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Given a graph G on n nodes, let Pa denote the cone consisting of the positive semidefinite 
n x n matrices (with real or complex entries) having a zero entry at every off-diagonal 
position corresponding to a non edge of G. Then, the sparsity order of G is defined as the 
maximum rank of a matrix lying on an extreme ray of the cone Pa. 

It is known t.hat the graphs with sparsity order 1 are the chordal graphs and a charac
terization of the graphs with sparsity order 2 is conjectured in [l] in the real case. We show 
in this paper the validity of this conjecture. Moreover, we characterize the graphs with 
sparsity order 2 in the complex case and we give a decomposition result for the graphs 
with sparsity order :::; 2 in both real and complex cases. As an application, these graphs 
can be recognized in polynomial time. 

We also indicate how an inequality from [17] relating the sparsity order of a graph and 
its minimum fill-in can be derived from a result concerning the dimension of the faces of 
the cone Pc. 

1. Introduction 

In this paper we study the ranks of extremal positive semidefinite matrices 
with a given sparsity pattern, in continuation of the papers [l], [5], [6], 
[7], [12], [13], [17]. This study is motivated mainly by its application to 
the completion problem for positive semidefinite matrices (details are given 
below) and it is also relevant to chordal graphs and Gaussian elimination 
for sparse positive definite matrices ([15]). 
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The sparsity order of a graph. Let G = (V, E) be a graph with node 
set V = { 1, 2, ... , n} and let E denote the set of non edges; that is, E is the 
set of pairs ij with i # j E V and ij rf_ E. Let Pa denote the set of positive 
semidefinite n x n matrices whose ij-th entries are zero for all ij EE. All 
matrices are assumed to have entries in the field IF', where IF' is equal to IR 
(the field of real numbers) or CC (the field of complex numbers). The set Pa 
is a closed convex cone. A matrix X E Pa is said to be extremal if it lies on 
an extreme ray of the cone Pa. The sparsity order of G (also abbreviated 
as the order of G) ordF( G) is defined as the maximum rank of an extremal 
matrix in Pa. We have: ordF(G) :Sn-2, with equality in the real case when 
n 2 4 if and only if G is a circuit [7]. When G is the complete graph, Pa is the 
cone of all positive semidefinite matrices, every extremal matrix has rank 
::::; 1 and, thus, ordF( G) = 1. The sparsity order of a complete bipartite graph 
is computed in [5] and the graphs with sparsity order 1 are characterized in 
[1] (cf. also [14]). Namely, 

Theorem 1. For a graph G, we have: ord!R ( G) = 1 -{:=:=:?- ordc( G) = 1 -{:=:=:?- G 
is chordal, i.e., G does not contain any circuit of length 2 4 as an induced 
subgrapll. I 

The following two operations are useful for computing the sparsity order. 
If H is an induced subgraph of G, then 

ordF(H) ::::; ordF(G) 

[1] and if G is the clique sum of two graphs G1 and G2, then 

(1) 

[7]. A graph G is called a k-block if G has order k and every proper induced 
subgraph of G has order ::::; k-1. For instance, the circuit Cn is an (n - 2)
block over the reals if n?: 4 [l]. For any given k, the number of k-blocks 
is finite, because a k-block has at most k2 + k - 2 (resp. k2 - 1) nodes if 
IF'= IR (resp. IF'= CC) [l]. In both the real and complex cases, K1 is the only 
1-block and C4 is the only 2-block; in the real case, there are exactly sixteen 
3-blocks: the graphs A1 -A10 and B1 - B5 shown in Figure 2. [1]. Helton 
et al. [6] have classified the 4-blocks over lR having 9 non edges (by relation 
(5), this is the smallest number of non edges that a 4-block can have); their 
number is quite large and the classification involves many technical details. 
This indicates the difficulty of the general problem of classifying k-blocks. 

In order to characterize the graphs having order ::::; k:, it suffices to know 
the minimal (with respect to taking induced subgraphs) graphs among the p

blocks with p > k and this might be more tractable, at least for small values 
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of k. For instance, it follows from Theorem 1 that every k-block (k 2 2) 
contains a circuit of length 2 4 as an induced subgraph. The following is 
conjectured in [1] in the case k=2 and F=lR: 

Conjecture 2. A graph G satisfies: ordR( G):::; 2, if and only if G does not 
contain as an induced subgraph a circuit on n 2 5 nodes nor a 3-block. 
Equivalently, over the reals, the only k-block (k 2 4) which contains no 3-
block is the circuit ck+2· 

The main contribution of this paper is to show the validity of Conjecture 
2 ( cf. Theorem 9); we also prove an analogous characterization for the graphs 
having sparsity order :'.5:2 over C (cf. Theorem 13). The essential ingredient 
in our proof is a decomposition result (in terms of clique sums) for the class 
of graphs having no 3-block and no circuit of length 2 5 as an induced 
subgraph ( cf. Theorem 8). Section 5 is devoted to the proof of this result 
which is quite technical. 

As an application, one can recognize in polynomial time whether a graph 
has order 1 or 2. As another application, we can characterize the graphs 
whose 'powers' all have order :'.5:2 (cf. Theorems 11and15); in the complex 
case we derive a result of McCullough [12, 13]. Moreover, we obtain the 
classification of the 3-blocks, which was not known in the complex case (cf. 
Corollary 14). 

The minimum fill-in fill( G) of a graph G is the minimum number of 
edges that need to be added to G in order to obtain a chordal graph; this 
parameter has been studied, in particular, in connection with the Gaussian 
elimination process for real symmetric positive definite matrices ( cf. Rose 
[15] ). The following inequalities relating the sparsity order and the minimum 
fill-in have been shown in [17], solving a conjecture of [7]. 

Proposition 3. ordR ( G) :'.S fill( G) + 1, ordc ( G) :'.S 2 ·fill( G) + 1. I 

\Ve will see in Section 2 that these inequalities follow as an easy appli
cation of a result ( cf. Theorem 6) about the dimension of faces of the cone 
Pc. 

Note that the difference between the minimum fill-in and the sparsity 
order can be arbitrarily large. Indeed, if G is the clique sum of two graphs 
G1 and G2 , then ordIF( G) =max(ordIF( G1),ord1F( G)2) while fill( G) =fill( G1)+ 
fill( G2). We will see in Section 3 examples of graphs (those in class Q4 - they 
are not clique sums) having order 2 and an arbitrarily large minimum fill
in. The complexity of computing the order of a graph is not known. On 
the other hand, evaluating the upper bound given by Proposition 3 is hard, 
since computing the minimum fill-in is NP-complete ([19]). 
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Application to the completion problem. Let us now explain the link 
existing between the cone 'Pa and the completion problem for positive se
midefinite matrices. 

The matrix completion problem asks whether a given partial matrix can 
be completed so as to obtain a matrix satisfying a prescribed matrix pro
perty, in our case, being positive semidefinite. This problem has received a 
lot of attention in the literature; this is due, in particular, to its many appli
cations, e.g., to statistics, molecular chemistry, distance geometry, etc. (Cf. 
the surveys by Johnson [9], Laurent [10] and further references there.) 

