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ABSTRACT

Conservative discretizations of two��uid �ow problems generally exhibit pressure oscillations� In this work we

show that these pressure oscillations are induced by the loss of a pressure�invariance property under discretiza�

tion� and we introduce a non�oscillatory conservative method for barotropic two��uid �ows� The conservative

formulation renders the two��uid �ow problem suitable to treatment by a Godunov�type method� We present a

modi�ed Osher scheme for the two��uid �ow problem� Numerical results are presented for a translating�interface

test case and a shock�interface�collision test case�

���� Mathematics Subject Classi�cation �	M�
� ��N��� ��T
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�� Introduction

Flows of two immiscible contiguous �uids occur in a multitude of physical sciences and engineering
applications� e�g�� water underlying air in ship hydrodynamics� gaseous bubbles in cavitating liquids
and fumes in petrolea� Such two��uids can be construed as a single medium sustaining a discontinuity
at the interface� In the absence of viscosity� a two��uid �ow is then described by a system of hyperbolic
conservation laws� The numerical treatment of two��uid �ows as hyperbolic conservation laws is
referred to as interface capturing � For examples of interface capturing see� for instance� Refs� ��� ��� ��	�
A common objection to conservative interface capturing is the occurrence of so�called pressure os�

cillations � These pressure oscillations expose the loss of certain invariance properties of the continuum
problem under discretization� Several correctives have been proposed to avoid pressure oscillations�
e�g�� 
locally� non�conservative discretization methods ��� ��� �� ��	� correction methods ���	 and the
ghost�uid method ��	� For an overview of these correctives� and of their merits and de�ciencies� see ��	
and� for homentropic �ows� Ref� ���	�
It is commonly assumed that the loss of the aforementioned invariance properties is inherent to any

conservative formulation� see� e�g�� Refs� ��� ��	� However� since the invariance properties are intrinsic
to the continuum equations� irrespective of their form� we conjecture that it is possible to devise
conservative numerical schemes that inherit the necessary invariance properties�
The interface�capturing approach requires that the employed numerical techniques remain robust

and accurate in the presence of discontinuities� If one adheres to the conservative form of the equations�
then Godunov�type schemes ��	 are particularly useful in these circumstances� Such schemes can be
suitably combined with �nite volume methods and with discontinuous Galerkin �nite element methods�



�

For �nite volume methods� the schemes can be implemented with higher�order limited interpolation
methods� to achieve accuracy and secure monotonicity preservation in regions where large gradients
occur 
see� e�g�� Refs� ��� ��	�� For discontinuous Galerkin methods� accuracy and monotonicity
preservation can be obtained by appropriate hp�adaptivity 
see� e�g�� Refs� ��� ��	� and stabilization�
The present work considers the interface�capturing approach to solving two��uid �ow problems� We

investigate the pressure oscillations that are commonly incurred by discrete approximations of two��uid
�ow problems� and we present a non�oscillatory� conservative method for barotropic �uids� Moreover�
we set up a modi�ed Osher�type �ux�di�erence splitting scheme for the approximate solution of the
two��uid Riemann problems�
The contents are organized as follows� Section � presents the governing equations for two��uid

�ows� In Section  we examine the pressure�oscillation phenomenon and we propose a non�oscillatory
conservative formulation� Section � presents the modi�ed Osher scheme for barotropic two��uids�
Numerical experiments and results are reported in Section �� Section � contains concluding remarks�

�� Two�Fluid Flows

The basic notion underlying the interface capturing method� is that a �ow of two contiguous� inviscid
compressible �uids can be construed as a �ow of a single medium sustaining a discontinuity at the
interface� In this section we derive the two��uid Euler equations from the Euler equations for the
separate �uids and the interface conditions�

��� Conservation Laws

We consider �ows of two contiguous inviscid compressible �uids� For convenience� we arbitrarily
designate one of the �uids as the primary �uid and the other as the secondary �uid� For our purposes�
it su�ces to consider a single spatial dimension� We refer to the corresponding spatial coordinate
as x and to the temporal coordinate as t� The �uids occupy an open bounded space�time domain
� � f
x� t� � R

�g� which is the union of the disjoint open sets �p and �s� containing the primary
and secondary �uid� respectively� and the interface � �� �p � �s 
the overbar denoting closure�� see
Figure ��

�p�p n �p
�s �s n �s

�

t

x

Figure �� The space�time domain � �� �p � �s � ��

In both �uids the �ow is characterized by the state variables � � � �� R� and v � � �� R� repre�
senting density and velocity� respectively� To facilitate the presentation of the governing equations�
we introduce the notation�

q ��

�
�
�v

�
� and f 
q� ��

�
q�

q���q� � p

�
� 
����

where p refers to the pressure� Eq� 
���� must be furnished with equations of state for the primary
and secondary �uid� Under the assumption that the �uids are barotropic 
see� e�g�� Ref� ���	�� these
equations of state have the form p �� pp
�� and p �� ps
��� In a proper functional setting� conservation
of mass and momentum in the �uids is expressed by the variational statementZ

