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Abstract

In this paper nonlinear monotonicity and boundedness properties are analyzed for
linear multistep methods. We focus on methods which satisfy a weaker bounded-
ness condition than strict monotonicity for arbitrary starting values. In this way,
many linear multistep methods of practical interest are included in the theory.
Moreover, it will be shown that for such methods monotonicity can still be valid
with suitable Runge-Kutta starting procedures. Restrictions on the stepsizes are
derived that are not only sufficient but also necessary for these boundedness and
monotonicity properties.
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1 Introduction

1.1 Monotonicity assumptions

In this paper we consider initial value problems for systems of ordinary differential
equations (ODEs) on a vector space V, written as

u′(t) = F (u(t)) (t ≥ 0) , u(0) = u0 ,(1.1)

with F : V → V and u0 ∈ V given. Let ‖ · ‖ be a norm or seminorm on V. In the
following it is assumed that there is a constant τ0 > 0 such that

‖v + τ0F (v)‖ ≤ ‖v‖ for all v ∈ V.(1.2)

Assumption (1.2) implies ‖v + ∆t F (v)‖ ≤ ‖v‖ for all ∆t ∈ (0, τ0]. Consequently,
when applying the forward Euler method un = un−1+∆t F (un−1), n ≥ 1, with stepsize
∆t > 0 to compute approximations un ≈ u(tn) at tn = n∆t, we have

‖un‖ ≤ ‖u0‖(1.3)

for all n ≥ 1 under the stepsize restriction ∆t ≤ τ0. For general one-step methods,
property (1.3) under a stepsize restriction ∆t ≤ c τ0 is often referred to as monotonicity
or strong stability preservation (SSP).

Useful and well-known examples for (1.2) involve v = (v1, . . . , vM )T ∈ V = RM

with the maximum norm ‖v‖∞ = max1≤j≤M |vj | or the total variation seminorm
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‖v‖TV =
∑M

j=1 |vj−1 − vj | (with v0 = vM ), arising from one-dimensional partial differ-
ential equations (PDEs), see for instance [4, 15, 18].

Some of the results in this paper will be formulated with sublinear function-
als instead of seminorms.1 This makes it possible to take, for example, maximum
principles into consideration as in [23], by requiring that (1.2) holds for the func-
tionals ‖v‖+ = maxj vj and ‖v‖− = −minj vj . Another example, from [11], is
‖v‖0 = −min{0, v1, . . . , vM}, by which preservation of nonnegativity can be included
in the theory. We note that this last sublinear functional is nonnegative, that is,
‖v‖ ≥ 0 for all v ∈ RM .

1.2 Monotonicity and boundedness for linear multistep methods

To solve (1.1) numerically we consider multistep methods. We will be primarily con-
cerned with linear k-step methods, where the approximations un ≈ u(tn) at the points
tn = n∆t are computed by

un =
k∑

j=1

ajun−j + ∆t
k∑

j=0

bjF (un−j)(1.4)

for n ≥ k. The starting values for this multistep recursion, u0, u1, . . . , uk−1 ∈ V, are
supposed to be given, or computed by a Runge-Kutta method.

It will be assumed throughout this paper that

k∑
j=1

aj = 1 ,
k∑

j=1

j aj =
k∑

j=0

bj , b0 ≥ 0 .(1.5)

The two equalities in (1.5) are the conditions for consistency of order one. The as-
sumption b0 ≥ 0 will be convenient; it holds for all well-known implicit methods, and,
of course, also for any explicit method.

Suppose that all aj , bj ≥ 0, and for such a method let

c = min
1≤j≤k

aj

bj
,(1.6)

with convention a/0 = +∞ if a ≥ 0. From (1.2) it can then be shown that

‖un‖ ≤ max
0≤j<k

‖uj‖(1.7)

for n ≥ k, under the stepsize restriction ∆t ≤ c τ0; see e.g. [4, 23]. This property can be
viewed as an extension of (1.3) for multistep methods with arbitrary starting values.

Results of this type for nonlinear problems were derived originally in [21] with the
total variation seminorm, and (1.7) with this seminorm is known as the TVD (total
variation diminishing) property. More recently, with arbitrary seminorms or more
general convex functionals, the term SSP (strong stability preserving) – introduced in
[5] – has become popular. Related work for nonlinear problems was done in [16, 17, 20,
24] for contractivity, where one considers ‖ũn − un‖ with differences of two numerical
solutions instead of ‖un‖ as in (1.7). Finally we mention that related results on
nonnegativity preservation and contractivity or monotonicity for linear problems were
derived already in [1, 22], again for methods with all aj , bj ≥ 0 and with ∆t ≤ c τ0.

1Recall that ϕ : V → R is called a sublinear functional if ϕ(v+w) ≤ ϕ(v)+ϕ(w) and ϕ(cv) = cϕ(v)
for all real c ≥ 0 and v, w ∈ V. It is a seminorm if we have in addition ϕ(−v) = ϕ(v) ≥ 0 for all
v ∈ V. If it also holds that ϕ(v) = 0 only if v = 0, then ϕ is a norm.

2



In order to conclude (1.7) from (1.2) for arbitrary (semi-)norms or sublinear func-
tionals, the condition that all aj , bj ≥ 0 and ∆t ≤ c τ0 is necessary. In fact, this
condition is already needed if we only consider maximum norms instead of arbitrary
(semi-)norms; see [23].

The methods with nonnegative coefficients form only a small class, excluding the
well-known methods of the Adams or BDF-type, and the stepsize requirement ∆t ≤ c τ0

(within this class) can be very restrictive. For instance, as shown in [16], for an explicit
k-step method (k>1) of order p we have c ≤ (k − p)/(k − 1). Most explicit methods
used in practice have p = k, and for such methods we cannot have c > 0. It is therefore
of interest to study properties that are more relaxed than (1.7).

Instead of (1.7), we will consider

‖un‖ ≤ µ · max
0≤j<k

‖uj‖(1.8)

for n ≥ k, under the stepsize restriction ∆t ≤ γτ0, where the stepsize coefficient γ > 0
and the factor µ ≥ 1 are determined by the multistep method. With the total variation
seminorm this is known as the TVB (total variation boundedness) property.

Sufficient conditions were derived in [12, 14] for (1.8) to be valid with arbitrary
seminorms under assumption (1.2) and ∆t ≤ γτ0. The sufficient conditions of those
papers are not very transparent and not easy to verify for given methods. In the present
paper we will use the general framework of [10] to obtain more simple conditions for
boundedness, and these conditions are not only sufficient but also necessary.

In practice, the starting values are not arbitrary, of course. From a given u0, the
vectors u1, . . . , uk−1 can be computed by a Runge-Kutta method. For such combina-
tions of linear multistep methods and Runge-Kutta starting procedures we will study
the monotonicity property (1.3) under a stepsize restriction ∆t ≤ γτ0. By writing the
total scheme in a special Runge-Kutta form we will obtain sharp stepsize conditions
for this type of monotonicity. This gives a generalization of earlier, partial results in
this direction obtained in [14] for some explicit two-step methods.