Given a graph G = (V, E) and a partial matrix A= ( aij) whose entries 
are specified only on the diagonal positions and on the off-diagonal positions 
corresponding to the edges of G, A is said to be completable to a positive 
semidefinite matrix if there exist a positive semidefinite matrix B such that 
bii = aii ( i E V) and bij = Uij ( i =f:. j E V and ij E E). Then, Cc denotes the 
subset of IRVuE consisting of all such completable partial matrices A. When 
G is the complete graph, Ca is the cone of all positive semidefinite matrices, 
which is well known to be self polar. From this follows that the polar cone1 

of Ca is equal to the projection on JRVUE of the cone Pc. 
Therefore, a partial matrix is completable to a positive semidefinite mat

rix if and only if its inner product with any extremal matrix in Pc is non
negative. Hence, knowledge about the extremal matrices in Pa is useful for 
deciding completability of partial matrices. This fact motivates the study of 
extremal matrices in Pa and of the order of graph G. In view of the pola
rity relation between the cones Ca and 'Pa, Theorem 1 is equivalent to the 
following result of [4] concerning the cone Ca. 

Theorem 4. A graph G is chordal if and only if every partial matrix whose 
entries are specified on G (and on the main diagonal) and for whicb all fully 
specified principal submatrices are positive semidefinite can be completed 
to a positive semidefinite matrix. I 

We now give some preliminaries about matrices and vector representati
ons, leading to a reformulation for the sparsity order, and some notation on 
graphs. 

Matrices and vector representations. Ann x n matrix X = (Xij) with 
entries in IF ( = IR or q is Hermitian if X* = X and positive semidefinite 

1 Recall that the polar C 0 of a cone C ~ lF'1 is the set of ally E wt such that y* x ~ O 'r/x EC. 

When the cone C consists of nxn matrices, we view C as a subset of lf"'2 equipped with the 
usual inner product. That is, for two n x n matrices A and B, their inner product (A,B) 
is defined as Tr(A • B) = I:~i=l ai;b•;. Here, z*, a•, A* denote, respectively, the conjugate 
of z E lF' (equal to z if IF=IR), and the conjugate transpose of vector a or matrix A. 
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~he~1, we write: X !':::: 0) if X is Hermitian and x* X x ::'.': O for all x E JFl'. 

Equivalently, X !':::: 0 if there exist vectors u1, ... , Un E JFk ( k 2 1) such that 

Xij = u:;uj for all i,j = l,. .. ,n; the sequence (u 1,. .. ,un) is then called a 

Gram representation of X and X is called the Gram matrix of u 1 , ... , Un. 

Note that { u1, ... , un} and X have the same rank. If X has rank k then it 

has a unique (up to orthogonal transformation) Gram representati;n in the 

k-dimensional space JFk. 

Let G = (V,E) be a graph with V = {l, ... ,n} and let X be an n x n 

positive semidefinite matrix with Gram representation ( u 1, .. ., un). Then, 

X E Pc if and only if the vectors u 1, ... , Un satisfy: 

(2) uiuj = 0 for all ij EE, 

i.e., they form an orthogonal representation of G. Given a subset AC EUE 
- ' 

set 

(3) 
UA := {uiuj + UjUi [ ij EA} if lF = JR, 

UA := {uiuj,ujui I ij EA} if lF =C. 

If X E Pc, then all matrices in UE are orthogonal to the identity matrix. 

The following is shown in [1]. 

Proposition 5. Let X E Pc with rank k and Gram representation 

('n1, ... , 'lln) in IFk. Then, X is extremal if and only if the identity matrix 

is (up to scalar multiple) the only k x k real symmetric matrix (resp. comp

lex matrix) which is orthogonal to all matrices in UE in the real case (resp. 

cornplex case). Equivalently, X is extremal if and only if the following holds: 

(4) 

Therefore, 

- (k + 1) 1 2 ) 
(G) or<lJF(G) = k ==* [E[ 2 2 -1 (IF= JR), 2(k - 1) (IF= C. 

A set of vectors u 1, ... , Un E JFk with rank k and satisfying (2) and ( 4) 

is called a k-dimensional extremal orthogonal representation of G. Hence, 

the sparsity order of G is equal to the largest k for which there exists a 

1.:-clirnensional extremal orthogonal representation of G. Proposition 5 turns 

out to be a direct consequence of the result from Theorem 6 about dimen

sions of faces of Pc. 



548 MONIQUE LAURENT 

Graphs. All graphs are assumed to be simple (i.e., without loops and paral
lel edges). Given a graph G = (V, E) with E as set of non edges, G := (V, E) 
is the complementary graph of G. As usual, Kn denotes the complete graph 
on n nodes, Kn,m denotes the complete bipartite graph with colour classes 
of cardinalities n and m, and Cn denotes the circuit on n nodes. Given a 
subset U of V, G[U] denotes the subgraph of G induced by U, with node 
set U and edge set {ij EE I i,j EU}. A subset S ~Vis called a stable set 
of G if ij tf. E for all i # j E S, and a clique if ij E E for all i # j E S. The 
stability number a(G) is the maximum cardinality of a stable set in G. A 
subset F ~ E is called a matching in G if no two edges of F have a common 
endnode. 

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs such that the set 
K :=Vi n Vz is a clique in both G1, G2 and there is no edge between a node 
of Vi\ Vz and a node of V2 \Vi. Then, the graph G :=(Vi U Vz,E1 U E2) is 
called the clique sum of the graphs G1 and G2 and the set K is called a 
clique cutset of G. 

A graph G is said to be chordal (or triangulated:) if it does not contain a 
circuit Cn (n;::=:4) as an induced subgraph. Equivalently, G is chordal if and 
only if G is a clique sum of cliques (Dirac [3]). 

Given an integer m ;::=: 1, let G(m) denote the graph obtained from G by 
replacing every node v E V by a clique Kv of cardinality m and making any 
two nodes i E Ku, j E Kv adjacent in G(m) if and only if the nodes u and v 
are adjacent in G. 

2. Relating the sparsity order of a graph and its deficiency in 
chordality 

In this section we show that the results from Propositions 3 and 5 follow as 
applications of a result concerning the structure of the faces of the cone Pc. 

Let G = (V, E) be a graph with V = {1, ... , n }. A subset F ~Pc is called 
a face of Pc if X = Y +z with X EF, Y,Z EPc implies that Y,Z EF. The 
extreme rays of Pa are its faces of dimension 1. Given X E Pa, let Fp0 (X) 
denote the smallest (with respect to inclusion) face of Pc that contains X. 
Then, 

Fp0 (X) ={YE Pa I KerX ~ KerY} 

(where Ker X = { x E !Rn IX x = 0}); this relation was shown in [8] in the case 
when G = Kn and the general case follows easily. Moreover, one can corn pu te 
the dimension of the face Fp0 (X) in terms of parameters of X ( cf. Theorem 
31.5.3 in [2]). 
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Theorem 6. Let G= (V,E) be a graph, let X EPo with rank k and Gram 
representation (u1, ... ,un) in Fk, and let UE be denned by (3). Then, 

. (k + 1) (6) dim Fp0 (X) = 2 -rankIR(UF;) (F = JR), k2 -rankc(UF;) (F = q. 

In particular, X is extremal if and only if (4) holds. 

Proof. Let U denote the k x n matrix whose columns are the vectors 
u1, ... , Un. Then, X = U*U. Call a k x k matrix B a perturbation of X if 
X ±>..BE Pa for some>..> 0. Then, dim Fp0 (X) is equal to the dimension 
of the set of perturbations of X. One can verify that B is a perturbation of 
X if and only if B = U* RU for some k x k Hermitian matrix R satisfying 

(R, uiuj) = (R, uiui) = 0 for all ij E E. 