�

wt �q�wx � f
q� dx dt � � � �w �
�
C��

�
�p � �s

���
� 
����



�� Two�Fluid Flows �

where C��
�
G� denotes the space of functions that have continuous partial derivatives of all orders

k � �� �� �� � � � and that have compact support in G�
Eq� 
���� combines the weak formulation of the Euler equations for the primary and secondary

�uid� We note that
�
C��

�
�p � �s

���
�
�
C��

�
�p�

��
	
�
C��

�
�s

���
� This implies that the variational

statement 
���� ensures conservation of mass and momentum in each of the �uids separately�

��� Interface Conditions

To present the interface conditions for the two��uid �ow� we de�ne


x� t�� �� lim
���


x
 �� t� � 
x� t� � � � 
���

i�e�� 
x� t�� and 
x� t�� are at the interface in the primary and secondary �uid� respectively� The
interface conditions for the two��uid �ow prescribe that the velocity and pressure are continuous
across the interface� In particular�

v
����x�t��
�x�t��

� � � 
x� t� � � � 
���a�

p
����x�t��
�x�t��

� � � 
x� t� � � � 
���b�

Eq� 
���b� is referred to as the dynamic condition� Furthermore� the interface motion must comply
with a kinematic condition� To express this kinematic condition� we identify the interface by a level
set�

� �� f
x� t� � � � �
x� t� � �g �

with � � C�
�� a suitably chosen function� We assume that �
�p� � � and �
�s� � �� The kinematic
interface condition is stated�

�t � v �x � � � 
x� t� � � � 
���c�

Eq� 
���c� implies that the interface moves with the local �ow velocity and thus ensures immiscibility�
Recall that the velocity at the interface is uniquely de�ned by virtue of 
���a��

��� Two�Fluid Euler Equations

To formulate the two��uid Euler equations� it is important to note that the interface conditions 
����
imply that the Rankine�Hugoniot condition for discontinuities in hyperbolic systems 
see� for instance�
Ref� ���	� is satis�ed at the interface�

s
�
q
x� t�� � q
x� t��

�
� f

�
q
x� t��

�
� f
�
q
x� t��

�
� 
x� t� � � � 
����

with s the shock speed� In particular� for the interface� s � v
x� t� for 
x� t� � �� The variational
statement 
���� subject to 
���� is equivalent toZ

�

wt �q�wx � f
q� dx dt � � � �w �
�
C�� 
��

��
� 
����

Note that the functions w in 
���� can have support across the interface� in contrast to 
�����
The equivalence between 
���� and 
���� on the one hand and 
���� on the other hand can be proved

by partitioning w into a contribution w� with support on a compact set �� that collapses onto the
discontinuity as � � �� e�g�� �� �� f
x � �	� t� � 
x� t� � ���� � 	 � �g� and a remainder� Separation



�

of the integration interval and integration by parts yield� successively�Z
��

w�
t �q�w�

x � f 
q� dx dt �

Z
����p

w�
t �q�w�

x � f 
q� dx dt �

Z
����s

w�
t �q�w�

x � f
q� dx dt

�

I
������p�

w� � 
qnt � f 
q�nx� d	 �

I
������s�

w� � 
qnt � f
q�nx� d	 � as �� � � 
����

with nt and nx the components of the unit normal vectors on the corresponding boundaries� Volume
integrals in the �nal expression in 
���� vanish as � � �� By virtue of the compact support of w� in
��� 
���� is identical toZ

�

w� �
��
q
x� t�� � q
x� t��

�
nt �

�
f
�
q
x� t��

�
� f
�
q
x� t��

��
nx

	
d	 � 
����

as � � �� with nt and nx the components of the unit normal vector on �� The interface velocity
satis�es s � �nt�nx� The equivalence then follows straightforwardly from 
�����
�����
To obtain a conservative formulation of the two��uid Euler equations� we must replace the noncon�

servative� advective form of the kinematic condition 
���c� by a conservative equivalent� Under the
conditions imposed by 
����� an appropriate replacement for 
���c� is�Z

�


t �g
�� � 
x �g
�� v dx dt � � � �
 � C�� 
�� � 
���a�

with � �� g
�� a strictly monotone map with the property that for all 
 � C�� 
�� and for all admissible

�� �v� there exists a w � C�� 
�� such thatZ

�

wt�� wx �v dx dt �

Z
�

�

t g
�� � 
 g�
�� �t

�
��

�

x g
�� � 
 g�
�� �x

�
�v dx dt � 
���b�

If g is a C� map then 
g
�� � C�
�� and the identity 
���b� follows by setting w � 
g
�� and
invoking partial di�erentiation� However� even if g is less regular� e�g�� piecewise C�� then the
condition can still be satis�ed if the derivatives are understood in a generalized sense� To establish
that 
���� and 
���a� imply 
���c�� we note that by 
���� and 
���b�Z

