Lower bounds on the minimum average distance of binary codes

Beniamin Mounits*

June 27, 2007

Abstract

Let $\beta(n, M)$ denote the minimum average Hamming distance of a binary code of length n and cardinality M. In this paper we consider lower bounds on $\beta(n, M)$. All the known lower bounds on $\beta(n, M)$ are useful when M is at least of size about $2^{n-1} / n$. We derive new lower bounds which give good estimations when size of M is about n. These bounds are obtained using linear programming approach. In particular, it is proved that $\lim _{n \rightarrow \infty} \beta(n, 2 n)=5 / 2$. We also give new recursive inequality for $\beta(n, M)$.

Keywords: Binary codes, minimum average distance, linear programming

[^0]
1 Introduction

Let $\mathcal{F}_{2}=\{0,1\}$ and let \mathcal{F}_{2}^{n} denotes the set of all binary words of length n. For $x, y \in \mathcal{F}_{2}^{n}$, $d(x, y)$ denotes the Hamming distance between x and y and $w t(x)=d(x, \mathbf{0})$ is the weight of x, where $\mathbf{0}$ denotes all-zeros word. A binary code \mathcal{C} of length n is a nonempty subset of \mathcal{F}_{2}^{n}. An (n, M) code \mathcal{C} is a binary code of length n with cardinality M. In this paper we will consider only binary codes.

The average Hamming distance of an (n, M) code \mathcal{C} is defined by

$$
\bar{d}(\mathcal{C})=\frac{1}{M^{2}} \sum_{c \in \mathcal{C}} \sum_{c^{\prime} \in \mathcal{C}} d\left(c, c^{\prime}\right) .
$$

The minimum average Hamming distance of an (n, M) code is defined by

$$
\beta(n, M)=\min \{\bar{d}(\mathcal{C}): \mathcal{C} \text { is an }(n, M) \text { code }\}
$$

An (n, M) code \mathcal{C} for which $\bar{d}(\mathcal{C})=\beta(n, M)$ will be called extremal code.
The problem of determining $\beta(n, M)$ was proposed by Ahlswede and Katona in [2]. Upper bounds on $\beta(n, M)$ are obtained by constructions. For survey on the known upper bounds the reader is referred to [9]. In this paper we consider the lower bounds on $\beta(n, M)$. We only have to consider the case where $1 \leq M \leq 2^{n-1}$ because of the following result which was proved in [6].

Lemma 1. For $1 \leq M \leq 2^{n}$

$$
\beta\left(n, 2^{n}-M\right)=\frac{n}{2}-\frac{M^{2}}{\left(2^{n}-M\right)^{2}}\left(\frac{n}{2}-\beta(n, M)\right) .
$$

First exact values of $\beta(n, M)$ were found by Jaeger et al. [7.
Theorem 1. $77 \beta(n, 4)=1, \beta(n, 8)=3 / 2$, whereas for $M \leq n+1, M \neq 4,8$, we have $\beta(n, M)=2\left(\frac{M-1}{M}\right)^{2}$.

Next, Althöfer and Sillke [3] gave the following bound.
Theorem 2. [3]

$$
\beta(n, M) \geq \frac{n+1}{2}-\frac{2^{n-1}}{M},
$$

where equality holds only for $M=2^{n}$ and $M=2^{n-1}$.
Xia and Fu [10] improved Theorem 2 for odd M.
Theorem 3. [10] If M is odd, then

$$
\beta(n, M) \geq \frac{n+1}{2}-\frac{2^{n-1}}{M}+\frac{2^{n}-n-1}{2 M^{2}} .
$$

Further, Fu et al. [6] found the following bounds.
Theorem 4. [6]

$$
\begin{gathered}
\beta(n, M) \geq \frac{n+1}{2}-\frac{2^{n-1}}{M}+\frac{2^{n}-2 n}{M^{2}}, \text { if } M \equiv 2(\bmod 4), \\
\beta(n, M) \geq \frac{n}{2}-\frac{2^{n-2}}{M}, \text { for } M \leq 2^{n-1}, \\
\beta(n, M) \geq \frac{n}{2}-\frac{2^{n-2}}{M}+\frac{2^{n-1}-n}{2 M^{2}}, \text { if } M \text { is odd and } M \leq 2^{n-1}-1 .
\end{gathered}
$$

Using Lemma 1 and Theorems 3, 4 the following values of $\beta(n, M)$ were determined: $\beta\left(n, 2^{n-1} \pm 1\right), \beta\left(n, 2^{n-1} \pm 2\right), \beta\left(n, 2^{n-2}\right), \beta\left(n, 2^{n-2} \pm 1\right), \beta\left(n, 2^{n-1}+2^{n-2}\right), \beta\left(n, 2^{n-1}+2^{n-2} \pm\right.$ 1). The bounds in Theorems 3, 4 were obtained by considering constraints on distance distribution of codes which were developed by Delsarte in [5]. We will recall these constraints in the next section.

Notice that the previous bounds are only useful when M is at least of size about $2^{n-1} / n$. Ahlswede and Althöfer determined $\beta(n, M)$ asymptotically.

Theorem 5. [1] Let $\left\{M_{n}\right\}_{n=1}^{\infty}$ be a sequence of natural numbers with $0 \leq M_{n} \leq 2^{n}$ for all n and $\lim _{n \rightarrow \infty} \inf \left(M_{n} /\binom{n}{\lfloor\alpha n\rfloor}\right)>0$ for some constant $\alpha, 0<\alpha<1 / 2$. Then

$$
\lim _{n \rightarrow \infty} \inf \frac{\beta\left(n, M_{n}\right)}{n} \geq 2 \alpha(1-\alpha)
$$

The bound of Theorem 5 is asymptotically achieved by taking constant weight code $\mathcal{C}=\left\{x \in \mathcal{F}_{2}^{n}: w t(x)=\lfloor\alpha n\rfloor\right\}$.

