Clique partitioning of interval graphs with submodular costs on the cliques

Dion Gijswijt; Vincent Jost, Maurice Queyranne ${ }^{\dagger}$

November 15, 2006

Abstract

Given a graph $G=(V, E)$ and a "cost function" $f: 2^{V} \rightarrow \mathbb{R}$ (provided by an oracle), the problem [PCliqW] consists in finding a partition into cliques of $V(G)$ of minimum cost. Here, the cost of a partition is the sum of the costs of the cliques in the partition. We provide a polynomial time dynamic program for the case where G is an interval graph and f belongs to a subclass of submodular set functions, which we call "value-polymatroidal". This provides a common solution for various generalizations of the coloring problem in co-interval graphs such as max-coloring, "Greene-Kleitman's dual", probabilist coloring and chromatic entropy. In the last two cases, this is the first polytime algorithm for co-interval graphs. In contrast, NP-hardness of related problems is discussed. We also describe an ILP formulation for [PCliqW] which gives a common polyhedral framework to express min-max relations such as $\bar{\chi}=\alpha$ for perfect graphs and the polymatroid intersection theorem. This approach allows to provide a min-max formula for [PCliqW] if G is the line-graph of a bipartite graph and f is submodular. However, this approach fails to provide a min-max relation for [PCliqW] if G is an interval graphs and f is value-polymatroidal.

Keywords: Partition into cliques; Interval graphs; Circular arc graphs; Maxcoloring; Probabilist coloring; Chromatic entropy; Partial q-coloring; Batch-scheduling; Submodular functions; Bipartite matchings; Split graphs.

[^0]
1 Introduction

Let $G=(V, E)$ be a simple graph. In the following, a clique of G refers to a nonempty subset of vertices inducing a complete subgraph (not necessarily maximal with this property). Let $\mathcal{C}(G)$ denote the set of cliques of G. A partition into cliques of G is a partition $\mathcal{Q}=\left(K_{1}, \ldots, K_{k}\right)$ of $V(G)$, where $K_{1}, \ldots, K_{k} \in \mathcal{C}(G)$. In other words it is a coloring of \bar{G}, the complementary graph of G. Let $\mathcal{P}(G)$ denote the set of all partitions into cliques of G. A classical problem consists in determining $\bar{\chi}(G)$, the minimum number of cliques necessary to partition G. In several applications however (see section 3), there is a cost $f(C)$ associated to every clique $C \in \mathcal{C}(G)$, and we are interested in partitioning G into cliques, minimizing the sum of the costs of the cliques in the partition. Let $\bar{\chi}(G, f)$ denote this minimum:

$$
\begin{equation*}
\bar{\chi}(G, f):=\min _{\mathcal{Q} \in \mathcal{P}(G)} \sum_{K \in \mathcal{Q}} f(K) . \tag{1}
\end{equation*}
$$

In order to describe some properties of f, one may assume that f is not only defined on cliques but is a set function on \mathbf{V}, that is $f: 2^{V} \rightarrow \mathbb{R}$. This has no consequences for the definitions of $\bar{\chi}(G, f)$ and [PCliqW] below. Notice that if $f(C)=1$ for all cliques C, we get the classical problem of coloring \bar{G} and we have $\bar{\chi}(G, \mathbf{1})=\bar{\chi}(G)$. Determining $\bar{\chi}(G, f)$ is therefore an NP-hard problem. Moreover, since $|\mathcal{C}(G)|$ is usually exponential in $|V|$ (the complete graph K_{n} on n vertices has $\left|\mathcal{C}\left(K_{n}\right)\right|=2^{n}$, encoding f itself raises complexity issues. In several applications however, both G and f have structural properties that allow to solve problem [PCliqW] in time polynomial in $|V|$.

[PCliqW] Partition into cliques with weights

INPUT : A graph $G=(V, E)$ and a value oracle, providing $f(K)$ in constant time for each $K \in \mathcal{C}(G)$.
OUTPUT : A partition into cliques of cost $\bar{\chi}(G, f)$.
[PCliqW] can also be described in terms of batch scheduling with compatibility graphs [12]. In this terminology (see [4] for batch scheduling problems not involving compatibility graphs and [16] for a classification of chromatic scheduling problems), each clique of a partition into cliques of G is called a batch. The operating time of a batch K is then $f(K)$ and our objective is to minimize the makespan $\mathrm{C}_{\text {max }}$ (whence the batches are ordered arbitrarily on the batch machine). Talking about cliques and batches allows to distinguish easily between cliques of G and cliques in a partition of $V(G)$. Two famous polytime cases of [PCliqW] are when

- G is perfect and $f \equiv 1$ [17],
- G is complete and f is submodular set function [17]

Our solution for [PCliqW] for interval graphs and value-polymatroidal functions can be seen as a compromise between these two classical cases. Moreover, [PCliqW] enjoys a simple min-max formula in both cases $[17](\bar{\chi}(G)=\alpha(G)$ in the first
case and "Dilworth's truncation" in the second). One could therefore expect a common generalized min-max formula to hold in other cases for which [PCliqW] is polynomial. We deal with this issue in section 7 .