�


t �g
�� � 
x �g
�� v dx dt�

Z
�


x �g
�
��

�
�t � v �x

�
dx dt � � � �
 � C�� 
�� � 
�����

By virtue of 
���a�� the integrals in 
����� must vanish separately� Therefore� Eq� 
���� and 
���a�
imply 
���c� weakly�
To conclude the setup of the two��uid Euler equations� we note that the interface conditions 
����

are identical to the continuity conditions for contact discontinuities� see� e�g�� Refs� ���� ��	� Therefore�
the two��uid �ow problem can be condensed into the variational statementZ

�

wt �q�wx � f
q� dx dt � � � �w �
�
C�� 
��

�	
� 
����a�

where

q ��



� �

�v
�g
��

�
A � and f
q� ��



� q�
q���q� � p
q	q��q�

�
A � 
����b�

with the provision that � can only change sign across a contact discontinuity� i�e�� that the interface
coincides with a contact discontinuity� In x��� we shall show that 
����� indeed complies with the
latter requirement�



�� Pressure Oscillations �

Eq� 
����� must be equipped with an equation of state of the form p �� p
�� �� with the property�

p
�� �� ��


pp
�� if � � ��

ps
�� if � � ��

�����

One may note that in 
������
������ � only acts as an intermediary between g and p� Therefore� �
does not have to appear explicitly in the formulation�

�� Pressure Oscillations

A common objection to interface capturing is the occurrence of pressure oscillations � These pressure
oscillations expose the loss of the pressure�invariance property of the continuum problem under dis�
cretization� Below� we exemplify the pressure oscillations and we derive a pressure�invariance condition
for discrete approximations to two��uid �ow problems� Furthermore� we construct a non�oscillatory
conservative discretization for barotropic two��uid �ows�

��� Exempli�cation

The ensuing exempli�cation has appeared in similar form in� e�g�� Refs� ��� ��� ��	 and is merely included
here for completeness�
To illustrate the pressure oscillations that are generally incurred by conservative discretizations of

two��uid �ow problems� we consider 
����� on � �� L 	����� with L an open bounded subset of R�
We assign g as the primary volume fraction� In particular� this implies

g
�� ��


� if � � ��

� otherwise �

���

The equation of state is speci�ed accordingly as

�
p� �� � g
���p
p� �
�
�� g
��

�
�s
p� � 
���

with �p
p� and �s
p� the equations of state for the primary and secondary �uid� In fact� 
��� provides
a de�nition of the volume fraction in terms of p and �� see also x�� We allude to the fact that � can
be removed from the formulation and we suppress the dependence of g on � below�
The spatial interval L is subdivided into open intervals Lj ��	xj � xj��� with j � �� � � � � n and 
������
���

is supplemented with the initial conditions

�
x� �� � ��j � v
x� �� � V � g
x� �� � g�j � x �	xj � xj��� � j � �� � � � � n � 
�a�

with V an arbitrary positive constant and ��j and g�j constants such that

��j � g�j �p
P � � 
�� g�j � �s
P � � 
�b�

for some constant P � The equations 
������
�� represent a two��uid �ow in which the velocity v is
uniform and in which the density � and the primary volume fraction g are such that the pressure p is
uniform as well�
The obvious solution to 
������
�� is given by

q
x� t� � q
x� V t� �� � 
���

The pressure p
x� t� corresponding to 
��� follows from the equation of state�

�
x� t� � g
x� t� �p
p
x� t�� �
�
�� g
x� t�

�
�s
p
x� t�� � 
���



�

By 
����
����

�
x� V t� �� � g
x� V t� �� �p
p
x� t�� �
�
�� g
x� V t� ��

�
�s
p
x� t�� � 
���

and it follows that p
x� t� � P � In conclusion� if the initial velocity and pressure are uniform� then
the pressure is invariant under 
������
To illustrate the loss of the pressure�invariance property� we consider the discretization of 
������


�� on the grid f
xj � tk� � j � �� � � � � n� k � �� �� � � �g 
t� � � and tk � tk��� by means of the
discontinuous Galerkin �nite element method with piecewise constants�

qk��j � qkj

tk�� � tk
�
f
�
qkj �q

k
j��

�
� f
�
qkj���q

k
j

�
xj�� � xj

� � � k � �� �� � � � � 
���

This discretization is in fact identical to a �rst�order forward Euler �nite volume discretization� We
specify the initial conditions q�j � 
��j � �

�
jV� �

�
jg

�
j �
T � conform 
��� In 
���� f

�
qkj �q

k
j��

�
refers to the

numerical �ux 
see� e�g�� Ref� ��	� between the elements Lj and Lj��� The grid function qkj is a
piecewise constant approximation to q
x� tk� according to 
��� in the interval Lj �
The states q�j and q