The rest of the paper is organized as follows. In Section 2 we give necessary background in linear programming approach for deriving bounds for codes. This includes Delsarte's inequalities on distance distribution of a code and some properties of binary Krawtchouk polynomials. In Section 3 we obtain lower bounds on $\beta(n, M)$ which are useful in case when M is relatively large. In particular, we show that the bound of Theorem 2 is derived via linear programming technique. We also improve some bounds from Theorem 4 for $M<2^{n-2}$. In Section 4, we obtain new lower bounds on $\beta(n, M)$ which are useful when M is at least of size about $n / 3$. We also prove that these bounds are asymptotically tight for the case $M=2 n$. Finally, in Section [5, we give new recursive inequality for $\beta(n, M)$.

2 Preliminaries

The distance distribution of an (n, M) code \mathcal{C} is the $(n+1)$-tuple of rational numbers $\left\{A_{0}, A_{1}, \cdots, A_{n}\right\}$, where

$$
A_{i}=\frac{\left|\left\{\left(c, c^{\prime}\right) \in \mathcal{C} \times \mathcal{C}: d\left(c, c^{\prime}\right)=i\right\}\right|}{M}
$$

is the average number of codewords which are at distance i from any given codeword $c \in \mathcal{C}$. It is clear that

$$
\begin{equation*}
A_{0}=1, \quad \sum_{i=0}^{n} A_{i}=M \quad \text { and } A_{i} \geq 0 \text { for } 0 \leq i \leq n \tag{1}
\end{equation*}
$$

If \mathcal{C} is an (n, M) code with distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$, the dual distance distribution $\left\{B_{i}\right\}_{i=0}^{n}$ is defined by

$$
\begin{equation*}
B_{k}=\frac{1}{M} \sum_{i=0}^{n} P_{k}^{n}(i) A_{i} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{k}^{n}(i)=\sum_{j=0}^{k}(-1)^{j}\binom{i}{j}\binom{n-i}{k-j} \tag{3}
\end{equation*}
$$

is the binary Krawtchouk polynomial of degree k. It was proved by Delsarte [5] that

$$
\begin{equation*}
B_{k} \geq 0 \text { for } 0 \leq k \leq n \tag{4}
\end{equation*}
$$

Since the Krawtchouk polynomials satisfy the following orthogonal relation

$$
\begin{equation*}
\sum_{k=0}^{n} P_{k}^{n}(i) P_{j}^{n}(k)=\delta_{i j} 2^{n} \tag{5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{k=0}^{n} P_{j}^{n}(k) B_{k}=\sum_{k=0}^{n} P_{j}^{n}(k) \frac{1}{M} \sum_{i=0}^{n} P_{k}^{n}(i) A_{i}=\frac{1}{M} \sum_{i=0}^{n} A_{i} \sum_{k=0}^{n} P_{j}^{n}(k) P_{k}^{n}(i)=\frac{2^{n}}{M} A_{j} \tag{6}
\end{equation*}
$$

It's easy to see from (11), (21), (3), and (6) that

$$
\begin{equation*}
B_{0}=1 \text { and } \sum_{k=0}^{n} B_{k}=\frac{2^{n}}{M} \tag{7}
\end{equation*}
$$

Before we proceed, we list some of the properties of binary Krawtchouk polynomials (see for example [8]).

- Some examples are: $P_{0}^{n}(x) \equiv 1, P_{1}^{n}(x)=n-2 x$,

$$
P_{2}^{n}(x)=\frac{(n-2 x)^{2}-n}{2}, P_{3}^{n}(x)=\frac{(n-2 x)\left((n-2 x)^{2}-3 n+2\right)}{6}
$$

- For any polynomial $f(x)$ of degree k there is the unique Krawtchouk expansion

$$
f(x)=\sum_{i=0}^{k} f_{i} P_{i}^{n}(x)
$$

where the coefficients are

$$
f_{i}=\frac{1}{2^{n}} \sum_{j=0}^{n} f(j) P_{j}^{n}(i)
$$

- Krawtchouk polynomials satisfy the following recurrent relations:

$$
\begin{gather*}
P_{k+1}^{n}(x)=\frac{(n-2 x) P_{k}^{n}(x)-(n-k+1) P_{k-1}^{n}(x)}{k+1}, \tag{8}\\
P_{k}^{n}(x)=P_{k}^{n-1}(x)+P_{k-1}^{n-1}(x) . \tag{9}
\end{gather*}
$$

- Let i be nonnegative integer, $0 \leq i \leq n$. The following symmetry relations hold:

$$
\begin{gather*}
\binom{n}{i} P_{k}^{n}(i)=\binom{n}{k} P_{i}^{n}(k), \tag{10}\\
P_{k}^{n}(i)=(-1)^{i} P_{n-k}^{n}(i) . \tag{11}
\end{gather*}
$$

3 Bounds for "large" codes

The key observation for obtaining the bounds in Theorems 3, 4is the following result.
Lemma 2. [10] For an arbitrary (n, M) code \mathcal{C} the following holds:

$$
\bar{d}(\mathcal{C})=\frac{1}{2}\left(n-B_{1}\right) .
$$

From Lemma 2 follows that any upper bound on B_{1} will provide a lower bound on $\beta(n, M)$. We will obtain upper bounds on B_{1} using linear programming technique.

Consider the following linear programming problem:
maximize B_{1}
subject to

$$
\begin{gathered}
\sum_{i=1}^{n} B_{i}=\frac{2^{n}}{M}-1 \\
\sum_{i=1}^{n} P_{k}^{n}(i) B_{i} \geq-P_{k}(0), \quad 1 \leq k \leq n
\end{gathered}
$$

and $B_{i} \geq 0$ for $1 \leq i \leq n$.
Note that the constraints are obtained from (6) and (7).
The next theorem follows from the dual linear program. We will give an independent proof.

Theorem 6. Let \mathcal{C} be an (n, M) code such that for $2 \leq i \leq n$ and $1 \leq j \leq n$ there holds that $B_{i} \neq 0 \Leftrightarrow i \in I$ and $A_{j} \neq 0 \Leftrightarrow j \in J$.