1.3 Outline of the paper

To illustrate the relevance of the results we first present in Section 2 a numerical exam-
ple with two simple two-step methods applied to a semi-discrete advection equation.
The coefficients aj , bj of the two methods are close to each other, but the behaviour
of the methods with respect to boundedness and monotonicity turns out to be very
different.

In Section 3 some notations are introduced, together with a formulation of the
linear multistep method (1.4) that is suited for application of the general boundedness
results of [10].

The main results are presented in Section 4. Using the framework of [10], we
will obtain necessary and sufficient conditions for boundedness. These conditions are
relatively transparent and easy to verify numerically for given classes of methods. We
will also give conditions that ensure monotonicity – as in (1.3) – for combinations of
linear multistep methods and Runge-Kutta starting procedures.

Section 5 contains some technical derivations and the proofs of the main theorems
on boundedness. We will see that, for all methods of practical interest, the stepsize
coefficients γ for boundedness are completely determined by particular properties of
the method when applied to the test equation u′(t) = λu(t) with ∆t λ = −γ.

For some classes of methods, with two free parameters, we will present and discuss
in Section 6 the maximal stepsize coefficients γ for either boundedness or monotonicity
with some specific starting procedures.
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Finally, Section 7 contains some concluding remarks together with comments on
multistep schemes that are related to the linear multistep methods (1.4).

Along with the usual typographical symbol 2 to indicate the end of a proof, we
will use in this paper also the symbol 3 to mark the end of examples or remarks.

2 A numerical illustration

To illustrate the relevance of our monotonicity and boundedness concepts, we consider
two-step methods of the form

un = 3
2
un−1 − 1

2
un−2 + ∆t βF (un−1) + ∆t (1

2
− β)F (un−2) .(2.1)

We take two methods within this class: β = 0.95 and β = 1.05. Both methods have
order one. Moreover the error constants are very similar, and so are the linear stability
regions, as shown in Figure 1. However, as we will see shortly, these two methods have
a very different monotonicity and boundedness behaviour.

Note that for both methods we have a2 < 0 and b2 < 0. Therefore the monotonicity
property (1.7) with arbitrary starting vectors and seminorms does not apply. Instead
of an arbitrary u1 we consider the forward Euler starting procedure u1 = u0+∆tF (u0).
The combination of the two-step methods with forward Euler may give a scheme for
which the monotonicity property (1.3) is valid.

Monotonicity and boundedness properties are of importance for problems with non-
smooth solutions. Such ODE problems often arise from conservation laws with shocks
or advection dominated PDEs with steep gradients, after suitable spatial discretization.

A simple illustration is provided by the one-dimensional linear advection equation

∂
∂tu(x, t) + ∂

∂xu(x, t) = 0 for t > 0 and 0 < x < 1

with periodic boundary conditions. The initial profile is chosen as a block-function:
u(x, 0) = 1 if 0.4 ≤ x ≤ 0.6, and u(x, 0) = 0 otherwise. The spatial discretization is
taken on a uniform grid with mesh width ∆x = 1/200, using a standard flux-limited
scheme – the so-called Koren limiter – giving a semi-discrete system of ODEs for which
the monotonicity assumption (1.2) is satisfied for τ0 = 1

2∆x in the maximum norm
and the total variation seminorm; see for instance [15, Sect. III.1].

Subsequently, the resulting nonlinear semi-discrete system is integrated in time
with the above two methods and Courant number ∆t/∆x equal to 1/3. The first
approximation u1 is computed by the forward Euler method.
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Figure 1: Stability regions of the two-step methods (2.1) with β = 0.95 (left), β = 1.05
(right). For comparison, the circle {ζ ∈ C : |ζ + 1| = 1} is displayed by the dashed curve.
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Figure 2: Numerical solutions at T = 1 and T = 2 for the two-step methods (2.1) with
β = 1.05 (dashed), β = 0.95 (solid lines).
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Figure 3: Values of ‖uN‖TV (left) and ‖uN‖∞ (right) for T = 1, 2, . . . , 5 and the two-step
methods (2.1) with β = 1.05 (dashed), β = 0.95 (solid lines).

The numerical solutions for the two schemes are shown in Figure 2, with spatial
component x horizontally, for the output times t = T with T = 1, 2. The behaviour
of the two schemes is seen to be very different. Whereas we get a nice monotonic
behaviour for β = 1.05, the scheme with β = 0.95 produces large oscillations.

The oscillations with β = 0.95 become more and more pronounced for increasing
time. The evolution of the total variation and maximum norm of uN (N = T/∆t) is
shown in Figure 3, revealing an exponential growth. On the other hand, for the scheme
with β = 1.05 these values are constant: ‖uN‖TV = 2, ‖uN‖∞ = 1. A similar behaviour
can also be observed if T is held fixed, say T = 1, and the ∆t, ∆x are decreased while
keeping the Courant number ∆t/∆x fixed. Apparently the boundedness property (1.8)
is not satisfied here for the scheme with β = 0.95.

With the results of this paper the different behaviour of these two closely related
schemes can be explained. As we will see in Section 6.1, to satisfy the boundedness
property (1.8) or the monotonicity property (1.3) with forward Euler starting proce-
dure, the method with β = 1.05 allows much larger stepsizes than the method with
β = 0.95.

3 Notations and input-output formulations

3.1 Some notations

For any given m ≥ 1 we will denote by e1, e2, . . . , em the unit basis vectors in Rm,
that is, the j-th element of ei equals one if i = j and zero otherwise. Furthermore,
e = e1 +e2 + · · ·+em is the vector in Rm with all components equal to one. The m×m
identity matrix is denoted by I. If it is necessary to specify the dimension we will use
the notations e

[m]
j , e[m] and I [m] for these unit vectors and the identity matrix I.

Let E = [e2, . . . , em, 0] be the m × m backward shift matrix,

E =


0
1 0

. . . . . .
1 0

 ∈ Rm×m,(3.1)
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and define

A =
k∑

j=1

ajE
j , B =

k∑
j=0

bjE
j ,(3.2)

where E0 = I. These A, B ∈ Rm×m are lower triangular Toeplitz matrices containing
the coefficients of the method (1.4). For m ≥ k we also introduce J = [e1, . . . , ek] ∈
Rm×k, containing the first k columns of the identity matrix I. To make the notations
fitting for any m ≥ 1, we define J = [e1, . . . , em, O] for 1 ≤ m < k, with O being the
m × (k − m) zero matrix.

For any m×l matrix K = (κij) we denote by the boldface symbol K the associated
linear mapping from Vl to Vm, that is, y = Kx for y = [yi] ∈ Vm, x = [xi] ∈ Vl if
yi =

∑l
j=1 κijxj ∈ V (1 ≤ i ≤ m). (In case V = RM with M ≥ 1, then K is the

Kronecker product of K with I [M ].) Furthermore, the m × l matrix with entries |κij |
will be denoted by |K|, and we define ‖K‖∞ = maxi

∑
j |κij |.

