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Abstract

Let B(n, M) denote the minimum average Hamming distance of a binary code of
length n and cardinality M. In this paper we consider lower bounds on §(n, M). All
the known lower bounds on 3(n, M) are useful when M is at least of size about 2"~ /n.
We derive new lower bounds which give good estimations when size of M is about n.
These bounds are obtained using linear programming approach. In particular, it is
proved that nh_)ngo B(n,2n) = 5/2. We also give new recursive inequality for 3(n, M).
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1 Introduction

Let F» = {0,1} and let FJ denotes the set of all binary words of length n. For x,y € Fy,
d(x,y) denotes the Hamming distance between z and y and wt(xz) = d(x,0) is the weight
of z, where 0 denotes all-zeros word. A binary code C of length n is a nonempty subset of
F3. An (n, M) code C is a binary code of length n with cardinality M. In this paper we will
consider only binary codes.

The average Hamming distance of an (n, M) code C is defined by

d(C) = % Z; ch(c, d).

The minimum average Hamming distance of an (n, M) code is defined by
B(n, M) =min{ d(C) : Cis an (n, M) code} .

An (n, M) code C for which d(C) = 3(n, M) will be called extremal code.

The problem of determining /3(n, M) was proposed by Ahlswede and Katona in [2]. Upper
bounds on [3(n, M) are obtained by constructions. For survey on the known upper bounds
the reader is referred to [9]. In this paper we consider the lower bounds on G(n,M). We
only have to consider the case where 1 < M < 2"~! because of the following result which
was proved in [6].

Lemma 1. For1 < M <27
Bln, 2" = M) = 2 — = (2 = B(n, M) .

First exact values of 5(n, M) were found by Jaeger et al. [7].
Theorem 1. [7] 5(n,4) = 1, 3(n,8) = 3/2, whereas for M < n+ 1, M # 4,8, we have

B(n, M) =2 (MA; 1)2.

Next, Althofer and Sillke [3] gave the following bound.

Theorem 2. [3]

n+1 271

Bln M) 2 "= = S

where equality holds only for M = 2" and M = 2"~ 1,
Xia and Fu [10] improved Theorem [2 for odd M.
Theorem 3. [10] If M is odd, then

n+1 271 2" —p—1

M) >
Bln, M) 2 — M T T ae




Further, Fu et al. [6] found the following bounds.
Theorem 4. [6]
n+1 2771 2" —2p

B(n, M) > 5 T M + Wz if M =2(mod 4) ,
2n—2
ﬁ(n,]\/[)zg— R for M <2771
n 2n—2 2n—1_n ) ) _—
ﬁ(n,M)Zg— i + S if Misoddand M <2" " —1.

Using Lemma [l and Theorems [3], @ the following values of 3(n, M) were determined:
B(n, 271 £1), B(n, 271 £2), B(n,2"72), B(n, 2" 241), B(n, 2" 1 4+2772), B(n, 2" 1+ 22 £
1). The bounds in Theorems [B] Ml were obtained by considering constraints on distance
distribution of codes which were developed by Delsarte in [5]. We will recall these constraints
in the next section.

Notice that the previous bounds are only useful when M is at least of size about 2"~ /n.
Ahlswede and Althofer determined [((n, M) asymptotically.

Theorem 5. [1] Let {M,}5°, be a sequence of natural numbers with 0 < M, < 2™ for alln
and lim inf (Z\/[n/(L " J)) > 0 for some constant o, 0 < aw < 1/2. Then
an

n—oo

lim inf Lm’ M,)

n—00 n

> 2a(l —a) .

The bound of Theorem [l is asymptotically achieved by taking constant weight code
C={zeFy: wt(x) =|an]}.