Suppose a polynomial $\lambda(x)$ of degree at most n can be found with the following properties. If the Krawtchouk expansion of $\lambda(x)$ is

$$
\lambda(x)=\sum_{j=0}^{n} \lambda_{j} P_{j}^{n}(x),
$$

then $\lambda(x)$ should satisfy

$$
\begin{gathered}
\lambda(1)=-1 \\
\lambda(i) \leq 0 \text { for } i \in I \\
\lambda_{j} \geq 0 \text { for } j \in J .
\end{gathered}
$$

Then

$$
\begin{equation*}
B_{1} \leq \lambda(0)-\frac{2^{n}}{M} \lambda_{0} \tag{12}
\end{equation*}
$$

The equality in (12) holds iff $\lambda(i)=0$ for $i \in I$ and $\lambda_{j}=0$ for $j \in J$.
Proof. Let \mathcal{C} be an (n, M) code which satisfies the above conditions. Thus, using (11), (2), (4) and (5), we have

$$
\begin{gathered}
-B_{1}=\lambda(1) B_{1} \geq \lambda(1) B_{1}+\sum_{i \in I} \lambda(i) B_{i}=\sum_{i=1}^{n} \lambda(i) B_{i}=\sum_{i=1}^{n} \lambda(i) \frac{1}{M} \sum_{j=0}^{n} P_{i}^{n}(j) A_{j} \\
=\frac{1}{M} \sum_{j=0}^{n} A_{j} \sum_{i=1}^{n} \lambda(i) P_{i}^{n}(j)=\frac{1}{M} \sum_{j=0}^{n} A_{j} \sum_{i=1}^{n} \sum_{k=0}^{n} \lambda_{k} P_{k}^{n}(i) P_{i}^{n}(j) \\
=\frac{1}{M} \sum_{j=0}^{n} A_{j} \sum_{k=0}^{n} \lambda_{k}\left(\sum_{i=0}^{n} P_{k}^{n}(i) P_{i}^{n}(j)-P_{k}^{n}(0) P_{0}^{n}(j)\right)=\frac{1}{M} \sum_{j=0}^{n} A_{j} \sum_{k=0}^{n} \lambda_{k} \delta_{k j} 2^{n} \\
-\frac{1}{M} \sum_{j=0}^{n} A_{j} \sum_{k=0}^{n} \lambda_{k} P_{k}^{n}(0)=\frac{2^{n}}{M} \sum_{j=0}^{n} \lambda_{j} A_{j}-\lambda(0)=\frac{2^{n}}{M}\left(\lambda_{0} A_{0}+\sum_{j \in J}^{n} \lambda_{j} A_{j}\right)-\lambda(0) \\
\geq \frac{2^{n}}{M} \lambda_{0} A_{0}-\lambda(0)=\frac{2^{n}}{M} \lambda_{0}-\lambda(0) .
\end{gathered}
$$

Corollary 1. If $\lambda(x)=\sum_{j=0}^{n} \lambda_{j} P_{j}^{n}(x)$ satisfies

1. $\lambda(1)=-1, \lambda(i) \leq 0$ for $2 \leq i \leq n$,
2. $\lambda_{j} \geq 0$ for $1 \leq j \leq n$,
then

$$
\beta(n, M) \geq \frac{1}{2}\left(n-\lambda(0)+\frac{2^{n}}{M} \lambda_{0}\right) .
$$

Example 1. Consider the following polynomial:

$$
\lambda(x) \equiv-1 .
$$

It is obvious that the conditions of the Corollary 1 are satisfied. Thus we have a bound

$$
\beta(n, M) \geq \frac{n+1}{2}-\frac{2^{n-1}}{M}
$$

which coincides with the one from Theorem 2,
Example 2. [6, Theorem 4] Consider the following polynomial:

$$
\lambda(x)=-\frac{1}{2}+\frac{1}{2} P_{n}^{n}(x) .
$$

From (11) we see that

$$
P_{n}^{n}(i)=(-1)^{i} P_{0}^{n}(i)=\left\{\begin{array}{cl}
1 & \text { if } i \text { is even } \\
-1 & \text { if } i \text { is odd }
\end{array}\right.
$$

and, therefore,

$$
\lambda(i)=\left\{\begin{array}{cl}
0 & \text { if } i \text { is even } \\
-1 & \text { if } i \text { is odd }
\end{array}\right.
$$

Furthermore, $\lambda_{j}=0$ for $1 \leq j \leq n-1$ and $\lambda_{n}=1 / 2$. Thus, the conditions of the Corollary 1 are satisfied and we obtain

$$
\beta(n, M) \geq \frac{1}{2}\left(n-\frac{2^{n-1}}{M}\right)=\frac{n}{2}-\frac{2^{n-2}}{M} .
$$

This bound was obtained in [6, Theorem 4] and is tight for $M=2^{n-1}, 2^{n-2}$.
Other bounds in Theorems 3, 4 were obtained by considering additional constraints on distance distribution coefficients given in the next theorem.

Theorem 7. [4] Let \mathcal{C} be an arbitrary binary (n, M) code. If M is odd, then

$$
B_{i} \geq \frac{1}{M^{2}}\binom{n}{i}, \quad 0 \leq i \leq n
$$

If $M \equiv 2(\bmod 4)$, then there exists an $\ell \in\{0,1, \cdots, n\}$ such that

$$
B_{i} \geq \frac{2}{M^{2}}\left(\binom{n}{i}+P_{i}^{n}(\ell)\right), \quad 0 \leq i \leq n
$$

Next, we will improve the bound of Example 2 for $M<2^{n-2}$.
Theorem 8. For $n>2$

$$
\beta(n, M) \geq \begin{cases}\frac{n}{2}-\frac{2^{n-2}}{M}+\frac{1}{n-2}\left(\frac{2^{n-2}}{M}-1\right) & \text { if } n \text { is even } \\ \frac{n}{2}-\frac{2^{n-2}}{M}+\frac{1}{n-1}\left(\frac{2^{n-2}}{M}-1\right) & \text { if } n \text { is odd }\end{cases}
$$

Proof. We distinguish between two cases.