Let U denote the subspace of JB'k2 (the set of kxk matrices) spanned by UE. 
In the real case, dim Fp0 (X) is equal to the dimension of the orthogonal 
complement of u in the space sk of real symmetric matrices and, thus, to 
(k!1)-rankIR(U"E)· (We have used here the fact that, for a symmetric matrix 
B, (B,uiuj) =0 ~ (B,uiuj+ujui) =0.) In the complex case, dim Fp0 (X) 

is equal to the dimension of the set 1tk nUl., the orthogonal complement of 
U in the space 1tk of k x k complex Hermitian matrices. However, the set 
'Hknul. has the same dimension as its superset ck2 nul.' which implies that 
dim Fp0 (X) = k2-rankc(U"E)· Indeed, suppose that {R1, ... ,Rp} is a set of 
linearly independent matrices in Ck2 nUl.. Note that for RECk2 nUl., both 
matrices R+R* and i(R-R*) belong to 1tknul.. Moreover, at least one of 
the two systems {R1 +Ri ,R2, ... ,Rp} and {i(R1 -Ri),R2, ... ,Rp} is linearly 
independent. Therefore, we can iteratively construct from { R1, ... , Rp} a set 
of p linearly independent matrices in 1tk nul.. I 

We now indicate how Proposition 3 can be derived from Theorem 6. 
Let G = (V, E) be a graph and set k := ordlF'(G) and p := fill(G). There 

exists a subset F of E of cardinality p such that the graph H := (V,EUF) 
is chordal. Let X be an extremal matrix in Pa of rank k and with Gram 
representation ( u1, ... , un) in Fk; thus, X E PH. Set PIR. := (k!1) and PC:= k2. 
By relation (6), we have: 

rankJF(UE) = PIF -dimFp0 (X) = PF - 1, 

rankw:(UE\F) = PF - dimFpH(X). 

On the other hand, 

rankw:(Ue):::; rankw:(UE\F) + rankw:(UF):::; rankJF(UE\F) + EJF · JFI, 
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setting EJR = 1 and Ee:= 2. This implies that 

dimFpu(X) S EJF · IFI + 1=EJF·p+1. 

There exist d :S dimFpu (X) extremal matrices X1, ... ,Xd E PH such that 
X = X 1 + ... +Xd. This implies that rankX:::; rankX1 + ... +rankXd. Each 
matrix Xi has rank 1 since H is chordal. Therefore, rankX :S d which, 
combined with the inequality: d:SEJF·p+l, implies that k=rankX SEJF"P+l. 
That is, ordlF( G) :S EJF ·fill( G) + 1. 

3. Graphs with sparsity order 2: The real case 

In this section, we characterize the graphs having sparsity order :::; 2 in 
the real case. The main result is Theorem 9 which gives two equivalent 
descriptions for these graphs; one is in terms of forbidden induced subgraphs 
and the other one shows how such graphs can be decomposed by means of 
clique sums using four basic classes of graphs. 

(la) graph G (2a) graph G 

* • (3a) graph G 

--· --
0 

(3bl graph o (4a) graph G 

Fig. 1. Classes 91, 92, Q3, and Q4 

I I 
0 

0-0 
C2b) graph o 

0 

(4bl graph G 

We begin with introducing four classes of graphs having order :::; 2 over 
JR. These graphs are shown in Figure 1.. For i = 1,2,3,4, let Yi denote the 
class consisting of the graphs having the form shown in Figure 1. (ia) and 



ON THE SPARSITY ORDER OF A GRAPH 551 

of their induced subgraphs. We use the following convention in Figure 1.: A 
small dark dot indicates a node, a big dark sphere indicates a clique, while 
a big white sphere indicates a stable set; edges are indicated by lines, while 
a thick line between two spheres or between two sets of nodes shows that 
every node in one set is adjacent to every node in the other set. 

For each class 9i with i = 2, 3, 4, we picture not only graph GE Qi but also 
its complementary graph G, because the latter graph has a very simple form 
which will be used in the proof of Proposition 7. Note that a graph GE Q1 

is obtained by adding two non adjacent nodes to a chordal graph H and 
making them adjacent to all nodes of H (and taking an induced subgraph 
of the resulting graph). 

Remark that a graph in class Qi has minimum fill-in at most i for i = 1, 2, 3 
while graphs in 94 may have an arbitrary large minimum fill-in. 

Proposition 7. If GE 91 U92 U~h UQ4, then ordJR(G) ~2. 

Proof. If G E~/i, then ordJR(G) ~2 follows from Proposition 3, since fill(G) ~ 
l. 
Let GE 9i for i = 2 3 4. Let X be an extremal matrix in the cone Pc having 

' ' . k rank k :=ordJR(G) and with Gram representation (u1, ... ,un) 111 JR. Then, 
by Theorem 6, 

l 
rank(Ue) = -(k2 + k - 2). 

2 
We compute in each case the rank of the set UE. Consider first the case 
when GE 92 . Let A, B denote the node sets corresponding to the two stable 
sets that are connected in G (cf. Figure l. (2b)) and set a:=rank{u;liEA}, 
b:=rank{u;[iEB}. Then, 

rank(Ue) ~ 2 + ab. 

We have that a+b < k since every n; (i EA) is orthogonal to every 1lj (j E B); 
this implies that ab ~ ~ k2 . Therefore, we have: 

~(k2 + k - 2) ~ 2 + ~k2 ' 
from which it follows that k ~ 2. If GE Q3, then we have: 

~(k2 +k-2)<4, 2 -

implying again that k ~ 2. Finally, if GE Q4 , then we obtain in the same way 

as above that: 

which also implies that k ~ 2. I 
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We now characterize the graphs having order :S: 2 over JR. 
relies essentially on a graph-theoretic result concerning the chara 
in terms of forbidden induced subgraphs of the graphs in the 
(i=l,2,3,4) and their clique sums. We first formulate this grap 
result whose proof, in view of its length, is delayed till Section 5 

Theorem 8. The following assertions are equivalent for a grap. 

(i) G does not contain as an induced subgraph a circuit Cn (n 2 
of the graphs A2-A10 and B1-B6 (cf Figure 2.). 

4 

(ii) G is a clique sum of a set of graphs belonging to LJ 9i (cf .. 
i=l 

Vie show in Figure 2. the complementary graphs of a list of six 
Ai -A10, B1 -B5. Note that Ai,B2,A2,B4,B5 are, respectively 
C5, the complete bipartite graph K3,3, K3,3+e (add an edge to R 
(delete an edge from K 3,3), K 3,3 + e \f. 

Theorem 9. Tlie following assertions are equivalent for a grar

(i) ordJR(G) :S:2. 
(ii) G does not contain as an induced subgraph a circuit Cn (n; 

of the graphs A2-A10 and B1-Bs (cf. Figure 2.). 
4 

(iii) G is a clique sum of a set of graphs belo11ging to LJ 9i ( cf 
i=l 

Proof. The implication (i) ==?- (ii) follows from the fact that tb 
(n25), A1-A10, B1-Bs all have order 2:3 (for this, it suffices t 
each of them a 3-dimensional extremal orthogonal representat 
The implication (ii) ==?- (iii) holds by Theorem 8, while (iii) = 
from relation ( 1) and Proposition 7. 

The result from Theorem 9 can be seen as an analogue and g~ 
of the corresponding characterization for graphs of order 1, whic 
the following assertions are equivalent for a graph G: (i) ord!R 
G is chordal; (iii) G can be decomposed as a clique sum of cliq 
mention some applications of Theorem 9. The first applicatior 
can test in polynomial time whether a given graph G has order 
reals. Indeed, it suffices for this to first (i) decompose G into grc 
clique cutsets by means of clique sums and then to (ii) test wb 

4 

graphs produced by step (i) belong to LJ 9i- Step (i) can be l 
i=l 
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0 D. /\ I I 
D. I I i . 

i_ I ~ 

At ~ ~ 
I_ 

A4 ~ 

! ! I i I I I I I I I I I 
I I • I • 

A6 A, Ag ~ AIO 

0 D. D. 1X1 i 
' Bz BJ 

fl_/J. Jl_.J LI 
B4 Bs B6 

Fig. 2. Complements of graphs A1 -A10, Bi - Ba (the 3-blocks over JR) 

time O(nm) if G has n nodes and m edges [18] and step (ii) can obviously 

be executed in polynomial time. 

