
FLECS, a Flexible Coupling Shell
Parallel Application to Fluid-Structure Interaction

Margreet Nool∗, Erik Jan Lingen†, Sander van Zuijlen∗∗, Martijn Stroeven† and
Hester Bijl∗∗

∗CWI, Dept. Computing and Control, Amsterdam, The Netherlands, email=Margreet.Nool@cwi.nl
†Habanera Software company, Delft, The Netherlands

∗∗TU Delft, Fac. Aerospace Engineering, Delft, The Netherlands

Abstract. In this paper we discuss the second version of FLECS, a generic, open-source coupling shell that can be used to join
two or more arbitrary solvers. In general multidisciplinary computations are very computing-intensive. A remedy against long
computing times is large-scale parallelism. The challengeof the present parallelization work is to obtain acceptablecomputing
times and to get rid of severe memory requirements that existon sequential machines, for the generic flow problems at hand.
The aim is to provide a flexible platform for developing new data transfer algorithms and coupling schemes.

Keywords: Parallel Computing, Coupling Shell, Fluid-Structure Interaction
PACS: 0.2.60.Cb,0.2.60.Dc,0.2.60.Ed

1. INTRODUCTION

Numerical simulations involving multiple, physically
different domains, like a solid structure and a fluid, can
be solved effectively by coupling multiple simulation
programs, orsolvers. Each solver deals with one partic-
ular physical domain, applying the numerical algorithms
that are most efficient for that domain. The solvers regu-
larly exchange data to take into account the effects of the
other domains. The coordination of the different solvers
is commonly handled by acoupling shell. The majority
of coupling shells are embedded subprograms that have
been developed for coupling two specific solvers. One
exception is the coupling library MPCCI (Mesh based
Parallel Code Coupling) [3], which can be used as a sep-
arate program. Although MPCCI is relatively easy to use
and provides many advanced features, it is less suitable
for a scientific research community that is aimed at de-
veloping new data transfer algorithms. Numerical accel-
eration algorithms, like Krylov and multilevel methods
- urgently required for efficiency - are not incorporated.
Moreover, since MPCCI only provides the binary code,
the user can not modify the implementation schedule of
MPCCI.

The coupling shell FLECS (Flexible Coupling Shell)
synchronizes the execution of the solvers and handles the
transfer of data from one physical domain to another. In a
coupled fluid-structure simulation, for instance, the cou-
pling shell transfers pressures from the fluid to the sur-
face of the structure, and velocities and displacements
from the structure surface to the fluid. In addition to
accurate coupling in space, it is possible to reduce the
partitioning errors in time by using specially designed

high-order time integration methods. Moreover, FLECS

can be combined with a multi-level acceleration tech-
nique, based on a presumed existing multi-grid solver for
the flow domain, with the Aitken underrelaxation tech-
nique [6].

In contrast to the first version of FLECS [2, 4], the sec-
ond version can take full advantage of parallel comput-
ers, supporting both parallel solvers and parallel trans-
fer algorithms (see Fig. 1). This makes it possible to
use FLECS for large-scale 3-D coupled simulations in-
volving transfer algorithms that are accurate in space
and time. FLECS uses MPI-2 to achieve good perfor-
mance while reducing the dependencies between coupled
solvers. That is, each solver can run in its own environ-
ment and memory space, and use its own start-up proce-
dure. FLECS provides language bindings for C and For-
tran 90 so that it can be easily used in a wide range of
solvers.

The effectiveness of FLECS will be tested with two
parallel transfer algorithms: one based on a Radial Basis
Function (RBF) method and one based on a Nearest
Neighbor (NN) Method.

2. DESIGN OVERVIEW

FLECS is decomposed into aclient library that is to be
called from the solver programs, and acoupling server
that coordinates the execution of the solvers, takes care
of the coupling of the domains and handles the transfer
of data between the solvers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Solver B

Solver A

Coupling server

data exchange

client library

Symbols:

process

FIGURE 1. Schematic representation of second version of
FLECS

2.1. The Client Library

The client library provides subroutines with which
a solver can open and close connections with one or
more coupling servers; coordinate the execution with
those servers; transfer data between physical domains;
and perform a number of miscellaneous tasks, including
error handling.