- If n is even, $n>2$, consider the following polynomial:

$$
\lambda(x)=\frac{1}{2(n-2)}\left(3-n+P_{n-1}^{n}(x)+P_{n}^{n}(x)\right) .
$$

Using (11), it's easy to see that

$$
\lambda(i)=\left\{\begin{array}{cc}
\frac{2-i}{n-2} & \text { if } i \text { is even } \\
\frac{i+1-n}{n-2} & \text { if } i \text { is odd }
\end{array}\right.
$$

- If n is odd, $n>1$, consider the following polynomial:

$$
\lambda(x)=\frac{1}{2(n-1)}\left(2-n+P_{n-1}^{n}(x)+2 P_{n}^{n}(x)\right)
$$

Using (11), it's easy to see that

$$
\lambda(i)= \begin{cases}\frac{2-i}{n-1} & \text { if } i \text { is even } \\ \frac{i-n}{n-1} & \text { if } i \text { is odd }\end{cases}
$$

In both cases, the claim of the theorem follows from Corollary 1 .

4 Bounds for "small" codes

We will use the following lemma, whose proof easily follows from (5) .
Lemma 3. Let $\lambda(x)=\sum_{i=0}^{n} \lambda_{i} P_{i}^{n}(x)$ be an arbitrary polynomial. A polynomial $\alpha(x)=\sum_{i=0}^{n} \alpha_{i} P_{i}^{n}(x)$ satisfies $\alpha(j)=2^{n} \lambda_{j}$ iff $\alpha_{i}=\lambda(i)$.

By substituting the polynomial $\lambda(x)$ from Theorem 6 into Lemma 3, we have the following.
Theorem 9. Let \mathcal{C} be an (n, M) code such that for $1 \leq i \leq n$ and $2 \leq j \leq n$ there holds that $A_{i} \neq 0 \Leftrightarrow i \in I$ and $B_{j} \neq 0 \Leftrightarrow j \in J$.

Suppose a polynomial $\alpha(x)$ of degree at most n can be found with the following properties. If the Krawtchouk expansion of $\alpha(x)$ is

$$
\alpha(x)=\sum_{j=0}^{n} \alpha_{j} P_{j}^{n}(x),
$$

then $\alpha(x)$ should satisfy

$$
\begin{gathered}
\alpha_{1}=1 \\
\alpha_{j} \geq 0 \quad \text {, for } j \in J \\
\alpha(i) \leq 0, \text { for } i \in I
\end{gathered}
$$

Then

$$
\begin{equation*}
B_{1} \leq \frac{\alpha(0)}{M}-\alpha_{0} \tag{13}
\end{equation*}
$$

The equality in (13) holds iff $\alpha(i)=0$ for $i \in I$ and $\alpha_{j}=0$ for $j \in J$.
Note that Theorem 9 follows from the dual linear program of the following one:
$\operatorname{maximize} \sum_{i=1}^{n} P_{1}^{n}(i) A_{i}=M B_{1}-n$
subject to

$$
\begin{gathered}
\sum_{i=1}^{n} A_{i}=M-1 \\
\sum_{i=1}^{n} P_{k}^{n}(i) A_{i} \geq-P_{k}(0), \quad 1 \leq k \leq n
\end{gathered}
$$

and $A_{i} \geq 0$ for $1 \leq i \leq n$,
whose constraints are obtained from (1) and (4).

Corollary 2. If $\alpha(x)=\sum_{j=0}^{n} \alpha_{j} P_{j}^{n}(x)$ satisfies

1. $\alpha_{1}=1, \alpha_{j} \geq 0$ for $2 \leq j \leq n$,
2. $\alpha(i) \leq 0$ for $1 \leq i \leq n$,
then

$$
\beta(n, M) \geq \frac{1}{2}\left(n+\alpha_{0}-\frac{\alpha(0)}{M}\right)
$$

Example 3. Consider

$$
\alpha(x)=2-n+P_{1}^{n}(x)=2(1-x) .
$$

It's obvious that the conditions of the Corollary 2 are satisfied and we obtain

Theorem 10.

$$
\beta(n, M) \geq 1-\frac{1}{M} .
$$

Note that the bound of Theorem 10 is tight for $M=1,2$.
Example 4. Consider the following polynomial:

$$
\alpha(x)=3-n+P_{1}^{n}(x)+P_{n}^{n}(x) .
$$

From (11) we obtain

$$
\alpha(i)= \begin{cases}4-2 i & \text { if } i \text { is even } \\ 2-2 i & \text { if } i \text { is odd }\end{cases}
$$

Thus, conditions of the Corollary 2 are satisfied and we have

Theorem 11.

$$
\beta(n, M) \geq \frac{3}{2}-\frac{2}{M}
$$

Note that the bound of Theorem 11 is tight for $M=2,4$.
Example 5. Let n be even integer. Consider the following polynomial:

$$
\alpha(x)=\frac{n(4-n)}{n+2}+P_{1}^{n}(x)+\frac{4\binom{n}{2}}{(n+2)\left(\begin{array}{c}
\frac{n}{2}+1 \tag{14}
\end{array}\right)^{n} P_{\frac{n}{2}+1}^{n}(x) ~ . ~}
$$

In this polynomial $\alpha_{1}=1$ and $\alpha_{j} \geq 0$ for $2 \leq j \leq n$. Thus, condition 1 in Corollary 2 is satisfied. From (10) we obtain that for nonnegative integer $i, 0 \leq i \leq n$,

$$
P_{\frac{n}{2}+1}^{n}(i)=\frac{\binom{n}{\frac{n}{2}+1}}{\binom{n}{i}} P_{i}^{n}\left(\frac{n}{2}+1\right)
$$

and, therefore,

$$
\begin{equation*}
\alpha(i)=\frac{n(4-n)}{n+2}+P_{1}^{n}(i)+\frac{4\binom{n}{2}}{(n+2)\binom{n}{i}} P_{i}^{n}\left(\frac{n}{2}+1\right) . \tag{15}
\end{equation*}
$$