The second application is the classification of the 3-blocks over the reals, 

which was obtained by Agler et al. [l]. The only fact from [l] that we have 

used concerning the graphs Ai -A10, Bi - B5 is that they have order 2: 3 

(which easily implies that they are 3-blocks). But, we obtain 'for free' the 

lrnrd part, which consists of showing that Ai -A10, Bi - B6 are the only 

.3-blocks. 

Theorem 10. In the real case, the 3-blocks are the graphs Ai - A10 and 

B1-B<J. 

Proof. If G is a 3-block then, by Theorem 9, G must contain one of the 

graphs A 1 -A10 , B 1 -B6 as an induced subgraph and, thus, G is equal to it 

(by the definition of a block). I 
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The third application of Theorem 9 is the characterization of the graphs 
G whose powers elm) all have order :::; 2 over JR. 

Theorem 11. The following assertions are equivalent for a graph G. 

( 0) ordlR ( c( m)):::; 2 for every integer m 2: l. 
(i) ordlR(G(2l)=:;2. 
(ii) G does not contain as an induced subgraph a circuit Cn (n2'. 5) nor any 

of the graphs A4 , B1, D1, D2, D3 (cf. Figures 2. and 3.). 
(iii) G is a clique sum of a set of graphs belonging to the class Y4 (cf. 

Figure 1.). 

1 1 ! 1~ 

Fig. 3. Complements of graphs D1, D2, and D3 

The next lemma will be used in the proof of Theorem 11 and later as 
well. 

Lemma 12. 

(i) Let H be a chordal graph tllat does not contain an induced patlJ of 
length 3 and with stability number a(H) = 2. Tlien, its node set can be 
partitioned into Vo U Vi U Vi in such a way that Vo U Vi and Vo U V2 are 
cliques and there is 110 edge between Vi and V2. 

(ii) If G E 91 contains neither Di nor D3 as an induced subgraph, then 
GEQ4. 

Proof. (i) As H is chordal and is not a clique, there exists a clique cutset 
Kin H. Hence, the node set VH of H can be partitioned into NiUN2UK, 
in such a way that there is no edge between Ni and N2. Moreover, both 
Ni,N2 are cliques (since a(H)=2). For a=l,2, set 

Ka:={kEKJiktJE forsomeiENa}· 

Then, K1=F0 ==> K2 = 0, a node k E K1 is not adjacent to any node of N1 
(else, one would find a path of length 3 in H), and kEKi is adjacent to all 
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nodes in N2 (since a(H) = 2). Therefore, we can assume that K2 = 0 and, 
then, 

VH = N1 U (K \ Ki) U (K1 U N2), 

where the sets NiU(K\K1) and (K\Ki)UK1UN2 are cliques and there is no 
edge between the sets Ni and K1 UN2. Thus, (i) holds (setting Vo :=K\Ki, 
Vi :=N1, V2 := K1 UN2). 
(ii) Let GE 9i and let H denote the chordal part in G (cf. Figure l. (la)). 
If G contains neither Di nor D3 as an induced subgraph, then H does not 
contain an induced path of length 3 and a(H) $ 2. We may assume that H 
is not a clique (else we are done). Using (i) we conclude that G has indeed 
the form of a graph in 94. I 

Proof of Theorem 11. (o) ===> (i) and (iii)===? (o) are obvious. The imp
lication (i) ==:;. (ii) follows from the corresponding implication in Theorem 
9; indeed, the graphs H:=Di,D2,D3 are forbidden as induced subgraphs of 
G since H(2) contains A6, As, A2, respectively. Similarly, (ii) ===> (iii) follows 
from the corresponding implication in Theorem 9. Indeed, each of the graphs 
Ai -A10, Bi -B5 contains one of A4,B1,D1,D2,D3 as an induced subgraph. 
Hence, under assumption (ii), we know that G is a clique sum of a family 
of graphs belonging to ut=i 9i· In order to conclude the proof, it suffices 
now to verify that a graph GE LJ~=i Yi not containing Di, D2, D3 necessarily 
belongs to Q4. This is obvious for the classes 92 and Q3 and Lemma 12 (ii) 
settles the case when GE 91. I 

4. Graphs with sparsity order 2: The complex case 

In this section we characterize the graphs having sparsity order $ 2 over C. 
As in the real case, we begin with exhibiting some basic classes of graphs 
having order $ 2 over C as well as some examples of graphs with order 2: 3. 
Let 95 denote the class consisting of the graphs that can be obtained from 
a complete graph by deleting a matching of cardinality at most 3. It follows 
from (5) that ordc(G) $ 2 if GE 9s and McCullough (Prop. 2.6, [12]) has 
shown that ordc(G) $2 if GEQ4. 

It is shown in [ 12] that ordic( G) ;:::: 3 if G is one of the graphs Cn ( n 2: 5), A4, 
B 1 (cf. Figure 2.), Di, D3 (cf. Figure 3.). We observe that the graphs D4 and 
D 5 whose complements are shown in Figure 4. also have order 2: 3. (The vec
tor assignments indicated there provide a 3-dimensional extremal orthogo
nal representation.) In fact, the graphs A4,B1,D1,D3,D4,D5 all have order 
equal to 3 (by (5)). Therefore, the graphs Cn (n2:5), A4,B1,D1,D3,D4,Ds 
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e2 e1 u ei e2 e1 u e1 = (1,0,0) 

/\ I I I I I • e2=(0,1,0) 

~ e3=(0,0,1) 

e1 e3 e3 v e1 e3 e3 v u = (1,1,1) 
v = (l,i,-1-i) 

Fig. 4. Complements of graphs D4 and D0 

are forbidden induced subgraphs for the class of graphs having order :S 2 
over C As we now see, there are no other minimal forbidden induced subg
raphs. The proof of this result relies again on a decomposition result, which 
follows quite easily from Theorem 8. 

Theorem 13. The following assertions are equivalent for a graph G. 

(i) ordc(G) ::;2. 
(ii) G does not contain as an induced subgrapl1 any of the graphs Cn (n 2:: 5), 

A4,B1,D1,D3,D4, and D5. 
(iii) G is a clique sum of a set of graphs belonging to Q4 U !:k 

Proof. The implications (i) ===> (ii) and (iii) ===> (i) are clear. We now verify 
the implication (ii) ===> (iii). For this, let G be a graph satisfying Theorem 
13 (ii). Then, G satisfies the condition (ii) from Theorem 9 (since the graphs 
A2,A3,B2-B6 all contain D3; while A5,AG,A1 contain D1; As, Ag contain 
D4; and finally A10 contains D5). Therefore, by Theorem 9, G is a clique 

4 

sum of a set of graphs belonging to LJ Yi· In order to conclude the proof, 
i=i 

it suffices to verify that a graph GE 91U92 U Q3 satisfying Theorem 13 (ii) 
belongs, in fact, to 9s. This is easy to see when GE 92 U Q3 and Lemma 12 
(ii) settles the case when GE 91. I 

Therefore, the graphs having order ::; 2 over C can be recognized in 
polynomial time. Another application of Theorem 13 is the classification of 
the 3-blocks over C. 