The rest of the paper is organized as follows. In Section 2 we give necessary background
in linear programming approach for deriving bounds for codes. This includes Delsarte’s
inequalities on distance distribution of a code and some properties of binary Krawtchouk
polynomials. In Section Bl we obtain lower bounds on (n, M) which are useful in case when
M is relatively large. In particular, we show that the bound of Theorem [l is derived via
linear programming technique. We also improve some bounds from Theorem [ for M < 2772,
In Section @] we obtain new lower bounds on 3(n, M) which are useful when M is at least
of size about n/3. We also prove that these bounds are asymptotically tight for the case
M = 2n. Finally, in Section [}l we give new recursive inequality for 3(n, M).

2 Preliminaries

The distance distribution of an (n, M) code C is the (n + 1)-tuple of rational numbers
{Ao, A1, -+, An}, where

{(c,d)eCxC: d(c,d) =1}
M

A=



is the average number of codewords which are at distance ¢ from any given codeword ¢ € C.

It is clear that

A0:17 ZAZ:M and AZZOfor OSZSH

=0

(1)

If C is an (n, M) code with distance distribution {A;}!,, the dual distance distribution

{B;}, is defined by
I =
By =+ ;Pk (i)4;
where

Py(i) = ij%(—l)j C) <Z _ ;)

is the binary Krawtchouk polynomial of degree k. It was proved by Delsarte [5] that
B,>0 for 0<k<n.

Since the Krawtchouk polynomials satisfy the following orthogonal relation
> PP (k) = 6,27
k=0

we have

P OB = Y P05 S B 0A = 2 S AS T PIRRR) = 114

It’s easy to see from (), (2),([]), and (@) that

n 2n
By=1 and » Bp=—.
k=0 M

(2)

(7)

Before we proceed, we list some of the properties of binary Krawtchouk polynomials (see

for example [g]).
e Some examples are: Pj(z) =1, P'(z) =n —2x
(n—2z)%>—n (n —2z)((n —22)* — 3n + 2)

Py (x) =
e For any polynomial f(x) of degree k there is the unique Krawtchouk expansion
k
fla) =) fiPi(x)
i=0
where the coefficients are

fi= 5 S IGIPL)



e Krawtchouk polynomials satisfy the following recurrent relations:

P (2) — (n —2z)P(x) ;fl— k+1)P} () | ®)

P(x) = P (z) + P (=) - (9)

e Let ¢ be nonnegative integer, 0 < ¢ < n. The following symmetry relations hold:

()= (;)rrw. (10

Pe(i) = (1) Py (i) - (11)

3 Bounds for “large” codes

The key observation for obtaining the bounds in Theorems [3], [4] is the following result.

Lemma 2. [1(] For an arbitrary (n, M) code C the following holds:

a(C)= 5 (n— By

From Lemma [2 follows that any upper bound on B; will provide a lower bound on 3(n, M).
We will obtain upper bounds on B; using linear programming technique.

Consider the following linear programming problem:
maximize B

subject to

> PMi)B;>-P(0), 1<k<n,

i=1

and B; > 0 for 1 <i<n.

Note that the constraints are obtained from (@) and (7).

The next theorem follows from the dual linear program. We will give an independent

proof.



Theorem 6. Let C be an (n, M) code such that for 2 < i <mn and 1 < j < n there holds

that B; #0 & i€l and A; #0 & j € J.
Suppose a polynomial A(z) of degree at most n can be found with the following properties.

If the Krawtchouk expansion of A(x) is

Ma) = > NP |

then A(z) should satisfy

Then
2N . (12)

The equality in [I2) holds iff \(1) =0 fori e I and \; =0 for j € J.
Proof. Let C be an (n, M) code which satisfies the above conditions. Thus, using (), (2,

(@) and (B]), we have

—By=A1)B1 2 M1)B1 + > _A(i)B; = Z A#)B; = Z A(i)% Z PMj)A;

el

1 n n . 1 n N .
=37 2= ADP) = 55 ZAJ 4 AP ()P (7)
j=0 i=1 j=0 i=1 k=0
1 n n n . N . . 1 n n .
M A; Ak PP () — PO () ) = i AJZ)‘kékJQ
j=0 k=0 i=0 J=0 k=0
1 n n 2n n n
—7 DA MP0) = 4 D> XA = A0) = ()\OAO +) AJAJ> —\(0)
§=0 k=0 =0 jeJ
n 2n
> S-04o = M0) = T-h0 — A(0)