It follows from (8) that

$$
\begin{gather*}
P_{1}^{n}\left(\frac{n}{2}+1\right)=-2, \quad P_{2}^{n}\left(\frac{n}{2}+1\right)=\frac{4-n}{2}, \quad P_{3}^{n}\left(\frac{n}{2}+1\right)=n-2 \\
P_{4}^{n}\left(\frac{n}{2}+1\right)=\frac{(n-2)(n-8)}{8}, \quad P_{5}^{n}\left(\frac{n}{2}+1\right)=\frac{(n-2)(4-n)}{4} . \tag{16}
\end{gather*}
$$

Now it's easy to verify from (15) and (16) that $\alpha(1)=\alpha(2)=\alpha(3)=0$. We define

$$
\widetilde{\alpha}(i):=\frac{n(4-n)}{n+2}+P_{1}^{n}(i)+\frac{4\binom{n}{2}}{(n+2)\binom{n}{i}}\left|P_{i}^{n}\left(\frac{n}{2}+1\right)\right| .
$$

It is clear that $\alpha(i) \leq \widetilde{\alpha}(i)$ for $0 \leq i \leq n$. We will prove that $\widetilde{\alpha}(i) \leq 0$ for $4 \leq i \leq n$. From (11) and (16) one can verify that

$$
\begin{equation*}
\widetilde{\alpha}(n)=0, \quad \widetilde{\alpha}(n-1)=\widetilde{\alpha}(n-2)=\frac{2 n(4-n)}{n+2}, \quad \text { and } \widetilde{\alpha}(n-3)=2(6-n) \tag{17}
\end{equation*}
$$

which implies that $\widetilde{\alpha}(n-j) \leq 0$ for $0 \leq j \leq 3$ (of course, we are not interested in values $\widetilde{\alpha}(n-j), 0 \leq j \leq 3$, if $n-j \in\{1,2,3\})$. So, it is left to prove that for every integer i, $4 \leq i \leq n-4, \widetilde{\alpha}(i) \leq 0$. Note that for an integer $i, 4 \leq i \leq n / 2$,

$$
\begin{gathered}
\widetilde{\alpha}(n-i)=\frac{n(4-n)}{n+2}+P_{1}^{n}(n-i)+\frac{4\binom{n}{2}}{(n+2)\binom{n}{n-i}}\left|P_{n-i}^{n}\left(\frac{n}{2}+1\right)\right| \\
\quad=\frac{n(4-n)}{n+2}+(2 i-n)+\frac{4\binom{n}{2}}{(n+2)\binom{n}{i}}\left|(-1)^{\frac{n}{2}+1} P_{i}^{n}\left(\frac{n}{2}+1\right)\right| \\
\quad \leq \frac{n(4-n)}{n+2}+(n-2 i)+\frac{4\binom{n}{2}}{(n+2)\binom{n}{i}}\left|P_{i}^{n}\left(\frac{n}{2}+1\right)\right|=\widetilde{\alpha}(i) .
\end{gathered}
$$

Therefore, it is enough to check that $\widetilde{\alpha}(i) \leq 0$ only for $4 \leq i \leq n / 2$.
From (16) we obtain that

$$
\widetilde{\alpha}(4)=-2-\frac{6}{n-3}<0 \text { and } \widetilde{\alpha}(5)=-4-\frac{12(n-8)}{(n+2)(n-3)}<0
$$

where, in view of (17), we assume that $n \geq 8$. To prove that $\widetilde{\alpha}(i) \leq 0$ for $6 \leq i \leq n / 2$ we will use the following lemma whose proof is given in the Appendix.

Lemma 4. If n is an even positive integer and i is an arbitrary integer number, $2 \leq i \leq n / 2$, then

$$
\left|P_{i}^{n}\left(\frac{n}{2}+1\right)\right|<\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor} .
$$

By Lemma 4, the following holds for $2 \leq i \leq n / 2$.

$$
\begin{gathered}
\widetilde{\alpha}(i)=\frac{n(4-n)}{n+2}+P_{1}^{n}(i)+\frac{4\binom{n}{2}}{(n+2)\binom{n}{i}}\left|P_{i}^{n}\left(\frac{n}{2}+1\right)\right| \\
<\frac{n(4-n)}{n+2}+n-2 i+\frac{4\binom{n}{2}\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor}}{(n+2)\binom{n}{i}}=\frac{6 n}{n+2}-2 i+\frac{4\binom{n}{2}\binom{n}{\left\lfloor\frac{2}{2}\right\rfloor}}{(n+2)\binom{n}{i}} \\
=-\frac{12}{n+2}-2(i-3)+\frac{4\binom{n}{2}\binom{n}{\left(\frac{i}{2}\right\rfloor}}{(n+2)\binom{n}{i}} .
\end{gathered}
$$

Thus, to prove that $\widetilde{\alpha}(i) \leq 0$ for $6 \leq i \leq n / 2$, it's enough to prove that

$$
-2(i-3)+\frac{4\binom{n}{2}\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor}}{(n+2)\binom{n}{i}}<0
$$

for $6 \leq i \leq n / 2$.
Lemma 5. Let n be an even integer. For $6 \leq i \leq n / 2$ we have

$$
\frac{(i-3)\binom{n}{i}}{\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor}}>\frac{n(n-1)}{n+2} .
$$

The proof of this lemma appears in the Appendix.
We have proved that the both conditions of the Corollary 2 are satisfied and, therefore, for even integer n, we have

$$
\beta(n, M) \geq \frac{3 n}{n+2}-\frac{n}{M} .
$$

Once we have a bound for an even (odd) n, it's easy to deduce one for odd (even) n due to the following fact which follows from (9).
Lemma 6. Let $\alpha(x)=\sum_{j=0}^{n} \alpha_{j} P_{j}^{n}(x)$ be an arbitrary polynomial. Then for a polynomial

$$
\mu(x)=\sum_{j=0}^{n-1} \mu_{j} P_{j}^{n-1}(x)
$$

where

$$
\mu_{j}=\alpha_{j}+\alpha_{j+1}, \quad 0 \leq j \leq n-1
$$

the following holds:

$$
\mu(x)=\alpha(x) \text { for } 0 \leq x \leq n-1
$$

Example 6. Let n be odd integer, $n>1$. Consider the following polynomial:

$$
\begin{equation*}
\mu(x)=\frac{6+3 n-n^{2}}{n+3}+P_{1}^{n}(x)+\frac{4\binom{n+1}{2}}{(n+3)\binom{n+1}{\frac{n+3}{2}}}\left(P_{\frac{n+1}{2}}^{n}(x)+P_{\frac{n+3}{2}}^{n}(x)\right) \tag{18}
\end{equation*}
$$

which is obtained from $\alpha(x)$ given in (14) by the construction of Lemma6. Thus, by Corollary 2. for odd integer n, we have

$$
\beta(n, M) \geq \frac{3(n+1)}{n+3}-\frac{n+1}{M} .
$$

We summarize the bounds from the Examples 5, 6 in the next theorem.