Corollary 14. Tlie 3-blocks over the Beld Care the graphs C5, Bi, A4, Di, 
D:3, D4, and D5. I 

As last application of Theorem 13, we obtain the following result of Mc
Cullough [12, 13] characterizing the graphs G whose powers G(m) all have 
order ::; 2 over C It turns out that we find the same graphs as in the real 
case. 
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Theorem 15. The following assertions are equivalent for a grapJ1 G. 

(o) ordc(G(m)) ~ 2 for every integer m;::: 1. 
(i) ordc( G(2)) ~ 2. 
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(ii) G does not contain as an induced subgraph a circuit Cn (n~5) nor any 
of the graphs A4, B1, D1, D2, D3 (cf. Figures 2. and 3.). 

(iii) G is a clique sum of a set of graphs belonging to the class g4 (cf. Figure 
l.). 

Proof. The implications (o) ==> (i) and (iii)==> (o) are clear. The implica

tion (i) ==? (ii) follows from Theorem 13 and the fact that D~2) contains D4• 

We now verify the implication (ii) ==> (iii). For this, let G satisfy Theorem 
15 (ii); then, G satisfies Theorem 13 (ii) and, thus, is a clique sum of a set of 
graphs belonging to Q4 U Q5. It suffices now to note that a graph belonging 
to Q5 and satisfying Theorem 15 (ii) belongs, in fact, to 94 • I 

McCullough [12, 13) has given an additional equivalent property for the 
graphs satisfying Theorem 15 (ii) (called by him 2-chorda0, in terms of 
existence of a certain linear ordering of the nodes involving the notion of 
'simplicial pair of nodes'; this is in analogy with the existence a perfect el
imination ordering for chordal graphs, that involve the notion of simplicial 
node. Note that the 'hard' part in his proof lies also in proving the de
composition result via clique sums (the original proof given in [12] for this 
decomposition result was not correct; it was later corrected in (13]). 

5. Proof of Theorem 8 

This section is devoted to the proof of Theorem 8. The implication (ii) ==> 
(i) follows from the fact that the graphs Cn (n~5), A2-A10, B1-B6 have 
no clique cutset and that they cannot occur as an induced subgraph of a 

graph in 9i (i=l,2,3,4). 
We now turn to the proof of the reverse implication: (i) ==> (ii). The 

starting point of our proof was inspired by the proof given in [16] for the 
following result of Dirac [3]: Every chordal graph G which is not a clique 
has ~;clique cutset. The latter result can be shown in the following manner. 

Let G be a chordal graph which is not a clique. Then, there exists a node 
u which is not adjacent to all nodes in V. Let S~V be a maximal subset of 
V containing u such that G[S) is connected and the set 

N := { i E V \ S I i is adjacent to some node in S} 
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is strictly contained in V\S. Setting N:=V\(SUN), we have partitioned 
V into 

V=SUNUN, 

where G[SJ is connected, N =f. 0, and there is no edge between the sets N 
and S. It follows from the maximality assumption on S that 

(1) every node of N is adjacent to every node of N. 

Moreover, N is a clique and, thus, a clique cutset in G ( cf. the proof of 
Claim 3). 

We now return to the proof of Theorem 8 (i) ==> (ii). For this, we let 
G be a graph satisfying condition (i) (i.e., G does not contain Cn (n ~ 5), 
A2 -A10, B1 -B5 as an induced subgraph) and we assume that G has no 
clique cutset. We show that G belongs to one of the classes Qi, i=l,2,3,4. 
We can assume that G is not a clique (else, we are done). In the same manner 
as above, one can partition the node set V into 

V=SUNUN, 

where S =f. 0, G[S] is connected, N =f. 0, there is no edge between the sets 
N and S, N is not a clique, and relation (1) holds. The rest of the proof 
consists in a detailed analysis of the structure of the sets S, N and N, so 
that one can finally reach the conclusion that G has indeed the form of a 

4 

graph in LJ Yi. 
i=l 

5.1. Preliminary results and sketch of proof 

We group here a number of preliminary results on the structure of G which 
will lead to several distinct cases that we have to consider. In what follows, 
we let n denote a given element of N. For s E S, we set 

N(s) := {i EN I is EE}. 

Claim 2. If st is an edge in S such that N(s)UN(t) is not a clique, then 
N(s) ~ N(t) or N(t) ~ N(s). 

Proof. Assume that st is an edge in Sand that N(s) \N(t), N(t) \N(s) 
are both non empty; we show that N(s) U N(t) is a clique. For this, let 
iE N(s) \N(t) and j EN(t) \N(s); then, ij EE (else, (n, i,s,t,j) would be an 
induced C5). Let i' be another node in N(s)\N(t); then, ii' EE (else, we find 
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Bs on {s,t,i,i',j,n}). Let kEN(s)nN(t); then, kiEE (else, we find A 1 or B 1 

on {n,s;t,i,j,k} depending whether kj EE). Finally, if k,k' E N(s)nN(t). 
then kk EE (else, we find A5 on {s,t,k,k',i,j,n}). I 

Claim 3 · If i, j E N are two non adjacent nodes in N, tl1en there exists 
s ES which is adjacent to both i and j. 

Proof. Let i,j EN be non adjacent and assume that no s ES is adjacent to 

both i, j. There exist s, t ES such that si, tj EE and sj, ti Ff_ E. Consider a 

shortest path P in S from s to t. Then, this path P together with the edges 
s·i, in, nj,jt yields a circuit of length 2 5 in G, a contradiction. I 

As a consequence of Claim 3, we obtain that 

(4) G[N] is chordal. 

Indeed, suppose that G[N] contains an induced C4 ; let i,j EN be nonadja

cent, and let s ES be adjacent to i and j. Then, we find B3 on the nodes of 
C4 and i,j,s, a contradiction. 

Claim 5. Let I~ N be a stable set in N of cardinality III 2 3. Tl1en, there 

exists a unique node s ES which is adjacent to all nodes in I. 

Proof. We proceed by induction on III 2: 3. Suppose first that III= 3, I= 
{ i,j, k }. If there exists no node in S adjacent to i,j, k then, by Claims 3 and 2, 

there exist pairwise nonadjacent nodes r, s, t ES such that ri, rj, si, sk, tj, tk E 

E and rk, sj, ti rt E; this gives an induced circuit C6 in G, a contradiction. 

Now, ifs, tare two distinct nodes in S adjacent to i,j and k, then we find A2 
or B2 on {i,j,k,s,t,n} depending whether s,t are adjacent or not. Hence, 

the result holds when III =3. Suppose now that I={i1,. .. 1 ip} with p24 
and that no node of S is adjacent to all elements of J. By the induction 

assumption, we may assume that, for every j = 1, ... ,p, there exists Sj ES 

adjacent to all nodes in I\ {·ij}; then, the subgraph of G induced by nodes 

n,s1,sp,ip-2,ip-1,ip is B4. Hence, there exists sES adjacent to all nodes in 

I; uniqueness follows from the case III =3. I 

Claim 6. Let i,j,kEN be distinct nodes such that G[{i,j,k}] llas exactly 

one edge. Then, there exists a node s ES which is adjacent to i,j, and k. 

Proof. Suppose the claim does not hold. Say, ij EE and ik,jk rt E. Then, 

there exists, t ES such that sis adjacent to i, k but not to j and t is adjacent 

to j,k but not to i. Then, stEE (else, we find C5 on s,t,i,j,k) and we find 

B - t · 'k I l on n,s, ,i,J, ··. 
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Claim 7. Let I, J ~ N be distinct maximal stable sets in N. If I n J -:/= 0, 
then any node s ES which is adjacent to all elements in I is adjacent to all 
elements in J. 