Corollary 1. If A\(z) = Z AP () satisfies
=0

1. M1) = =1, M) <0 for2 <i<mn,
2. Xj >0 for1 <j<n,

then

Bn. M) > - (n SA0) + QM"AO) |

Example 1. Consider the following polynomial:
AMz)=-1.
It is obvious that the conditions of the Corollary [I] are satisfied. Thus we have a bound

n+1 271
2 M

Bln, M) =

which coincides with the one from Theorem
Example 2. [6, Theorem 4] Consider the following polynomial:

Aw) = —5 + 5Pi(e)

From (III) we see that

1 ifiis even

Fi(i) = (=1)'P3 (i) = { —1 ifiis odd
and, therefore,

, 0 if¢is even
A(Z)_{ ~1 ifiis odd .

Furthermore, A; =0 for 1 < j <n —1 and A, = 1/2. Thus, the conditions of the Corollary
[l are satisfied and we obtain

1 gn=1\ g on-2
M) > = (n— _ .
B(n, )—2(” M) 2 M

This bound was obtained in [6, Theorem 4] and is tight for M = 2"~ 212,
Other bounds in Theorems Bl (4] were obtained by considering additional constraints on
distance distribution coefficients given in the next theorem.



Theorem 7. [J|] Let C be an arbitrary binary (n, M) code. If M is odd, then

If M = 2(mod 4), then there exists an ¢ € {0,1,--- ,n} such that

2 n
> = i <i1<n.
BZ_MQ ((Z)—FPZ(E)) , 0<i<n

Next, we will improve the bound of Example 2l for M < 272,

Theorem 8. Forn > 2

271,72 1 2n72 . .
— M+E(M —1) if n is even

N3

B(n, M) >

|3

—27;\;24—%(2?\7—1) if nis odd .
Proof. We distinguish between two cases.

e If nis even, n > 2, consider the following polynomial:

M) = 5 (3= n+PLi(e) + Pia)

2(n —

Using (1)), it’s easy to see that

2—1

if 7 1s even
n—2

A1) =
S if s odd .

e If nis odd, n > 1, consider the following polynomial:

1 n n
Az) = =1 (2—n+ P (x)+ 2P (x)) .

Using (1)), it’s easy to see that

2=i  if 4 is even
n—1

A7) =
i=n o if 4 is odd .
n—1

In both cases, the claim of the theorem follows from Corollary [Il



4 Bounds for “small” codes

We will use the following lemma, whose proof easily follows from (&).

Lemma 3. Let A\(z) = Z NPl (x) be an arbitrary polynomial. A polynomial
i=0

a(x) = z": a; Pl () satisfies a(j) = 2" \; iff a; = A(1).
i=0

By substituting the polynomial A(z) from Theorem [@ into Lemma [B] we have the following.

Theorem 9. Let C be an (n, M) code such that for 1 < i <mn and 2 < j < n there holds
that A; #0 & i€l and B; #0 & j € J.

Suppose a polynomial a(x) of degree at most n can be found with the following properties.
If the Krawtchouk expansion of a(x) is

ala) = 3o, P)

then a(x) should satisfy

051:1 )
a; >0, for jeJ,
a(i) <0, for iel.

Then

Blgﬁ—ao. (13)

The equality in (I3]) holds iff a(i) =0 fori € I and o =0 for j € J.
Note that Theorem [ follows from the dual linear program of the following one:
maximize Z Pl(i)A; = MB; —n
i=1

subject to

i=1

> PHi)A; = —P(0), 1<k<n,

i=1

and A; >0 for 1 <i <n,
whose constraints are obtained from () and ().

9



Corollary 2. If a(z) = Zaij"(a:) satisfies
=0

I.ag=1,a; >0 for2<j<n,
2. a(i) <0 for1 <i<mn,

then
B(n, M) > % (n+a0— @) .

