions can not be ignored in single-cell integrals either.
Equation (55) also shows that the contribution to

∫
Ωi−1∪Ωi

of the entire discontinuity at
cell face i− 1

2 has to be split somehow over
∫

Ωi−1
and

∫
Ωi

. We proceed by presenting an
elegant and physically correct splitting.

R

L

R

L
F

F

q

iWi-1
2

xi+1
2

(a)

qL qLM qRM qR
i-1

2 i-1
2

  qF
i-1

2
=

(l )1 i-1
2
<0 (l )5 i-1

2
>0

i-1
2 i-1

2

(l     )2,3,4 i-1
2
>0

(b)

i+1
2

i+1
2 i+1

2

i+1
2

i+1
2

i+1
2i+1

2i+1
2

qL qLM qRM qR  qF=

(l )1 <0 (l )5 >0

(l     )2,3,4 >0

(c)

Fig. 5. Distribution of a solution component in and around finite volume Ωi (a), together with corre-

sponding wave paths in solution space (in P-variant ordering and for a subsonic flow from the left to the

right), at cell faces i− 1
2

(b) and i+ 1
2

(c).

At cell faces, the source term is not Riemann integrable. We circumvent this difficulty
by making consistent use of our Osher-type approximate Riemann solver. I.e., instead of
in physical space, at all cell faces, the integration of the source term is done in solution
space. Per cell we make the following partitioning:∫

Ωi

Ẇdx =
∫ qR

i− 1
2

qF
i− 1

2

Ẇdq +
∫ x

i+ 1
2

x
i− 1

2

Ẇdx+
∫ qF

i+ 1
2

qL
i+ 1

2

Ẇdq. (56)
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The second integration in the righthand side of (56) is done in physical space, for the
continuous solution distribution inside the cell, i.e., the distribution starting with qR

i− 1
2

at

xi− 1
2

and ending with qL
i+ 1

2
at xi+ 1

2
. The first and third integration are done in solution

space, for all waves that propagate from both cell faces into cell Ωi. This is schematically
illustrated in figures 5b and 5c, for the example of a subsonic flow in positive x-direction.

In both figures, the wave path in state space has been sketched, with the subpaths
in the P-variant ordering. The two subpaths at the right of qLM

i− 1
2

= qF
i− 1

2
in figure 5b

correspond with the waves propagating from cell face i− 1
2 into cell Ωi. The subpath at

the left of qRM
i+ 1

2
= qF

i+ 1
2

in figure 5c corresponds with the wave propagating from cell face

i+ 1
2 into cell Ωi. Hence, in evaluating

∫
Ωi
Ẇdx, at cell face i− 1

2 the right running waves
are taken into account, and at cell face i + 1

2 the left running waves. This defines the

splitting of the source-term integral at a single cell face: the part of
∫ qR

i− 1
2

qL
i− 1

2

Ẇdq which

corresponds with left running waves (negative eigenvalues) contributes to Ωi−1, and the
part corresponding with right running waves (positive eigenvalues) contributes to Ωi.
Contributions due to possible steady waves (zero eigenvalues) may be equally split over
both cells. We proceed by working out the integrals in (56) in more detail.

3.3.1. Source in cell interior
When using a first-order accurate finite-volume approximation the state values are sup-
posed to be constant in each cell (figure 6a), implying that the source integral over the
cell interior equals zero. In our higher-order accurate spatial discretization the state vari-
ables may be supposed to vary piecewise linearly from the cell average in the cell center
to the corresponding cell-face values (figure 6b), causing the spatial derivatives to be
nonzero.

In 1D, the integral of the source in the cell interior, the second term in the righthand
side of (56), can be written as∫ x

i+ 1
2

x
i− 1

2

Ẇdx =
∫ xi

x
i− 1

2

(
pu
∂α

∂x
+ (α− β)u

∂p

∂x
+ pϕ

∂u

∂x

)
dx+∫ x

i+ 1
2

xi

(
pu
∂α

∂x
+ (α− β)u

∂p

∂x
+ pϕ

∂u

∂x

)
dx.

(57)

R

L

R

L

q

R

L

R

L

q

ixx xi-1
2 i+ 1

2iWi-1
2 i+ 1

2

(a) (b)

Fig. 6. First-order accurate (a) and second-order accurate (b) distribution of a solution component in
the interior of finite volume Ωi.
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Given the linear distribution of each solution component in each cell half, this integration
can be done exactly. As in 1D, where each cell is split in two halfs over which the variables
are distributed linearly, similarly, in 2D each cell is split in four surfaces over which
the variables are distributed linearly, using the cell-center and cell-face-center values
as interpolation nodes. Similarly, in 3D the variables are distributed linearly in eight
subvolumes of a cell.