Proof. Suppose not. Lets ES be adjacent to all elements in I and let j E .J\J 
such that sj If. E. By maximality of I, there exists i EI such that ij EE. Let 
k EI n J and let t ES be adjacent to i,j, and k (which exists by Claim 6). 
Then, we find B4 or B5 on n,s,t,i,j,k (depending whether stEE or not). I 

Claim 8. Let(i,h,j,k) beaninducedC4 inN (i.e.,ih,jh,ik,jkEE,ij,hk<t. 
E). Then, any nodes ES which is adjacent to i and j is adjacent to h and 
k. Moreover, every node x EN\ { i,j, h, k} is adjacent to at least three nodes 
in {i,j,h,k}. 

Proof. Let s ES be adjacent to i and j and suppose that s is not adjacent, 
say, to k. Let t ES be adjacent to h and k. Suppose in a first step that 
sh rt. E. If t is adjacent to both i,j, then we find B3 or B6 on the nodes 
n,s,t,i,j,h,k (depending whether s,t are adjacent); ift is adjacent to one of 
i,j1 then we find A2 or Bs and, if t is not adjacent to i,j, then we find B2 or 
B4 on the nodes s, t, i,j, h, k. Therefore, we have that sh EE and, similarly, 
tiEE. Then, we find As or B6 on {n,s,t,i,j,h,k} when tjEE and we find 
A4 when tjlf.E (on {s,t,i,j,h,k} if stf/.E and on {n,s,t,i,j,k} if stEE). 

We now prove the second assertion of the claim. For this, consider x E 
N\{i,j,h,k} such that xirf.E. Let sES which is adjacent to x,i,j (which 
exists by Claim 6); then s is adjacent to hand k. Hence, the subgraph of G 
induced by {n,s,x, i,j,h, k} is A3, As, B3, or B6 if one of the edges xj, xh,xk 
is missing. I 

Corollary 9. If N is not a clique, then G[N] is chordal and there are at 
least two edges among any tliree nodes in N. 

Proof. Let n1, n2 be two non adjacent nodes in N. Suppose first that 
(i,h,j,k) is an induced C4 in N. Let s ES be adjacent to i,j, h, k (which 
exists by Claims 3 and 8); thus, we find A3 on {n1 ,n2,s,i,j,h,k}. This 
shows that G[N] is chordal. Suppose now that i,j,k are distinct nodes in N 
having at most one edge among them. Then, there exists s ES adjacent to 
i,j,k (by Claims 5 and 6); thus, we find B2 or A2 on {n1,n2,s,i,j,k}. I 

Let v denote the largest cardinality of an induced matching in G[ N], the 
complementary graph of G[N]. Then, v;::: 1 since N is not a clique and 

(10) 
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Indeed, suppose that v 2: 4 and let { iaJa I a= 1, 2, 3, 4} be an induced matching 
in G[N]. By Claims 3 and 8, there exists a nodes ES which is adjacent to 
all nodes ia,Ja, a=l, ... ,4. Then, we find Arn on {n,s,ia,Ja (a=l,2,3,4)}. 
Nate that v 2: 2 if and only if G[ N] is not chordal. 

We can now describe the overal structure of the proof. We will organize 
our discussion according to the value of the parameter v= 1,2,3 (by (10)). 
In the case when v = 1, i.e., when the graph G[N] is chordal, it will be 
convenient to consider separately the two cases when a(G[N]) =2 and when 
a( G[N]) 2: 3. To summarize, the proof will consist of examining the following 
disjoint cases: 
Case A: v=l and a(G[N])=2; then, we show that GEQ1U~h 
Case B: v= 1 and a(G[N]) 2: 3; then, we show that G E91. 
Case C: vE{2,3}; then, we show that GEQv. 

5.2. Case A 

We assume here that G[N] is chordal with stability number a(G[N]) = 2. 
Let K <;;_ N be a clique cutset in G[ N]. Then, N can be partitioned as 

N=KUN1 UN2 

where N1, N2-:/: 0 and there is no edge between the sets N1 and N2. Moreover, 
both N1 and N2 are cliques (since a(G[N])=2). We show that G belongs to 
Q1 U Q4 . For convenience, we introduce the following sets: 

81 := { s E 8 I s is adjacent to N1 but not to N2}, 

82 := {s E 8 Is is adjacent to N2 but not to N1}, 

8 12 := {s E SI sis adjacent to N1 and N2}, So := S \ (81 U 82 U 812) 

and, for a=l,2, 

Ka:= {k EK I ik (/. E for some i E Na} and Ko:= K \ (K1 U K2)· 

Given a set A <;;_ V and u E V \A, we say that u is adjacent to A if u is 
adjacent to some element in A. Moreover, a path connecting a node of 81 to 
a node of 82 whose set of internal nodes is contained in So is called a path 
from 81 to 82 via So. We have: 

K1 n K2 = 0; N1 U K2 and N2 U K1 are cliques, 

since a ( G [ N]) = 2. Moreover, 
812 # 0. 
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Indeed, given i 1 EN 1 , i2 E N2, there exists (by Claim 3) a node s E S which 
is adjacent to i1 and i2; thus, s E S12. The following observation will be used 
repeatedly. 

Claim 11. T11ere does not exist an induced path from S1 to S2 via So. 
Moreover, any induced path contained in SoUS1 US2 is contained in So US1 
or in SoUS2. 

Proof. Suppose that there exists an induced path (s1,u1,. .. ,up,s2) where 
s1E81, s2 E S2, and u1, ... ,up E So (p ~ 0). Let ia E Na be adjacent to Sa, 
for a= 1, 2. Then, (ii, si, ui, .. ., up, s2, i2, n) is an induced circuit of length 
~ 5 in G, yielding a contradiction. The second assertion in the claim follows 
easily. I 

By definition, every node of S12 is adjacent to at least one node in Ni 
and in N2. More strongly, we have: 

(12) Every node s E S12 is adjacent to every node in Ni U N2 U Ki U K2. 

This follows using Claim 7, since any two non adjacent nodes of N form a 
maximal stable set in G[N]. Indeed, let s E Si2 and let ii E Ni, i2 E N2 be 
adjacent to s. Then, s is adjacent to every other node ji E N1 since {ii, i2} 
and {j1, i2} are two intersecting maximal stable sets. Moreover, if k E K i 
is not adjacent to some ji E N1, then s is adjacent to k since {k,j1} is a 
maximal stable set meeting {ji, i2}. 

Claim 13. The graph G[S12UKUN] is chordal. 

Proof. We already know that G[ K UN] is chordal (using ( 4)); hence, a 
possible C4 is necessarily contained in KUS 12 and has at least two nodes 
in S12- Let ii E N1 and i2 E N2. If (i,j, s, t) is an induced C4 with i,j EK 
and s,t E S12, then i,j E Ko (by (12)) and we find A5 on n,s,t,i,j,ii,i2. 
In the case when (i,r,s,t) is an induced C4 with i EK and r,s,t E 8, then 
i E Ko and we find B5 on n,r,s,t,i,i1,i2. Finally, if (r,s,t,u) is an induced 
C4 contained in 812, then we find B3 on n,r,s,t,u,i1,i2. I 

Our next objective is to show that S = 812, i.e., that the set T := 80USiUS2 
is empty. Given s ET, set 

Xs := {x E 812UN I sx EE}. 