Example 3. Consider
alx)=2—n+ P'(z) =2(1—=x) .
It’s obvious that the conditions of the Corollary [2] are satisfied and we obtain

Theorem 10.
G(n, M) >1-— —1
n .
’ B M

Note that the bound of Theorem [I{lis tight for M =1, 2.

Example 4. Consider the following polynomial:
a(x) =3—-n+ P'(z) + P)(x) .
From (II]) we obtain
ali) = { 4—22'. 1fz %s even
2—2¢ ifiisodd .
Thus, conditions of the Corollary 2] are satisfied and we have
Theorem 11.
3 2
B(n, M) > 2T M
Note that the bound of Theorem [I1]is tight for M = 2, 4.

Example 5. Let n be even integer. Consider the following polynomial:

)

n(4 —n) "
()

alx) = TN + Pl (z) +

10



In this polynomial a; = 1 and a; > 0 for 2 < j < n. Thus, condition 1 in Corollary [ is
satisfied. From (I0) we obtain that for nonnegative integer i, 0 < i < n,

(3%

Pin)=—a~h (3+1)
and, therefore,

n(4 —n)

ali) = n+ 2

It follows from () that

n n 4 —
P"(— 1):—2, P”(— 1):—
1 2+ 2 2+

Ly 4 —2G) (5+1) - (15)

2
Pf(g+1):(n_2)8(n_8), Pg(g+1):(”_2)4(4_"). (16)
Now it’s easy to verify from (IH) and (I8) that a(1) = @(2) = a(3) = 0. We define
~rN n(4—n) n 4(3) n (T
) =y H RO+ [P (5+1)] -

It is clear that a(7) < a(i) for 0 < i < n. We will prove that a(i) < 0 for 4 < i < n. From
(II) and (I6) one can verify that

_ 2n(4 —n)

an)=0, an—1)=a(n—2) ——

, and a(n—3)=2(6—n) (17)
which implies that a(n — j) < 0 for 0 < j < 3 (of course, we are not interested in values
an—173),0<j5<3,ifn—7 € {1,2,3}). So, it is left to prove that for every integer i,
4 <i<n—4,a(i) <0. Note that for an integer i, 4 < i < n/2,

4(3)

n(4 —n)
(n+ 2)(nﬁi)

G + Pl'(n —1) +

a(n—1i) =

4(3)
(n+2)(7)

4(3)

EECIG] P;‘(g+1)):a(i).

Therefore, it is enough to check that a(i) < 0 only for 4 <i < n/2.
From (I€) we obtain that

:%H%—nw
<n(4—n)

S T2 + (n—2i) +

~ev ., 12(n—38)
n—3<0 and a(b) = —4 2= 3)

where, in view of (7)), we assume that n > 8. To prove that a(i) < 0 for 6 < i < n/2 we
will use the following lemma whose proof is given in the Appendix.

a(4) = —2 — <0,

11



Lemma 4. Ifn is an even positive integer and i is an arbitrary integer number, 2 < i < n/2,

then
pr (g+1)’ < (@) .

2
By Lemma [], the following holds for 2 <i < n/2.

. _n(4—n) " 4(3) n (M
a(z)—m—kﬂ(z)—i—m P (§+1)‘
n(4 —n) , 4(3)(&) _ 6n . 4(3)({;])
S Tnte JrTL_zZJr(n+2) ?)_n+2_22+(n+2) ")

12 . 4(3)(&)
:—n+2—2(l—3)+m.

Thus, to prove that a(i) <0 for 6 <i < n/2, it’s enough to prove that
4() (1)

2y ="

—2(i — 3) +

for 6 <i <n/2.
Lemma 5. Let n be an even integer. For 6 <i < n/2 we have

(1—3)(?) - n(n —1) .

(L?J) n+ 2

2

The proof of this lemma appears in the Appendix.
We have proved that the both conditions of the Corollary 2l are satisfied and, therefore,
for even integer n, we have

3n n

n+2 M~

Once we have a bound for an even (odd) n, it’s easy to deduce one for odd (even) n due
to the following fact which follows from ().

