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ABSTRACT

In this chapter, an accurate method, using a novel immersed-boundary approach, is presented
for numerically solving linear, scalar convection problems. As is standard in immersed-boundary
methods, moving bodies are embedded in a fixed "Cartesian' grid. The essence of the present
method is that specific fluxes in the vicinity of a moving body are computed in such a way that
they accurately accommodate the boundary conditions valid on the moving body. To suppress
wiggles, tailor-made limiters are introduced for these special fluxes. The first results obtained
are very accurate, without requiring much computational overhead. It is anticipated that the
method can readily be extended to real fluid-flow equations.
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Finite-Volume Discretizations and Immersed
Boundaries

Yunus Hassen and Barry Koren

Abstract In this chapter, an accurate method, using a novel immerseddary
approach, is presented for numerically solving linearlasczonvection problems.
As is standard in immersed-boundary methods, moving bateembedded in a
fixed ‘Cartesian’ grid. The essence of the present methddkisspecific fluxes in
the vicinity of a moving body are computed in such a way thaythccurately ac-
commodate the boundary conditions valid on the moving boalguppress wiggles,
tailor-made limiters are introduced for these special ffuffde first results obtained
are very accurate, without requiring much computationatbgad. It is anticipated
that the method can readily be extended to real fluid-flow gous

1 Introduction

The immersed-boundary method — or, synonymously, embelddeddary method
— is a method in which boundary conditions are indirectlyomporated into the
governing equations. It has undergone numerous modifitatever since its intro-
duction by Peskin in 1972 [13], and currently many varieties exist (see [10] for
a review and the references therein for details).

Immersed-boundary methods are very suitable for simgdtows around flex-
ible, moving and/or complex bodies. Basically, the bodiemterest are just em-
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bedded in non-deforming Cartesian grids that do not conforthe shape of the
body. The governing equations are modified to include thecg#) of the embed-
ded boundaries. Doing so, mesh (re)generation difficuiEsciated with body-
fitted grids are obviated, and the underlying regular fixed gllows us to use a
simple data structure as well as simpler numerical schemw@ssomajority of the
domain.

Peskin, in his original paper [13], introduced the idea @iaeing an object in a
flow by a field of forces. This gave rise to the notion of an ‘inteesl body. Peskin
described the fluid variables in an Eulerian manner and tfexbin the Lagrangian
manner and computed, from the boundary configuration, tetielforces generated
within the object. Since the object is in direct contact vtk fluid, these elastic
forces affect the fluid motion. Peskin then transmitted tiveds to the fluid in the
immediate vicinity of the boundaries of the object, i.e.the governing equations
he added a forcing function, which is zero everywhere exoept the immersed
boundaries. The forcing term enforces the no-slip condlitiao the boundaries of
the (immersed) object and thus the flow field indirectly fels presence of an
object immersed in it. Finally, he discretized the extendgdation in the entire
computational domain, including inside the immersed béfdysuccessfully imple-
mented this immersed-boundary method to simulate bloodifi@md around heart
valves [14, 15].

In a similar way, but independently, Goldstein et al. [4] éoypd a forcing term
continuously computed from a feedback loop. They borrowmttepts from linear
control theory and formulated the forcing term dependiriglgamn the velocity of
the boundary-surface points (immersed boundaries). g term is added to
the momentum equation, and recomputed/corrected (usengadmputed velocity)
at each time step until the relative velocity on the desirednolary-surface points
has been set to zero. This recursive procedure eventualyes/the (desired) vir-
tual surface. The subjective part of this forcing term ist ihaequires the choice
of two negative constants, and 3, and a problem-dependent paramdtewhich
are not defined properly; they are interrelated by a stghifiterion and estimated
heuristically. This technique introduces a severe ragirioon the time step and it
is unstable for (complex) flow computations that requirgéatime steps. Gold-
stein et al. used a spectral method solver to simulate tweedsional flow around
stationary cylinders and three-dimensional turbulentaleaflow. Saiki and Birin-
gen [16] adopted the same (feedback-forcing-functionheeusing higher-order
finite-difference methods, and achieved a relatively stablution with no time-step
restriction. They computed the feedback-forcing functignintegrating the rela-
tive flow velocity, with the associated negative constaoisthe boundary-surface
points, and showed that the feedback-forcing method of €eid et al. is also ca-
pable of handling moving boundary problems. They succégsfuplemented it
for low-Reynolds number (Re 400) flows around fixed, rotating and oscillating
cylinders.

Mohd-Yusof [12] proposed a modified method which is callesldirect-forcing
method. This method uses a set of points adjacent to thecsudiad interior to
the body and directly imposes the no-slip boundary condftion the immersed
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boundary enabling a direct momentum forcing. It is reldyistable, compared to
the method of Goldstein et al., does not impose time-stapaetsns and does not
need the choice of (empirical) negative constants for dejitihe forcing function.

Mohd-Yusof [11] also used the spectral context and simdldteee-dimensional
flows for complex geometries. Kim et al. [7] used the diremteing method and
simulated flows over a cylinder and a sphere using the firotame approach on a
staggered mesh. They introduced external forcing funsttorthe momentum and
continuity equations, to achieve momentum and mass coatseny respectively.

In this approach, an unbalanced mass flux results acrosothelmundary and a
source/sink term is added to the continuity equation.

Fadlun et al. [2] extended the direct-forcing method to éidtfference formula-
tion on a staggered grid, and compared the accuracy anceefficof their method
with those of the feedback forcing method, by simulatingé&dimensional flows
in complex geometries. They found their method to be of tmeesarder of accu-
racy, but more efficient. They concluded that the directifay approach is more
efficient and suitable to simulate unsteady three-dimemgimcompressible flows
in complex geometries. Most of the feedback and directifigronethods are basi-
cally similar except for the way of interpolating the fluidleeity to the immersed
boundary points and extrapolating the body force back imocomputational grid
points [2, 17, 19, 20].

More recently, a different class of immersed-boundary weshhas started to
emerge. Here, no forcing function and spreading is requireddead, the velocity
of grid points around the immersed boundary is interpolaaééhg the boundary
condition (no-slip, for instance) into account. The rasgltinterpolation equation
is then solved along with the (unmodified) Navier-Stokesagigns. The main ad-
vantage, in this case, is that no extra terms are includdukilgoverning equations
and they are solved only in the fluid domain. Ghost-cell [18] aut-cell [1] meth-
ods are typical examples of this class of methods. Some ah#jer contemporary
methods have been described and reviewed in [10].

In this chapter, we follow the forcing-function-free appoh and start to build
up a new immersed boundary method from scratch, consid&irgpnvenience, a
simple model equation. Our approach uses a cell-centeriéghfiolume discretiza-
tion. The governing partial differential equations arecti$ized using a standard
finite-volume method away from an embedded boundary (EByr e EB, a spe-
cial finite-volume method is derived which takes the prdsagtiinterior boundary
conditions into account.

The outline of the chapter is as follows. §r2, the problem is described, a stan-
dard finite-volume method is described and some of the assakcresults are pre-
sented. The special fluxes which take the effects of the eddzedoundaries into
account are derived and limiters are introduced i8. In § 4, the issues associ-
ated with temporal discretization, which gives rise toyfudiscrete equations, are
explained. Total-variation diminishing (TVD) regions atefined and tailor-made
limiters, for the special fluxes, are also educed from thly filiscrete equations. In
§ 5, some numerical results, based on the present work, aga givd a comparison
is made with the standard finite-volume results§ 16, we give a brief account of
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the possibilities to extend the presented method to morergénases, and finally,
concluding remarks are presented in.

2 Model equation and target problems

Many of the partial differential equations that are deritednodel physical situ-
ations cannot be solved analytically, and are too complestudy their numerics
rigorously. It is logical to first develop numerical schenfes appropriate model
equations and then to carry these over to the original pdiffarential equations for
which precise analysis is not possible. It is common pradticake model equations
that are sufficiently simplified versions of the correspagdihysical equations, but
still resemble these equations as much as possible.