�
j�� 
j � �� � � � � n��� are connected by a contact discontinuity with velocity V �

The corresponding Godunov �ux becomes�

f
�
q�j �q

�
j��

�
� V



� ��j
��jV
��jg

�
j

�
A�



��
P
�

�
A � 
���

Expression 
��� is also valid for any approximate Riemann solver that features an exact representation
of contact discontinuities� such as Osher�s scheme� From Eqs� 
����
��� it follows that

q�j � q�j � C
�
q�j � q�j��

�
� 
��a�

with

C �� V 
t� � t���
xj�� � xj� � 
��b�

the local CFL�number � From Eqs� 
��� and 
�b� we obtain� successively�

��j � ��j � C
�
��j � ��j��

�
� g�j �p
P � �

�
�� g�j

�
�s
P � � 
���a�

with

g�j �� g�j � C
�
g�j � g�j��

�
� 
���b�

Comparing 
���� to 
�b�� we infer that a necessary and su�cient condition for pressure invariance
of the discrete approximation is g�j � g�j � However� conversely� from 
�b� and 
��� we obtain

g�j �

�

�� C�
g�j �

� � C
g�j���
�
	
�p �

�

�� C�g�j 
�� g�j � � Cg�j��
�� g�j���

	
�s�

g�j � C
g�j � g�j���
	
�p �

�
��

�
g�j � C
g�j � g�j���

�	
�s

� 
����

with �p�s �� �p�s
P �� In general� g�j �� g�j and� hence� the discrete approximation from 
��� lacks
the pressure�invariance property of the continuum equations 
������ Trivial exceptions are� C � �

� q�j � q�j �� C � � 
� q�j � q�j���� g

�
j � g�j�� 
� q�j � q�j��� and �p � �s�

It is noteworthy that if 
�g�t � 
�gv�x � � in 
����� is replaced by

gt � vgx � � � x � L� t � � � 
����

then� subject to the initial conditions 
��� the �rst order forward Euler discretization yields

g�j � g�j � C
g�j � g�j��� � 
���

Hence� g�j � g�j � and pressure invariance is maintained� However� Eq� 
���� is in non�conservative
form� The pressure invariance is in this case achieved at the expense of the conservative form of the
equations�



�� Pressure Oscillations �

��� Pressure�Invariance Condition

The implications of the above exempli�cation are restricted� The analysis does not imply that pres�
sure oscillations are inherent to conservative discretizations of two��uid �ow problems� It merely
implies that discrete approximations to two��uid �ow problems do not necessarily inherit the pressure�
invariance property of the continuum equations�
To avoid pressure oscillations� discrete approximations of two��uid �ow problems must comply with

a pressure�invariance condition� This condition is also mentioned in Ref� ���	 in the context of a
not�strictly�conservative method for multi��uid �ows with a sti�ened�gas equation of state� Below we
formulate the pressure�invariance condition for strictly conservative hyperbolic systems conform 
������
provided with an equation of state of the form p
�� ��� We do not yet attach a speci�c connotation to
g�
The pressure�invariance condition for discretizations of 
����� is stated� If vkj � V � with V a

constant� and �kj and �kj satisfy

p
�kj � �
k
j � � P � 
���a�

for some constant P � then p is invariant under the characteristic mapping of the discretization� i�e��

p
�
�k��j � �k��j � � P � 
���b�

In fact� g�j � g�j with g�j according to Eq� 
���b� is an implementation of the pressure�invariance
condition for an equation of state conform 
��� and the �rst order forward Euler discretization 
����

��� A Non�Oscillatory Conservative Scheme

To set up a pressure�invariant discretization for two��uid �ow problems� we consider two distinct
compressible �uids with barotropic equations of state �p
p� and �s
p�� For given density and pressure�
the primary volume fraction � is implicitly de�ned by

�
x� t� � �
x� t��p
p
x� t�� � 
�� �
x� t���s
p
x� t�� � 
����

Under the assumption �p
p� �� �s
p�� Eq� 
���� uniquely de�nes �� However� � does not appear in
our �nal formulation and we do not rely on its unicity�
We also require the primary and secondary partial densities� de�ned as�

��p �� ��p � and ��s �� 
�� ���s � 
����

respectively� In terms of these partial densities� conservation of mass� for each �uid separately� is
expressed by


��p�t � 
��pv�x � � � and 
��s�t � 
��sv�x � � � 
����

Furthermore� the compound density satis�es � � ��p � ��s� Hence� if we assign g as the primary mass

fraction�

g �� ��p�� � 
����

then conservation of mass� for each of the �uids separately� and conservation of momentum can be
condensed into the form 
������
The compound equation of state associated with g according to 
���� is implicitly given by