In section 2, we define polymatroid rank functions and motivate the definition of value-polymatroidal set functions in the context of [PCliqW]. In section 3, we provide examples of value-polymatroidal set functions. In section 4, we discuss value-polymatroidal functions whose values $f(U)$ depend only on the size $|U|$. In section 5, we provide a dynamic program which solves [PCliqW] for interval graphs in polytime if f is value-polymatroidal. The algorithm extends to the minimum cost partition problem for circular arc graphs, when we only consider cliques in which the arcs share a common point. As a counterpart, we mention NP-hardness of [PCliqW] for interval graphs if f is only assumed to be polymatroidal [2]. In section 6, we discuss NP-hardness of [PCliqW] on split graphs for subclasses of value-polymatroidal set functions. In section 7, we deal with some polyhedral issues and provide a min-max formula for [PCliqW] in line-graphs of bipartite graphs.

2 Value-polymatroidal set functions

A set function $f: \mathcal{P}(V) \rightarrow \mathbb{R}$ is submodular if it satisfies one of the following equivalent properties [17]:

$$
\begin{array}{ll}
f(S \cup T)+f(S \cap T) \leq f(S)+f(T) & \text { for all } S, T \subseteq V \\
f(S+u)+f(T) \leq f(S)+f(T+u) & \text { for all } T \subseteq S \subseteq V \text { and } u \in V \backslash S, \tag{3}
\end{array}
$$

(4) $f(S+u+v)+f(S) \leq f(S+u)+f(S+v) \quad$ for all $S \subseteq V$ and $u, v \in V \backslash S$.

A set function f is non-negative if all its values are, non-decreasing if $S \subseteq T \Longrightarrow$ $f(S) \leq f(T)$, subcardinal if $f(U) \leq|U|$ for all $U \subseteq V$. A polymatroid rank function is a submodular, non-negative, non-decreasing set function such that $f(\emptyset)=0$. A matroid rank function is a subcardinal, integral polymatroid rank function.

In some graph classes, submodularity of f is enough to ensure polynomiality of [PCliqW] (see section 7 and [16]). Although submodularity is not sufficient for interval graphs (see Theorem 5.5), a stronger exchange property will do. We say that f is a value-polymatroidal set function if $f(\emptyset)=0, f$ is non-decreasing and for every S and T subsets of V such that $f(S) \geq f(T)$ and every $u \in V \backslash(T \cup S)$, we have

$$
\begin{equation*}
f(S+u)+f(T) \leq f(S)+f(T+u) \tag{5}
\end{equation*}
$$

Proposition 2.1 Every value-polymatroidal set function is a polymatroid rank function.

Proof Let f be value-polymatroidal. Since f is non-decreasing, we have $f(S) \geq$ $f(T)$ for every $T \subseteq S \subseteq V$ and therefore $f(S+u)+f(T) \leq f(S)+f(T+u)$ for every $u \in V \backslash S$.

By a maximal clique, we mean a clique maximal for inclusion (not necessarily for cardinality). The main motivation behind the definition of value-polymatroidal set functions is given by the following proposition.

Proposition 2.2 For any graph G and any value-polymatroidal set function f on $V(G)$, there is a partition \mathcal{Q} of cost $\bar{\chi}(G, f)$ in which one of the cliques in \mathcal{Q} is a maximal clique of G.

Proof Let \mathcal{Q} be a minimum cost partition of G and choose any clique $K \in \mathcal{Q}$, such that $f(K) \geq f(T)$ for all $T \in \mathcal{Q}$. If K is not a maximal clique of G, there exists some $t \in V \backslash K$ such that $K+t$ is a clique in G. Now, t belongs to some $T \in \mathcal{Q}-K$. Since f is non-decreasing, $f(K) \geq f(T) \geq f(T-t)$. Since f is value-polymatroidal, $f(K+t)+f(T-t) \leq f(K)+f(T)$. Repeat the process until K becomes a maximal clique of G.

In general, rank functions of (poly)matroids are not value-polymatroidal, and the conclusion of Proposition 2.2 doesn't hold as shown in Figure 1.