Inequalities for vectors or matrices are to be understood component-wise. In partic-
ular, we will use the notation K ≥ 0 when all entries κij of this matrix are nonnegative.

3.2 Formulations with input vectors

In order to apply the theory obtained in [10], we will formulate the multistep scheme
(1.4) in terms of input and output vectors. The output vectors of the scheme are
yn = uk−1+n, n ≥ 1. The starting values u0, u1, . . . , uk−1 will enter the scheme in the
first k steps in the combinations

xl =
k∑

j=l

ajuk−1+l−j + ∆t
k∑

j=l

bjF (uk−1+l−j) for 1 ≤ l ≤ k .(3.3)

The multistep scheme (1.4) then can be written as

yn = xn +
n−1∑
j=1

ajyn−j + ∆t
n−1∑
j=0

bjF (yn−j) for 1 ≤ n ≤ k ,(3.4a)

yn =
k∑

j=1

ajyn−j + ∆t

k∑
j=0

bjF (yn−j) for n > k ,(3.4b)

where the starting values are contained within the source terms in the first k steps.
We will refer to the vectors x1, . . . , xk ∈ V as the input vectors for the scheme.

To obtain a convenient notation, we consider m steps of the multistep scheme,
m ≥ 1, leading to (3.4) with n = 1, 2, . . . , m. Let y = [yi] ∈ Vm, x = [xi] ∈ Vk, and
define F (y) = [F (yi)] ∈ Vm. We can now write the resulting scheme in a compact way
as

y = Jx + Ay + ∆t BF (y) .(3.5)

To study boundedness, the number of steps m is allowed to be arbitrarily large.
Consider, for given vector space V and seminorm ‖ · ‖, the boundedness property

max
1≤n≤m

||yn|| ≤ µ · max
1≤j≤k

||xj || whenever (1.2) is valid, ∆t ≤ γ τ0, and
x, y satisfy (3.5), m ≥ 1,

(3.6)

with a stepsize coefficient γ > 0 and boundedness factor µ ≥ 1. Note that this property
involves all F : V → V for which the monotonicity assumption (1.2) is satisfied, as
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well as all x, y satisfying (3.5) and m ≥ 1. Therefore γ and µ will not depend on a
particular problem (1.1) under consideration.

A convenient form to derive results on boundedness is obtained by multiplying
relation (3.5) by (I − A + γB)−1 with γ > 0. This yields

y = R x + P
(
y + ∆t

γ F (y)
)

,(3.7)

where R = (rij) ∈ Rm×k and P = (pij) ∈ Rm×m are given by

R = (I − A + γB)−1J , P = (I − A + γB)−1γB .(3.8)

Note that I − A + γB is invertible for any γ > 0, because b0 ≥ 0, and therefore (3.7)
is still equivalent to (3.5). The matrix P is again a lower triangular Toeplitz matrix,
and it has the entry π0 = γb0/(1 + γb0) ∈ [0, 1) on the diagonal. The spectral radius
spr(|P |) of the matrix |P | = (|pij |) also equals π0, and because this is less than one it
follows that (I − |P |)−1 =

∑∞
j=0 |P |j . We thus have

spr(|P |) < 1 , (I − |P |)−1 ≥ 0 .(3.9)

3.3 Application of a general result on boundedness

To obtain boundedness results for the multistep methods we will use a general result
from [10]. The connection with the notation used in that paper is established by
writing (3.5) in the form

y = Sx + ∆t TF (y)(3.10)

with S ∈ Rm×k and T ∈ Rm×m defined by

S = (I − A)−1J , T = (I − A)−1B .(3.11)

We note that the matrix I + γT = (I − A)−1(I − A + γB) is invertible for γ > 0,
and R = (I + γT )−1S, P = (I + γT )−1γT . Furthermore, the consistency conditions
in (1.5) imply that the linear multistep method is exact for first-degree polynomial
solutions: if uj = α + β · j∆t (0 ≤ j < k) and F (u) ≡ β, then un = α + β · n∆t for all
n ≥ k. Since yn = uk−1+n (n ≥ 1) in (3.10), it follows by varying α, β ∈ R that

eT
j S 6= 0 for all j ,(3.12a)

(ei − ej)T [S T ] 6= 0 if i 6= j ,(3.12b)

where [S T ] is the m × (k+m) matrix whose first k columns equal those of S and
whose last m columns are equal to those of T . Application of Theorem 2.4 in [10] now
yields the following result:

Theorem 3.1 Consider a linear multistep method (1.4) satisfying (1.5). Then, for
any seminorm ‖ · ‖ on V, the boundedness property (3.6) is valid provided that

‖(I − |P |)−1|R| ‖∞ ≤ µ for all m.(3.13)

Moreover, condition (3.13) is necessary for (3.6) to be valid for the class of spaces
V = RM , M ≥ 1, with the maximum norm.
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In the above result, proving necessity of (3.13) is by far the most difficult part, and
for that part the conditions (3.12) are relevant. Showing sufficiency is much easier, and
we will repeat the main arguments here. For this purpose, note that for any seminorm
‖ · ‖, relation (3.7) implies

‖yi‖ ≤
k∑

j=1

|rij | ‖xj‖ +
m∑

j=1

|pij | ‖yj‖ (1 ≤ i ≤ m)

whenever (1.2) is satisfied and ∆t ≤ γτ0. Setting η = (ηi) ∈ Rm, ξ = (ξj) ∈ Rk with
ηi = ‖yi‖ and ξj = ‖xj‖, we thus obtain

η ≤ |R| ξ + |P | η ,

where |R| = (|rij |), |P | = (|pij |). Since (I − |P |)−1 ≥ 0, it follows that

η ≤ (I − |P |)−1|R| ξ ,

from which it is seen directly that (3.13) implies (3.6).

4 Boundedness and monotonicity results

In this section conditions are given for boundedness and monotonicity of linear multi-
step methods. It will always be assumed that (1.5) is satisfied.

To formulate the results we will use some standard concepts for linear multistep
methods, which can be found in [2, 7], for example. The stability region of the linear
multistep method is denoted by S, and its interior by int(S). If 0 ∈ S the method is
said to be zero-stable. The method is called irreducible if the generating polynomials
ρ(ζ) = ζk −

∑k
j=1 ajζ

k−j and σ(ζ) =
∑k

j=0 bjζ
k−j have no common factor.

4.1 Boundedness with respect to the input vectors

First we consider the boundedness property (3.6) with µ > 0 arbitrary, giving bound-
edness with respect to the input vectors x1, . . . , xk defined by (3.3). As we will see, this
can be linked to some linear stability properties of the method and non-negativity of
the matrices P , R. It is important to note that these m×m matrices depend explicitly
on γ, and we are interested in m arbitrarily large.