Theorem 12.

$$
\beta(n, M) \geq \begin{cases}\frac{3 n}{n+2}-\frac{n}{M} & \text { if } n \text { is even } \\ \frac{3(n+1)}{n+3}-\frac{n+1}{M} & \text { if } n \text { is odd } .\end{cases}
$$

Example 7. For $n \equiv 1(\bmod 4), n \neq 1$, consider

$$
\begin{equation*}
\alpha(x)=\frac{(1-n)(n-5)}{n+1}+P_{1}^{n}(x)+\frac{4 n(n-2)}{(n+1)\binom{n+1}{\frac{n}{2}}} P_{\frac{n+1}{2}}^{n}(x)+P_{n}^{n}(x) . \tag{19}
\end{equation*}
$$

One can verify that

$$
\alpha(0)=4(n-1), \quad \alpha(1)=\alpha(2)=\alpha(3)=\alpha(4)=0, \quad \alpha(5)=\alpha(6)=\frac{4(1-n)}{n-4},
$$

and

$$
\begin{gathered}
\alpha(n)=-6 \frac{(n-1)^{2}}{n+1}, \quad \alpha(n-1)=\alpha(n-2)=\alpha(n-3)=\alpha(n-4)=-2 \frac{(n-5)(n-1)}{n+1}, \\
\alpha(n-5)=\alpha(n-6)=-\frac{2(n-9)(n-2)(n-1)}{(n+1)(n-4)} .
\end{gathered}
$$

We define

$$
\widetilde{\alpha}(i):=\frac{(1-n)(n-5)}{n+1}+P_{1}^{n}(x)+\frac{4 n(n-2)}{(n+1)\binom{n}{i}}\left|P_{i}^{n}\left(\frac{n+1}{2}\right)\right|+\left|P_{n}^{n}(i)\right| .
$$

As in the previous example, it's easy to see that $\alpha(i) \leq \widetilde{\alpha}(i)$ for $0 \leq i \leq n$ and

$$
\widetilde{\alpha}(n-i) \leq \widetilde{\alpha}(i) \text { for } 0 \leq i \leq(n-1) / 2 .
$$

Therefore, to prove that $\alpha(i) \leq 0$ for $1 \leq i \leq n$, we only have to show that $\widetilde{\alpha}(i) \leq 0$ for $7 \leq i \leq(n-1) / 2$. It is follows from the next two lemmas.

Lemma 7. If n is odd positive integer and i is an arbitrary integer number, $2 \leq i \leq(n-1) / 2$, then

$$
\left|P_{i}^{n}\left(\frac{n+1}{2}\right)\right|<\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor} .
$$

Lemma 8. Let n be odd integer. For $7 \leq i \leq(n-1) / 2$ we have

$$
\frac{(i-4)\binom{n}{i}}{\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor}}>\frac{2 n(n-2)}{n+1} .
$$

Proofs of the Lemmas 7, 8 are very similar to those of Lemmas 4, 5, respectively, and they are omitted. Thus, we have proved that the conditions of the Corollary 2 are satisfied and we have the following bound.

$$
\beta(n, M) \geq \frac{7 n-5}{2(n+1)}-\frac{2(n-1)}{M}, \quad \text { if } n \equiv 1(\bmod 4), \quad n \neq 1
$$

From Lemma 6, by choosing the following polynomials:

$$
\mu(x)=\frac{2+5 n-n^{2}}{n+2}+P_{1}^{n}(x)+\frac{4\left(n^{2}-1\right)}{(n+2)\binom{n+1}{\frac{n+2}{2}}}\left(P_{\frac{n}{2}}^{n}(x)+P_{\frac{n+2}{2}}^{n}(x)\right)+P_{n}^{n}(x),
$$

if $n \equiv 0(\bmod 4)$,

$$
\begin{aligned}
\widetilde{\mu}(x)=\frac{9+4 n-n^{2}}{n+3} & +P_{1}^{n}(x)+\frac{4 n(n+2)}{(n+3)\left(\begin{array}{c}
\frac{n+3}{2}
\end{array}\right)}\left(P_{\frac{n-1}{2}}^{n}(x)+P_{\frac{n+3}{2}}^{n}(x)\right) \\
& +\frac{8 n(n+2)}{(n+3)\binom{n+2}{\frac{n+3}{2}}} P_{\frac{n+1}{2}}^{n}(x)+P_{n}^{n}(x),
\end{aligned}
$$

if $n \equiv 3(\bmod 4), n \neq 3$, and

$$
\begin{gathered}
\widehat{\mu}(x)=\frac{16+3 n-n^{2}}{n+4}+P_{1}^{n}(x)+\frac{4(n+1)(n+3)}{(n+4)\binom{n+3}{\frac{n+4}{2}}}\left(P_{\frac{n-2}{2}}^{n}(x)+P_{\frac{n+4}{2}}^{n}(x)\right) \\
+\frac{12(n+1)(n+3)}{(n+4)\binom{n+3}{\frac{n+4}{2}}}\left(P_{\frac{n}{2}}^{n}(x)+P_{\frac{n+2}{2}}^{n}(x)\right)+P_{n}^{n}(x),
\end{gathered}
$$

if $n \equiv 2(\bmod 4), n \neq 2$, we obtain the bounds which are summarized in the next theorem.
Theorem 13. For $n>3$

$$
\beta(n, M) \geq \begin{cases}\frac{7 n+2}{2(n+2)}-\frac{2 n}{M} & \text { if } n \equiv 0(\bmod 4) \\ \frac{7 n-5}{2(n+1)}-\frac{2(n-1)}{M} & \text { if } n \equiv 1(\bmod 4) \\ \frac{7 n+16}{2(n+4)}-\frac{2(n+2)}{M} & \text { if } n \equiv 2(\bmod 4) \\ \frac{7 n+9}{2(n+3)}-\frac{2(n+1)}{M} & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

It's easy to see that the bounds of Theorems 12 and 13 give similar estimations when the size of a code is about $2 n$.