G

\mathcal{M}

Figure 1: A graph G and a graphic matroid \mathcal{M} (whose rank function is not value-polymatroidal) such that $\bar{\chi}(G, r(\mathcal{M}))=2=r(\{a, b\})+r(\{c, d\})$. No optimal partition contains a maximal clique of G.

3 Examples of value-polymatroidal set functions

In this section we mention some (coloring) problems that have been studied in the literature, and that amount to solving [PCliqW] for special subclasses of valuepolymatroidal set functions. These problems are often formulated is terms of finding a minimum cost partition into stable sets, which is equivalent to [PCliqW] by taking the complementary graph.

Maximum Let $p: V \rightarrow \mathbb{R}_{+}$and define

$$
\begin{equation*}
f(U):=\max _{u \in U} p(u) \tag{6}
\end{equation*}
$$

for any $U \subseteq V$. Then f is value-polymatroidal. Indeed, let $S, T \subseteq V$ with $f(S) \geq$ $f(T)$, and let $u \in V \backslash(S \cup T)$. Then, since $p(s)=f(S) \geq f(T)=p(t)$ for some $s \in S$ and $t \in T$, we have
$f(S+u)+f(T)=\max \{p(s), p(u)\}+p(t) \leq p(s)+\max \{p(t), p(u)\}=f(S)+f(T+u)$.
A set function arising as in (6) is called a max-batch cost function. When restricted to max-batch cost functions, the corresponding problem of finding a minimum cost partition into stable sets is called [max-coloring] and is strongly-NP-hard for split graphs [8, 3], for bipartite graphs [8] and for interval graphs [11]. However, [max-coloring] is polynomial for P_{4}-free graphs [8] as well as for co-interval graphs [12, 2, 9].

Independent probabilities Let $q: V \rightarrow[0,1]$ and for $U \subseteq V$, let

$$
\begin{equation*}
f(U):=1-\Pi_{u \in U} q(u) \tag{7}
\end{equation*}
$$

Let $S, T \subseteq V$ with $f(S) \geq f(T)$, and $u \in V \backslash(S \cup T)$. Write $f(S)=1-\sigma$ and $f(T)=1-\tau$ (so $\sigma \leq \tau)$. Then

$$
\begin{aligned}
f(S)+f(T+u) & =(1-\sigma)+(1-q(u) \tau) \\
& \geq(1-q(u) \sigma)+(1-\tau)=f(S+u)+f(T)
\end{aligned}
$$

Hence f is value-polymatroidal. A set function arising as in (7) is a probabilistic cost function. Transitive references for applications of probabilist optimization can be found in [7].

When restricted to probabilistic cost functions, [PCliqW] is strongly NP-hard in split graphs [7]. The corresponding problem of partitioning into stable sets is called [probabilist coloring].

Chromatic Entropy Let $p: V \rightarrow[0,1]$ and for $U \subseteq V$, let

$$
\begin{equation*}
c_{U}:=\sum_{u \in U} p(u) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
f^{\prime}(U):=-c_{U} \log \left(c_{U}\right) \tag{9}
\end{equation*}
$$

If $c_{V}=1, f^{\prime}$ is a chromatic entropy cost function. Although f^{\prime} is not valuepolymatroidal (it is not non-decreasing), the function $f:=f^{\prime}+c$ is value-polymatroidal as can be derived from the concavity of the function $x \mapsto x-x \log (x)$ [1]. Since for any partition $V=K_{1} \cup \cdots \cup K_{k}$ of V into cliques, we have $\sum_{i} f\left(K_{i}\right)=$ $c(V)+\sum_{i} f^{\prime}\left(K_{i}\right)$, the two functions f^{\prime} and f yield the same optimal partitions.

The corresponding problem of partitioning into stable sets is called [chromatic entropy] [1, 6] and is strongly NP-hard for interval graphs [6].

Uniform matroid and Partial q-coloring Let $q \in \mathbb{N}$ and let

$$
\begin{equation*}
f(U):=\min \{q,|U|\} \tag{10}
\end{equation*}
$$

Then f is value-polymatroidal, and the proof is left as an exercise since a more general statement is given with the next example. Functions arising this way are exactly the rank functions of uniform matroids. [PCliqW] with such a cost function arises in Greene-Kleitman's min-max relations stating that for any (co)-comparability graph G and any integer q, the maximum cardinality $\alpha_{q}(G)$ of the union of q stable sets of G satisfies $\alpha_{q}(G)=\bar{\chi}(G, f)$ (see [5] and [17], sections 14.6 and 14.7 on unions of chains and antichains in posets and section $66.5 e$ on " k-perfect" graphs for more details and references).