3.3.2. Source at cell faces
As the integration parameter in solution space for the first and third integral in (56),
we choose u, in consistency with the choice of the independent variable for the system
of differential equations (51). Hence, the two aforementioned integrals in (56) can be
written as ∫ uR

i− 1
2

uF
i− 1

2

Ẇdu =
∫ uR

i− 1
2

uF
i− 1

2

(
pu

dα
du

+ (α− β)u
dp
du

+ pϕ

)
du, (58a)

∫ uF
i+ 1

2

uL
i+ 1

2

Ẇdu =
∫ uR

i− 1
2

uF
i− 1

2

(
pu

dα
du

+ (α− β)u
dp
du

+ pϕ

)
du. (58b)

Both (58a) and (58b) are evaluated for each of the involved subpaths. Sticking to the
example of figure 5, subsonic flow from the left to the right at both cell faces i− 1

2 and
i + 1

2 , there is a contribution from the middle subpath at cell face i − 1
2 only, i.e., to

(58a) only. Given the fact that u and p are constant across the middle subpath, the
middle-subpath contribution to (58a) reads∫ uRM

i− 1
2

uLM
i− 1

2

pu
dα
du

du = pM
i− 1

2
uM
i− 1

2

∫ αRM
i− 1

2

αLM
i− 1

2

dα = pM
i− 1

2
uM
i− 1

2

(
αRM
i− 1

2
− αLM

i− 1
2

)
. (59)

To evaluate the contributions of the right and left subpaths to (58a) and (58b), respec-
tively, we exploit the ordinary differential equations (51) that determine the correspond-
ing Riemann invariants. This yields∫ uR

i− 1
2

uRM
i− 1

2

Ẇdu =
∫ uR

i− 1
2

uM
i− 1

2

(
pϕ
(

1 +
u

c

)
+ (α− β)ρcu

)
du, (60a)

∫ uLM
i+ 1

2

uL
i+ 1

2

Ẇdu =
∫ uM

i+ 1
2

uL
i+ 1

2

(
pϕ
(

1− u

c

)
− (α− β)ρcu

)
du. (60b)

Both integrals, (60a) and (60b), are numerically evaluated, using Simpson’s rule along
each of the subpaths. In summary, for the example of subsonic flow from the left to the
right, (58a) and (58b) become∫ uR

i− 1
2

uF
i− 1

2

Ẇdu = pM
i− 1

2
uM
i− 1

2

(
αRM
i− 1

2
− αLM

i− 1
2

)
+
∫ uR

i− 1
2

uM
i− 1

2

(
pϕ
(

1 +
u

c

)
+ (α− β)ρcu

)
du,

(61a)∫ uF
i+ 1

2

uL
i+ 1

2

Ẇdu =
∫ uM

i+ 1
2

uL
i+ 1

2

(
pϕ
(

1− u

c

)
− (α− β)ρcu

)
du. (61b)
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In multi-D, the source at the cell faces is evaluated in the same way, with as the only
difference that the role of the velocity component u is played by the velocity component
normal to the cell face.

4. Numerical results

In this section we first evaluate the physical model and numerical method presented in
the foregoing for three shock-tube problems for which exact solutions exist. Next, more
extensively, two standard 2D test cases will be considered: the shock-bubble-interaction
problems investigated experimentally by Haas and Sturtevant [9].

In all test cases, the gases considered are perfect gases differing in the ratios of specific
heats.

4.1. Shock-tube problems

4.1.1. Translating two-fluid interface
This first test case considers a column of dense gas which pushes a column of 1000 times
less dense gas from the left to the right, at uniformly constant speed and pressure. The
interest of this test case lies in how well physical model and numerical method can resolve
pure two-fluid interfaces, in this case a very strong interface. The initial conditions are
given in table 1.

ρ u p α β γ

fluid 1 1000 1 1 1 1 1.4

fluid 2 1 1 1 0 0 1.6

Table 1
Initial values for the translating two-fluid interface problem.