Here, we consider the one-dimensional, linear advectioagap as the model
equation for the Euler equations:

dc  df(c)

ot ox

=0, f(c)=uc. Q)

Equation (1) is a model of scalar quantifx,t) that is advected by the velocity
which is constant, and which we assume to be positiye) is the flux function,
which is linear. The independent variableandt represent space and time, respec-
tively. The generic domain of the solution is a one-dimenalwood, of finite length
L, and the time interval, in principle, is infinitely long.
The advection equation (1) is a very simple partial difféi@requation, but it

is an important one. It models fluid-flow equations and it @sehallenging to
solve it numerically. It is hyperbolic with a single set ofachcteristic lines. These
are straight lines in théx,t)-plane, which are determined from the solution of the
ordinary differential equation:

dx

a
whose integration yields the equation of the characteristesx — ut = constant.
Notice that, along a characteristic line, the dependerialbeac(x,t) satisfies:

(2a)

dc Jdc Jdcdx dc dc

_— = — _—— = _— = 2

& ot Taxd ot Yax O (2b)
and thus, it remains constant along these lines.

Therefore, for a given initial solution(x,0) = cy(x), the exact solution of (1),
at any locationx and timet, can be computed by the method of characteristics,
asc(x,t) = co(x—ut). That is, as time evolves, the initial data simply propagate
unchanged with a velocity: it propagates to the right i > 0 and to the left if
u<o.

Hence, by using the exact solution as a benchmark, numeumosnical schemes
can be developed and tested for the one-dimensional, latkarction equation.
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2.1 Standard finite-volume discretization

In the finite-volume method, the spatial domain of the phaisiroblem is subdi-
vided into non-overlapping cells or control volumes. Thisscare considered to be
of uniform size. The domain is taken to be of unit lendth= 1, on the interval
x € [0,1] and is divided intdN cells, with the grid size beinlg= %

A single node is located at the geometric centroid of therobmblume and the
cells are represented with nodal indices: 1,1, i + 1, etc. The coordinates of the
nodes are determined as= (i — %)h, i=12,...,N. Analogously, the coordinates of
the cell faces are labeled by indices-with-fractions amdcamputed ax, 1= ih,

i=12,...,N. Figure 1 shows the spatial domain with cells and cell faces.

Nl
Nl

- i+
. ° I !
f o T T d T T

0 1 i—1 i i+1 ' I\T 1

Fig. 1 One-dimensional finite-volume domain

To obtain the finite-volume model, ensuring conservation, dhe model equa-
tion is integrated over the control volumes shown in Figurénfegrating (1) over
the volumeQ of celli yields:

ac af(c)

o EdQl + o aX

dQ; = 0. 3

We denote the discrete solution in celind the flux at cell face+ % both at time

leveln, ascl' := c(x;, t") andfi"+1 = f(c(xi+%,t”)), respectively. We assune to
2
be constant in space, in that cell. Applying the Gauss iatégr theorem, (3) can

be rewritten as:
dc;

dt
Semi-discrete equation (4) is exact so far in €gll It is going to be solved using

the method of lines. That is, the fluxes at the cell faces asedpproximated and

then the temporal part is time-stepped with a suitable imbagration method.

h +(fi+%_fi—%):0‘ (4)

2.2 Initial and boundary conditions

Two initial solutions are considered, each with two interimoving boundaries.
The solution at the left and right of each interior boundarpiiescribed. The two
interior boundaries represent two infinitely thin bodieattho with the flow. The
two moving boundaries have different initial locationg @ndxz, X1 # x2). The

solution is discontinuous across both interior boundafiég two initial solutions
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are shown in Figure 2, and, in formulae, read:

0, if xg <X<xp,

X) = S5a

Co(x) {1, elsewhere; (5a)
_J0 if X3 <x< X%,

ok {%(1_ cog2nx)), elsewhere. (5b)

The cosine function in (5b) exploits the advantage that énigivder accurate nu-
merical schemes have in non-constant, smooth solutionmegi

0 1 -
0 1 2 1 0 1 2 1
X X

(a) Constant function at peripheries (b) Smooth (cosine) function at peripheries

Fig. 2 Initial solutions with two discontinuous interior bounazs.

The model equation is approximated in a periodic domaint Ehahe first and
last cell faces are ‘glued together’ and thus the fluxes irctiteesponding faces are
readily made equalf% = fN+%. Apparently, periodicity allows us to time-step for
as long as we want for a finite spatial domain.

Fixed-grid finite-volume methods for advection problem#wnterior moving
boundaries are underdeveloped. No rigorous studies existtanumerical proper-
ties as accuracy and monotonicity. Here, several finitesnel methods for discon-
tinuous moving interior-boundary problems will be derivedialyzed and tested.
The moving interior-boundary conditions will be embeddedhe fluxes in the di-
rect neighborhood. The precise way in which this embeddindpine is the main
theme of this chapter.

2.3 Standard finite-volume schemes

Finite-volume methods distinguish themselves in the wayflixes are computed.
To start, three standard finite-volume methods are cormiddirst-order accurate
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upwind, second-order accurate central, and second-ocderate fully one-sided
upwind. The latter two can be cast into one general formktseheme [9].

For positive and constant and an equidistant grid, the classical fluxes, at time
leveln, are computed as follows. The fluxes are given for cell fa;eé (Figure 1);
for the other faces, they are computed analogously.

The general flux at cell facet % dropping the time inder, for convenience,
reads:

fi+%:UCi+%, (6a)

wherec; 1 is the cell-face state at- % which can be approximated in a variety of
ways. For example, far > 0, the first-order upwind flux involves only one cell and

takes the form:
Ci+% =G. (Gb)

Equation (6b) shows that the first-order upwind flux is sol&ged on the informa-
tion from the upstream side of the cell face.

The second-order central and fully one-sided upwind fluxeslve two cells and
they take the form:

1

Giyg =G+ 5(CGra—Ci), (7a)
1

Cil :ci+§(ci —Ci_1), (7b)

respectively. Both are written as the first-order upwindi-faade state (6b) plus a cor-
rection term. Equation (7a) is obtained by interpolati@sening a linear variation
of ¢ between points; andx; 1. And (7b) is obtained by extrapolation, assuming a
linear variation oft between pointg;_; andx;.

By blending these basic second-order accurate schemesamweeconstruct a
general higher-order accurate scheme, as:

1= 6 (ci+%(ci+1—ci)> +(1-9) (cw%(ci —ci1)> , 08€[0,1], (8a)

with 6 the blending parameter. Formula (8a) can be rewritten as:

C] 1-6
Gy =Cit 5 (Cira—Ci)+—5—(Ci—Cia). (8b)
Introducing, instead o), the parametex:
K=20-1, K €[-1,1], 9)

equation (8b) turns out to be the well-known Van Leescheme [9]:

1+k 1-k
Ci+% :Ci+T(Ci+l_Ci)+T(Ci_Ci—l)- (10)
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For k = 1, we have the second-order accurate central scheme; ardHor1, we

have the second-order accurate fully one-sided upwindnseh@ motivation for
the blending is that for the unique value= % we haver'(h®) net flux accuracy in
each cell.

The simplicity and monotonicity of the first-order upwincsene are appealing.
However, it has strong numerical diffusion. On the otherdhdhe solutions of all
k-schemes, hence also those of khe % scheme, may exhibit wiggles. This recalls
Godunov’s (1959) theorem [3] which states that there is nedr scheme higher
than first-order accurate which is monotone.