For a given linear multistep method and given γ > 0 we consider the following two
statements:{

there is a µ > 0 such that the boundedness property (3.6) is valid for
all V = RM , M ≥ 1, with maximum norm ‖ · ‖∞ ;(4.1)

{
there is a µ > 0 such that the boundedness property (3.6) is valid for
any vector space V and seminorm ‖ · ‖ .(4.2)

The next theorem provides necessary and sufficient conditions for these statements.
The proof of the theorem will be given in Section 5.

Theorem 4.1 Consider an irreducible, zero-stable linear multistep method, and let
γ > 0. Then each of the statements (4.1) and (4.2) is equivalent to

−γ ∈ int(S) , P ≥ 0 (for all m) .(4.3)
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Along with (4.1), (4.2), we also consider the following stronger statement on bound-
edness for arbitrary nonnegative sublinear functionals:{

there is a µ > 0 such that the boundedness property (3.6) is valid for
any vector space V and nonnegative sublinear functional ‖ · ‖ .(4.4)

Here the restriction to sublinear functionals that are nonnegative has been made to
get a similar formulation as for seminorms; see Remark 5.4 below.

Theorem 4.2 Suppose the linear multistep method is zero-stable, γ > 0 and

R ≥ 0 , P ≥ 0 (for all m) .(4.5)

Then statement (4.4) holds.

Also the proof of this theorem will be given in Section 5. In that section we will
also see that if k = 2 and the method is irreducible, then P ≥ 0 (for all m) implies
R ≥ 0 (for all m). Consequently, for irreducible zero-stable linear two-step methods,
each of the statements (4.1), (4.2), (4.4) is valid with stepsize coefficient γ > 0 if and
only if P ≥ 0 (for all m).

In the above results, zero-stability has been assumed in advance. It is clear, by
considering F ≡ 0, that this is also a necessary condition for the relevant boundedness
properties.

4.2 Boundedness with respect to the starting vectors

The above results provide criteria for boundedness with respect to the input vectors
x1, . . . , xk defined in (3.3). In general, it is more natural to consider boundedness with
respect to the starting vectors u0, . . . , uk−1, as in (1.8). We therefore consider, similar
to (3.6), the following boundedness property of the linear multistep scheme (1.4):

max
k≤n<k+m

||un|| ≤ µ̃ · max
0≤j<k

||uj || whenever (1.2) is valid, ∆t ≤ γ τ0, and
(1.4) holds for k ≤ n < k + m, m ≥ 1.

(4.6)

If ‖ · ‖ is a seminorm, it is easily seen from (1.2) and (3.3) that

‖xi‖ ≤
k∑

j=1

(
|aj − γbj | + γ|bj |

)
· max
0≤l<k

‖ul‖

for i = 1, . . . , k. Consequently, if (3.6) holds with stepsize coefficient γ and factor µ,
then there is a µ̃ such that (4.6) holds.

The reverse is also true for seminorms. To see this, first note that (3.4b) is the
same as (1.4), only with a shifted index. Therefore (4.6) implies maxk+1≤i≤k+m ‖yi‖ ≤
µ̃ max1≤j≤k ‖yj‖ when (1.2) is valid and ∆t ≤ γτ0. From (3.4a) we see that

‖yn‖ ≤ ‖yn − ∆tb0F (yn)‖ ≤ ‖xn‖ +
n−1∑
j=1

(
|aj − γbj | + γ|bj |

)
‖yn−j‖

for 1 ≤ n ≤ k. Here the first inequality follows by monotonicity of the backward Euler
method for any stepsize; see for instance [14, p. 614]. By induction with respect to n it
is now seen that there are ν1, ν2, . . . , νk, only depending on the coefficients aj , bj and
γ, such that

‖yn‖ ≤ νn · max
1≤j≤n

‖xj‖ (1 ≤ n ≤ k) .

It follows from the above that the boundedness properties (3.6) and (4.6) are for
seminorms essentially equivalent, in the following sense:
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Lemma 4.3 Suppose ‖ · ‖ is a seminorm on a vector space V, and let γ > 0. Then
(3.6) holds with some µ > 0 if and only if (4.6) holds with some µ̃ > 0.

For sublinear functionals such an equivalence does not hold. As we know from
Theorem 4.2, zero-stability and P, R ≥ 0 is sufficient for having (3.6) with nonnegative
sublinear functionals, and we will see in later examples that this is satisfied with γ > 0
for many methods, including methods with some negative coefficients aj , bj . On the
other hand, by combining results on nonnegativity preservation as given in [1] with
the functional ‖v‖0 = −min{0, v1, . . . , vM} on RM , it can be shown that to have (4.6)
with γ > 0 for all nonnegative sublinear functionals we need all aj , bj ≥ 0 and γ ≤ c
with c > 0 given by (1.6).

4.3 Monotonicity with starting procedures

For methods with nonnegative coefficients aj and bj we know that monotonicity is valid
with respect to arbitrary starting values u0, u1, . . . , uk−1, with stepsize coefficient γ ≤ c
given by (1.6). As mentioned before, this only applies to a small class of methods,
and usually only under severe stepsize restrictions. Most popular methods used in
practice have some negative coefficients. For such methods it is useful to consider
specific starting procedures to compute u1, . . . , uk−1 from u0. For a given stepsize,
this provides an input vector x determined by u0. For suitable starting procedures
we may still have monotonicity with respect to u0, even if the multistep methods has
some negative coefficients.

Assume that a Runge-Kutta type starting procedure is used, producing a vector
w = [wj ] ∈ Vm0 such that ui = wji for i = 0, 1, . . . , k−1; the remaining wj are internal
stage vectors of the starting procedure. For given γ > 0 we write, using (3.3),

x = R0 u0 + P0

(
w + ∆t

γ F (w)
)

(4.7)

with matrices P0 ∈ Rk×m0 and R0 ∈ Rk×1 determined by the starting procedure and
the coefficients of the linear multistep method. Examples are given below.

Theorem 4.4 Let ‖ · ‖ be a sublinear functional on a vector space V. Suppose (4.7)
holds with ‖wj‖ ≤ ‖u0‖ (1 ≤ j ≤ m0), y ∈ Vm satisfies (3.5), and

R R0 ≥ 0 , R P0 ≥ 0 , P ≥ 0 .(4.8)

Then ‖yi‖ ≤ ‖u0‖ for 1 ≤ i ≤ m whenever (1.2) is valid and ∆t ≤ γτ0.

Proof. From (3.7) we obtain

y = R R0u0 + R P0

(
w + ∆t

γ F (w)
)

+ P
(
y + ∆t

γ F (y)
)

.

