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Abstract

In this note a limiting technique is presented to enforce monotonicity for higher-
order spatial diffusion discretizations. The aim is to avoid spurious oscillations
and to improve the qualitative behaviour on coarse grids. The technique is related
to known ones for convection equations, using limiters to bound the numerical
fluxes. Applications arise in pattern formation problems for reaction-diffusion
equations.
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1 Introduction

The preservation of monotonicity properties – like positivity, maximum principles and
comparison principles – is often essential for numerical schemes to approximate non-
smooth solutions in a qualitatively correct manner. For convection equations this has
led to the development of ‘high-resolution’ schemes with flux limiters. The object of
this note is to present a similar technique for diffusion equations. Applications are
found in pattern formation problems for reaction-diffusion equations where patterns
are formed by intrusion of fronts into unstable steady states, the so-called pulled front
problems in the terminology of [1].

Consider the reaction-diffusion equation

ut = uxx + g(u) (1.1)

for t ≥ 0, x ∈ R, with initial condition u(x, 0) given. We will deal with spatial
discretizations on uniform grids with mesh width h > 0, grid points xj = x0 + jh and
surrounding cells Ωj = [xj − 1

2h, xj + 1
2h]. In the resulting semi-discrete system wj(t)

stands for an approximation to the point value u(xj , t) or the cell-average value on Ωj

at time t. We will mostly denote wj = wj(t), w′
j = w′

j(t), thus omitting the temporal
arguments.

Spatial discretization in conservation form leads to

w′
j =

1
h

(
fj− 1

2
− fj+ 1

2

)
+ g(wj) (1.2)

with diffusive fluxes fj±1/2 at the cell boundaries, located half-way between the grid
points xj . Standard choices are

fj+ 1
2

=
1
h

(
wj − wj+1

)
,
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giving the usual second-order discretization, and

fj+ 1
2

=
1

12h

( − wj−1 + 15wj − 15wj+1 + wj+2

)
,

for the fourth-order discretization. The latter discretization is known to produce some
oscillations and associated unphysical negative solution values if the exact solution,
viewed as a grid function, is not smooth relative to the mesh width h. This is caused
by the fact that the resulting semi-discrete system w′ = Aw + g(w) will have a matrix
A with negative off-diagonal elements; see [3], for instance.

In this note we propose a novel spatial discretization scheme, which is obtained by
limiting the fourth-order flux so as to enforce monotonicity. The technique used here
is similar to discretizations for convection terms that are well-known and often used
for hyperbolic conservation laws; see for example [3, 4, 5]. The discretization scheme
will be tested on the Fisher equation.

2 Limiting of Diffusive Fluxes

We consider a ‘limited form’ of the fourth-order discretization. In the following, let
̄ = j + 1

2 and

v̄ =
1
h

(
wj − wj+1

)
, θ̄ =

v̄−1 − v̄

v̄ − v̄+1
=

wj−1 − 2wj + wj+1

wj − 2wj+1 + wj+2
. (2.1)

Then the fourth-order formula can also be written as

f̄ = v̄ − 1
12

(
v̄−1 − 2v̄ + v̄+1

)
= v̄ − 1

12
(
θ̄ − 1

)(
v̄ − v̄+1

)
.

We will consider the more general formula

f̄ = v̄ − φ(θ̄)
(
v̄ − v̄+1

)
= v̄ − 1

θ̄
φ(θ̄)

(
v̄−1 − v̄

)
. (2.2)

Here the function φ will be used to limit the fluxes. Of course, with φ = 0 we simply
recover the second-order fluxes, whereas the choice φ(θ) = 1

12 (θ − 1) corresponds
to the fourth-order fluxes. Note that in smooth regions, with non-vanishing spatial
second derivative, we will have θ̄ = 1 + O(h). Further, since the diffusion equation is
symmetric in space, it is natural to impose this also on the discretization. As we will
see shortly, this is achieved by

1
θ φ(θ) = −φ

(1
θ

)
. (2.3)

Let us first consider the discretization (1.2) without the source term g. Then we
have

w′
j =

1
h

(
fj− 1

2
− fj+ 1

2

)
=

1
h

(
v̄−1 − φ(θ̄−1)

(
v̄−1 − v̄

) − v̄ +
1
θ̄

φ(θ̄)
(
v̄−1 − v̄

))
.

Since h(v̄−1 − v̄) = wj−1 − 2wj + wj+1, this can be written as

w′
j =

1
h2

dj

(
wj−1 − 2wj + wj+1

)
(2.4a)

with
dj = 1 − φ(θ̄−1) +

1
θ̄

φ(θ̄) . (2.4b)
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The function φ will be limited such that

−µ0 ≤ φ(θ) ≤ µ1 , −µ1 ≤ 1
θ
φ(θ) ≤ µ0 (2.5)

for all θ ∈ R. In these constraints the condition (2.3) is already incorporated, and it is
easily seen from (2.4) that this condition gives symmetry in the discretization. Within
these constraints (2.5) we want to retrieve the fourth-order flux, φ(θ) = 1

12 (θ − 1), as
much as possible and certainly near θ = 1. A possible choice is shown in Figure 1.