Numerical and exact results at t = 0.1 are given in figure 7. The CFL number, given by
max

(
∆t
∆x |λk|i+ 1

2

)
, is set equal to 0.25 for all three shock-tube problems. Figure 7b shows

the important result that the pressure distribution is perfectly oscillation-free without
any precaution, even for the current high density ratio ρ1

ρ2
. In figure 7d it seems as if the

mass fraction incorrectly resolves the location of the two-fluid interface. This is not the
case. In most cells containing both fluids β = αρ1

ρ = 1
1+ 1−α

α

ρ2
ρ1

is close to 1 because in

most of these cells 1−α
α

ρ2
ρ1
� 1.

4.1.2. High-pressure, high-density, two-fluid Sod problem
The second test case is a variant of the well-known Sod problem. Differences are that the
density and pressure ratios, ρ1

ρ2
and p1

p2
, are larger here, and that the left gas and right

gas have different ratios of specific heats. The initial conditions are given in table 2.
The difficulty of this test case as compared to the previous one is that the two-fluid
interface is not ‘pure’; at t = 0, immediately after the ‘breaking of the membrane’, it
coincides with a shock wave.
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Fig. 7. Numerical “◦” and exact “—” solution of the translating interface problem at t = 0.1, for 200

cells and CFL = 0.25.

ρ u p α β γ

fluid 1 10 0 10 1 1 1.4

fluid 2 0.125 0 0.1 0 0 1.6

Table 2

Initial values for the high-pressure, high-density, two-fluid Sod problem.

Figure 8 shows the exact and numerical solutions at t = 0.075. The discontinuities in
the numerical solution (shock and two-fluid interface) are in the proper locations. Also
here, there are no pressure oscillations near the two-fluid interface.

4.1.3. No-reflection problem
The last shock-tube case differs from the foregoing in that the left gas is not at rest
initially. The test case models the problem of a shock wave running through the left gas
column and hitting, at t = 0, the two-fluid interface, which is then still at rest. The initial
conditions (table 3) are such that for t > 0, the two-fluid interface and the transmitted
shock wave both move to the right, but that no reflection wave occurs. The latter wave,
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Fig. 8. Numerical “◦” and exact “—” solution of the high-pressure, high-density two-fluid Sod problem

at t = 0.075, for 200 cells and CFL = 0.25.

ρ u p α β γ

fluid 1 3.1748 9.4350 100 1 1 1.667

fluid 2 1 0 1 0 0 1.2

Table 3

Initial values for the no-reflection problem.

which also moves to the right because the flow is supersonic, has zero strength.
The numerical results with corresponding exact results, at t = 0.02, are given in figure

9. The pressure, density and velocity distributions show a weak reflected wave. Compu-
tations at finer grids reveal that it disappears with decreasing mesh width. In figure 9
still another solution is plotted (green). In this solution the source-term contributions
at the cell faces, as described in section 3.3.2, were not taken into account. The results
clearly show the significance of these contributions.
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Fig. 9. Numerical “◦” and exact “—” solution of the no-reflection problem and the numerical solution

where the source at the cell faces are not considered “×”, at t = 0.02, for 400 cells and CFL = 0.25.

4.2. Shock-bubble-interaction problems

The well-documented shock-bubble-interaction experiments performed by Haas and Sturte-
vant [9] yield excellent benchmarks for evaluating physical models and computational
methods for compressible two-fluid flows. Haas and Sturtevant did experiments with
spherical and cylindrical bubbles. The latter are considered here.

The cylindrical bubble is filled with a gas which is either lighter or heavier than air,
and which is at rest initially. The bubble is surrounded by air which is at rest as well.
This state of equilibrium is largely perturbed by a shock wave travelling from the right,
through the air, towards the cylindrical bubble (figure 10).
The shock hits the bubble. Due to the high velocity of the shock wave and the small size
of the bubble (In the experiment, the shock passes the bubble in about 10−4 seconds),
the two fluids hardly mix. Immiscible, two-fluid flow models are appropriate therefore
for these benchmark cases.
The deformation of the cylindrical, two-fluid interface and the resulting wave patterns
strongly depend on the kind of gas inside the bubble. Haas and Sturtevant used helium
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Fig. 10. Initial situation of the shock-bubble-interaction problem, located inside a wind tunnel.

and Refrigerant 22 (R22, a refrigerator gas) for their experiments. The former has a
speed of sound higher than that of air, the latter a lower.