Bln, M) =

Lemma 6. Let a(z) = Z a;Pi'(x) be an arbitrary polynomial. Then for a polynomial
=0

M(SL’) = :ujpjnilcv) )

where

i =0o;+aj, 0<j<n—-1,
the following holds:

we)=az) for 0<xr<n-—1.

12



Example 6. Let n be odd integer, n > 1. Consider the following polynomial:

4("5)

6 + 3n — n?
(n—|—3)(’%§)

ulw) = n+3

P(x) + (Pia(e) + P (@) (18)

which is obtained from a(z) given in (I4]) by the construction of Lemmalfl Thus, by Corollary
2l for odd integer n, we have

3n+1) n+1
n+3 M

We summarize the bounds from the Examples [B, [ in the next theorem.

B(n, M) =

Theorem 12.
3n

n o
S = if n s even

Bln, M) =

Tnt3 % an 1s odd .
Example 7. Forn =1 (mod 4), n # 1, consider

(L n)(n-5) T

a(z) = Pp(a) +

One can verify that

a(0)=4n—-1), a(l)=a2)=a3)=a(4) =0, a(d)=a«a(6) = 4(711__5) :
and
(n—1)2 _ _ _ _ (n=5)(n—-1)
a(n) = — 1 an—1)=an—-2)=an—-3)=a(n—4)=-2 ] :
B B _2(n—9)(n—2)(n—1)
a(n—>5) =a(n—6) (ot )= 1) .

We define

~ . (I=n)(n-25) . dn(n — ) n+1 -

a(i) = i Pl'(x) + n+1() ( )‘+|Pn(z)| :
As in the previous example, it’s easy to see that (i) < a(7) for 0 < i < n and

an—i)<a() for 0<i<(n—1)/2.

Therefore, to prove that a(i) < 0 for 1 < i < n, we only have to show that a(i) < 0 for
7<i<(n—1)/2. It is follows from the next two lemmas.

Lemma 7. Ifn is odd positive integer and i is an arbitrary integer number, 2 < i < (n—1)/2,

then
v ()< ()

13




Lemma 8. Let n be odd integer. For 7 <i < (n—1)/2 we have

(i—4)(7) _ 2(n-2)

)

(L?J) n+1

2

Proofs of the Lemmas [7] [§ are very similar to those of Lemmas [, Bl respectively, and they
are omitted. Thus, we have proved that the conditions of the Corollary [2] are satisfied and
we have the following bound.

B(n, M) > 27(21?) _2(71]\; D , fn=1(mod4), n#1.

From Lemma [0 by choosing the following polynomials:

_ 2+45n—n? no 4(n?—1) n iy oo n(s
pla) = =2 +P1<>+—(n+2)@)(133<>+ Lo (@) + Pl(a)
if n =0 (mod 4),
~ . 9+4n—n* 4n(n + 2) . .
N(@—W P1($)+m< nT—1($)+PnT+3($))
S t2) ooy prgy

if n =3 (mod 4), n # 3, and

., 1643n—n? " dn+1)(n+3) [, n
a(z) = B Pl(z) + ) (2%43) ( nTﬂ(fU) + Pusa (@)
B (pi + Pro) ).

if n =2 (mod 4), n # 2, we obtain the bounds which are summarized in the next theorem.

Theorem 13. Forn >3

( Tn n . —
2&1; — 2 if n =0 (mod 4)

5 _ 202l it =1 (mod 4)

2(n+1) M
B(n, M) >
27&115 _ 2("_]\;2) if n =2 (mod 4)
| BT n= et )

It’s easy to see that the bounds of Theorems [12] and [13] give similar estimations when the
size of a code is about 2n.

14



Theorem 14.

lim ((n,2n) = E )

n—00 2

Proof. Let C be the following (n,2n) code:

000 --- 00
100 --- 00
010 --- 00
000 --- 01
110 --- 00
101 --- 00
100 --- 01

One can evaluate that

On the other hand, Theorem [12] gives

— ni—f—Z if n is even
B(n,2n) >

5 _ 13n+3 . .
5~ Sn(ni3) if nis odd .