Claim 14. Xs is a clique for every s ET and X 8 UXt is a clique for every 
edge st in T. 
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Proof. Note first that, if x,y are two non adjacent nodes in 812UN, then 
one of the following holds: either xES12, yES12UKo; or xEKi, yEN1 (or 
the symmetric case: xEK2, yEN2); or xEN1, yEN2. 

Suppose that Xs is not a clique for some s ET and let x, y be nonadjacent 
nodes in X 8 • If x E 812, then N(s) ~ N(x) (by Claim 2, since N(x) is not 
a clique) and, thus, y (j N which, in view of the above observation, means 
that yES12- But, then, we find B4 or B5 on {n,s,x,y,i1,i2} (where ii EN1, 
i2EN2). We cannot have: xEN1,yEN2; therefore, xEK1, yEN1 and, thus, 
s E 81. Then, s must be adjacent to any i2 E N2 (by Claim 7, since {y, i2} is a 
maximal stable set in N meeting { x, y}), contradicting the fact that s E 8 l · 

Hence, Xs is a clique. 
Suppose now that Xs U Xt is not a clique for some edge st in T. Then, 

there exist two nonadjacent nodes x,y in X 5 UXt with, say, xEX8 \Xt and 
yEXt\X5 • We can assume, e.g., that s,tESoUS1. Again we cannot have: 
x E Nl,Y E N2. Hence, given i2 E N2, (i2,x,s,t,y) is an induced Cs in the 
case when x E 812 and y E 812 U Ko; in the case when x E Ki, y E Ni, then 
(n,x,s,t,y) is an induced C5. I 

If T -=/=- 0, we let A denote a maximal subset of T for which G[A] is 

connected and the set X(A) := LJ Xa is a clique. 
aEA 

Claim 15. There is no edge between the sets A and T\A. 

Proof. Assume that a EA is adjacent to b ET\ A. By maximality of A, we 
deduce that X(A) U Xb is not a clique; hence, there exist two nonadjacent 
nodes x E X(A) and y E Xb. Let ao E A be adjacent to x. As x,y are 
not adjacent, we deduce from Claim 14 that ao -=/=- a, a0 b, aoy, bx rt, E. Let 
(ao,a1, ... ,ap,a) be a shortest path connecting ao and a in A (possibly p=O 
if aoaEE). Together with nodes x,y, this yields an induced path P oflength 
2: 4 from x to y and whose internal nodes belong to T. Now, by Claim 11, 
we may assume that all internal nodes of P belong to So U 81. Therefore, 
the path P together with edges i2x,i2y (resp. with edges nx, ny) yields an 
induced circuit of length 2::6 in G when xE812 and yES12UKo (resp. when 
xEK1 and yEN1). I 

We can now deduce that 

T =Sou 81 u So= 0; that is, S = 812-

For, if T-=/=-0, then A-=/=- 0 and X(A) is a clique cutset in G. (To see it, note 
that there is no edge between A and the sets T\A, (812UN) \X(A) and N. 
Hence, if we delete the clique X(A) in G, we obtain a graph in which A is 
disconnected from the rest of the graph.) 
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Corollary 16. IflN1l=IN2l=l and Ki=K2=0, then GE01. 

Proof. Indeed, under this assumption, we have that N1 = {i1}, N2 = {i2} 
where both ii and i2 are adjacent to all nodes in V\{i1,i2}=SUKUN. As 
G[V\{i1,i2}] is chordal (by Claim 13), we obtain that GE91. I 

From now on, we can assume without loss of generality that the following 
holds: 
(17) INil 2:: 2, or Ki # 0. 
Then, N is a clique by Corollary 9. Moreover, 

S is a clique and every node of S is adjacent to every node of N. 

Indeed, it follows from assumption (17) that G[N] contains a path (i,j,k) 
of length 2 (choosing, either i,kEN1, jEN2; or iEK1, jEN1, kEN2 where 
ij rj. E). Therefore, if s, t are two non adjacent nodes of S, then we find A2 
on the set {i,j,k,s,t,n}. Hence, Sis a clique. Suppose now that sES is not 
adjacent to some node hEN; then, hEKo by (12). Let tES be adjacent to 
h. Then, we find Aa on the set {n,s,t,h,i,j,k}. 

Hence, we know the following information about G: The sets S and N 
are cliques, every node of SUN is adjacent to every node of N, and G[N] is 
chordal. This implies: 

Corollary 18. If ISl=INl=l, then GEQ1. I 

Henceforth, we can now assume, moreover, that 

(19) max(IS!, INI) 2:: 2. 

This implies that 

G[N] does not contain an induced path of length 3. 

Indeed, G[SuN] contains a path of length 2 by (19); hence, if G[N] would 
contain an induced path of length 3, we would find graph A6. 

Therefore, by Lemma 12 (i), we know that N can be partitioned into 

N=ViUVoUVi 

where Vo U Vi and Vo U Vi are cliques and there is no edge between Vi and 
V2. (Namely, Vo=Ko, V1=N1 and Vi=K1UN2.) We can now conclude that 
G belongs to class 1}4 (with the cliques Vi, S, V2, N forming the outer circuit 
and Vo as central clique). This concludes the proof in case A. 
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5.3. Case B 

\Ve assume here that G[N] is chordal with stability number o:(G[N]) ~ 3. 
We s,ho:V that GE Q1. For this, let I be a maximal stable set in N; III~ 3. 
By Clann 5, there exists an element s1ES which is adjacent to all nodes in 
I. A first easy observation is that 

INI = 1. 

Indeed, if n1, n2 EN and i,j, k E J, then we find A2 or B2 on {n1,n2,s1 ,i,j, k }. 
Next, we observe that 

s I is adjacent to every node of N. 

Indeed, let h E N\J. If hi f: E for some i EI, then s1 is adjacent to h by Claim 
7. If hi, EE for all ·i E J, then s1h EE for, if not, we find A2 on {n, s1, h, i,j, k} 
(where ·i,j, k EI). At this point, we can already conclude that 

(20) if S = {s1}, then GE 91. 

Indeed, s1 and n are both adjacent to all elements of N and G[N] is chordal. 
We now show that the set T:=S\{s1} is empty. For this, note first that 

( 21) every node s E T is adjacent to at most one node of I. 

Indeed, we know from Claim 5 that sis adjacent to at most two nodes of I. 
If .s ET is adjacent to i,j EI and if k EI\ {i,j}, then we find B4 or Bs on 
{n, s, s r, i, j, k}. For s E T, set 

Ys := { X E N I SX E E}. 

Clain1 22. For every sET, Ys is a clique and, for every edge st in T, YsUYi 
is a clique. 

Proof. Suppose that x, y E Ys are not adjacent where s ET. Let i,j EI be 
both non adjacent to s (such i,j exist by (21) ). Then, we have that xi, yi EE 

(for, if not, we find A4 , B4 or B5 on {n, s, s1 ,x, y, i} ). Similarly, xj, yj EE. 

Hence, we have found (:r,·i,y,j) as induced C4 in G[N], which contradicts 

our assumption that G[N] is chordal. 
Suppose now that YsUYi is not a clique for some edge st in T; let :r: E Y,\yt, 

y E Yi.\ 1~, be non adjacent. Then, (n, x, s, t, y) is an induced C5. I 

Let A be a maximal subset of T such that G[A] is connected and the set 

Y(A) := LJ Ya is a clique. One can verify that 

11.Ell 

there is no edge between the sets A and T \ A. 
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(The proof is similar to that of Claim 15. Namely, if a EA is adjacent to 
b ET\ A, then we find two non adjacent nodes x E Y(A), y E Yb and an 
induced path P from x toy whose internal nodes belong to T. This path P 
together with edges nx, ny yields an induced circuit of length ~ 6.) 