Before a solver can transfer data from its own domain
to another, it needs to create one or moreitem setsthat
describe the grid on its domain interface. Each item in
an item set represents an entity such as a node, cell or
element, and is identified by a unique integeridentifier,
also called its ID. Except for the item IDs, FLECS does
not store any data associated with the items in an item set;
it simply passes the item data from a solver to a coupling
server without interpreting those data.

If a solver program comprises multiple parallel pro-
cesses, then each process may define its own set of items
corresponding with a part of the interface grid. The pro-
cesses may redistribute the items during the execution of
a coupled simulation to achieve a better load balance.

2.2. The Coupling Server

The coupling server (see Fig. 2) consists of two parts:
one that handles the initialization of the server and the
communication between the server and the client library,
and one that transfers data from one physical domain
to another. This part of the server is based on a plug-
in architecture, that makes it easy to implement new
transfer algorithms.

Transfer Algorithm

Communication and Coordination Layer

FIGURE 2. Schematic representation of the coupling server

For each item set created by a solver program, a cor-
responding item set is created by the server. If the solver
comprises multiple parallel processes, then FLECSdeter-
mines an initial distribution of the items over the server
processes. This distribution may be changed by a trans-
fer algorithm to achieve a better load balance and/or to
reduce the amount of communication between the server
and the solver processes.

3. AN APPLICATION TO
FLUID-STRUCTURE INTERACTION

De Boer’s thesis [2] contains a detailed study of three
different techniques to transfer information between
non-matching meshes in fluid-structure interaction (FSI)
computations: NN interpolation, the weighted residual
method and the RBF interpolation. Two transfer tech-
niques are parallelized and will be added to the FLECS

package: the RBF method and the NN method.

3.1. Radial Basis Function algorithm

The RBF methods appear to be very suitable because
of their high accuracy and efficiency. No orthogonal pro-
jection and search algorithms are needed, but the com-
putation involves the inversion of a matrix. The solvers
exchange data to take into account the effects on the other
domain. The coupling methods can be formulated as

dx f = H f sdxs, ps = Hs fp f , (1)

with dx the vector with the displacements andp the pres-
sure in the fluid or structure points at the discrete inter-
faces, and,H f s ∈ R

nf ×ns andHs f ∈ R
ns×nf are transfor-

mation matrices. The numbersnf andns, the numbers of
flow and structure points on the fluid-structure interface,
respectively, are usually very small compared to the total
number of structure and flow points.

Equation (2.38) in [2] describes how to calculate the
coupling matrix. We first compute the matrix̂Hs f

Ĥs f =
[

Φ f s Qs
]

.

[

Φ f f Qf

QT
f 0

]−1

= Φ̃ f s.Φ̃−1
f f , (2)

and then the transformation matrixHs f is defined as the
first ns rows andnf columns of the matrixĤs f. The
matrix Φ f s contains the evaluation of the basis function
φ fi ,sj = φ(‖x fi − xsj ‖). The matricesx f andxs contain
the coordinates of the centers in which the interface
values are known. The matrixQs is anns×(d+1) matrix
with d the dimension of the problem. For more details we
refer to [2].



P P

PPP

P0 1 2

4 53

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

1,1

5,6

2,2

1,2 1,3 1,4 1,5 1,6

2,1 2,3 2,4 2,5 2,6

3,23,1 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,25,1 5,3 5,4 5,5

6,1 6,2 6,3 6,4 6,5 6,6

FIGURE 3. (left) 6 Processes mapped to a 2x3 process grid
and (right) 2D-block-cyclic distribution on a 2x3 process grid

We decided to use the software package SCALA-
PACK, a library of high-performance linear algebra
routines, developed for distributed memory systems.
The distributed memory version of BLAS, called the
PBLAS, is the building block of SCALAPACK rou-
tines. Communication between the blocks will be per-
formed by BLACS, a set of Basis Linear Algebra Com-
munication Subprograms. SCALAPACK is portable on
any computer or network of computers that supports
MPI.