We verify this here for thec-scheme (10), considering the monotonicity re-
quirement:

C C

Ha o =4

—Z2 2 >(0) 11
CG—C-1 (11)

With the local successive solution-gradient ratios:

Cir1—G

r,h,=—— 12a
2 G—c1’ (122)
G —C1
L S, (120)
andk-scheme (10), requirement (11) yields:
1-«k
(1+K)ri+%— ; >2(k—2). (13)

R Al
=2

No k € [-1,1] exists for which (13) is satisfied for all possible combina-
tions ofri_% andri+%. It can be directly verified that (13) is not satisfied for
i3 <—1lincase ok =1, and for=- > 3in case ofc = —1. Fork = 3,
=3

requirement (13) is not satisfied fqﬂ—l — 2ri+% > 5. The corresponding re-

=%
gions of non-monotonicity in thei_%, fisd )-plane are depicted in Figure 3.

Notice that monotonicity requirement (11) is always sa$fior the first-

order upwind scheme (6b).

Several algorithms have been proposed in the literatutteytblrl higher-order
accurate solutions which are free from wiggles. Most of ¢halgiorithms exploit
the inherent monotonicity of the first-order upwind scheifige best known rep-
resentatives of these algorithms are the limited schemksving Sweby’s work
[18]. Let us consider limiters that resemideschemes to the largest possible extent
within Sweby’s TVD domain.

With (12a), the limited form of the cell-face state accogdio (10) can be written
as:
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@k=-1 byk=1 )k =

Wi

Fig. 3 Non-monotonicity regions for some-schemes.

1
Gy =G+ 50, 1)(G—Cia), (14a)

whereg(r) is the limiter function, defined as:

0, if r<O0
2r if O<r<§‘—"
r)y= ' » K 14b
o) oK MKrif éj—ﬁér<ﬁ—§, (145)
2, if ﬂ—ﬁgr.

Here we specifically adopt the limiter proposed in [8] as tla@dard limiter, which
gives a monotone third-order accurate net flux in a cell, Isgmebling thex = %
scheme. This limiter, which is within Sweby’s TVD domaingdispicted in Figure 4.

®

2,

1 |

2
Fig. 4 Standard limiter, : : : roa
which is obtained from (14b) ol 1 1 5 2
fork = 3. 4 2

In the remainder of this chapter, we will derive non-staddanite-volume meth-
ods, methods in which the interior boundary conditionsiacetiporated in the fixed-
grid flux formulae. Before doing so, for later comparisongmses, we will show
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what the solutions are for the standard finite-volume diszagons described above,
methods in which no embedded-boundary conditions are iefhgsure captur-
ing methods, in fact. For the time integration, the thresstRunge-Kutta scheme
RK3b from [6] is employed. For both initial solutions givem (5a) and (5b), we
consider the initial locations of the EBs to bexat= % andx, = % Furthermore, we
takeu = 1, and we compute the solutiontatx = 1, the time at which the solution
has made a single full-period. For both the first-order uphand thex = % (unlim-
ited and limited) schemes, the computations are performedgrid with 20 and 40
cells. The solutions are depicted in Figure 5. The time sbepe been taken suffi-
ciently small to ensure that in all cases the time-discatitin errors are negligible
with respect to the spatial discretization errors.

(b) on 40 cells

Fig. 5 Standard finite-volume solutions after one full-period,tfee initial solutions (5a) and (5b).
Red: exact discrete, blue: first-order upwind, green: uitdichhigher-order upwind-biased, and
black: limited higher-order upwind-biased.
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3 Fluxes with embedded moving-boundary conditions

As mentioned, the sharp discontinuities of the initial solus (5a) and (5b), shown
in Figure 2, may be considered as infinitely thin bodies gairtlp the flow and
the boundary conditions associated with these may be emleiddsome fixed-
grid fluxes. Here, the EB (embedded boundary) conditionsuaes-specified and
enforced to remain intact to the EB and unchanged at all tiffies solution values
on the left and right sides of the EB are designateclzgsandcfEB, respectively (see
Figure 6).

Ckp | CEs
-1 Gl Gi3
| | | | |
} ° } ° } ° } ° f— - —>x
i—1 i i+1 i+2
=
Bh

Fig. 6 EB situated in celi at timet, its associated solution values, and the affected cedl $tates.

As shown in Figure 6, for an EB situated in delvith its coordinateeg = Xgg(t)
given, its relative position with respect X.O_ 1 (the left face of cell) is Bh, where

2
B €[0,1] is a (non-dimensional) parameter which is defined as:
XEB — Xi7 1
2

H (15)

B=
So,B = 0 when the EB is situated at cell face 3, 8 = 1 when the EB is exactly
at the centroid, and83 = 1 when the EB is at cell fader %

There is no information flow across the EB. Fluxes on one sfdbeEB, at a
specific timet, are all computed based on the information on the same sitteeof
EB, at that time, plus the additional interior-boundary dition on the respective
side. In general, when considering three-point upwinddsiginterpolation for the
fluxes, three cell-face states j%, Ciy 1 andc, +%) are affected by the presence of
a single EB (in celi) and these are the cell-face states of interest for whidbriai
made formulae will be derived.

In general, for an EB in a cell, the three affected cell-fatetes are computed
such that the net fluxes in some neighboring cells are as @ecas possible. This
shall be discussed in the next section. So far, it is assuhadwo successive EBs
are sufficiently far apart that no cell-face state exists$ ihaffected by both EBs.
Recall that all but the affected cell-face states are costpbased on the standard
finite-volume schemes discussed;if.3.
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3.1 Higher-order accurate embedded-boundary fluxes

If a three-point upwind-biased interpolation is considei@ computing fluxes, the
cell facesi — % i+ % andi +% ‘feel’ the EB situated in cell (see Figure 6). The
higher-order accurate fluxes at these faces are computadigher-order accurate
cell-face states. In principle, all the special cell-fatzes are written in terms of the
blending parametex and computed from optimally blended, three-point upwind-
biased interpolation formulae. However, for ceII—facet&tzFlJr%, no upwind-biased
interpolation formula can be derived as we do not draw inftirom across the EB.
Hence, there is no blending parameter in the formul&itpzr, only non-equidistant

central interpolation is applied to compqu%. On the other hand, in the formulae
for 1 andc,, 3, there will be blending parameters, aqq% and €3 can be

taken as optimglly weighted averages of two-point centredrpolation and two-
point fully upwind extrapolation.

Just like away from the EB, also net cell fluxes are optimizdaccuracy near
the EB. The net fluxes of celis- 1,i, 1+ 1 andi + 2 are affected by the EB. Recalling
that onlyci_% andci+% allow for optimization, only two of the four aforementioned
net cell fluxes can be optimized for accuracy: either the netifi celli — 1 or cell
i forcif%; and either the net flux in call- 1 or celli + 2, forci+%.

For the accuracy optimizations, Taylor series expansiomnsised. Doing so, the
net flux in celli cannot be optimized due to the presence of the EB with itodisc
tinuous solution behavior. Hence, the net flux in celll will be optimized fonci_%.
Secondly, forci+%, the net flux in celi + 2 will be optimized. The reason why the
net flux in celli + 2 is optimized, instead of that of celi- 1, becomes clear at the
end of the derivations if 3.1.2. We start by first deriving the unlimited EB-affected
cell-face states, and after that, EB-sensitive limitedslve derived.

3.1.1 Cell-face states

Here, we derive the unlimited forms of the cell-face statesellsi — 1, i+ 1 and
i +2. These are the EB-affected cell-face statc?_s%( Cil ci+%) and the corre-

sponding regular cell-face stat@_(;, ci+g).

a. Cell-face states affected by EB

Cell-face statec, 1: The second-order accurate, non-equidistant, centratinte

2
polation, and the second-order accurate, equidistaiy, dipwind extrapolation
schemes foci_% can be written as:

Gt~ (g —ciy), (16a)

and
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6 =0 1456 10 2), (160)
respectively. The blend of the above two schemes, is:
1 1-I—Ki_% | 1—Ki_%
q,%:Q—r+IIEE__E__«%B_Q—ﬁ+“_fz__@Fl_Q—ﬂa (16c)
with ;.

the blending parameter. Note that we get the exact r@y%t:

c'EB, B =0, only fOI‘Ki_% = 1. (The accuracy of cell-face states is not our prime
interest, the accuracy of net fluxiess

NI

Cell-face statec,, 1: As mentioned earlier, there are no sufficient number of
2

solution points, on the upstream side of cell fzhee%, up to and including the
right face of the EB, to construct a higher-order accurateing-biased interpo-
lation scheme. Hence, no-scheme is formulated here. Instead, this particular
flux is reconstructed with only a, second-order accurate;equidistant central
interpolation scheme, as:

228
G =Cest m(ciﬂ —Cep)- a7

Note that we get the expected standard second-order aec@ematral result for
B = 3, and the exact result f@ = 1.