Size-defined concave Assume that $f(\emptyset)=0$ and that

$$
\begin{equation*}
f(U):=\psi(|U|) \tag{11}
\end{equation*}
$$

for some $\psi: \mathbb{N} \rightarrow \mathbb{R}_{+}$. Then f is value-polymatroidal if and only if f is the rank of a polymatroid and also if and only if ψ has a non-decreasing concave extension on the real segment $[0,|V|]$ (see section 4). The rank function of a uniform matroid is a special case.

4 Size-defined submodular set functions

In this section, we notice that if $f(U)$ only depends on $|U|$, then polymatroid ranks coincide with value-polymatroidal functions. Let $[a . . b]$ denote the set of integers in the interval $[a, b]$. A set function f on V is size-defined if there exists a function $\psi:[0 . .|V|] \rightarrow \mathbb{R}$ such that $f(U)=\psi(|U|)$. The function ψ is then the compact representation of f. Recall that a function $f:[a, b] \rightarrow \mathbb{R}$ is concave if for all $c, d \in[a, b]$ we have $f(c)+f(d) \leq 2 f((c+d) / 2)$

Theorem 4.1 Let f be a size-defined, non-decreasing set function such that $f(\emptyset)=$ 0 and ψ be the compact representation of f. The following are equivalent:
i) f is value-polymatroidal
ii) f is a polymatroid rank function
iii) $2 \psi(i) \geq \psi(i-1)+\psi(i+1)$ for all $i \in[1 . .|V|-1]$
iv) $\psi(i+1)-\psi(i) \geq \psi(j+1)-\psi(j)$ for all $i, j \in[0 . .|V|-1]$, with $i<j$
v) $\exists \widehat{\psi}:[0,|V|] \rightarrow \mathbb{R}$ concave such that $\psi(i)=\widehat{\psi}(i)$ for $i \in[0 . .|V|]$

Proof i) \Longrightarrow ii): Proposition 2.1
ii) \Longrightarrow iii): Use definition (4) of polymatroids with $|S|=i-1$.
iii) $\Longrightarrow \mathrm{iv}$): By induction on $j-i$. The case $j-i=1$ being exactly iii). Adding $\psi(i+1)-\psi(i) \geq \psi(j+1)-\psi(j)$ and $2 \psi(j+1) \geq \psi(j)+\psi(j+2)$ gives $\psi(i+1)-\psi(i) \geq$
$\psi(j+2)-\psi(j+1)$.
iv) $\Longrightarrow \mathrm{i}$: For $S, T \subseteq V$, since f is size-defined and non-decreasing,

$$
f(S) \geq f(T) \Longleftrightarrow \psi(|S|) \geq \psi(|T|) \Longleftrightarrow|S| \geq|T|
$$

Applying iv) to $j=|S|$ and $i=|T|$ gives i).
$\mathrm{v}) \Longrightarrow \mathrm{iii}):$ Apply the concavity condition to $c=i-1$ and $d=i+1$.
iii) $\Longrightarrow \mathrm{v}$): Take $\widehat{\psi}$ as the piecewise linear interpolation of f (for any $x \in[0 . .|V|]$, $\widehat{\psi}(x):=\lambda f(\lfloor x\rfloor)+(1-\lambda) f(\lceil x\rceil)$ for $\lambda:=x-\lfloor x\rfloor)$. One can check that the subgradient of $-\widehat{\psi}$ is nondecreasing.

5 Partition into cliques in interval and circular arc graphs

A graph $G=(V, E)$ is an interval graph [13, 17] if there exists a set $\{\phi(v) \mid$ $v \in V\}$ of closed intervals on the real line, such that two vertices u and v are adjacent in G if and only if the two corresponding intervals $\phi(u)$ and $\phi(v)$ have nonempty intersection. Observe that any maximal clique K in G is of the form $\{v \in V \mid t \in \phi(v)\}$ for some endpoint t of one of the intervals.

In $[12,9,2]$, [PCliqW] is solved in polytime for interval graphs and max-batch cost functions. These algorithms use the fact that there exists an optimal solution in which a vertex of maximum cost is contained in a batch inducing a maximal clique. Based on this fact, a dynamic program is proposed. This fact is no longer true for value-polymatroidal costs as shown by the example in Figure 2. Nonetheless, based on Lemma 5.2, we describe a generalization of the algorithm proposed in [12], which provides an optimal solution for any value-polymatroidal cost function.

Theorem 5.1 For any interval graph $G=(V, E)$ and any value-polymatroidal set function f on V given by a value oracle, we can compute a partition into cliques of G of cost $\bar{\chi}(G, f)$ in time $O\left(n^{3}\right)$.