We proceed by presenting and discussing our computational results. Comparisons will
be made with experimental results. For reasons of computational efficiency, the domain is
halved by making use of the symmetry in the flow problems. The domain is divided into
800×200 rectangular cells. The numerical results in the next two sections are presented in
a window containing 420× 148 cells, a window with the same size as in the experimental
results. The initial conditions of the different gas states are given in table 4. All values
of the velocity components are scaled with a speed of sound of 343 m/s. The helium is
slightly contaminated with air, which explains its γ-value somewhat below 5

3 .

γ ρ u v p α β

air 1 1.4 1.4 0 0 1 1 1

air 2 1.4 1.92691 0.33361 0 1.5698 1 1

helium 1.648 0.25463 0 0 1 0 0

R22 1.249 4.41540 0 0 1 0 0

Table 4
Initial conditions and gas properties for the shock-bubble-interaction problems.

4.2.1. R22 bubble
R22 has a higher density and lower ratio of specific heats than air, resulting in an about
two times lower speed of sound. The lower speed of sound causes the shock in the bubble,
the refracted shock, to lag behind the incoming shock (figure 11). Due to the circular
shape of the bubble, the refracted shock is curved. For the same reason, the reflected
wave, also a shock wave, is curved as well (figure 11).

In figure 12, we give experimental results obtained by Haas and Sturtevant (the shadow-
photographs) and our corresponding numerical results (the color-graphs), showing den-
sity distributions. The color-graphs of figures 12b and 12c show that the incoming and
refracted shock are still connected, just as in the corresponding shadow-graphs. The in-
coming shock becomes curved as well. The refracted shock becomes so much curved that
pressure waves arise at the locations of strong curvature (inside black contour line added
to color-graph of figure 12c). Density and pressure strongly increase there (dark spots in
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Fig. 11. Wave pattern for the R22 bubble.

color-graph of figure 12d). The refracted shock finally focuses, resulting in a density peak
of more than three times the initial density inside the bubble and a pressure peak of four
and a half times the initial pressure. Comparing the color-graphs of figures 12a and 12d,
we clearly see that the bubble has been compressed and deformed. Also notice the mod-
est numerical spreading of the two-fluid interface. The agreement between experimental
and computational results (shadow-graphs and color-graphs, respectively) is very good.
Note that the rather perfect circle which remains to be visible in the shadow-graph is the
remainder, on the side wall of the wind tunnel, of the initial bubble’s interface (a 0.5 µm
thick nitrocellulose membrane). At the left of the bubble, the two parts of the incoming
shock, that were split at the right of the bubble, meet and cross without affecting each
other. On their subsequent paths, they remain attached to the air-R22 interface. After
having focused in the most left point of the bubble, the refracted shock expands radially
as a transmitted shock (arrow in color-graph figure 12e). A high velocity created by the
transmitted shock at its central point of origin, causes the interface to bulge out along
the symmetry axis (figures 12e–g, in both the experimental and the computational re-
sults). As the transmitted shock travels along the interface, inward curling vortices are
generated at the interface (color-graph in figure 12f, and very clearly in color-graph in
figure 12g); a Richtmyer-Meshkov instability, vaguely visible in the experimental results.

Figure 13 shows the evolution of the computed pressure and volume-fraction distribu-
tions (left and right, respectively) at four instances of time. In the pressure distributions,
the location of the two-fluid interface is invisible, as it should be. In the volume-fraction
distributions, the white line indicates the initial location of the bubble. Initially, the
interface is a single cell thick. When the incoming shock intersects the interface, the
latter is smeared over a few cells. At the time of volume-fraction distribution 13b, the
refracted shock has almost crossed the bubble. Note that the most left part of the bubble
is still in its original position then. Also note the significant compression of the bub-
ble. Going from volume-fraction distribution 13b to 13d, the bubble slightly expands.
Volume-fraction plot 13c shows a locally thicker interface at the top (and bottom) of
the bubble. This is caused by the incipient rolling-up of the interface. In volume-fraction
figure 13d the interface vortices are clearly visible, and – likewise – the interface bulge
along the symmetry axis.