Cell-face statec, WD The second-order accurate central interpolation and the
non-equidistant, second-order accurate, fully upwindagdlation schemes for
Cgcan be written as:

1
Gz =Gt E(Ci+2—Ci+1), (18a)
and
C.3=C +L(c- — Ckg) (18b)
i+3 = G 3-28 i+1— Cep)»
respectively. Blending the above two schemes, we get:
1+ Ki, 3 1 1- Ki, 3
Gz =Gt TQ (Ciy2—Cit1) + 3-28 Tz (Gir1—Ces), (18c)

with Kii3 being the blending parameter.

b. Corresponding regular cell-face states

For cell faces — 2 andi + 3, the standaret = 1 scheme is applied:
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1 1

C_3 :Ci—2+é(ci—l—ci—z)'f‘é(Ci—Z—Ci—S)a (19a)
1 1

G,y =Cirat 3 (Ciy3—Ciy2) + 3 (Ciy2 —Ciy1). (19b)

3.1.2 Net cell fluxes

Here, we compute the net cell fluxes and derive the modifieatems for cells
i—1,i+1 andi+ 2, from which the blending parameterg% and Kit3 will be

optimized. Recall that the net flux in celcannot be optimized as the solution is
discontinuous in there.

Optimal accuracy in cell i —1: With (16c) and (19a), we get as semi-discrete
equation for cell — 1:

di 1 uf 1 1K j
1 n (—A(ClEB—Cil) +

dt 1+203 2
11-3K. 1

R “2(Gi1—Ci2)— %(Cifz - Ci3)> =0. (20a)

Substituting Taylor-series expansionso{gg, ¢i_» andcj_3 around the point—1
into (20a), we get as modified equation for dell 1, ignoring the index— 1:

ac gc  GB-T+(9+6B)ki_1 52

ot P T 28 o T
(B+2B)2B-1)(1+k_1) 4%
2 27 ~ 3
96 uh ENE o(h®). (20Db)
Equating the leading term of the truncation error to zerogete
7—68 17
Kif% = m, Kif% S {1—5,5] . (21)

This is thEKi_% that yields the most accurate net flux in deH 1. It is well within

the standara-range[—1, 1]. Its variation for any position of the EB within celis
depicted in Figure 7(a).

Substituting the optimal value axq_% according to (21) into the modified equa-
tion (20b), we get:

dc odc 2B—-1 ,0% _ s
T AT uh Wfﬁ(h ). (22)

Therefore, in general, we get a second-order (spatial)racgun celli — 1, with
a maximum leading-term truncation-error coefficientjf)fll8 uh2. Evidently, this
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dispersive term diminishes as the EB is in the immediateniticiof the center of
celli, B~ 1. ForB = 3, K_y isrestored ag;_; = 1 (Figure 7(a)), and then we get
third-order spatial accuracy.

Optimal accuracy in cell i+ 1: With (17) and (18c), we get as the semi-discrete
equation for cell + 1:

de,1 U (3_Ki+g 1+Kis

& h

W(CH—]‘ - CEB) + 4

(Cit2— Ci+1)> =0. (23a)
Introducing Taylor-series expansions @f; andci;, around the point+ 1, into
(23a), we get as modified equation for dell 1, ignoring the index+ 1:

Jc udC (63_7)+(5—ZB)Ki+§,Uh02C
at T Uax T 16 e T

(127363 +31) — (4%~ 12B+5)K;, 3 ane2C _

96 3

Then equating the leading term of the truncation error to,2ee get:

o(h®). (23b)

7-6B

K375 2p

3 3’5
This is theKi+% that yields the most accurate net flux in dej 1. Thisxi+% is not
within the standard-range[—1, 1].
Substituting (24) into (23b), we get as modified equatiorcfdti + 1, ignoring
the index + 1: .
Jc oc  3-2B ,0°C
o Tlx T T Mo
Note that the leading order error-term in deft 1 is second-order for a§; it does
not vanish for3 = 1.
Moreover, with (18c), (19b) and (24), we get as semi-digcegtuation for cell
i+ 2:

dCi+2 u l—ZB . r
& T h ((3—2ﬁ)(5—2[3)(c'+1_CEB) *
17— 23
30— 128

o(hd). (25)

(Ciy2—Cip1) + %(Ci+3—ci+2)) =0. (26a)

Introducing Taylor-series expansions ftig, ¢ 1 andc;, 3 around the poini+ 2
into (26a), we get as modified equation for aell 2, ignoring the index -+ 2;
oc dc  6B-7 d°c _

-+ U +

2
ot T Vax T T2z Unge = o) (26D)
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Note that the leading order error-term in delt 2 is first-order for all3.

Optimal accuracy in cell i +2: With (18c) and (19b), we get as semi-discrete
equation for cell + 2:

dci ufkKgz—1
2 ﬁ( AR (Cit1—CEg) +

dt 64

11- 3k, 2 1
TZ(Ci+2—Ci+1) + é(ci+3—Ci+2) =0. (27a)

Introducing Taylor-series expansions @, ¢i+1 andciyz around the point+ 2
into (27a), we get as modified equation for aell 2, ignoring the index—+ 2;

dc oc (BB-19kK s+ (7-6B) p2c

(4B*—24B+35)K, 3 — (4B%—243+19) 53¢
> 20°C 3
96 uh e o(h®). (27b)
Equating the leading term of the truncation error to zeroy n@ get:
7—6p3 17
KH’%ZW’ Ki+% € |:§,1—5:| (28)

This is the value 0ﬁ<i+% that yields the most accurate net flux in celt 2. As
opposed tc<i+% according to (24), thi$<i+g is well within the standard-range

[—1,1]. Its variation for any position of the EB within ceilis depicted in Fig-
ure 7(b).

0.8

@k 3 (D)K. 3

Fig. 7 Variation of the optimak values for any position of the EB within cell
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Substituting the optimaki+g according to (28) into (27b), we get as modified
equation for cell + 2:

_ 3
Jc Jdc 2B 1uhzd_c_

oc oc _ 3
ot + udx + 36 NG o(h®). (29)

In contrast to the dispersive error in (25), the dispersavmtin (29) does vanish as
the EB gets in the vicinity of the center of cel|3 ~ % We, thereby, get third-order
spatial accuracy, ankl, 3 according to (28) becomes= % (see Figure 7(b), and
the Appendix for a more detailed comparison).

With (17), (18c) and (28), we get as semi-discrete equatiooédlli + 1:

dci,1 U ( 19- 683
(

dt h\ (9—-6B)(5—2B)

(Giy1—Cgg) +
11- 6

30125 2 Ci+1)) =0. (303)

And, substituting Taylor-series expansionsdpg, andci,» around the poini+ 1,
into (30a), we get as modified equation for aell 1, ignoring the index+ 1:
oc dc 67 Jd% _

- +uo +

2
ot " Vax T Tz Uge = () (30b)

Equation (30b) shows that we get a first-order spatial acyuracelli + 1 with a

maximum leading-term truncation-errorcoef“ficienPof;1 uh. Coincidentally, (30b)
is the same as (26b); the leading-order error terms in batlatens are identical.
The accuracy loss in the net flux of a neighboring cell is urdadale. If the cell-face
states were to be first-order accurate,ctrg% =Ctg andci+% = Cjt1, the modified

equation for cell 4+ 1, ignoring the index+ 1, would become:
dc  3-2B dc (3-2B)2 dc .,
ot + 5 uax 8 uhax2 = 0(h%), (32)
which, for all 3, except = % is even zeroth-order accurate.
As the optimaIKi+% we choose (28), the one that gives the highest accuracy

in celli+ 2. In summary, the reasons why we choose ﬂplsé, instead of the one
yielding the highest accuracy in celf 1 (KH_g according to (24)), are the following:

e Forp = % we get a third-order (spatial) accuracy in delt 2 with (28) (see
(29)). But with (24) we do not get this in celi- 1 for anyf (see (25)).