Setting η = (ηi) ∈ Rm, ηi = ‖yi‖, it follows that

η ≤
(
R R0 + R P0 ē

)
‖u0‖ + P η ,

with unit vector ē = e[m0] ∈ Rm0 . For the special case F ≡ 0, all wj , yi will be equal
to u0, from which it is seen that e = R R01 + R P0ē + Pe. Consequently

(I − P ) η ≤ (I − P ) e · ‖u0‖ ,

and since (I − P )−1 ≥ 0 we obtain η ≤ e · ‖u0‖. 2
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A standard starting procedure consists of taking k−1 steps with a given s-stage
Runge-Kutta method with stepsize ∆t. In order to guarantee that ‖wj‖ ≤ ‖u0‖ for
1 ≤ j ≤ m0 as soon as (1.2) is valid and ∆t ≤ γτ0, the Runge-Kutta method itself
should be monotonic/SSP with stepsize coefficient γ.

Any Runge-Kutta starting procedure combined with m steps of the linear multistep
method can be written together as one step of a ‘big’ Runge-Kutta method with m0+m
stages. The above result could therefore – in principle – also have been derived from
the results in [6, 9]. Necessary condition for monotonicity are found in [23]; it can be
shown from those results that the condition (4.8) is necessary in Theorem 4.4 under a
weak irreducibility condition on the combined scheme.

Example 4.5 Consider a two-step method, and let cj = aj − γbj (j = 1, 2). Then

x =
(

c2 c1

0 c2

)(
u0

u1

)
+ γ

(
b2 b1

0 b2

)(
u0 + 1

γ ∆t F (u0)
u1 + 1

γ ∆t F (u1)

)
.(4.9)

Suppose u1 is computed by the θ-method, u1 = u0 + ∆t(1 − θ)F (u0) + ∆tθF (u1).
This can be written as

u1 = r0u0 + q0

(
u0 + ∆t

γ F (u0)
)

+ q1

(
u1 + ∆t

γ F (u1)
)

(4.10)

with r0 = (1 + θγ)−1(1 − (1 − θ)γ), q0 = (1 + θγ)−1(1 − θ)γ, and q1 = (1 + θγ)−1θγ.
This leads to (4.7) with

R0 =
(

c2+c1r0

c2r0

)
, P0 =

(
c1q0+γb2 c1q1+γb1

c2q0 c2q1+γb2

)
,(4.11)

and w = (u0, u1)T ∈ V2. Of course, if the multistep method is explicit we will take
θ = 0, in which case r0 = 1 − γ, q0 = γ and q1 = 0.

Another natural starting procedure for explicit methods is the explicit trapezoidal
rule (also known as the modified Euler method)

ū1 = u0 + ∆t F (u0) , u1 = u0 + 1
2
∆t F (u0) + 1

2
∆t F (ū1) .

Here we get

u1 = r0u0 + q0

(
u0 + ∆t

γ F (u0)
)

+ q1

(
ū1 + ∆t

γ F (ū1)
)

(4.12)

with r0 = 1 − γ + 1
2γ2, q0 = 1

2γ(1 − γ) and q1 = 1
2γ. This gives

R0 =
(

c2+c1r0

c2r0

)
, P0 =

(
c1q0+γb2 c1q1 γb1

c2q0 c2q1 γb2

)
,(4.13)

and w = (u0, ū1, u1)T ∈ V3. 3

5 Technical derivations and proofs

5.1 Recursions for the coefficients of P and R

We first take a closer look at the lower triangular m × m Toeplitz matrices

(I − A + γB)−1 =
∑
j≥0

ρjE
j ,(5.1)
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P = (I − A + γB)−1γB =
∑
j≥0

πjE
j ,(5.2)

with coefficients ρj , πj ∈ R. Note that R ∈ Rm×k contains the first r columns of
(I − A + γB)−1, r = min{k, m}.

It is convenient to define ρj = 0 for j < 0. The coefficients ρn then satisfy the
multistep recursion

ρn =
k∑

j=1

ajρn−j − γ
k∑

j=0

bjρn−j + δn0 (n ≥ 0) ,(5.3)

with Kronecker delta symbol δn0 (whose value equals one if n = 0 and zero otherwise).
In terms of these ρn, the coefficients πn are given by

πn = γ
k∑

j=0

bjρn−j (n ≥ 0) .(5.4)

This gives a direct link between these coefficients ρn, πn and the behaviour of the linear
multistep method applied to the scalar equation

u′(t) = λu(t) with ∆t λ = −γ .(5.5)

Lemma 5.1 If −γ ∈ S then max0≤n<∞ |ρn| < ∞. Furthermore, if the method is
irreducible and −γ ∈ int(S), then there is a κ > 0 and θ ∈ (0, 1) such that |ρn| ≤ κ θn

for all n ≥ 0.

Proof. From (5.3) we see that the coefficients ρn are obtained by applying the linear
multistep method to (5.5). If −γ ∈ S this recursion is stable, and therefore the |ρn|
are bounded uniformly in n.

The characteristic roots of the recursion (5.3) are given by algebraic functions of γ.
If the method is irreducible these functions are not (locally) constant. It follows that
for any −γ ∈ int(S) there is a θ ∈ (0, 1) such that the maximum modulus of the
characteristic roots is less than θ; see [3, Thm. I.4.2]. Writing the solution of (5.3) in
terms of these characteristic roots thus provides the proof. 2

Corollary 5.2 Suppose the method is irreducible and −γ ∈ int(S). Then
∑∞

j=0 πj = 1.

Proof. We have
∑m−1

j=0 πj = eT
mPe = eT

m

(
I−(I−A+γB)−1(I−A)

)
e. Let v = (I−A)e.

Then only the first k components vj are nonzero. Consequently we obtain for m ≥ k

eT
mPe = 1 − (ρm−1, . . . , ρ1, ρ0) v = 1 −

∑k
j=1 ρm−jvj .

The proof now follows from the previous lemma. 2

The recursions (5.3), (5.4) will be used to compute numerically the largest stepsize
coefficient γ such that R ≥ 0 or P ≥ 0 with large m. Necessary conditions for these
inequalities can be obtained by computing the first few coefficients ρj and πj by hand.

Example 5.3 For explicit methods we have

ρ0 = 1 , ρ1 = a1 − γb1 , ρ2 = a2
1 + a2 − γ(2a1b1 + b2) + γ2b2

1 ,

π0 = 0 , π1 = γb1 , π2 = γ(a1b1 + b2) − γ2b2
1 .

It is clear that the inequality P ≥ 0 (for all m) with some γ > 0 requires b1 ≥ 0 and
a1b1 + b2 ≥ 0. These two inequalities were mentioned already in [12], but now it is
seen that these are really needed for boundedness. 3
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5.2 Proofs of Theorems 4.1, 4.2

Along with R and P , we will use in this section the m×m Toeplitz matrices (I−A)−1 =∑
j≥0 σjE

j and T = (I − A)−1B =
∑

j≥0 τjE
j , with entries σj , τj ∈ R on the j-th

lower diagonal, and we write S = (I − A)−1J , cf. (3.11). Application of Lemma 5.1
with γ = 0 shows that if the method is zero-stable, then there is an α0 > 0 such that
|σj | ≤ α0 for all j ≥ 0.

Sufficiency of (4.3) in Theorem 4.1
The following arguments are somewhat similar to those used in the proof of Corol-
lary 3.3 of [10], although the notations are not completely matching.