Besides qualitative comparisons between experiment and computation, also quantita-
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Fig. 12. Evolution of density distribution, R22 bubble, left: shadow-photographs of Haas and Sturtevant

[9], right: current numerical results, t = 55 µs (a), 115 µs (b), 135 µs (c), 187 µs (d), 247 µs (e), 318 µs
(f) and 342 µs (g).

tive comparisons can be made. In table 5, following [9], we give: (i) the speed of the
incoming shock along the upper boundary of the computational domain, cis, (ii) the
speed of the refracted shock, crs, and (iii) the speed of the right side of the two-fluid
interface, cui, the latter two both along the symmetry axis. Data are given for the three
speeds found in the experiment, in the computations of Quirk and Karni [23], and in
the present computations. Table 5 shows that the current physical model and numerical
method perform quantitatively accurately as well.
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Fig. 13. Computed pressure (left) and volume-fraction (right) distributions, R22 bubble, t = 55 µs (a),
135 µs (b), 247 µs (c) and 342 µs (d). The white circle in the volume-fraction distributions represents

the initial bubble.
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cis crs cui

Haas and Sturtevant [9] 415 240 73

Quirk and Karni [23] 420 254 70

Present results 419 241 75

Table 5
Speeds, in m/s, of incoming shock, cis, refracted shock, crs and right side of interface, cui, as found in

R22 bubble experiment and computations.

4.2.2. Helium bubble
The second case contains a bubble filled with helium. Helium has a much lower density
and a higher ratio of specific heats than air, resulting in a speed of sound higher than
air. As a result, the refracted shock runs ahead of the incoming shock (figure 14). The
reflected wave is an expansion wave.

refracted
shock

interface

internally 
reflected
shock

transmitted
shock

incoming
shock

reflected
expansion
wave

Fig. 14. Wave pattern for the helium bubble.

Depending on the incoming shock wave’s strength and angle of incidence onto the in-
terface, the refraction can be regular or irregular. Regular means that incoming wave,
refracted wave and reflected wave meet at the same point on the interface. For the R22
bubble the refraction was regular. For the helium bubble the refraction appears to be
irregular; the refracted wave intersects the interface ahead of the other waves. In the
irregular case, a transmitted shock wave arises where the refracted wave hits the inter-
face. Together with the incoming shock this transmitted shock forms a λ-shock (figures
14 and 15a–c). Due to the transmitted wave, the part of the incoming shock between
the transmitted wave and the interface is deflected. Note the physical correctness of the
computational results in this respect, by comparing color-graphs and shadow-graphs in
figures 15b and 15c. At the right of the incoming shock the transmitted wave interacts
with the reflected expansion wave, causing the transmitted wave to bend inwards (figure
14). In the triangular region at the right of the lower part of the incoming wave, and
bounded by the transmitted wave and the expansion wave (figure 14), the density be-
comes very high (dark regions in color-graphs of figures 15a–c). Besides the transmitted
shock, the refracted shock also causes an internally reflected shock (figure 14). The latter
is also weakly visible in figures 15b and 15c. In the latter figure, the internally reflected
shock has been encircled. The evolution of the internally reflected wave is complex, it has

26



27



Fig. 15. Evolution of density distribution, helium bubble, left: shadow-photographs of Haas and Sturte-

vant [9], right: current numerical results, at t = 32 µs (a), 52 µs (b), 62 µs (c), 72 µs (d), 82 µs (e), 102
µs (f) and 245 µs (experiment) / 230 µs (computation) (g).

been sketched in figure 16. The subnumbers b,c and d in figure 16 correspond with those
in figure 15. The secondary transmitted shock wave, located between first transmitted
shock and interface, and sketched in figure 16d, is weakly visible in the color-graph of fig-
ure 15d (jump from yellow to orange). When the first refracted shock leaves the bubble,
it continues through the air as a (nearly) circular transmitted wave (figures 15d–f). The
compression and deformation of the helium bubble are clearly visible from figures 15a–g.
In the color-graph of figure 15e, the internally reflected waves have crossed each other
and appear as a (light-blue) loop which expands towards the bubble interface. In figure
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(b) (c) (d)

Fig. 16. Schematic drawing of the waves inside the helium bubble, to clarify the color-graphs in figures
15b–d. The lines in the plot represent the two-fluid interface “—”, relatively strong pressure waves “—”

and relatively weak pressure waves “· · · ”.

15f, now also visible in the shadow-graph, the internally reflected wave has completely
crossed the interface and continues through the air as a shock wave, which completely
encloses the bubble. The bubble starts to roll up (figure 15g). The rolling up is caused
by a jet along the symmetry axis at the right side of the bubble. From figure 15c on,
when the refracted shock reaches the most left bubble point, the bubble starts to move
to the left. This movement is best visible from figures 15f and 15g. For this purpose,
the remainders of the initial bubble, on top of the T-shaped support structure in the
shadow-graphs, can be taken as a reference.