Proof Let $\left\{I_{i}=\left[a_{i}, b_{i}\right]\right\}_{i=1, \ldots, n}$ be a set of intervals on the real line representing graph G. We consider the set X of endpoints of the intervals:

$$
X=\left\{a_{i}\right\}_{i=1, \ldots, n} \cup\left\{b_{i}\right\}_{i=1, \ldots, n}=\{1, \ldots, q\}
$$

Let the subproblem $\mathcal{I}(i, j)$ denote the set of all intervals completely contained in the closed interval $[i, j]$. For every pair of values $i \leq j \in X$, let $F(i, j):=\bar{\chi}(G[\mathcal{I}(i, j)], f)$, be the optimum cost of a partition of the subgraph induced by $\mathcal{I}(i, j)$ (by definition of $\bar{\chi}(G, f), F(i, j)=0$ if $\mathcal{I}(i, j)=\emptyset$). Our Dynamic Programming approach is based on Lemma 5.2 below, which implies that we can separate the problem restricted to $\mathcal{I}(i, j)$ into two subproblems.

Lemma 5.2 For every $i, j \in X$ there is an optimal partition into cliques of $G[\mathcal{I}(i, j)]$ in which at least one batch induces a maximal clique of $G[\mathcal{I}(i, j)]$.

Figure 2: Let f be the probabilist cost defined by p. Vertex d has maximum cost $f(\{d\})=1-q(d)=5 / 8$. However, in an optimal partition, vertex d cannot be placed in a maximal clique since $25 / 16=f(\{a, b\})+f(\{c, d\})>$ $\bar{\chi}(G, f)=f(\{a, b, c\})+f(\{d\})=12 / 8$.

Proof Directly from Proposition 2.2

Given $i<z<j \in X$, let $K_{i, j}^{z}$ be the set of intervals of $\mathcal{I}[i, j]$ containing point z. Notice that $K_{i, j}^{z}$ is a clique for all $i \leq z \leq j \in X$.

Lemma 5.3 For arbitrary fixed $i<j$ in X, the following recursion holds:

$$
\begin{equation*}
F(i, j)=\min _{z \in[i, j]}\left\{f\left(K_{i, j}^{z}\right)+(F(i, z-1)+F(z+1, j))\right\} . \tag{12}
\end{equation*}
$$

Proof By Lemma 5.2, there is an optimal partition of $G[\mathcal{I}(i, j)]$ in which a batch is a maximal clique B^{*}. All maximal cliques of $G[\mathcal{I}(i, j)]$ are browsed while considering the minimum in (12). Hence $B^{*}=K_{i, j}^{z^{*}}$ for some z^{*}. Given such point z^{*}, every interval in $\mathcal{I}\left[i, z^{*}-1\right]$ has its terminal endpoint before the initial endpoint of every interval in $\mathcal{I}\left[z^{*}+1, j\right]$. Hence, the graph $G\left(\mathcal{I}[i, j] \backslash B^{*}\right)$ decomposes into two disconnected subgraphs: $G\left(\mathcal{I}\left[x_{i}, z^{*}-1\right]\right)$ and $G\left(\mathcal{I}\left[z^{*}+1, j\right]\right)$. One can therefore solve the problems on these two subgraphs independently.

The Dynamic Programming algorithm starts from the initial conditions

$$
F(i, i)=f(\mathcal{I}[i, i]) \quad \text { for all } i=1, \ldots, q .
$$

Applying the recursion (12) with increasing subproblem width $x_{j}-x_{i}$, it computes an optimal schedule

$$
S\left(x_{i}, x_{j}\right)=\left\{\begin{array}{l}
\emptyset \quad \text { if } \mathcal{I}[i, j]=\emptyset \\
S\left(i, z^{*}-1\right) \cup B^{*} \cup S\left(z^{*}+1, j\right) \text { otherwise } .
\end{array}\right.
$$

The optimum value is $\bar{\chi}(G, f)=F(1, q)$, and $S(1, q)$ is an optimal solution. Since there are $O\left(q^{2}\right)=O\left(n^{2}\right)$ subproblems and $O(q)=O(n)$ candidate values for z in each subproblem, the resulting Dynamic Programming algorithm solves the problem in $O\left(n^{3}\right)$ time. This completes the proof of Theorem 5.1.