The truncation error with (28) is much less than that with)(2dr any 3 (see
Appendix).

e Noting that the solution is discontinuous across an EB, @@8) we have a dis-
sipative leading-error term in cel- 1, which is the cell adjacent to ceél{where
the EB is situated), and this makes the solution near the &8gdeone to numer-
ical oscillations.
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With (24) however, we get the leading-error term in the sagieta be disper-
sive and this makes the solution near the EB to be more siilslesiot numerical
oscillations, numerical oscillations which may be hardupmess because con-
struction of a limiter for cell-face state;+% is hard.

With (28), the accuracy deterioration due to the presenandEB in celli is
more confined to the vicinity of the EB. (We get first-ordergsal) accuracy
in cell i+ 1, and second-order accuracy in dell 2; whereas with (24), we get
second-order accuracy in celt 1, and first-order accuracy in céli-2.)

Kiy3 according to (28) is well within the standaxdrange[—1, 1], but with (24)

we getk;, 3 € 3.1].

3.1.3 Formulae for cell-face states affected by EB

Here, the formulae for all the special cell-face states @nataffected by the
EB, in celli, viz. C_1 Gyl andci+g, are summarized.
With (16¢) and (21)ci7% can be rewritten as:

— [
G 1=G1 + (3+6B)(3+2B)(CEB Ci-1) +
1+6p _ '
m(ﬂfl Ci-2). (32a)
Further, we have:
2—2
G = ks + 33 (61 Cho) (32b)

And, with (18c) and (28)¢, , 3 can be rewritten as:

11-6B

m(CHz —Cit1) +

Ci+g =Ciy1 +

©=6p)5_2p) G+ Cep). (320)

Verify that, in (32a) and (32c), fq8 = % we get exactly the same coefficients
as in the the standard= % scheme (see (19a) and (19b)).
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3.2 Spatial monotonicity domains and limiters

Recalling Godunov’'s (1959) theorem, all the linear higbeter accurate fluxes,
constructed earlier, may yield wiggles. One negative asplewiggles is that they
may cause the solutionto be negative. It is a physical quantity that should not
become negative (say, density or temperature), this maigbé/undesirable. Wig-
gles can be avoided by carefully constraining or ‘limitinigé advective fluxes cal-
culated by the scheme. By limiting the fluxes, they may becfirsteorder accurate
in some solution regions.

A limiter is a nonlinear function that acts like a continuaastrol between the
higher-order and first-order schemes. Obviously, limit@y reduce the overall
accuracy of the scheme to some extent, albeit in non-smomthrigions only.
Limited schemes are called ‘monotonicity-preserving.’

For the cell-face states that are computed by the standafc% scheme{ 2.3),
the standard = 2 limiter (14b) will be used. In this section, special limiewill be
introduced for the EB-affected cell-face staqafs% andc, 3 according to formulae

(32a) and (32c). The cell-face sta;g%, however, will not be limited. This shall be
explained later on.

3.2.1 Spatial monotonicity domain and limiter for cell-face statec,

NI

Referring to Figure 6, for cell fade- % we define the non-equidistant local succes-
sive solution-gradient ratiq:%, as:

- ClEB_Cifl/Ci—l—Ci—z _ 2 -G
=2 #h h T 1+2Bco1—C 2

(33)

Notice that for3 = % EB in the center of cell f;_, reduces to the standard equidis-

tant solution-gradient ratio known from the theory of starttlimiters.
We proceed by rewriting (16c¢) as:

1~

C_y=C-1+ qu(ri,%)(cifl—cifz), (34a)
with

. 1—Ki7% 1+Ki7%~

w(ri_%) = 5 + 5 Fig (34b)

Substituting the optimat; 1 according to (21) into (34b), we get:

1
2

- _ 1468 8
i3/ T 9+6B ' 9+6B -3

(34c)
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The family of possibl@(ﬂf%) schemes, depending on the position of the EB within
celli (0 < B <1), is represented in Figure 8. The functié(fif%) will be con-

strained to yield a monotonicity-preserving scheme andetiind the appropriate
limiter for the special cell-face stater_%. The argumenti:% measures the local

monotonicity of the solution.

Fig. 8 Family of possible3- 1 Mg
schemes according to (34c):
the blue line is foi3 = 1, the
red line is for = 0, and the
enclosed (colored) region is
for all other € (0, 1).

The local solution-gradient ratio for cell face- g is defined as:

ri,3 — M (35&)
2 C-2—Ci-3
And, the limited form of cell-face stateP% is:
1
C_3 =C_ 2+ E(p(rifg)(ci,z—ci,g), (35h)

whereg(r) is standard limiter (14b) witlk = %
_ The following monotonicity requirement is enforced, to swain the function

o 1)

2

C 1—C 3
—z 25 (36a)
Ci-1—Ci2

Substituting (34a) and (35b) into (36a), using (35a), weagatonstraint relation:

1~ 1(p(ri7%)
1+ E‘P(ri_%) T3

> 0. (36h)

NIw

or
r.
1

i3)
3? > O,Vri% ; therefore, the (in)equality

The standard limiter already satisfies %
(36b) holds good if:
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o(f_1) >0, ;. (36¢)

Moreover, enforcing the additional monotonicity requikarh
—=2>0, (37a)

and substituting (34a) into (37a), using (34c) and (33), ete g

o(f_1) .
- < 1+2B, Vi ;. (37b)
-3

The (in)equalities (36¢) and (37b) define the spatial mamotty domain for the
special limiter function(p(Fi_%). They delineate the left and lower bounds of the

domain. The upper bound is still to be derivedid from the fully discrete equa-
tion. Once we also have defined this upper bound, the respdatiiter will be
introduced, in § 4.1.

3.2.2 Limiter for cell-face statec;, 1

Regarding cell-face stakq+%, a regular monotonicity argumqur% can not be

defined here. A regular monitor uses two solution valuesrapst of cell faces. In
this case, since we do not want to use solution values frorottier side of the EB,
and therefore nat;, we have only one upstream soluti@fg, too little to introduce
the regular smoothness monitor. Theref@fg% is not limited.

3.2.3 Spatial monotonicity domain and limiter for cell-face statecHg

Referring to Figure 6, the monotonicity argumelqtgis defined, as:

- Cit2—Ci+1,Ciy1—Ceg _ 3—2B Cis2—Cit1
r. = = . 38
i+3 - 3 B, 2 ci1-cg (38)

As expected, fof3 = % r“i+% according to (38) reduces to the known equidistant-
grid ratio. Similar to the rewriting of expression (16c) fqr_%, here we rewrite
(18c¢) forci+g, as:

1 -~
Cip3=Ci+1+t m(l’(r”g)(ciﬂ — CeB); (39a)

with
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~ l_Ki+§ 1+Ki+§~
(p(ri+%): 5 + 5 firs: (39b)

Substituting the optimati+% according to (28) into (39b), we get:

4 11-683,

ofi3) = 15-68  15-68 13 (39¢)

The family of possiblerf)(Fi+%) schemes is given in Figure 9. Just&(sr”i_%), in
§3.2.1, the functioruﬁ(Fi+%) will be constrained to yield a monotonicity-preserving
scheme and to define the appropriate limiter for the speelkface state:Hg.