Assume the linear multistep method is irreducible and zero-stable, −γ ∈ int(S) and
P ≥ 0. Setting β0 =

∑k
j=0 |bj |, it follows that |τj | ≤ α0β0 for all j ≥ 0. Lemma 5.1

shows that there is an α1 > 0 such that
∑∞

j=0 |ρj | ≤ α1. Since P ≥ 0, we have

(I − |P |)−1|R| = (I − P )−1|R| = (I + γT )|R| ,

and consequently ‖(I − |P |)−1|R|‖∞ ≤ (1 + γα0β0k)α1. Application of Theorem 3.1
thus shows that the statements (4.1), (4.2) are valid.

Necessity of (4.3) in Theorem 4.1
To finish the proof of Theorem 4.1 it has to be shown that for an irreducible, zero-stable
method the conditions P ≥ 0 and −γ ∈ int(S) are necessary for (4.1).

Any application of method (1.4) to the scalar, complex test equation u′(t) = λu(t)
with λ = α+ iβ and real α, β, can be reformulated as an application to u′(t) = F (u(t))
in V = R2 with F (v) = (αv1 − βv2, βv1 + αv2) for v = (v1, v2) ∈ V. Choosing
λ ∈ D = {α + iβ : −2 ≤ α ≤ 0, |β| ≤ min(2 + α,−α)}, we have (1.2) with τ0 = 1,
V = R2 and ‖ ·‖ = ‖ ·‖∞. Using Lemma 4.3, it thus follows that property (3.6) implies
γ · D ⊂ S. Therefore, if γ > 0, then −γ ∈ int(S) is certainly necessary for (4.1).

Assuming −γ ∈ int(S), it remains to show that P ≥ 0 is necessary for (3.13). Let
us write as before P =

∑
j≥0 πjE

j with coefficients πj ∈ R. Because −γ ∈ int(S) we
know by Corollary 5.2 that

∑∞
j=0 πj = 1. We can write (3.13) as

(I − |P |)−1|R| ē ≤ µ e (for all m) ,

where ē = e[k] ∈ Rk and e = e[m] ∈ Rm.
Suppose some πj are negative. Then there is an l ≥ 1 with

∑l
j=0 |πj | > 1. Consider

now m > l, and let

D =
l∑

j=0

δjE
j with δj = |πj | for 0 ≤ j ≤ l .

We have |R| ē ≥
(
eT
1 |R| ē

)
e1 = (1 + γb0)−1e1. Furthermore

(I − |P |)−1 − (I − D)−1 = (I − |P |)−1(|P | − D)(I − D)−1 ≥ 0 ,

and therefore (I−|P |)−1e1 ≥ (I−D)−1e1. Consequently, (3.13) implies (I−D)−1e1 ≤
µ̃e for all m ≥ l+1 with µ̃ = (1+γb0)µ. Note that (I−D)−1 is again a lower triangular
Toeplitz matrix, and therefore we also have

(I − D)−1ei ≤ µ̃ e (for all m ≥ l + 1 and 1 ≤ i ≤ l) .(5.6)
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The bounds (5.6) are related to stability of the recursion

ηn =
l∑

j=0

δjηn−j (for n ≥ l)(5.7)

with starting values η0, . . . , ηl−1 ∈ R. For given η0, . . . , ηl−1 the solution for m steps
of this recursion can be written as (I − D)−1ξ where ξ =

∑l
i=1 ξiei ∈ Rm collects

the starting values in the form of source terms in the first l steps. Therefore, (5.6)
implies stability of the recursion (5.7). However, this l-step recursion has characteristic
polynomial

d(ζ) = ζl −
l∑

j=0

δjζ
l−j .

Since δ0 = γb0/(1 + γb0) and
∑l

j=0 δj > 1, we have d(1) < 0 but d(ζ) > 0 for ζ � 1.
Hence there is a root larger than one, which contradicts stability of the recursion.

Consequently, having some negative entries in P implies that (3.13) is not satisfied.
According to Theorem 3.1, also (4.1) is then not satisfied, which completes the proof
of Theorem 4.1.

Sufficiency of (4.5) in Theorem 4.2
Let ‖ · ‖ be an arbitrary sublinear functional. If P, R ≥ 0 then S = (I − P )−1R ≥ 0.
Moreover, according to (3.9), we also have have spr(|P |) < 1. Assuming (1.2) and
∆t ≤ γτ0, it follows from Theorem 3.9 in [11] that

‖yi‖ ≤ µi · max
1≤j≤k

‖xj‖ (1 ≤ i ≤ m)(5.8)

with µi =
∑k

j=1 σi−j , where σl = 0 if l < 0. If the method is zero-stable, then
µ = sup1≤i<∞ µi < ∞. For nonnegative sublinear functionals the property (3.6) then
follows.

Remark 5.4 Replacement of the µi in (5.8) by µ = supi µi is not allowed for arbi-
trary sublinear functionals. Boundedness properties for arbitrary sublinear function-
als should therefore not be expressed with (3.6). Theorem 4.2 has therefore been
formulated for nonnegative sublinear functionals only.

Necessary and sufficient conditions for boundedness with the form (5.8) for arbi-
trary sublinear functionals are given in [11]. However, as noted before, this will not
lead to results in terms of the natural starting values u0, . . . , uk−1, and therefore this
will not be pursued here. 3

5.3 Conditions for R ≥ 0 and P ≥ 0 with two-step methods

For the case k = 2 we can formulate necessary and sufficient conditions for having
R ≥ 0 or P ≥ 0 (for all m ≥ 1) by writing down explicitly the solutions of the
recurrence relations (5.3), (5.4) for the coefficients ρn and πn in terms of the roots
of the characteristic polynomial of the recursion (5.3). The derivations are rather
technical and not very revealing. Therefore we only present the results here, without
the full derivation.

So, assume k = 2, and let cj = (1 + γb0)−1(aj − γbj) for j = 1, 2. Setting
ρi = 0 for i < 0 and ρ0 = (1 + γb0)−1, the coefficients ρn are given by the recursion
ρn = c1ρn−1 + c2ρn−2 for n ≥ 1. Furthermore πn = γb0ρn + γb1ρn−1 + γb2ρn−2 for
n ≥ 0. These coefficients also satisfy the recursion πn = c1πn−1 + c2πn−2 for n ≥ 3.
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By solving the recursion in terms of the characteristic roots θ± = 1
2
c1± 1

2

√
c 2
1 + 4c2,

thereby considering the cases of real or complex characteristic roots separately, it
follows by some computations that R ≥ 0 (for all m) if and only if

c1 ≥ 0 , c 2
1 + 4c2 ≥ 0 .(5.9)

We note that under condition (5.9) the characteristic roots are real and θ+ ≥ |θ−|.
The conditions for P ≥ 0 can be studied in a similar way. For irreducible methods

it can then be shown – by rather tedious calculations – that we have P ≥ 0 (for all m)
if and only if (5.9) holds together with

b0c1 + b1 ≥ 0 , b0(c2
1 + c2) + b1c1 + b2 ≥ 0 , b0θ

2 + b1θ + b2 ≥ 0 ,(5.10)

where θ = 1
2c1 + 1

2

√
c 2
1 + 4c2. The first two inequalities in (5.10) just mean that

π1, π2 ≥ 0.