�g � ��p
p� � 
���a�

�� �g � 
�� ���s
p� � 
���b�



�

Eq� 
���� follows from �g � ��p and � � �g � ��s and 
����� Elimination of � yields the convenient
form

�

�
�

g

�p
p�
�

�� g

�s
p�
� 
����

The �rst order forward Euler discretization of 
����� with the equation of state 
���� or 
����
satis�es the pressure�invariance condition� To corroborate this assertion� we note that if vkj � V and

p
�
�kj � g

k
j

�
� P � i�e��

�kj g
k
j � �kj �p
P � � 
���a�

�kj � �kj g
k
j � 
�� �kj ��s
P � � 
���b�

for all j � �� � � � � n� then the forward Euler discretization 
��� with the numerical �ux 
��� yields

�k��j � �kj � C
�
�kj � �kj��

�
� 
���a�

�k��j gk��j � �kj g
k
j � C

�
�kj g

k
j � �kj��g

k
j��

�
� 
���b�

with C de�ned by 
��b�� From 
�����
���� it follows that

�k��j gk��j � �k��j �p
P � � 
��a�

�k��j � �k��j gk��j � 
�� �k��j ��s
P � � 
��b�

with

�k��j �� �kj � C
�
�kj � �kj��

�
� 
��c�

The equation of state 
���� thus yields p
�k��j � gk��j � � P �
Summarizing paragraphs ����� we conclude that if g represents the primary volume fraction and

the equation of state is speci�ed accordingly as 
���� then the discretization does not comply with
the pressure�invariance condition� In contrast� if g is the primary mass fraction and the equation of
state is given by 
����� then the pressure�invariance condition is satis�ed�

�� A Modified Osher Scheme for Two�Fluids

By virtue of its conservative form� the pressure�invariant formulation from x� is ideally suited to
treatment by Godunov�type methods� To avoid the computational expenses of solving the associated
Riemann problems� below we set up an approximate Riemann solver for the two��uid �ow problem�
The approximate Riemann solver is of Osher type� As a digression� we show that the interface indeed
appears as a contact discontinuity� both in the exact Riemann solution and in the rarefaction�waves�
only approximation that underlies Osher�s scheme�
The choice of the approximate Riemann solver does not a�ect the pressure invariance� the invariance

is ensured by the speci�c choice 
���� for g and the corresponding equation of state 
����� Any other
approximate Riemann solver could have been selected here�

	�� The Two�Fluid Riemann Problem

We consider 
����� provided with an equation of state of the form p �� p
�� g�� e�g�� Eq� 
����� The
formal dependence of g on � in 
����� can be ignored� The corresponding Riemann problem is de�ned
on the half�space � �� f�� � x � �� � � t � �g and is obtained by imposing the discontinuous
initial conditions

q
x� �� ��


qL if x � ��

qR otherwise�

����
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for certain constant left and right states qL and qR�
The properties of the Riemann problem and its solution are classical� see� e�g�� ���	� This paragraph

serves to collect the essentials for the ensuing presentation and contains the speci�cs for the two��uid
�ow problem�
To obtain the Riemann solution for the two��uid Euler equations� we need the Jacobian of f 
q��

A
q� ��
�f
q�

�q
�



� � � �
�
q�� � c��q	��q

�
� � c�� �q��q� c���q�

�q	q��q
�
� q	�q� q��q�

�
A � 
���a�

with

c�
�� g� ��
p
�p
�� g���� � and c�
�� g� ��

p
�p
�� g���g � 
���b�

Its eigenvalues are


� �� q��q� � c� � 
� �� q��q� � and 
	 �� q��q� � c� � 
���

and the corresponding eigenvectors are

r� ��



� �
q��q� � c�
q	�q�

�
A � r� ��



� q�

q�
�
c��c��

�q�� � q	

�
A � and r	 ��



� �
q��q� � c�
q	�q�

�
A � 
����

The eigenpairs 

k � rk� are genuinely nonlinear for k � ��  and linearly degenerate for k � �

cf� Ref� ���	 for a de�nition of these classi�cations�� The genuinely nonlinear eigenpairs are related
to rarefaction waves and shock waves� The linearly degenerate eigenpair corresponds to a contact
discontinuity�
For any admissible state qA we associate two paths in state space with each eigenpair� the k�shock

path and the k�rarefaction path� The k�shock path is de�ned as

Sk
qA� ��
�
q�R	 � s
q�qA�
q� qA�� f
q�� f
qA�� s
q�qA��
k
qA� as q�qA

�
� 
����

where s
q�qA� is referred to as the k�shock speed� The k�rarefaction path is de�ned as