Fig. 9 Family of possible3-
schemes according to (39c): i+3
the blue line is foi3 = 1, the
red line is for = 0, and the
enclosed (colored) region is
for all other € (0, 1).

The monotonicity argumemh; is defined as:
Ci+3—GCiy2

rs=——=. 40a

i+3 Ciy2—Ciy1 (402)

And, the limited form ofci+g is:

1
Giyg =Cirz + 50, 5)(Gr2—Git), (40D)

whereg(r;, 5) is limiter (14b) withk = 2.
To constrairrf)(rpr%), the following monotonicity requirements are enforced:

C 3—C 1
an SRS ) (41a)
Ci+1—Cgp
C 5—C 3
N LS ) (41b)
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Substituting (17) and (39a) into (41a), we get as restmchis (])(Fi+%):

(p(Fi+%) > -1, VFH_%. (42a)

And, substituting (39a) and (40b) into (41b), we get:

¢(Fi+%)
—o(r <2 42
g )< (420)

Since the standard limiter satisfiq9$ri+%) >0, Vri+g, the (in)equality (42b) holds
good if: .
(EY
rﬁ? <2, VF 3. (42¢)

i+3
The (in)equalities (42a) and (42c) define the spatial mariotty domain for the
special limiter functionrp(mg). They delineate the left and lower bounds of the

domain. Once again, after defining the upper bound of the @doma§ 4.1, the
respective limiter for the special cell-face sta@% will be introduced. Note that

as opposed to the spatial monotonicity domaind;c_)r% (see (36¢) and (37b)), the
monotonicity domain foci+% is independent 0.

4 Temporal discretization

The semi-discrete equation (4), after substituting the@mpate discretizations for
the spatial operator, is discrete in space but still comtirslin time. It can be com-
pactly written as:

dc; u _

EZ—H(CH_%—CF%):F(C), (43)
which is an ordinary differential equation that can be ditized in time using a va-
riety of explicit and implicit time integration methods, get a fully discrete system
of equations. Here, only two explicit schemes are consilete Forward Euler
method and the three-stage Runge-Kutta, RK3b, schemeté]lafter gives third-
order accuracy in time.

For the Forward Euler method, (43) becomes:
="+ 1F(A") = - V(Cin+l —-c' 1), (44)
2 2
wherev = ut/his the CFL number, and the time step. Similarly, for the RK3b
scheme, we have:

1
gt =+ Z(Ri+Re+4Rq), (45a)

where theR;’s (j = 1,2, 3) are internal vectors that are computed as:
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Ri=1F (Cn),
R, = TF(c"+Ry), (45b)

1 1
R;=T1F(c"+ =R + =Ry).
3 T(+41+42)

4.1 TVD conditions and time step

The limited numerical flux conditions, as derived§ir8.2, are still insufficient to
guarantee monotonicity during time integration. Harteh&orem [5] provides ad-
ditional conditions that are necessary for the convergeftiee fully discrete so-
lutions to the exact, monotone solutions. These conditi@fisie the upper bounds
for the limiter functions@(?if%) and &(Fi+%), and consequently result into more
stringent restrictions on the CFL number, than the condlifiw stability.

The theorem in [5] states that any consistent scheme forsecaation law, writ-
ten in the conservative form:

= - D;% (c'—cly) + D,:% (cla—c), (46a)

where theD’s are solution-dependent coefficients, is total-variatibminishing
(TVD) if, for all i:

DX, >0, (46b)
H»?
- +
Di+% + Di+% <1 (46¢)

The total variation (TV) at time level is defined, in discrete form, by:

V() =3 [y~ (47)

and, any scheme is said to be TVD if T&/1) < TV(c").

Both conditions, (46b) and (46c), can be interpreted astipestoefficient
requirements. To do so, we rewrite (46a) as

= Di—_%ci[1+(1_Di—_% —D:r%)cP+D:r%Cin+1- (48)

The positive coefficient requirements for (48) are:
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Di__l >0, (49a)
1-D~,-D", >0, (49b)
I—Z |+2
DM, >0. (49c)
i+3

Equation (48) holds for any so also fori + 1:
1 — —
ﬁ;::DH%¢+41—DH%—D;%mﬁl+D;%¢Q. (50)
The positive coefficient requirements applied to (50) yialthong others,

D ;>0 (51)

So, with (49¢) and (51) we have already interpreted (46b)@ssdive coeffi-
cient requirement. From (49b) it follows

D ,+Df, <1 (52)
|—2 |+2

Combining (52), (49a) and (49c), it may be written:

2

0<D’, <y, (53b)
|+2
with y some constant in the range [0,1]. We assume that the uppedideuy

holds for alli, hence also fODilli
2

0<D ,<1-vy. (54)
i+3
Summation of (53b) and (54) gives

- +
0§Di+%+Di+% <1 (55)
Combined with (49c) and (51) this may be reduced to
- +
Du% + D.+% <1 (56)
which is TVD requirement (46c).

With this we have shown that TVD requirements (46b) and (4f€)
positive coefficient requirements.
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It can also be verified that condition (46b) is identical te thonotonicity re-
quirements that we have already considere®l3r2 (the conditions of which (36a),
(37a), (41a) and (41b) are examples). Condition (46¢) thcuas not been con-
sidered yet. It will yield the sought upper bounds for ourcsfie limiters under
construction. These bounds will hbedependent. Here, we will impose TVD re-
quirement (46c) th(Fif%) and(])(m%).

We consider the Forward Euler scheme and write the fullyrdiscequations,
in the form (46a). Referring to Figure 6, cél- 1 is considered for}(ﬂf%), and
cellsi+ 1 andi + 2 are analyzed fo«f)(m%). Recall that the EB is situated in cell
i and, as in all preceding sections, we will not consider thigipular cell for any
analysis.

4.1.1 TVD conditions for limiter function (Z)(Fi_%)

Using (34a) and (35b) and writing the fully discrete equatior celli — 1 in the
conservative form, we get:

v o(ri_3)

. 3
gil=c, - 5 (2 + (p(ri_%) — 2

) (cl1—clp). (573)

i73
2

Thus from (57a), we have as the corresponding coefficients:

_ v -~ (p(rF%)
DF% =3 <2+ (p(ri_%) e (57b)
2
D, =0. (57¢)
-2
Enforcing condition (46c¢), we get:
. o(ris) 2
¢(ri7%) - 2° < " —2. (58a)

o(r,_3) . .
Because the standard limiter satisfies Oﬁ <2, Vri_%, the above inequality
=2

reduces to:

<IN

o(F_3) <
Taking the (in)equalities (36c), (37b) and (58b) into aatothe TVD domain of

the special limiter for cell-face staqaf% is graphically illustrated in Figure 10.

(In)equality (58b) confirms that the upper bound of the spelaniter func-
tion <p(Fi_%) depends on the CFL number. The upper bound increases when

lowering v. Note that the choice& = 1, the stability bound for Forward Euler,

—2, VR (58h)
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2

0 1 2 r 1

Fig. 10 TVD domain for cell-face state 1 for some characteristic values @f Note thatv %

yields &’(Fp%) = 0. Hence, withv = 1, the second-order accuracy requirement
(])(Fi_% = 1) = 1 cannot be satisfied for this limiter. < £ allows to meet this ac-

curacy requiremeniz < % even allows for third-order accuracy in space. We take
V= % as the upper bound; it gives sufficient room for good spatiabeacy and
does not bound the time step too much. Moreover, it will appede the hard
upper bound fow in using Iimiter<p(Fi+%).

When we impose this bound for on qo(Fif%), the v-dependence of the upper
bound in (58b) is avoided; the (in)equality (58b) can thelsimplified,VFi_%, to
the more practical inequality:

~ 1
¢(Fi7%) <2, for v < > (58¢)

With this, the TVD domain in Figure 10 simplifies to that givierFigure 11.