From this it follows that A=0 (otherwise, the clique Y(A)u{sI} would 
be a clique cutset in G). Therefore, T = 0, which shows that S = { s l} and, 
thus, GE 91 by (20). This concludes the proof in Case B. 

5.4. Case C 

We assume here that z1 E {2,3}; thus, G[N] is not chordal. By Corollary 9, 
this implies that · 

N is a clique. 

Let { iaJa I a= 1, ... , v} be an induced matching of maximum cardinality in 
G[N]. In view of Claim 8, every node of N is non adjacent to at most one 
of the ia,Ja 's. This leads us to defining the following sets: 

la := { i E N I i -/= ja and ija ff. E}, la := { i E N I i -/= ia and iia f/. E} 

for a=l,. . .,v. Thus, iaEia andjaEla for a::::;v. Set 

I/ 

I := LJ Ia Ula, No := N \I, 
a=l 

S1 := {s ES Is is adjacent to all nodes of I}, and T := S \ 81. 

vVe group several observations about the sets I,No,S1. By Claim 8, 81#0 
and a node s ES belongs to S1 if and only ifs is adjacent to ia and ja for 
so1ne a= 1, ... , v. Moreover, 

No is a clique 

(else we find an induced matching of size v+l in G[N]). 

Every node of No is adjacent to every node of I. 

Indeed, suppose that x EI is not adjacent to y E No; say, x E fi. Then, 
y is adjacent to i1,j1,i2,j2 and x =f:. ii. Given s E 81 we find A1 on 
{ i1,j1, i2,j2, x, y, s, n}. Moreover, 

(23) 81 is a clique. 
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Indeed, ifs, t E Sr are not adjacent, then we find A3 on {n s t i · · ".} 
W 1 h , , , I,Ji,i2,J2 . 

ea so ave: 

(24) If x E Ia,J Ela, a E {1, ... ,v}, then xy (j_ E. 

Say, a= 1. The statement is obvious if x = i 1 or y = j 1. Otherwise we find 

A1 on { i1,!1, i2,j2, x, y, s, n} where s E S1. The following statements 1(25) and 

(26) are direct consequences of Claim 8. 

(25) If x Ela Ula, then x is adjacent to ib and Jb, for a=!= b E {1, ... , v}. 

(26) 

(27) 

If s E T, x, y E Ia Ula and xy rt E, then s is adjacent to 

at most one of x, y. 

If x Ela U Ia,Y E Ib U Jb,a =/= b E {1, ... ,v}, then xy EE 

and :r; E {ia,Ja} or y E {ib,Jb}· 

The statement follows from (25) if x E { ia,Ja} or y E { ib,Jb}· Otherwise, we 

find A1 on { x, Y, ia,Ja, ib,Jb} if xy tf. E and we find As on {x, y, ·ia,Ja, ib,Jb, s, n} 
if 7:y EE (where s E S1 ). 

Our next objective is to show that S=S1, i.e., T=0. For sET, set: 

Zs := {x E S1 UN I sx EE}. 

Claim 28. Zs is a clique for every s ET and Z8 U Zt is a clique for every 

edge .st in T. 

Proof. Suppose that x,yEZs are not adjacent for some sET. As S1 and 

No are cliques and every node of I is adjacent to every node of No, there are 

two cases: either x, y E J, or x E S1 and y EN. The case x, y EI is excluded 

by relations (26) and (27). If xES1 and yEN, then N(s)UN(y) is not a 

clique since Ic;.N(:r:). By Claim 2, this implies that N(s)<;N(x) and, thus, 

:ry EE, i1 contradiction. 
Suppose now that Z8UZt is not a clique for some edge st in T; let x E Zs\Zt, 

y E Zt \ Zs be non adjacent. If x,y EN then (n,x,s,t,y) is an induced Cs 

in C. Hence, x E S1 and y E No. Consider i1 E Ji,j1 E J1. By (26), we may 

assume that si1 tf.E. Then, ti1 EE (else, (i1,x,s,t,y) is an induced C5) and, 

thus, tj 1 ~ E, s)i EE. But, then, we have found B1 on {i1,J1,x,y,s,t}. I 

Let A be a maximal subset of T for which G[A] is connected and the set 

Z(A) := LJ Za is a clique. 

aE./\ 

Claim 29. Tl1ere is no edge between the sets A and T\ A. 
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Proof. Suppose that a E A is adjacent to b E T \A. By maximality of A, 
we deduce that Z(A) U Zb is not a clique; let x E Z(A), y E Zb be non 
adjacent and let a0 E A be adjacent to x. We know from Claim 28 that 
a i= a0 and a0y,xa,xb r/:. E. Considering a shortest path in G[A] from ao to 
a, we find an induced path (x,a1, ... ,ap,Y) where a1, ... ,apET and p2:3. 

If x, y E N, then this path together with edges nx, ny yields an induced 

circuit in G. Hence, x E 81 and y E No. Consider i1 E Ii, ji E Ji. Then, ii 
is adjacent to one of ai,a2. (Indeed, ii is adjacent to some ai for, if not, 
then (ii,x,a1, ... ,ap,Y) is an induced circuit. Let k2:1 be the smallest index 
such that i1ak EE; then, (i1, x,ai, ... , ak) is an induced circuit which implies 
that k:::; 2.) Similarly, j 1 is adjacent to one of a1,a2. Hence, we can assume 

that ii ai E E ( ==? J1 a1 rJ. E), J1 a2 EE ( ==? i1 a2 rJ. E). Then, we find B5 on 

{ i 1 'j i , x' Y' a 1 ' a2} . I 

From this it follows that 

T=0; thatis,8=51. 

For, if not, then A;/=0 and Z(A) would be a clique cutset in G. 

Corollary 30. If v = 3, or if v = 2 with max(IIa U lal : a= 1, 2) 2: 3, then 

GE9v· 

Proof. By the assumption, we have that INI = 151=1 and 5UNo is a cliq ie 
(for, otherwise, one would find As or Ag in G). Moreover, if v = 3, then 
max(llaUlal:a=l,2,3)=2 (else, one finds Ag). Using (24), (25), (27), one 
obtains that GE Yu· I 

Therefore, we can now assume that 

v = 2 and max(\Ia U .la\ : a= 1, 2) = 2. 

Set 
Nb := { i E No \ is r/:. E for some s E 5}. 

The following holds: 

si tf. E for every s E 5, i E Nb. 

Indeed, suppose that si EE for some s E 5, i E N0 and let t ES such that 
tirj.E. Then, we find A1 on {n,s,t,i,i1,J·1,i2,j2}. 

Hence, the node set of G can be partitioned into the sets S, No\N0, N0UN, 
and I= {ii,)i,i2,]2}, in such a way that Su(No \N0) and (No \N0)uN0UN 
are cliques and there is no edge between Sand N0UN. Therefore, G belongs 
to 92. This concludes the proof in Case C and, thus, of Theorem 8. 
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6. Conclusions 

As mentioned in the Introduction, one of the motivations for the study 
of the cone Pc comes from its link with the positive semidefinite matrix 
completion problem. It has been shown in [11] that the completion problem 
can be solved in polynomial time for the following classes of graphs: chordal 
graphs (i.e., graphs with sparsity order 1); graphs with fixed minimum fill-

3 

in; hence, for graphs in LJ Yi; graphs in 94 when one of the sets on the 
i=l 

4-circuit is assumed to have a fixed size. Therefore, if one can show that the 
completion problem is polynomial time solvable over the whole class Q4 , then 
the problem would be polynomial time solvable for all graphs with sparsity 
order 2. 
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the paper. 
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