The calculation of the coupling matrixHs f consists of
the following steps: the creation of the (symmetric) ma-
trix Φ̃ f f , the creation of the matrix̃Φ f s, the computation
of the inverse of matrix̃Φ f f , and the matrix-matrix mul-
tiplication to achieveĤs f = Φ̃ f s× Φ̃−1

f f . The firstns rows
andnf columns form the matrixHs f. The computation
of the coupling matrixH f s goes along similar lines. The
SCALAPACK routine PDGESV is used for computing
the inverse of the matrix̃Φ f f in parallel. The matrix-
matrix product can be computed using the PBLAS rou-
tine PDGEMM.

3.2. Data distribution

For the dense algorithms implemented in SCALA-
PACK, the block-cyclic data layout [1] has been selected
because of its good scalability, load balance and commu-
nication properties, see also Fig. 3.

The p processes of an abstract parallel computer are
mostly represented as a 1D linear array of processors. It
is often more convenient to map this array into a 2D rect-
angular grid, orprocessgrid. The matrix will be divided
into square blocks, e.g., of size 64×64, as recommended
in the SCALAPACK User’s Guide. Then its blocks will
be distributed along the processes according to the colors
in the picture. The first block column will be distributed
over the processesp0 andp3, the next block column over
p1 andp4 etc.

On each processorpi ,(0 6 i < p), the elements of
matrix Φ̃ f f can be calculated accordingly to the 2D-
block cyclic distribution without communication. For the
ease of computing, the coordinatesx f must be present

on every processor. Moreover, if the coordinates ofxs

are available too, also the computation of matrixΦ̃ f s
requires no communication.

The distribution of the coupling matrices imposes de-
mands on the coding rules of the input dxs andp f and
output matrices dx f andps of Eq. (1). It is not expected
that these rules agree with the distribution of the pres-
sure and displacement matrices of the parallel solvers.
With the help of the SCALAPACK matrix distribution
routine PDGEMR2D any block cyclic distributed matrix
can be copied to any other block-cyclically distributed
matrix, even to a global matrix with block sizes equal to
the matrix size. In other words, we are able to map the
block-cyclic into a non-cyclic storage on a single pro-
cess.

3.3. Performance of parallel RBF method

As a test example we choose a flow around a flexible
wing (Fig. 4). It is the AGARD 445.6 2.5-foot semi-
span model [5], which is often used as a benchmark case
for aeroelastic codes. The coupling has been performed
with an RBF method with compact support, the so-called
CPC2 with a radius of 0.1. Only onefull stepaccording
to Eq. (1) has been executed: the computations of the
matricesH f s and Hs f and the flow displacements and
the structure pressure. The flow mesh hasnf = 30045
and the structure mesh hasns = 913 interface points,
respectively. This implies that, as part of the calculation
of the coupling matrices, the inverses of the matrices
Φ̂ f f of size 30050× 30050 andΦ̂ss of 917× 917 have
to be computed. As a block size for̂Φ f f we choose
64× 64 resulting into 470× 470 number of blocks. For
Φ̂ss we reduce the block size to 32× 32 to increase the
parallelism.

FIGURE 4. Fluid mesh of the AGARD 445.6 2.5-foot semi-
span model

It took us a lot of effort to achieve scalable perfor-
mance. In order to achieve good scalable performance,
we experiment with all kinds of configurations of nodes,
cores and threads. Finally, the wall clock time for one
full step was reduced to less than four minutes on a grid
of 12×12 processors. The execution was performed on
a Linux cluster with 715 compute nodes. For our appli-
cation we used 18 nodes with 2*quad-cores, where each
node has a memory of 24 Gb. Obviously, the computing
time is completely dominated by the computation of the
inverse ofΦ̃ f f as can be seen in Table 1. In comparison



TABLE 1. Wall clock times for parts of the calculation of
the coupling matricesHsf and Hfs and the updates of the
pressure in the structure interface points and the displacements
in the flow interface points

grid Φ̃ f f Φ̃ f s Inv(Φ̃ f f ) Ĥs f Hs fp f

4x4 23.27 .55 1022.05 52.60 .48e-1
6x6 8.84 .26 511.64 21.58 .15e-0
8x8 4.78 .13 323.45 12.11 .35e-1