The claim of the theorem follows by combining (20) and (2I]).

5 Recursive inequality on (G(n, M)

The following recursive inequality was obtained in [10]:

B(n, M +1) > LQﬁ(n,M) + _Mn__ (1 —/1- %ﬁ(n,M)) :

(M +1)2 (M +1)?

In the next theorem we give a new recursive inequality.

Theorem 15. For positive integers n and M, 2 < M < 2™ — 1,

2

B(n, M) .

Proof. Let C be an extremal (n, M + 1) code, i.e.,

B(n, M +1) = d(C) = mZZd(c, ).

ceC c'eC

15
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(21)

(22)

(23)



Then there exists ¢y € C such that

> d(co,c) = (M + 1)B(n, M +1) . (24)

Consider an (n, M) code C = C\ {co}. Using 24) we obtain

) £6) = 55t = 5 (e -2t

ceC c'eC ceC c'eC eeC

M?—1

< L (M1 128(n. M + 1) — 2(M + 1)8(n, M + 1)) = VE

e Bn,M +1) .
O

Lemma 9. For positive integers n and M, 2 < M < 2" — 1, the RHS of (23]) is not smaller
than RHS of 22).

Proof. One can verify that RHS of (23)) is not smaller than RHS of (22)) iff

M?—-1 n
B(n, M) < TR
By (23) we have
B(n, M) < Mz_lﬁ(n,M—l—l) < Mz_lﬁ(n,Q") — M? -1 n ’
M? M2 2
which completes the proof. O

6 Appendix

Proof of Lemma [4: The proof is by induction. One can easily see from (I6) that the
claim is true for 2 < i < 5, where i < n/2. Assume that we have proved the claim for ¢,
4<i<k<n/2—1. Thus

n
pr (— 1
‘k—i—l 2+

_ |G+ -k DR, (5+1)
)‘_ k+1




We distinguish between two cases. If k is odd, then

(%) = 2 n Jrn—chrl n\ 2 n 1+n—k+1
Ck+1\E E+1 \’35t)  k+1\E2 2

1 n—% n\n—~k+3 n—k+3/ n n
= TS R 2 T —k+1 bt = L

2

Therefore, for odd k, we obtain

P (5 1) < () = (i)

If k is even, then

AL 2 +n—k+1 k
C\EJ\k+1 2n—k+2 k+1)
<1/2 <1
—_—~—
(+) = n 2 +n—/€+1 k - n g—i-l - n
C\&) | k+1 2n—k+2 k+1 E)\5 2 k)
Therefore, for even k, we obtain
n n n
ol <) (i)
()l = () = G

Proof of Lemma [BE Denote

Since k > 4, we have

Thus,
ag(n+2) (n+2)(n—3)(n—4)(n—75)

nin—1) 40n(n — 1)

17



n>12
(n—2)(n—7) 48n—120 =5 48-12-120 5
= + > >
40 40n(n — 1) 4 40n(n—1) 4

n(n —1)

and we have proved that ag > . Let’s see that a; > ag for 6 < i < n/2. Let i be

n+ 2
even integer such that 6 <i <n/2 — 2. Then
: , L 6 , , i<n/2—2
o (iI—=1Dn—i—1)(n—1i) ~0E—=3)(n—=2i)(n—1) n—1i -~
=— : : : : = = = > 1.
a; (1 —=3)(1+1)(n— 29) (t=3)(t+1)(n—-2i) i+1
(n—1) n(n —1)

n
Togeth ith ag >
oge er wi Qg n + 2

6 <i<mn/2
Now let ¢ be even integer such that 6 <i <mn/2 — 1. Then

, this implies that a; > for every even integer i,

n +

. . i<n/2-1
a1 (1—=2)n—1i) n—1i -~
= — ; > > 1,
a; (1—3)(i+1)  i+1
which completes the proof. O
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