We now strive for a practical Iimitecp(Fif%) which coincides with the target
scheme (34) to the maximal possible extent. An algorithneéonputing this limiter
oF_ 1) reads:

1. ComputeB according to (15).

2. Compute the actual value of the monotonicity argument according to (33).

3. Compute the values 7 andr‘** for which the target funcﬂorp( P 1) accord-
2

ing to (34c¢) mtersects the S|mpI|f|ed TVD domain’s boundst 2)F, - 1 and 2,

respectively.
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9
B=1/ /B=3 B=0
17777 y 7777\
: T F‘,l
0 1 2 =3

Fig. 11 Simplified TVD domain for cell-face stat%%, for some characteristic values Bf

o 1+6p
M= 59a
i3 1+248+1282 (592)
17+6
poe, = 17468 (59b)
-2 8
4. Then, the special limiter for the cell-face steit_e% reads:
0, if T %<0,
~ (1+23)Fi_%, if OgFi_% <P 4,
(U(F-,l) = 1+6 8 =~ L mx & g‘** (60)
i—3 —9+62+—9+6l3ri7%, if rii%gri7%<rii%,
2, if 7>
2 ]

The EB-sensitive limiter (60) is depicted in Figure 12 foe thvo extreme values
of B, B =0 andf = 1, together with the corresponding TVD domains.

4.1.2 TVD conditions for limiter function (Z)(Fi+%)

Similarly, to fully constrain the limiter functiorﬁ(m% ), the fully discrete equations

for cellsi + 1 andi + 2 are analyzed. Substituting (32b), (39a) and (40b) int@)46
rewritten forci”jl1 andc{‘jzl, the fully discrete equations can be written as:
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@
— 2
1,
‘ ‘ Fi 1
0 1 17 2
8
(@B =0
Q@
—_—2
21 |
37
Foa1
0| 7 2 =2
37 8

(b)p=1

Fig. 12 Special EB-sensitive limiters (in red) for the ceII-facatetcif% and the corresponding
TVD domains for the two extreme values Bf

Vv
CP:f = CI+1 3_ ZB (l+ (p |+3 ) CH»]_ CEB (61a)
n+1 ( )
CI+2 = C|+2 2 2+ (p( |+5) F (C|+2 CH—l)' (Glb)

Thus from (61a) and (61b), we have as the corresponding Madefficients, for
cellsi+ 1 andi + 2:

29
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_ v ~
D1 =5 55 (1+(7,3), (62a)
D" 5 =0, (62b)
I+§
and
Vv (b(FH_g)
Di+% =5 <2+ qo(ri+%) — Fi+% , (62c)
D' ¢ =0, (62d)
I+§

respectively. Enforcing condition (46¢), we get:

~ 3-2 -
(p(ri+%) < B - 1a vri_',%a (63a)
and ~(~ )
9 ri+% 2
r - < ——2. 63b
¢ s) Ty (63b)

The standard limiter satisfies<0 (p(ri+%) <2,vr and therefore (in)equality

(63b) reduces to:

i+3°

o(f,3) 2

Y = Y (63¢)
f. 3 v |+2

i+3

Taking the (in)equalities (42a), (42c), (63a) and (63cd iatcount, the TVD
domain of the special limiter for cell-face sta;g% is depicted in Figure 13.
Concerning the just derived-dependent boundg,_viﬁ —land 4~ % we notice
that herev = % is the maximum value that still allows to meet the seconcepad-
curacy requiremem(?i+% =1)=1,forf=1.Hencey < % is the CFL restriction
for the fully discrete systems (61a) and (61b) to be TVD amdsd-order accurate.
Forv < % the (in)equalities (63a) and (63c) can be simplified to:

Q(fi3) <5-4B, Vs, (63d)
and ~(~ )
Qr, 3
250, Vi, (63€)
r. 3 2
|+2

Doing so, the TVD domain in Figure 13 simplifies to the one shawfigure 14.
In analogy to the algorithm fozp(Fif%) givening 4.1.1, here an algorithm is also

given for Iimiter(ﬁ(FH%):

1. ComputeB according to (15).
2. Compute the actual value of the monotonicity argumlgrr%t dccording to (38).
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4
3_1] B=0
@ (47%)Fi+§ ¢:2r~i+%
i1 =3
1_1] B=1
fi 3
- 2
— 14

Fig. 13 TVD domain (drawn into scale far = 0.4) for cell-face state, 3 for some characteristic

n
values off3.
@
5 B=0
1 &’ZZFHS
3| B=1
14 B=1
. . . I 1 T Fi+§
Fig. 14 Simplified TVD -2 2 4
domain for cell-face state
cH%, for some characteristic _ /14
values off3.
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3. Compute the value§ 3 ~|*+*3 r”l*fg and ri*** for which the target function
- +3 2 2
qo(r|+2) according to (39c) equalsl and 0, and intersects the bound§+2~

and 5— 4 of the simplified TVD domain (Figure 14), respectively:

= 19-6p
i+3 7 11-6B’ (642)
4
pe 4 4
43~ T11ep’ (64b)
4
s =—- 64c
i+3~ 19-6B’ (64c)
o 71— 908 + 24p2
= 64d
i+3 11— 6B (64d)
4. Then, the special limiter for the cell-face staite% reads:
_1, if ?i+%<Fi*+%,
11— GB ek & ok
1&63 + 5epfivgs M STy <Tls
5 0, if 75 <T 3<0,
(io(i'T 3) = ~ H H_?*‘ 2~*** (65)
i+3 2ri+%, if 0§ri+%<ri+3,
11— GB e koRk &~ Sokorok
1&63 + eplicg (I ISUTE RS i
5-4p, if ?i+% > rl*i*%*

In Figure 15, we give the limiter (65) for the two extreme \edwff, 3 = 0 and
B = 1, with the corresponding TVD domains.

4.2 Local adaptivity in time

Consider the stencil in thi, t)-plane in Figure 16. The EB is situated in aeditt"
in such a way that it migrates to the next defi 1 at some time in betweef and
t"1. Apparently, the solutiong]! andc!, ; are updated, in Forward Euler, using the
modified cell-face state&n y I” 1 andcn 3 However, as the EB crosses the cell

face atx 1, thereis an abrupt change |n the state at this face. Beferertissing,

the state at this cell face must be computed based on the al#te tight of the

EB; whereas, after the crossing, it must be computed bastteddifferent) data to
the left of the EB. The two solutiong'™ andc]’;}, which are affected by the flux
across this particular cell face, need to ‘feel’ this reagrse., the abrupt change in

Ci+%'
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4
54
8 |
19
F.
_19 2/ 4 n 2
11 1 19 11
1]
(@B=0
Fig. 15 Special EB-sensitive ®
limiters (in red) for the cell-
face stateg, +3 and the corre- 1
sponding TVD domains for
the two extreme values ¢. £
1 I7i+§

(LN
&>

(b)p=1

Referring to Figure 16, the time adaptivity or splitting &réed out in the fol-

lowing manner:
1. ComputeB att" according to (15) and next the cell-face ste|[t+e1 according to
2

(32b).
2. Calculate the time fractiom at which the EB crosses the cell face<grt%, i.e:

X, 1+&—Xkg
q—_t2 = "*° (66)

ur
wherexg is the location of the EB at time leval Note that the EB is placed at

infinitesimal distance off xi+%, in the direction of the flow.

ae(0,1),

b



34 Yunus Hassen and Barry Koren

i ] |

R

n+a-i-

i—1 i i+1 ‘ i+2

Fig. 16 Stencil for local adaptivity in time. The standard, modifaattl the intermediate cell-face
states are designated in green, blue, and red, respectively

3. Update the solution value$ ; andc] to time leveln+ a, i.e., compute [
andc .
4. Compute the intermediate cell-face stzlﬂiéf’ according to (32a), with all indices
2

in (32a) increased with 1, usin®= 0 (formally 8 = &/h), ¢™" andc("“.
5. Take the weighted averagea:lﬂ‘+1 and ci”:f', and recompute the time-adapted
2 2
cell-face state at; 3, as:

= aci“+% + (1—a)c? (67)

n
i+3 i+3 "

6. Use the time-adapted cell-face stetli+e1 and continue updating the solution ev-
2
erywhere with the regular time step

Besides the above approach, in which only the jumping ee:ldafstate:i+% is re-

computed at"t9, spatially more elaborate ways of doing the time adaptiviight
be investigated. For instance, all cell-face states tlogt st start to be affected by
the EB, viz.ci_%, €1 Cyg andci+g, might be recomputed &t*?. Or even, the
cell-face states of all cells that start or stop to feel thentiBht be recomputed, i.e.,
C 3G 161G 3G andci+%. However, the gain we achieve in accuracy, as
we consider more intermediate cell-face states than qgl%/, is marginal for the
given cost increase. As expected, recomputation of onlyutim@ing cell-face state
Gy is necessary and sufficient for significantly improving tbkiSon accuracy.