Theorem 14.

$$
\lim _{n \rightarrow \infty} \beta(n, 2 n)=\frac{5}{2}
$$

Proof. Let \mathcal{C} be the following $(n, 2 n)$ code:

$$
\begin{array}{ccc}
000 & \cdots & 00 \\
\hline 100 & \cdots & 00 \\
010 & \cdots & 00 \\
\vdots & \ddots & \vdots \\
000 & \cdots & 01 \\
\hline 110 & \cdots & 00 \\
101 & \cdots & 00 \\
\vdots & \ddots & \vdots \\
100 & \cdots & 01
\end{array}
$$

One can evaluate that

$$
\begin{equation*}
\beta(n, 2 n) \leq \bar{d}(\mathcal{C})=\frac{5}{2}-\frac{4 n-2}{n^{2}} \tag{20}
\end{equation*}
$$

On the other hand, Theorem 12 gives

$$
\beta(n, 2 n) \geq \begin{cases}\frac{5}{2}-\frac{6}{n+2} & \text { if } n \text { is even } \tag{21}\\ \frac{5}{2}-\frac{13 n+3}{2 n(n+3)} & \text { if } n \text { is odd }\end{cases}
$$

The claim of the theorem follows by combining (20) and (21).

5 Recursive inequality on $\beta(n, M)$

The following recursive inequality was obtained in [10]:

$$
\begin{equation*}
\beta(n, M+1) \geq \frac{M^{2}}{(M+1)^{2}} \beta(n, M)+\frac{M n}{(M+1)^{2}}\left(1-\sqrt{1-\frac{2}{n} \beta(n, M)}\right) \tag{22}
\end{equation*}
$$

In the next theorem we give a new recursive inequality.
Theorem 15. For positive integers n and $M, 2 \leq M \leq 2^{n}-1$,

$$
\begin{equation*}
\beta(n, M+1) \geq \frac{M^{2}}{M^{2}-1} \beta(n, M) \tag{23}
\end{equation*}
$$

Proof. Let \mathcal{C} be an extremal $(n, M+1)$ code, i.e.,

$$
\beta(n, M+1)=\bar{d}(\mathcal{C})=\frac{1}{(M+1)^{2}} \sum_{c \in \mathcal{C}} \sum_{c^{\prime} \in \mathcal{C}} d\left(c, c^{\prime}\right) .
$$

Then there exists $c_{0} \in \mathcal{C}$ such that

$$
\begin{equation*}
\sum_{c \in \mathcal{C}} d\left(c_{0}, c\right) \geq(M+1) \beta(n, M+1) . \tag{24}
\end{equation*}
$$

Consider an (n, M) code $\widetilde{\mathcal{C}}=\mathcal{C} \backslash\left\{c_{0}\right\}$. Using (24) we obtain

$$
\begin{aligned}
& \beta(n, M) \leq \bar{d}(\widetilde{\mathcal{C}})=\frac{1}{M^{2}} \sum_{c \in \tilde{\mathcal{C}}} \sum_{c^{\prime} \in \widetilde{\mathcal{C}}} d\left(c, c^{\prime}\right)=\frac{1}{M^{2}}\left(\sum_{c \in \mathcal{C}} \sum_{c^{\prime} \in \mathcal{C}} d\left(c, c^{\prime}\right)-2 \sum_{c \in \mathcal{C}} d\left(c_{0}, c\right)\right) \\
& \leq \frac{1}{M^{2}}\left((M+1)^{2} \beta(n, M+1)-2(M+1) \beta(n, M+1)\right)=\frac{M^{2}-1}{M^{2}} \beta(n, M+1) .
\end{aligned}
$$

Lemma 9. For positive integers n and $M, 2 \leq M \leq 2^{n}-1$, the $R H S$ of (23) is not smaller than RHS of (22).

Proof. One can verify that RHS of (23) is not smaller than RHS of (22) iff

$$
\beta(n, M) \leq \frac{M^{2}-1}{M^{2}} \cdot \frac{n}{2} .
$$

By (23) we have

$$
\beta(n, M) \leq \frac{M^{2}-1}{M^{2}} \beta(n, M+1) \leq \frac{M^{2}-1}{M^{2}} \beta\left(n, 2^{n}\right)=\frac{M^{2}-1}{M^{2}} \cdot \frac{n}{2},
$$

which completes the proof.

6 Appendix

Proof of Lemma 4: The proof is by induction. One can easily see from (16) that the claim is true for $2 \leq i \leq 5$, where $i \leq n / 2$. Assume that we have proved the claim for i, $4 \leq i \leq k \leq n / 2-1$. Thus

$$
\begin{aligned}
& \left|P_{k+1}^{n}\left(\frac{n}{2}+1\right)\right|=\left|\frac{(-2) P_{k}^{n}\left(\frac{n}{2}+1\right)-(n-k+1) P_{k-1}^{n}\left(\frac{n}{2}+1\right)}{k+1}\right| \\
& \quad \leq \frac{2}{k+1}\left|P_{k}^{n}\left(\frac{n}{2}+1\right)\right|+\frac{n-k+1}{k+1}\left|P_{k-1}^{n}\left(\frac{n}{2}+1\right)\right| \\
& \quad<\frac{2}{k+1}\binom{n}{\left\lfloor\frac{k}{2}\right\rfloor}+\frac{n-k+1}{k+1}\binom{n}{\left\lfloor\frac{k-1}{2}\right\rfloor}=(*) .
\end{aligned}
$$