1
12

(θ−1)µ0θ−µ1θ

θ−→

µ1

−µ0

Figure 1: Monotonicity region (2.5) (shaded) and limiter function φ(θ) as in (2.7).

The limiter parameters µ0, µ1 > 0 are chosen such that we will have monotonicity.
In particular we will take

µ1 ≤ 1
2 . (2.6)

Note that (2.4) then can be written in the quasi-linear form w′ = A(w)w, where the
off-diagonal elements of the matrix A(w) are non-negative. As we will see below, this
guarantees monotonicity of the discretization, and the choice of µ0 will determine the
maximal time step that can be taken by ODE methods.

In the tests we will take µ1 = 1
2 , µ0 = 1

4 . The choice of µ0 turned out to have
little significance on the quality of the spatial discretization in the tests below. The
full formula for the limiter used in this paper is

φ(θ) = min
(
µ1 , max

(
χ(θ) ,

1
12(θ − 1)

))
, (2.7a)

where
χ(θ) = max

( − µ0 , min
(
µ0θ ,−µ1θ

))
. (2.7b)

This limiter is illustrated by the thick line in Figure 1. In the implementation we
calculate the limited fluxes by the first equality in (2.2), where a very small number is
added to the denominators of the ratios θ̄ to avoid division by 0.

3 Monotonicity

The above semi-discrete system reads in vector form

w′(t) = A(w(t))w(t) + g(w(t)) , (3.1a)

with a matrix A(w) =
(
ajk(w)

)
whose elements are given by

ajj(w) = − 2
h2

dj(w) , aj,j±1(w) =
1
h2

dj(w) (3.1b)
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in terms of the coefficients dj = dj(w) from (2.4b), and where the reaction-source term
is to be interpreted component-wise. The constraints (2.5), (2.6) imply that

0 ≤ 1 − 2µ1 ≤ dj(w) ≤ 1 + 2µ0 . (3.2)

To discuss monotonicity, it is convenient to invoke temporal discretizations. Let
tn = nτ with step size τ > 0, and let us denote wn = (wn

j ) for the approximations to
w(tn) = (wj(tn)). The forward Euler method gives

wn+1 =
(
I + τA(wn)

)
wn + τg(wn) . (3.3)

We see that
I + τA(wn) ≥ 0 and ‖I + τA(wn)‖∞ ≤ 1 (3.4)

provided that µ1 ≤ 1
2 and the time step is restricted by

τ ≤ h2

2(1 + 2µ0)
. (3.5)

Here, inequalities for matrices or vectors are component-wise. Hence, if g = 0, we have
‖wn‖∞ ≤ ‖w0‖∞ under this time step restriction, and likewise wn ≥ 0 if w0 ≥ 0.

With a non-zero source term g the positivity property wn ≥ 0 remains valid if
g(v) ≥ 0 for all scalar v ≥ 0. The addition of source terms may also lead to extra time
step restrictions. For example, if we assume

‖I + τA(wn)‖∞ ≤ 1 for τ ≤ τ0 , ‖wn + τg(wn)‖∞ ≤ ‖wn‖∞ for τ ≤ τ1 ,

then it can be seen that

‖wn + τA(wn)wn + τg(wn)‖∞ ≤ ‖wn‖∞ for τ ≤ τ0τ1

τ0 + τ1
.

This implication easily follows by writing the left-hand side as
∥∥κ

(
wn + τ

κA(wn)wn

)
+ (1 − κ)

(
wn + τ

1−κg(wn)
)∥∥

∞

with κ = τ1/(τ0 + τ1). Related monotonicity results, like maximum principles, can be
obtained in a similar way.

With such monotonicity results for the forward Euler method one can then derive
similar results for higher-order schemes, including implicit ones; see for example [2,
3]. Here it should be noted that also for implicit methods, except for the backward
Euler method, time step restrictions will arise. This is in contrast to the usual linear
stability analysis by Fourier decompositions (von Neumann analysis), where A-stable
time stepping methods yield unconditional stability. These results are completely
similar to those for convection equations found in the above citations.

Finally we note that for the limited discretization the allowable time step is gov-
erned by µ0 as in (3.5). We will take µ0 = 1

4 , and this gives a slight decrease in allow-
able step sizes compared to the standard second-order scheme, which corresponds to
µ0 = 0.