For RK3b, we do not yet resort to the temporal local-adafgtiprocedure de-
vised, for Forward Euler, above. We instead split the regire stepr into smaller
time steps, depending on the number of EBs crossing celsfacel update the in-
termediate solutions everywhere. For instance, for asi&@ crossing a cell face,
we divideT into two smaller time stepst and(1— a)T.
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5 Numerical examples

Numerical results are given to validate the immersed-banndpproach presented
in this work. We take the same data ag B, i.e., the initial solutions (5); initial EB
locationsx; = % andx, = %; flow speedu = 1; and final timetmax = 1. Further, we
consider again a grid of 20 and 40 cells.

The results obtained, shown in Figure 17, are remarkablyrate. The results
show a significant improvement in resolution, without mucmeputational over-
head, over those computed using the standard methodseFgEor the more dis-
criminating initial solution (5b) (the cosine with cavitythe numerical results of
the limited higher-order upwind-biased schemes are $jiglgficient at the periph-
eries. This is due to the property of standard limiters they tlip physically correct
extrema. Apparently, the deficiency becomes smaller withesesing mesh width.

0.8~

0 0.2 0.4 0.6 0.8 1

(a) On a 20-cell grid

(b) On a 40-cell grid

Fig. 17 Immersed-boundary solutions after one full-period, fag thitial solutions (5).0: ex-

act discrete;d: unlimited higher-order upwind-biased with Forward Euterlimited higher-order
upwind-biased with Forward Eule®;: unlimited higher-order upwind-biased with RK3b; lim-

ited higher-order upwind-biased with RK3b.
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In Figure 18, we show the err@, which is computed as the difference between
the exact and numerical solutions, for the solutions giveRigure 17. As can be
seen, there is relatively more discrepancy near the EBs.Adar-EB discrepancy is
of the same order for both test cases. However, as menti@nkerethe discrepancy
is significantly larger, about five times more, in the cosivith-cavity case at and
near the extrema, due to the limiters. In the former casergbelts obtained with
the RK3b scheme are superior to those obtained with the Fdiaier scheme, for
the obvious reason. In the latter case, both schemes, diraitd/or unlimited, yield
almost the same accuracy.

0.0:

0.01-

E[).Ol’

-0.03-

“0.0% 02 04 06 08 1
) 4y O )

(b) On a 20-cell grid, for (5b)

~0.0: ; ; ; :
° 0.2 0.4 0.6 0.8 1

X
(c) On a 40-cell grid, for (5a) (d) On a 40-cell grid, for (5b)

Fig. 18 Errors after one full-period, for the initial solutions (5)-blue: unlimited higher-order
upwind-biased with Forward Eulex-red: limited higher-order upwind-biased with Forward &l
<-green: unlimited higher-order upwind-biased with RK&bblack: limited higher-order upwind-
biased with RK3b.

6 Extension to more general cases

First extensions to the method presented so far, which nrmastvéll be made, are:
(i) to higher dimensions an(i) to higher-order accuracy in time. We already per-
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formed some work into this direction. Here follows a brie€aant of the ideas we
are currently pursuing.

6.1 Extension to higher dimensions

Extension to 2D and 3D of the current 1D space discretizatiaone by dimen-
sional splitting. For this purpose, a multi-D embedded htauny is to be projected
first on each of its separate coordinate directions (Fig@jeThe details of the pro-
jection step are crucial. Dimensional splitting has beegpliag with success to the
standardk-scheme and, as such, is widely spread in CFD. We presumi thidlt
be successful here as well.

— X — X

() control volume with EB (in red) (b) 1D projections of the EB

Fig. 19 Example of 1D projections of a 2D embedded boundary.

6.2 Higher-order accuracy in time

Forward Euler can readily be made second-order accuratdlbwfng the Modified
Euler approach. Given (43), Modified Euler reads:

&Mt ="+ TF (), (68a)
Gt =+ 3T (F(E™) +F(C). (68b)

Forward Euler step (68a) is the predictor and (68b) the ctorestep. Modified
Euler is still explicit. Extension of the local adaptivity time, introduced ir§ 4.2,
from Forward Euler to Modified Euler is rather straightfordiagiven the close
similarity of the two schemes. Details about our local tindegtivity method and
Modified Euler will be given in future work.
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7 Conclusion

A novel immersed-boundary approach, for solving advecgiooblems, has been
introduced. The essence of the approach is that moving $adéeeembedded in a
regular fixed grid and specific fluxes in the vicinity of the esddded boundary (EB)
are computed in such a way that they accurately and monostynaccommodate
the boundary conditions valid on the moving body. To suppths wiggles that

exhibit near discontinuities, tailor-made limiters ar&raauced for the fluxes that
are especially modified. Then, over the majority of the domaihere we do not

have influence of the embedded boundaries, we can readilgtasdard methods
on the underlying regular fixed grid. Excellent results arkieved, without much

computational overhead.

In summary:

e A generalizedk-scheme that uses EB information (EB location and EB solu-
tion values), and which is an optimally accurate upwindsedhfinite-volume
discretization, has been proposed. This near-EB spasatatization is a gen-
eralization of a well-proven finite-volume discretizatjiavhich allows us to ac-
commodate EBs.

e Generalized limiters that use EB information have beeng@sed. These limiters
satisfy the spatial monotonicity requirement and Hart@d® requirement. To
be consistent with standard limiters, the generalizeddiraiare made indepen-
dent of the CFL number.

e Locally adaptive splitting of the time step, near EBs, hasnbgroposed; a two-
stage approach which requires the least computationaldimlememory for a
given gain in accuracy.

We foresee that the numerical methods, developed so fatidna lse developed,
can readily be extended to realistic flow problems.

Acknowledgements The first author’s research is funded by the Delft Centre fom@utational
Science and Engineering (DCSE).

Appendix

Referring to (25) and (29), the local truncation error teemscellsi + 1 andi + 2,

when the net fluxes in celist- 1 andi + 2 are considered to optimiz¢+%, respec-
tively, are:

~3-2B ,0%
1= TUh Fvk (69a)
and 3 5
26—-1 ,0°C
€2 = TU Eveh (69b)
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For a given grid sizé, (69) can be rewritten, as a function@fe [0, 1], as:

% —9-6B, (70a)
and €42
or=28-1 (70b)
where U 9%
= 3633 (70c)

The scaled error terms (70a) and (70b) are plotted irfefile, 3)-diagram given in
Figure 20. We see that ;1| > 3| e.2 ], VB. Also notice thag,=0forf3 = %;
i.e., we get a third-order accurate net flux in ¢égl2 when the EB is situated at the
center of cell.

9,
€
b
€1
3,
1] €42
Fig. 20 Variation of the :
scaled, leading local trunca- %
tion error terms in cells+ 1 *1’0 L
andi + 2 with 8. B
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