We distinguish between two cases. If k is odd, then

$$
\begin{aligned}
& (*)=\frac{2}{k+1}\binom{n}{\frac{k-1}{2}}+\frac{n-k+1}{k+1}\binom{n}{\frac{k-1}{2}}=\frac{2}{k+1}\binom{n}{\frac{k-1}{2}}\left(1+\frac{n-k+1}{2}\right) \\
& =\frac{1}{n-\frac{k-1}{2}} \cdot \frac{n-\frac{k-1}{2}}{\frac{k+1}{2}}\binom{n}{\frac{k-1}{2}} \frac{n-k+3}{2}=\frac{n-k+3}{2 n-k+1}\binom{n}{\frac{k+1}{2}}<\binom{n}{\frac{k+1}{2}} .
\end{aligned}
$$

Therefore, for odd k, we obtain

$$
\left|P_{k+1}\left(\frac{n}{2}+1\right)\right|<\binom{n}{\frac{k+1}{2}}=\binom{n}{\left\lfloor\frac{k+1}{2}\right\rfloor} .
$$

If k is even, then

$$
\begin{gathered}
(*)=\frac{2}{k+1}\binom{n}{\frac{k}{2}}+\frac{n-k+1}{k+1}\binom{n}{\frac{k}{2}-1} \\
=\frac{2}{k+1}\binom{n}{\frac{k}{2}}+\frac{n-k+1}{k+1} \cdot \frac{\frac{k}{2}}{n-\left(\frac{k}{2}-1\right)} \cdot \frac{n-\left(\frac{k}{2}-1\right)}{\frac{k}{2}}\binom{n}{\frac{k}{2}-1} \\
=\binom{n}{\frac{k}{2}}\left(\frac{2}{k+1}+\frac{n-k+1}{2 n-k+2} \cdot \frac{k}{k+1}\right) .
\end{gathered}
$$

Since $k \geq 4$, we have

$$
(*)=\binom{n}{\frac{k}{2}}(\frac{2}{k+1}+\overbrace{\frac{n-k+1}{<1 / 2}}^{2 n-k+2} \cdot \overbrace{\frac{k}{k+1}}^{<1})<\binom{n}{\frac{k}{2}}\left(\frac{2}{5}+\frac{1}{2}\right)<\binom{n}{\frac{k}{2}} .
$$

Therefore, for even k, we obtain

$$
\left|P_{k+1}\left(\frac{n}{2}+1\right)\right|<\binom{n}{\frac{k}{2}}=\binom{n}{\left\lfloor\frac{k+1}{2}\right\rfloor} .
$$

Proof of Lemma 5: Denote

$$
a_{i}=\frac{(i-3)\binom{n}{i}}{\binom{n}{\left\lfloor\frac{i}{2}\right\rfloor}}, \quad 6 \leq i \leq n / 2
$$

Thus,

$$
\frac{a_{6}(n+2)}{n(n-1)}=\frac{(n+2)(n-3)(n-4)(n-5)}{40 n(n-1)}
$$

$$
=\frac{(n-2)(n-7)}{40}+\frac{48 n-120}{40 n(n-1)} \overbrace{\geq}^{n \geq 12} \frac{5}{4}+\frac{48 \cdot 12-120}{40 n(n-1)}>\frac{5}{4}
$$

and we have proved that $a_{6}>\frac{n(n-1)}{n+2}$. Let's see that $a_{i} \geq a_{6}$ for $6 \leq i \leq n / 2$. Let i be even integer such that $6 \leq i \leq n / 2-2$. Then

$$
\frac{a_{i+2}}{a_{i}}=\frac{(i-1)(n-i-1)(n-i)}{(i-3)(i+1)(n-2 i)} \overbrace{>}^{i \geq 6} \frac{(i-3)(n-2 i)(n-i)}{(i-3)(i+1)(n-2 i)}=\frac{n-i}{i+1} \overbrace{>}^{i \leq n / 2-2} 1 .
$$

Together with $a_{6}>\frac{n(n-1)}{n+2}$, this implies that $a_{i}>\frac{n(n-1)}{n+2}$ for every even integer i, $6 \leq i \leq n / 2$.

Now let i be even integer such that $6 \leq i \leq n / 2-1$. Then

$$
\frac{a_{i+1}}{a_{i}}=\frac{(i-2)(n-i)}{(i-3)(i+1)}>\frac{n-i}{i+1} \overbrace{>}^{i \leq n / 2-1} 1,
$$

which completes the proof.

References

[1] R. Ahlswede and I. Althöfer, "The asymptotic behaviour of diameters in the average", in J. Combin. Theory Ser. B61, pp. 167-177, 1994.
[2] R. Ahlswede and G. Katona, "Contributions to the geometry of Hamming spaces", in Discrete Math. 17, pp. 1-22, 1977.
[3] I. Althöfer and T. Sillke, "An "average distance" inequality for large subsets of the cube", in J. Combin. Theory Ser. B 56, pp. 296-301, 1992.
[4] M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko, and N. J. A. Sloane, "Bounds for binary codes of length less than 25", IEEE Trans. on Inform. Theory, vol. 24, pp. 81-93, Jan. 1978.
[5] Ph. Delsarte, "An algebraic approach to the association schemes of coding theory ", Philips Research Reports Supplements, No. 10, 1973.
[6] F. -W. Fu, V. K. Wei and R. W. Yeung, "On the minimum average distance of binary codes: linear programming approach", in Discrete Appl. Math. 111, pp. 263-281, 2001.
[7] F. Jaeger, A. Khelladi and M. Mollard, "On shortest cocycle covers of graphs", in J. Combin. Theory Ser. B 39, pp. 153-163, 1985.
[8] I. Krasikov and S. Litsyn, Survey of binary Krawtchouk polynomials, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 56 (2001), 199-211.
[9] A. Kündgen, "Minimum average distance subsets in the Hamming cube", in Discrete Math. 249, pp. 149-165, 2002.
[10] S. -T. Xia and F. -W. Fu, "On the average Hamming distance for binary codes", in Discrete Appl. Math. 89, pp. 269-276, 1998.

[^0]: *CWI, Amsterdam, The Netherlands, e-mail: B.Mounits@cwi.nl.