For the helium-bubble case, pressure and volume-fraction distributions at the same
instances of time are given in figure 17, pressure in the left graphs, volume fraction in
the right graphs. In the aforementioned triangular structure at the right of the incoming
shock’s lower part, the pressure is much higher than in the surrounding air and in the
helium bubble. The evolution of the helium bubble’s shape is perfectly shown by the
volume fraction plots. The white line indicates again the initial bubble.

Finally, also for the helium bubble case some quantitative comparisons can be made
of wave speeds. The same speeds are considered as for the R22 bubble. Our computed
speeds show a good similarity with the other speeds, especially with those of Quirk and
Karni (table 6).

cis crs cui

Haas and Sturtevant [9] 410 900 170

Quirk and Karni [23] 422 943 178

Present results 419 956 176

Table 6

Speeds, in m/s, of incoming shock, cis, refracted shock, crs and right side of interface, cui, as found in
helium bubble experiment and computations.
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Fig. 17. Computed pressure (left) and volume-fraction (right) distributions, helium bubble, t = 32 µs
(a), 62 µs (b), 82 µs (c) and 230 µs (d). The white circle in the volume-fraction distributions represents

the initial bubble.
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5. Conclusions

In this paper, a model for compressible, immiscible two-fluid Euler flow has been de-
rived: a five-equation model that assumes pressure and velocity equilibrium across the
two-fluid interface. The model differs from Kapila’s known five-equation model [13] in
that it is based on physical laws only: four conservation laws and a conservation-law-
like exchange law. No equation is introduced to describe the topology of the two-fluid
interface. The current two-fluid flow model does not explicitly consider the two-fluid in-
terface. It assumes that the flow is a mixture of the two fluids. For the energy-exchange
law, two energy-exchange terms have been derived in the paper: a mechanical work term
and a thermodynamic work term. The derivation of both has been rigorously done for
smooth flow. Clear physical interpretations can be made of both terms. Formally, the
energy-exchange terms also need to be derived for discontinuities, i.e., jump conditions
also need to be derived for both terms. An advantage though of the numerical method
devised for the evaluation of the exchange terms is that it does not need jump conditions.

Given the four conservation laws and the conservation-law-like character of the energy-
exchange equation, a finite-volume method as spatial discretization is very natural. To
evaluate the fluxes of mass and energy (both of the bulk fluid and of one of the two sepa-
rate fluids), and the flux of momentum (of the bulk fluid only), an approximate Riemann
solver of Osher-type has been constructed. Already for two perfect gases, no explicit
expressions can be found for the Riemann invariants needed in the Riemann solver. The
ordinary differential equations that implicitly define the Riemann invariants can be eas-
ily numerically integrated though. The approximate Riemann solver presented perfectly
suits and serves the neat physical two-fluid model that we have proposed here. Left and
right cell-face states for the Riemann solver are constructed by a limited, higher-order
accurate interpolation. Formally, in 1D, this MUSCL approach is third-order accurate.

The Riemann solver is also used for the evaluation of the energy-exchange terms.
In a finite-volume setting, the energy-exchange terms, which contain first-order spatial
derivatives, need to be integrated over the cells, including the cell faces. At the cell faces,
the energy-exchange terms are not Riemann integrable. This difficulty is circumvented
by integrating the exchange terms in solution space instead of in physical space. For this,
very practical use is made of the approximate Riemann solver. (Also in future two-fluid
Navier-Stokes flow computations, the current integration in solution space is assumed to
perform well.)

For the time integration, in consistency with the limited, in 1D third-order accurate
space discretization, a third-order accurate TVD time discretization is used; an existing,
explicit three-stage Runge-Kutta scheme.

The 1D and 2D numerical results presented, show that the method performs well.
The efforts put into deriving a physically sound model and likewise sound discretization
method pay off. Physically correct solutions are obtained without any tuning or post-
processing. The method is robust and accurate. Particularly for the 2D test cases, the
shock-bubble-interaction problems, it appears that the physical model and numerical
method accurately resolve detailed flow features. The main flow feature, the two-fluid
interface, appears to be resolved in accurate position and even rather sharply, despite
the use of a mixture model, a model without any explicit description of the two-fluid
flow topology. Pressure oscillations near the two-fluid interface do not occur, without
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any precaution or post-processing.
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