10x10 4.66 .11 262.50 10.51 .26e-0
12x12 3.88 .09 188.08 8.12 .16e-0

grid Φ̃ss Φ̃s f Inv(Φ̃ss) Ĥ f s H f sps

4x4 .16e-1 .52e-0 10.25 2.45 .55e+1
6x6 .65e-2 .22e-0 12.76 4.09 .41e-0
8x8 .42e-2 .15e-0 8.05 2.48 .15e+1

10x10 .25e-2 .79e-1 8.09 1.47 .65e-0
12x12 .23e-2 .63e-1 6.05 2.04 .92e-0

with the original MATLAB code, the execution of a sin-
gle step on a desktop computer took several days.

3.4. Nearest Neighbor method

P0β 0

P1

P0

P

P

P

P

1

2

3

4

ε

ε

FIGURE 5. Example of Nearest Neighbor implementation
using bounding boxes

The NN method is a very simple method to transfer
data from meshA to meshB. A search algorithm deter-
mines the pointxA in meshA that is closest to a given
pointxB in meshB. The variables inxB are then assigned
the same values as inxA. Note that for the NN method
the transformation matrices become Boolean matrices.

In case of parallel solvers at both sides, the points of
the meshesA and B are distributed over different pro-
cesses, the search process for the closest neighbor be-
comes more complicated. For each process, a minimal
rectangular bounding box is calculated, which contains
all points present on that processor. This red dashed box
(Fig. 5) will be extended by a strip in all directions. The
results of the obtained boxesβi ,0 6 i < p, are of impor-
tance to determine which processes have to communicate
with each other to search for nearest neighbors. The size
of this strip ε should be a parameter of the method. If
the strip sizeε is too small, it may occur that a nearest

neighbor will be missed. On the other hand, when it is
chosen too large, more communication will take place
then strictly necessary.

3.5. Conclusions

Parallel FLECS appears to be a valuable extension of
initial FLECS. In the parallel execution no longer bottle-
necks will arise. The nearest neighbor method illustrates
how communication can be reduced between the solvers
and the coupling server. If this search method is not re-
stricted to the interface items, but instead the whole do-
main is considered, e.g., in case of moving grids, the par-
allelism in the coupling server is even more favorable.
The RBF method shows that for huge problems, i.e.,
more than 30.000 interface points, memory requirements
and acceptable wall clock time urges for parallelism.

ACKNOWLEDGMENTS

Funding for this work was provided by the National
Computing Facilities Foundation (NCF), under project
numbers NRG-2005.03 and NRG-2007.05. The authors
want to acknowledge and thank the High Performance &
Networking group of SARA for their help and advice for
running the codes on the Dutch National Supercomputer,
namedlisa.

REFERENCES

1. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley.ScaLAPACK Users’ Guide. SIAM, 1997.

2. A. de Boer.Computational fluid-structure interaction,
Spatial coupling, coupling shell and mesh-deformation,
PhD Thesis, TU Delft, 2008.

3. MpCCI, The Fraunhofer-Institute for Algorithms
and Scientific Computing (SCAI).Multidisci-
plinary Simulation through Code Coupling, see
http://www.scai.fraunhofer.de/mpcci.html

4. Margreet Nool, Erik Jan Lingen, Aukje de Boer and
Hester Bijl. Flecs, a Flexible Coupling Shell Application
to Fluid-Structure Interaction, Lecture Notes in Computer
Science, 2007

5. E.J. Yates jr.AGARD standard aeroelastic configurations
for dynamic reponse. candidate configuration I.-Wing
445.6, AIAA, Tech. Rep. Technical Memorandum
100492, 1987.

6. A.H. van Zuijlen and H. BijlMulti-level acceleration for
sub-iterations in partitioned fluid-structure interaction,
CP1168, Vol.2, Numerical Analysis and Applied
Mathematics, IC 2009.