Theorem 5.1 and the associated algorithm can be extended in the following way. A graph $G=(V, E)$ is a circular arc graph [13] if there exists a set $\{\phi(v) \mid v \in V\}$ of closed arcs of the unit circle, such that two vertices u and v are adjacent in G if and only if the two corresponding arcs $\phi(u)$ and $\phi(v)$ have nonempty intersection. Call a clique K of G a Helly clique if $\cap_{v \in K} \phi(v)$ is nonempty.

Corollary 5.4 For any circular arc graph G, and any value-polymatroidal function f on $V(G)$ given by a value oracle, we can compute an optimum partition into Helly cliques in time $O\left(n^{3}\right)$.

Proof Let X be the set of endpoints of the $\operatorname{arcs} \phi(v)$, (as in Theorem 5.1). For $i, j \in X$, let $\mathcal{I}[i, j]$ be the set of arcs contained in the portion of the circle in clockwise order between i and j. Note that after removing any maximal Helly clique, the remaining arcs are contained in some set $\mathcal{I}[i, j]$. Compute all $O\left(n^{2}\right)$ values as in Theorem 5.1. Compute the best maximal Helly clique afterwards.

On the other hand, we have the following negative result:
Theorem 5.5 [2] [PCliqW] is NP-hard even if G is an interval graphs and f is a polymatroid cost (even if f is given by a rooted-TSP on a tree).

Rooted-TSP on trees Let $T=(W, A)$ be a tree, $l: A \rightarrow \mathbb{N}$ and $r \in W$ be the root of T. For $U \subseteq W$, let $A(U)$ be the set of arcs spanning $U+r$ and $f(U):=2 \sum_{a \in A(U)} l(a)$. The function f is called a rooted-TSP cost since it is the cost of visiting all nodes in $U \subseteq V$, moving along edges of A, starting and finishing the tour from node r (see Figure 3). Such a cost function can easily be shown to be polymatroidal ${ }^{1}$. Complementing Theorem 5.5, [2] gave a 2 -approximation for [PCliqW] when G is an interval graphs and f is rooted-TSP on a tree. This has applications in vehicle routing problems with time windows (where the length $l(a)$ represents a travel cost and we assume that the traveling times are negligible compared to the size of the time windows [9]).

[^1]

Figure 3: A rooted tree with a length function $l: A \rightarrow \mathbb{R}$. The cost associated with a subset $U \subseteq V$ is the length of the arcs spanning $U+r$. For example $f(\{a\})=4, f(\{a, b, f\})=12$ and $f(\{c, d, e, f\})=16$.

6 Partition into cliques in split graphs

One may wonder if Proposition 2.2 could be applied in more general graphs than interval graphs. A property of interval graphs which is used to prove polynomiality in Theorem 5.1 is that they have a polynomial number of maximal cliques. In this section, we illustrate that this property is not sufficient to ensure polytime solvability of [PCliqW] restricted to value-polymatroidal costs.

A graph $G=(V, E)$ is a split graph if V can be partitioned into two sets S and K such that S is a stable set and K is a clique. Notice that split graphs have a polynomial number of maximal cliques (at most $|S|+1$). However, [maxcoloring] and [probabilist coloring] are (strongly) NP-hard in split graphs ([3, 8] and [7] respectively). Since the class of split graphs is self-complementary, [PCliqW] is also NP-hard if we restrict to maximum or probabilist cost functions. Moreover, Yannakakis and Gavril [18] proved that the maximum q-chromatic subgraph problem is NP-hard for split graph. Unsurprisingly then, Greene-Kleitman's relation doesn't hold for split graphs [5]. However, the "dual problem", that is [PCliqW] with $f(U):=\min \{q,|U|\}$ is trivial. If $q=1$ this is equivalent to find a partition of G into a minimum number of cliques. If $q \geq 2$, we may assume $\omega(G)=|K|$ (in general, the bipartition (S, K) of a split graph is not unique). Then the partition consisting of all elements of S alone and all vertices of K together in a unique class is optimal. This fact however, does not extend to size-defined cost functions.

Theorem $6.1[P C l i q W]$ is strongly NP-hard even if we restrict G to be a split graph and f to be size-defined and value-polymatroidal.

Proof We reduce the NP-complete problem [X3C] to [PCliqW].