Remark 5.5 For any irreducible linear two-step method it is seen from the above that
R ≥ 0 is a necessary condition for P ≥ 0 (for all m). To show that irreducibility is
essential for this, consider an explicit two-step method with a1 +a2 = 1, b0 = 0, b1 = 1
and b2 = a2. Here we find that ρ(ζ) = (ζ − 1)(ζ + a2) and σ(ζ) = ζ + a2, so ζ = −a2

is a common root of the ρ and σ polynomials.
We have

(I − A + γB)−1 = (I − (1 − γ)E)−1(I + a2E)−1 .

We see from (5.9) that R ≥ 0 iff γ ≤ a1 = 1 − a2. However, when calculating P the
common factor drops out, resulting in

P = (I − (1 − γ)E)−1γE ,

and therefore P ≥ 0 iff γ ≤ 1. Consequently, if a1 < 1, then P ≥ 0 does not imply
R ≥ 0 for these reducible methods. 3

5.4 Remark on the construction in [12, 14]

Multiplication of (3.5) with a Toeplitz matrix K =
∑

j≥0 κjE
j gives

y = R̃ x +
(
P̃ − γQ̃

)
y + γQ̃

(
y + ∆t

γ F (y)
)
,

where R̃ = KJ , P̃ = I − K(I − A) and Q̃ = KB. Taking κ0 = (1 + γb0)−1, we have
spr(P̃ ) = |1 − κ0| < 1. If K ≥ 0 is such that P̃ ≥ γQ̃ ≥ 0, then we obtain as before

η ≤ (I − P̃ )−1R̃ e · max
i

‖xi‖ = (I − A)−1J e · max
i

‖xi‖ ,

where η = (ηi) ∈ Rm with ηi = ‖yi‖.
Basically – in somewhat disguised form– this is what was used in [14] for k = 2

and in [12] for k > 2. In those papers, for a given integer l, chosen sufficiently large,
the sequence {κj} was taken to be geometric after index l, that is, κj+1/κj = θ for
j ≥ l. Subsequently, κ1, . . . , κl, θ ≥ 0 were determined (by an optimization code) to
yield an optimal γ such that P̃ ≥ γQ̃ ≥ 0. In fact, for k = 2 the whole sequence was
taken in [14] to be geometric, κj = κ0θ

j , j ≥ 0.
The present approach is more elegant. Moreover, it has a wider scope in that it

gives conditions that are not only sufficient but also necessary for boundedness. It is
remarkable that for many interesting methods the maximal values for γ seem to be
the same. In this respect, note that if we take K = (I − A + γB)−1 then K ≥ 0,
P̃ ≥ γQ̃ ≥ 0 is equivalent to P, R ≥ 0.
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6 Examples

For some families of methods, with two free parameters, we will display in contour plots
the maximal values of γ such that we have boundedness with arbitrary input vectors
(for seminorms) or monotonicity with starting procedures (for sublinear functionals),
using (4.3) and (4.8), respectively. These maximal stepsize coefficients will be called
threshold values.

The main criterion for boundedness is P ≥ 0 for all m ≥ 1. To verify this criterion,
we compute the coefficients πj from (5.3), (5.4) for 1 ≤ j ≤ m with a finite m, and
check whether these coefficients are nonnegative. It is not a-priori clear how large this
m should be taken in order to conclude that all πj are nonnegative. The figures in this
section were made with m = 1000, and it was verified that with a larger m the results
did not differ anymore visually. For most methods a much smaller m would have been
sufficient. Numerical inspection shows that in the generic case the recursion (5.3) has
one dominant characteristic root θ ∈ R, giving asymptotically ρn = c θn(1 + O(κn))
for large n, with c, κ ∈ R, |κ| < 1, and then sgn(πn) = sgn(c

∑k
j=0 bjθ

−j) is constant
for n large enough, provided θ is positive.

The threshold values for monotonicity with starting procedures can be obtained in
a similar way: the first two inequalities in (4.8) amount to

∑k
j=1 vjρn−j ≥ 0 for all

n ≥ 1 where v = (v1, . . . , vk)T is any column of R0 or P0.
In the following, we will simply write P ≥ 0 and R ≥ 0 if the relevant inequality

holds for all m ≥ 1.

6.1 Explicit linear two-step methods of order one

Consider the class of explicit two-step methods of order (at least) one. With this class
of methods we can take a1, b1 as free parameters, and set a2 = 1−a1, b2 = 2−a1− b1.
The methods are zero-stable for 0 ≤ a1 < 2. In case b1 = 2 − 1

2a1 the order is two.
The methods with b1 = 1 or a1 = 2 are reducible.

In Figure 4 (left panel) the maximal values of γ are displayed for which P ≥ 0. As
noted in Section 4.1, for the irreducible two-step methods these values of γ correspond
to the threshold values for boundedness. For the ‘white’ areas in the contour plot there
is no positive γ. We already know from Example 5.3 that if b1 < 0 or a1+b1−a1b1 > 2,
then there is no γ > 0 for which P ≥ 0.
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Figure 4: Explicit two-step methods of order one, with parameters a1 ∈ [0, 2) horizontally
and b1 ∈ [− 1

4
, 9

4
], b1 6= 1, vertically. Left panel: threshold γ > 0 for boundedness. Right

panel: threshold γ > 0 for monotonicity with forward Euler starting procedure. Contour
levels at j/20, j = 0, 1, . . .; for the ‘white’ areas there is no positive γ.
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In Figure 4 (right panel), the maximal values of γ are shown for which we have
monotonicity with the forward Euler starting procedure. Note that b1 = 1 is a spe-
cial (reducible) case: starting with forward Euler, the whole scheme reduces to an
application of the forward Euler method, so then we have monotonicity with γ = 1.

The methods (2.1) correspond to a1 = 3
2 and b1 = β. It is now clear why β = 0.95

gave a much worse behaviour than β = 1.05 in the numerical example of Section 2.
The maximal stepsize coefficient for boundedness is γ ≈ 0.35 if β = 0.95 and γ ≈ 0.93
if β = 1.05. With forward Euler start the maximal stepsize coefficient for monotonicity
is γ ≈ 0.35 if β = 0.95, and it is γ ≈ 0.82 if β = 1.05. Therefore, the method with
β = 1.05 allows much larger stepsizes for boundedness and monotonicity than the
method with β = 0.95.

6.2 Implicit linear two-step methods of order two

Likewise we can consider the implicit two-step methods of order (at least) two, with free
parameters a1 and b0. The remaining coefficients are then determined by a2 = 1− a1,
b1 = 2− 1

2a1−2b0 and b2 = −1
2a1+b0. Again, the methods are zero-stable if a1 ∈ [0, 2),

and they are A-stable if we also have b0 ≥ 1
2 . In case b0 = 1

3 + 1
12a1 the order is three.