Remark. For equations ut = (D(x, u)ux)x + g(x, u) with variable or nonlinear diffu-
sion coefficients, the above fluxes fj+1/2 are to be multiplied by Dj+1/2, approximating
the coefficient at the cell boundaries. The limiter will then have to be adjusted to cope
with the variations in the coefficients. Note that due to the conservation form (1.2) of
the discretizations, mass conservation of the schemes is always ensured.
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Alternative forms are possible. For example, let f∗
j+1/2 = f∗

̄ be any non-limited
flux, then define φ∗

̄ by the relation

φ∗
̄ = − f∗

̄ − v̄

v̄ − v̄+1
,

and then apply limiting as before by (2.7) with θ = θ̄, where now φ∗
̄ replaces the

original expression 1
12 (θ̄−1). This formulation applies also to higher-order non-limited

fluxes.
Finally we note that for multi-dimensional problems on Cartesian grids the above

results carry over directly by applying limiting in the various spatial directions. �

4 Numerical Illustration for the Fisher Equation

The Fisher equation is a prototype for many pattern formation problems. The equation
reads

ut = εuxx + γu(1 − u2) . (4.1)

An exact traveling wave solution is given by

u(x, t) =
(
1 + eλ(x−1−αt)

)−1 (4.2)

with λ = 1
2

√
2γ/ε and α = 3

2

√
2γε. In the following tests we consider parameter values

γ = ε−1 = 100. Further 0 < x < L = 6 and 0 < t ≤ T = 1. The initial condition at
t = 0 is taken according to (4.2). At the boundaries homogeneous Neumann conditions
are imposed. This gives a close approximation to the exact ux at the boundaries
provided the end time T is not too large, so that the wave does not reach the boundary.

The temporal discretization is performed with a high-order explicit Runge-Kutta
method using small time steps. The numerical errors in the following figures are
solely due to the spatial discretization. The exact solution at time T = 1 and the
corresponding numerical results with h = L/120 are given in Figure 2.
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Figure 2: Numerical solutions with h = L/120 = 1/20 for the second-order scheme (left), the
fourth-order scheme (middle) and the limited scheme (right). The exact solution is indicated
by the dashed lines.

Obviously the wave speed is incorrect for the second-order scheme. This is due
to the fact that we are dealing here with a so-called ‘pulled front’ problem, where
the dynamics are determined to a large extent by the solution ahead of the front,
see [1]. The asymptotically small values ahead of the front are important for the wave
speed and apparently these are not captured with enough precision on this grid by the
second-order numerical discretization.
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The fourth-order scheme produces qualitatively wrong solutions. Due to the lack of
monotonicity of the diffusion discretization, negative solution values are created, which
are then amplified towards −1 by the reaction term. The limited scheme provides a
good compromise. By the limiting the oscillations have disappeared, but in the flat
region ahead of the front the fourth-order scheme will still be used, leading to a more
accurate front velocity than with the second-order scheme.

Results for the discretizations on various grids are given in Table 1. The entries
are the absolute L1-errors at output time T = 1. These results are in line with
those obtained for h = L/120. We see that the fourth-order scheme needs a fine
grid to produce a reasonable solution, but then it is much more accurate than the
second-order scheme. The limited scheme combines the advantages of the two standard
discretizations: it gives monotone and reasonable solutions on coarse grids and on fine
grids it gives approximately the same errors as the fourth-order scheme.

m = L/h 30 60 120 240 480 960

2nd-order 2.7085 1.4104 0.5865 0.1782 0.0439 0.01087

4th-order 4.6403 4.0312 2.6766 0.2460 0.0045 0.00027

Limited 2.3276 0.9290 0.1753 0.0872 0.0046 0.00028

Table 1: Absolute spatial L1-errors for the Fisher equation.

Remark. In the present test the form (2.2) was used. In CPU time, for a vectorized
Matlab program, the limited scheme was here roughly a factor 1.8 more expensive
than the second-order scheme and a factor 1.4 more expensive than the fourth-order
scheme. �

5 Concluding Remarks

The above limited spatial discretization scheme provides a suitable balance between the
second-order and fourth-order schemes. On fine grids it gives approximately the same
errors as the fourth-order scheme, whereas on coarse grids (relative to the smooth-
ness of the solution) it gives monotone approximations with better accuracy than the
standard second-order discretization.

Additional tests were carried out for related 1D problems like ut = εuxx + g(x, t)
with source term g(x, t) such that the solution is still given by (4.2). There the limited
scheme produced results similar to the fourth-order scheme, and more accurate than
the second-order scheme. It should be noted however that for such problems limiting
is redundant, since small over- and undershoots will not lead to a wrong qualitative
behaviour. The limiters then merely make the scheme computationally more expensive.
Limiting should only be applied if necessary, of course.

It is only fair to say that for many reaction-diffusion problems violation of mono-
tonicity will not be a problem. For typical combustion problems, for example, steep
moving fronts are common, but there the states before and after the front are usu-
ally stable. Small over- and undershoots will then be quickly filled up. On the other
hand, there is an interesting class of problems where lack of monotonicity will lead
to a wrong qualitative behaviour. The Fisher equation is the standard example. For
related problems, see [1, Sect. 5.6].
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If a certain maximum principle is known a priori, then this might also be enforced
of course by simply cutting-off numerical values outside the prescribed range. In this
way, however, local mass balances might be destroyed. Moreover, detailed a priori
information is usually not available.

In conclusion: the limiting procedure described here seems suited for reaction-
diffusion problems where steep fronts enter spatial regions that are in an unstable
equilibrium – the so-called ‘pulled front’ problems [1] – and where the mesh width is
restricted by the computer capacity, as it often happens with 3D problems.
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