[X3C] Exact three-set cover

INPUT : A finite set X of size $3 m$ and a set T of triples of X.
OUTPUT : Does there exists a partition of X into m elements of T ?
Given an instance of [X3C], build the split graph $G=((T, X), E)$ where $G[T]$ is a stable set and $G[X]$ a clique and $(t, x) \in E$ iff $x \in t$. Let $\psi(0):=0, \psi(1):=\alpha=$ $m+1$ and $\psi(i):=\beta=m+2$ for all $i \geq 2$. We claim that there is a partition of cost not exceeding $m \beta+(|T|-m) \alpha$ if and only if X has a partition into triples of T. A partition into triples yields such a cost. Now, assume that X has no partition into triples. Since T induces a stable set, any partition of $V(G)$ into cliques contains at least $|T|$ classes. Those partitions which consist in exactly $|T|$ cliques, are of cost at least $(m+1) \beta+(|T|-(m+1)) \alpha>m \beta+(|T|-m) \alpha$. Those consisting in at least $|T|+1$ cliques are of cost at least $(|T|+1) \alpha>m \beta+(|T|-m) \alpha$.

7 ILP formulation and min-max formula for [PCliqW]

Seen as a partition problem, $[\mathrm{PCliqW}]$ can be formulated as an integer linear program, with variables y in $\mathbb{R}^{\mathcal{C}(G)}$ (where $\mathcal{C}(G)$ is the set of cliques of G):
(i) $\min f^{T} y$
(ii) $\quad \sum_{C \ni v} y_{C}=1$ for all $v \in V$
(iii) $\quad y_{C} \in\{0,1\}$ for all $C \in \mathcal{C}(G)$

Clearly, if f is non-negative, there is no advantage in taking $y_{C}>1$. Therefore, $y_{C} \in\{0,1\}$ can be replaced by $y_{C} \geq 0$ and $y_{C} \in \mathbb{Z}$. Also, if f is non-decreasing, (13) (ii) can be replaced by $\sum_{C \ni v} y_{C} \geq 1$ (if $y_{A}=y_{B}=1, A, B \in \mathcal{C}(G)$ and $A \cap B \neq \emptyset$ then $B \backslash A$ is still a clique of G and we can reset $y_{B}:=0$ and $\left.y_{B \backslash A}:=1\right)$.

If f is non-negative and non-decreasing, the dual of the linear relaxation of (13) can therefore be written as maximizing $\mathbf{1}^{T} x$ subject to ${ }^{2}$:
(i) $\quad \sum_{v \in C} x_{v} \leq f(C)$ for all $C \in \mathcal{C}(G)$
(ii) $\quad x_{v} \geq 0$ for all $v \in V(G)$

If G is perfect and $f \equiv 1,(14)$ is TDI. Also if G is complete and f is submodular, (14) is box-TDI. So in both cases, (14) yields a min-max formula for [PCliqW].

[^2]But there are other famous cases where (14) yields a min-max formula. GreeneKleitman's theorems can be restated in the following terms: if G is a comparability graph or the complement of such a graph and if f is the rank function of a uniform matroid, system (14) is TDI. Alternatively, Greene-Kleitman's theorems can stated as the box-TDIness of (14) if G is (co)-comparability and $f \equiv 1$ [5]. Note that cliques of the line-graph of a bipartite graph G correpond to subsets of $\delta(v)$ (the set of edges incident with v), for some $v \in V(G)$. Now, a common generalization of the polymatroid intersection theorem, of Dilworth's truncation and of min-max relations for bipartite b-matching can be stated as box-TDIness of (14) if G is the line-graph of a bipartite multigraph and f is submodular. More precisely we have (see section 48.3 of [17] for an idea of the proof and Chapter 60 for extensions),

Theorem 7.1 (Submodular bipartite matchings polyhedron) [16]
Let $G=((A, B), E)$ be a bipartite multi-graph and for all $v \in A \cup B$ let f_{v} be a submodular function on $\delta(v)$, then the following system is box-TDI
(15) $\sum_{e \in F} x_{e} \leq f_{v}(F)$ for all $v \in A \cup B$ and $\emptyset \neq F \subseteq \delta(v)$

In view of these results, it seems reasonable to expect system (14) to provide other min-max relations for [PCliqW]. However, the linear relaxation of (13) does not always have an integral optimal solution, even if G is an interval graph and f is a value-polymatroidal set function as shown in Figure 4 (other examples for which G is perfect, f is a submodular but the linear relaxation of (13) has no integral optimal solution are provided in [16]).

Figure 4: Let f be the max-batch cost defined by p. An optimal solution to the linear relaxation of (13) is given by $y_{C}=1 / 2$ if $C \in$ $\{\{v\},\{b, v\},\{a, b, c\},\{a, d, e\},\{c, d\},\{e, w\},\{w\}\}$ and $y_{C}=0$ otherwise. The cost of this fractional partition is $13 / 2$. Optimality can be checked using an x maximizing $\mathbf{1}^{T} x$ subject to (14), for instance $x(a):=3 / 2, x(c)=x(d):=1 / 2$ and $x(b)=x(e)=x(v)=x(w):=1$.