The methods with b0 = 1
2 are reducible (to the trapezoidal rule).

The threshold values for boundedness are displayed in Figure 5 (left panel). These
values correspond to those found earlier in [12, Fig. 2]. We now see from Theorem 4.1
that – somewhat surprisingly – the latter values, which were obtained by ad-hoc argu-
ments, are not only sufficient but also necessary for boundedness.

a1

b
0

 

 

0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

a1

b
0

 

 

0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 5: Implicit two-step methods of order two, with parameters a1 ∈ [0, 2) horizontally
and b0 ∈ [0, 5

4
], b0 6= 1

2
, vertically. Left panel: thresholds γ > 0 for boundedness. Right panel:

thresholds γ > 0 for monotonicity with the θ-method, θ = b0, as starting procedure. Contour
levels at j/10, j = 0, 1, . . .; for the ‘white’ areas there is no positive γ.

For the starting procedure we consider the θ-method, with θ = 1 (backward Euler)
or θ = b0. One might think that the monotonicity properties would be optimal with
θ = 1. That turns out not to be the case. In Figure 5 (right panel) the monotonicity
thresholds are plotted for θ = b0. For θ = 1 these thresholds become zero in the
lower-right part (b0 ≤ 1

2a1) of the parameter plane; this is due to lack of monotonicity
after one application of the two-step method.

6.3 Explicit linear three-step methods of order three

The class of explicit three-step methods of order three can be described with a1, a3 as
free parameters, and then a2 = 1−a1−a3, b1 = 1

12 (28−5a1−a3), b2 = − 8
12 (1+a1−a3),
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b3 = 1
12 (4+a1 +5a3). Inspection shows that these methods are zero-stable for (a1, a3)

inside the triangle with vertices (−1, 1), (1,−1) and (3, 1). Well-known examples in
this class are the three-step Adams-Bashforth method, with a1 = 1, a3 = 0, and the
extrapolated BDF3 method, with a1 = 18

11 , a3 = 2
11 .

In Figure 6 (right panel) the maximal value of γ is shown such that both P ≥ 0
and R ≥ 0. This corresponds to the values found [12, Fig. 1]. The left panel of the
figure shows the maximal γ for which P ≥ 0 and −γ ∈ int(S).
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Figure 6: Explicit three-step methods of order three, with parameters a1 ∈ [0, 3] horizontally
and a3 ∈ [−1, 1] vertically. Left panel: threshold γ > 0 for boundedness, that is, P ≥ 0 and
−γ ∈ int(S). Right panel: maximal γ > 0 such that P ≥ 0 and R ≥ 0. Contour levels at
j/20, j = 0, 1, . . .; for the ‘white’ areas there is no positive γ.

It is seen that for many of the methods with a3 > 0.5 the maximal γ for which
P ≥ 0 is slightly lager than for P, R ≥ 0. For a3 < 0.5 there is very little difference
in the two pictures. In particular, the method obtained by optimization in [19], with
a1 ≈ 1.91 and a3 ≈ 0.43, is still optimal with respect to the threshold value, with
γ ≈ 0.53. Once again, these results put the earlier findings of [12, 19] in a new and
wider perspective.

6.4 Explicit linear four-step methods of order four

For the class of explicit four-step methods of order four, the order conditions read
a4 = 1−(a1+a2+a3), b4 = −1

24 (9a1+8a2+9a3), b3 = 1
6 ( 5

2a1+2a2+ 9
2a3+16a4−18b4),

b2 = 1
2 (−a1 + 3a3 + 8a4 − 4b3 − 6b4), b1 = a1 + 2a2 + 3a3 + 4a4 − (b2 + b3 + b4). This

still leaves three free parameters a1, a2, a3, which makes visualization difficult.
We therefore consider a plane that contains three important schemes within this

class: the explicit four-step Adams-Bashforth method (AB4), the extrapolated BDF4
scheme (EBDF4) and the method TVB(4,4) from [19], given in [13] with rational
coefficients. Now two degrees of freedom remain. We take a1, a3 as free parameters,
and set a2 = 76772

68211 (1 − a1) − 43115
68211a3.

In Figure 7 (left panel) the maximal value of γ is shown such that the methods
are zero-stable, −γ ∈ int(S) and P ≥ 0. The right panel shows the error constants
(defined as in [7, Sect. III.2]) for the zero-stable methods.

It is seen that the threshold value γ for boundedness is relatively large for the
method TVB(4,4), with a1 ≈ 2.63 and a3 ≈ 1.49. This method was derived in [19]
by numerical optimization of γ within the class of explicit four-step methods of order
four, based on the sufficient condition for boundedness discussed in Section 5.4, while
keeping the error constants at a moderate size.
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Figure 7: Explicit four-step methods of order four, with parameters described above. Left
panel: threshold γ > 0 for boundedness. Contour levels at j/20, j = 0, 1, . . .; for the ‘white’
areas there is no positive γ. Right panel: log10 of the absolute error constants for zero-stable
methods. Markers: ◦ for AB4, + for EBDF4 and × for TVB(4,4).

It is clear from the figure that the threshold value for boundedness can be slightly
increased by taking (a1, a3) closer to (3, 2). But then the error constant becomes much
larger. Therefore the conclusion of [19] still stands: the TVB(4,4) scheme gives a good
compromise between a moderate error constant 2.38 and a relatively large stepsize
coefficient γ ≈ 0.45.

7 Concluding remarks

Based on the general framework of [10], we have obtained in this paper stepsize restric-
tions for linear multistep methods that are necessary and sufficient for boundedness
with maximum norms or arbitrary seminorms (Theorem 4.1). This puts the previ-
ously found, more complicated sufficient conditions of [12, 14] in a better and wider
perspective. Moreover, it is now also seen that the essential condition for boundedness,
P ≥ 0, arises as a natural condition for monotonicity of linear multistep methods with
Runge-Kutta starting procedures (Theorem 4.4). Optimizing the starting procedures
for given classes of multistep methods is part of our ongoing research.

Instead of linear multistep methods, boundedness can be considered for the related
class of one-leg methods. These methods were originally introduced to facilitate the
analysis of linear multistep methods. Stability results for one-leg methods often have
a somewhat nicer form than for linear multistep methods. It can be shown that the
maximal stepsize coefficient for boundedness of a one-leg method is the same as for the
associated linear multistep method, but simplification of the theory is not achieved in
this way.

In the same way one can study the important class of predictor-corrector methods.
However, for such methods the matrices P and R do become rather complicated.
Instead of simple Toeplitz matrices we then have to work with block matrices where the
blocks have a Toeplitz structure. Sufficient conditions for boundedness are presented
in [11].

References

[1] C. Bolley, M. Crouzeix, Conservation de la positivité lors de la discrétisation des
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