8 Conclusion and extension

Although we were able to compute an optimum solution for [PCliqW] when G is an interval graph and f is value-polymatroidal, we were unable to complement this result by a min-max formula. This issue could be linked with the following extension: consider the problem of multi-partition into cliques, that is, generalize the ILP (13) by replacing constraints (ii) by $\sum_{C \ni v} y_{C}=d_{v}$, where $d_{v} \in \mathbb{N}$ is the covering demand associated to vertex v. The complexity of this problem is left open and, to the best of our knowledge, is beyond the scope of our dynamic program. A polytime algorithm for this last problem might shed new light on the structure of interval graphs and therefore be useful to solve various problems on interval graphs.

Acknowledgment: This research was supported by the Netherlands Organization for Scientific Research, and by the ADONET network of the European Community, which is a Marie Curie Training Network.

References

[1] N. Alon, A. Orlitsky: Source coding and graph entropies. IEEE Trans Inform Theory 42, (1996) 1329-1339.
[2] L. Becchetti, P. Korteweg, A. Marchetti-Spaccamela, M. Skutella, L. Stougie, A. Vitaletti: Latency contrained aggregation in sensor networks. Workshop of Combinatorial Optimization, Aussois (2006).
[3] M. Boudhar: Dynamic Scheduling on a Single Batch Processing Machine with Split Compatibility Graphs. J. of Mathematical Modelling and Algorithms 2, (2003) 17-35.
[4] P. Brucker, S. Knust: Complexity results of scheduling problems. www.mathematik.uni-osnabrueck.de/research/OR/class/
[5] K. Cameron: A min-max relation for the partial q-colourings of a graph. II: Box perfection. Discrete Math. 74, 1-2, (1989) 15-27.
[6] J. Cardinal, S. Fiorini, G. Joret: Minimum entropy coloring. ISAAC, LNCS 3827, (2005) 819-828.
[7] F. Della Croce, B. Escoffier, C. Murat, V. Th. Paschos: Probabilistic Coloring of Bipartite and Split Graphs. ICCSA'05, LNCS 3483, (2005) 202-211 (see also Cahiers du Lamsade No. 218)
[8] M. Demange, D. de Werra, J. Monnot, V.T. Paschos: Time slot scheduling of compatible jobs. Cahiers du Lamsade No. 182, (2001), (accepted in Journal of Scheduling).
[9] E. Desgrippes: Coordination entre la production et la distribution dans une chaîne logistique. Laboratoire GILCO - Grenoble, (2005).
[10] J. Edmonds, R. Giles: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, (1977) 185-204.
[11] B. Escoffier, J. Monnot, V. Th. Paschos: Weighted Coloring: Further Complexity and Approximability Results. ICTCS, (2005) 205-214.
[12] G. Finke, V. Jost, M. Queyranne, and A. Sebő: Batch processing with interval graph compatibilities between tasks. Cahier du Leibniz No. 108, Laboratoire Leibniz-IMAG, Grenoble, (2004), (accepted in Discrete Applied Mathematics).
[13] M.C. Golumbic: Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
[14] D. J. Guan and Xuding Zhu: A Coloring Problem for Weighted Graphs. Inf. Process. Lett. 61, 2, (1997) 77-81.
[15] Y.T. Herer, M. Penn: Characterizations of natural submodular graphs: A polynomially solvable class of the TSP. Proc. Am. Math. Soc. 123, 3, (1995) 673-679.
[16] V. Jost: Ordonnancement chromatique: Polyèdres, Complexité et Classification. Ph.D. Thesis, Laboratoire Leibniz-IMAG - UJF - Grenoble, 2006.
[17] A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
[18] M. Yannakakis, F. Gavril: The maximum k-colorable subgraph problem for chordal graphs. Inf. Process. Lett. 24, (1987) 133-137.

[^0]: *Dep. of Operations Research, EGRES, Eötvös Lorand University, Pázmány Peter Setany. 1/C, 1117 Budapest, Hungary, dion.gijswijt@gmail.com
 ${ }^{\dagger}$ CNRS, laboratoire Leibniz-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France \{vincent.jost, maurice.queyranne\}@imag.fr

[^1]: ${ }^{1}$ In fact, several characterizations of the graphs for which rooted TSP costs are polymatroidal for all edge length can be found in [15]. Based on [15], Jost [16] characterized these graphs as the graphs without $K_{2,3}$ minors.

[^2]: ${ }^{2} \mathrm{An}$ interpretation of system (14) within the framework of cooperative game theory with cooperation restricted to the cliques of a graph is described in [16].