Rk
qA� ��
�
q � R	 � q � h
	�� 	 � R

�
� 
���a�

with h
	� the solution to the ordinary di�erential equation

h�
	� � rk
h
	���
h
	�� � subject to h
�

k
qA�

�
� qA � 
���b�

with  �� �q
k
q��rk
q� for the genuinely nonlinear eigenpairs and  �� � for the linearly degenerate
eigenpair� Note that 
k
h
	�� � 	 for the genuinely nonlinear eigenpairs�
The Riemann solution can be constructed by means of the shock and rarefaction paths� The solution

is constant in four 
possibly empty� disjoint subsets of �� The constant states are denoted by qk�	�
k � �� �� �� � Furthermore� we set q� �� qL and q� �� qR� We refer to q��	 and q��	 as intermediate

states � By connecting each pair of consecutive states by either a shock or a rarefaction path� we can
connect q� to q�� The unique sequence of paths that satis�es 
k

�
q�k����	

�
� 
k

�
qk�	

�
if q�k����	

and qk�	 are connected by Sk and 
k
�
q�k����	

�
� 
k

�
qk�	

�
if q�k����	 and qk�	 are connected by

Rk corresponds to the Riemann solution� If 
k
�
q�k����	

�
� 
k

�
qk�	

�
then the shock and rarefaction

paths coincide and we opt for a rarefaction�path connection� This situation occurs for the contact
discontinuity�




�

Recalling that the Riemann solution assumes the similarity form q
x� t� � q
x�t� 
see� e�g�� Ref� ���	��
we obtain

q
x� t� �� q
x�t� �

�����
����
q� if x�t � ��� �

qk�	 if ��k � x�t � ��k �

hk
x�t� if ��k�� � x�t � ��k �

q� if x�t � ��	 �


���a�

where hk �� h according to 
���b� with qA �� q�k����	 and

��k �



k��
qk�	� � if 
k��
qk�	� � 
k��
q�k����	��

sk�� � otherwise�

���b�

��k �



k
qk�	� � if 
k
qk�	� � 
k
q�k����	��

sk � otherwise�

���c�

An example of the solution 
���� is presented in Figure ��

x

t

q� q�

q���

q���

h��x�t�

��� 
 ���q��

��� 
 ���q����
��� 
 ���

���q���� 
 ���q����

��� 
 ���

���q���� � ���q��

Figure �� Illustration of a two��uid Riemann solution� An expansion fan 
shaded� connects q� to q��	�
a contact discontinuity 
dashed� connects q��	 to q��	 and a shock discontinuity 
solid� connects q��	
to q��

	�� Riemann Invariants

To each k�rarefaction path corresponds a set of Riemann invariants� i�e�� functions which are invariant
on Rk� These Riemann invariants allow us to conveniently determine the intermediate states in
the rarefaction�waves�only approximation to the Riemann solution that underlies Osher�s scheme�
Moreover� by means of the Riemann invariants and a simple argument for shocks� we can show that
the interface indeed appears as a contact discontinuity 
cf� x����
Consider the eigenvectors 
����� A k�Riemann invariant for the two��uid Euler equations 
����� is

any continuously di�erentiable function �k � R	 �� R with the property

�q�k
q� �rk
q� � � � 
����

There are at most two such k�Riemann invariants with linearly independent partial derivatives� Note
that for the linearly degenerate eigenpair the eigenvalue is a Riemann invariant�
To derive the ��Riemann invariants� we �rst solve the system of ordinary di�erential equations

h
�
	� � rk
h
	�� � subject to h
�� � h

� � 
����
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with k � ��

h�
	� � 	 � h�� � 
����a�

h�
	� � h�
	�

�
h��
h��
�

Z h����

h��

c�
��

�
d�

�
� 
����b�

h	
	� � 
h�	�h
�
�� 	 � h�	 � 
����c�

with c�
�� �� c�
�
h�
��� h	
���h�
��

�
� The ��Riemann invariants can be obtained by constructing

	�independent functions of hj
	�� j � �� �� � The invariants thus obtained are presented in 
������
Note that by virtue of the similitude of r� and r	� the �Riemann invariants can be chosen identical
to the ��Riemann invariants with c� replaced by �c��
To derive the ��Riemann invariants� we solve 
���� for k � �� Obviously�

h�
	� � h��e
� � and h�
	� � h��e

� � 
�����

To determine h	
	�� we recall that c� and c� are de�ned by 
���b�� Therefore� Eq� 
���� yields

h�	D�p�D�p� h	D�p � � � 
�����

where Dj denotes di�erentiation with respect to the j�th argument� Moreover� from p �� p
h�� h	�h��
we obtain

dp

d	
� h��

�
D�p�

h	D�p

h��

	
� h�	

D�p

h�
� 
����

Eqs� 
������
���� imply that dp�d	 � �� i�e�� p is a ��Riemann invariant and h	
	� is implicitly
speci�ed by

p
�
h�
	�� h	
	��h�
	�

�
� p

�
h��� h

�
	�h

�
�

�
� 
�����

From 
������
����� we infer that p and q��q� are ��Riemann invariants� Indeed� the linearly degenerate
eigenvalue 
� �� q��q� is a ��Riemann invariant�
Summarizing� we can associate the following Riemann invariants with the two��uid Euler equa�

tions 
����� with an equation of state of the form p �� p
�� g��

��
� � v ��
�� g� �

�	
� � g �

��
� � v �

�	
� � p �

��
	 � v ��
�� g� �

��
	 � g �


����a�

where

�
�� g� ��

Z 	

	�

c�
�� g�

�
d� � 
����b�

with �� an arbitrary positive real constant�
It is important to note that g is a Riemann invariant for the genuinely nonlinear eigenpairs 
k � �� �

and that p and v are Riemann invariants for the linearly degenerate eigenpair 
k � ��� In the absence
of shocks� this implies that the change in g associated with the �uid transition at the interface can only
occur across the contact discontinuity and� moreover� that the interface conditions 
���� are indeed
satis�ed�
To demonstrate that g is also invariant across genuine 
non�degenerate� shocks� we note that

s 
�� �A� � �v � �AvA � s 
�gA � �AgA� � �gAv � �AgAvA � 
�����

for any constant gA� From 
���� and 
����� we can infer that there exist two shock paths on which g
is invariant� Moreover� the shock path and rarefaction path of the degenerate shock 
k � �� coincide�
Because g is not a ��Riemann invariant� g can vary on the ��shock path� Therefore� the shock paths
on which g is invariant must be the �� and �shock paths� These paths correspond to genuine shocks�
The invariance of g on the �� and �shock paths implies that the �uid transition at the interface cannot
occur across a genuine shock�




�

	�� Rarefaction�Waves�Only Approximation

In x��� it was shown that the intermediate states in the Riemann solution are connected by shock
and rarefaction paths� A rarefaction�waves�only approximation is obtained by replacing the shock
paths by rarefaction paths� Shock discontinuities in the Riemann solution are then approximated by
so�called overturned rarefaction waves � see� e�g�� Ref� ���	�
The intermediate states in the rarefaction�waves�only approximation can be conveniently determined

by means of the Riemann invariants� Supposing the approximate intermediate states  q�l����n and  ql�n
are connected by Rk�l�� with k � f�� �� g �� f�� �� g a bijection�

�mk�l�
�
 q�l����	

�
� �mk�l�

�
 ql�	

�
� l�m � �� ��  � m �� k
l� �

with  q� �� qL and  q� �� qR �

�����

Usual choices for the ordering of the paths are the O�variant k
l� �� � � l 
see Ref� ���	� and the
P�variant k
l� �� l 
see Ref� ��	�� The O�variant and the P�variant have mutually reversed orderings�
Throughout� we presume a P�variant ordering�
Eq� 
����� represents a system of nonlinear equations� from which the approximate intermediate

states  q��	 and  q��	 have to be extracted� Using the expressions for the Riemann invariants 
������
it is easy to show that the Jacobian matrix corresponding to 
����� is nonsingular� Therefore� by the
implicit function theorem� Eq� 
����� is indeed solvable�
To establish the accuracy of the approximate intermediate states from 
������ we recall from ���	

that the change in the k�Riemann invariants across a k�shock with strength � is O
�	� as �� �� with
the k�shock strength de�ned as the change in the eigenvalue 
k across the shock� It follows that for
su�ciently weak shocks� i�e�� if � �� supk
��	

�

k
q�k����	�� 
k
qk�	�

�
is su�ciently small� the error

in the approximate intermediate states is only O
�	� as well� Moreover� in the absence of shocks� the
approximation according to 
����� is even exact�
From 
����� and 
����� we obtain

 g��	 � gL �  g��	 � gR � and  v��	 �  v��	 ��  v��� � 
�����

and� in turn�

 v��� �

Z �	���

	L

c�
�� gL�

�
d� � vL � 
����a�

 v��� �

Z �	���

	R

c�
�� gR�

�
d� � vR � 
����b�

p
 ���	� gL� � p
 ���	� gR� � 
��  p����� 
����c�

For an equation of state of the form � �� �
p� g�� e�g�� Eq� 
����� these conditions for the intermediate
states can be cast in a convenient form� To derive this form� we use Eq� 
���b� and the transformation
� �� �
p� �� to obtain� successively�

Z 	b

	a

c�
�� g�

�
d� �

Z 	b

	a

�

�

s
�p
�� g�

��
d� �

Z pb

pa

�

�
p� g�

s
��
p� g�

�p
dp � 
�����

for any �a� �b � R� and corresponding pa� pb� Eqs� 
������
����� imply

Z �p���

pL

�

�
p� gL�

s
��
p� gL�

�p
dp�

Z �p���

pR

�

�
p� gR�

s
��
p� gR�

�p
dp � vL � vR � 
�����

Equation 
����� presents a concise condition for the intermediate pressure  p���� Once the intermediate
pressure has been extracted from 
������ the intermediate densities follow from the equation of state
and  v��� is obtained from 
����a� or 
����b� in a straightforward manner�
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It is noteworthy that 
����� is well suited to treatment by numerical approximation techniques�
In particular� the derivatives of the integrals with respect to  p���� which are required in Newton�s
method� are simply the integrands evaluated at  p���� Moreover� for a given approximation to  p����
the integrals can be evaluated by a standard numerical integration method 
see� e�g�� Ref� ���	��

	�	 The Modi�ed Osher Scheme

The numerical �ux in Osher�s scheme ���	� is determined by

fO
qL�qR� ��
�

�
f
qL� �

�

�
f
qR��

�

�

	X
l
�

dl � 
����a�

with

dl ��

Z �

�

��A�h
	���� �rk�l��h
	�� d	 � 
����b�

where h
	� refers to a parametrization of the section of the k
l��rarefaction path between  q�l����	 and
 ql�	 and

jA
q�j ��
�
r�� r�� r	

�
�diag

�
j
�j� j
�j� j
	j

�
�
�
r�� r�� r	

���
� 
����c�

with the eigenvalues and eigenvectors according to 
��� and 
����� their dependence on q being
suppressed for transparency� The numerical �ux 
����� approximates f
q
���� with q
x�t� the Riemann
solution in similarity form according to 
�����
From Eqs� 
����b��
����c� it follows that

dl �

Z �

�

sign
�

k�l�
h
	��

�
A
�
h
	�

�
�rk�l�

�
h
	�

�
d	 � 
����

If 
k�l� in 
���� does not change sign on the integration interval� then the integral evaluates to

dl � sign
�

k�l�
 q�l����n�

� �
f
 ql�n�� f 
 q�l����n�

�
� 
�����

whereas if 
k�l� changes its sign once� say at  q� 
i�e�� 
k�l�
 q�� � ��� then

dl � sign
�

k�l�
 q�l����n�

� ��
f
 q��� f 
 q�l����n�

�
�
�
f
 ql�n�� f
 q��

�	
� 
�����

Under the condition � � 
�
 q��	� � 
�
 q��	� � 
	
 q��	�� 
	
 q��� we can then derive three generic
cases

fO
qL�qR� �

���
��
f
 q�� if 
�
 q�� � � � 
�
 q��	��

f
 q��	� if 
�
 q�� � 
�
 q��	� � ��

f
 q�� � f
 q��	�� f
 q�� if 
�
 q�� � � � 
�
 q��	��


�����

Comparison to the corresponding f
q
��� shows that fO
qL�qR� is accurate in the �rst two cases� in
particular� the error is then O
�	�� and inaccurate in the third case� the error then being O
��� see
also �	� This failure of Osher�s scheme is exempli�ed by means of the Burgers equation in ���	�
To avoid the aforementioned de�ciency of Osher�s scheme� we propose a modi�cation of the scheme�

The rarefaction�waves�only approximation is maintained� However� the overturned�rarefaction�wave
representation of shocks in the approximate Riemann solution is avoided� Instead� the intermediate




�

states from 
������ with a presumed P�variant ordering of the subpaths� are used to construct the
approximate Riemann solution�

 q
x�t� ��

�����
����
 q� if x�t �  ��� �

 qk�	 if  ��k � x�t �  ��l �

hk
x�t� if  ��k�� � x�t �  ��k �

 q� if x�t �  ��	 �


����a�

where hk �� h according to 
���b� with qA ��  q�k����	 and

 ��k ��



k��

�
 qk�	

�
if 
k��

�
 qk�	

�
� 
k��

�
 q�k����	

�
�

 sk�� otherwise�

����b�

 ��k ��



k
�
 qk�	

�
if 
k

�
 qk�	

�
� 
k

�
 q�k����	

�
�

 sk otherwise�

����c�

 sk ��
�

�

k
�
 q�k����	

�
�

�

�

k
�
 qk�	

�
� 
����d�

The numerical �ux is subsequently computed as fOM 
qL�qR� �� f
 q
����
Comparison of the approximate Riemann solution 
����� with the exact Riemann solution 
����

shows that  sk acts as an approximation to the shock speed� In Ref� ���	 it is proved that the speed
of a shock with strength � is equal to the average of the eigenvalues on either side of the shock and a
remainder of O
���� as �� ��

�� Numerical Experiments and Results

To test the non�oscillatory conservative scheme from x�� equipped with the modi�ed Osher scheme
from x��� for the numerical �uxes� we consider two test cases� The �rst test case is a Riemann problem
in which the initial velocity and pressure are uniform� Its solution corresponds to a translation of the
interface� This test case serves to verify the pressure invariance of the method� The second test
case concerns a Riemann problem associated with the collision of a shock with the interface� As
a result of the interaction of the shock and the interface� both the conservation properties and the
pressure invariance of the method are relevant in this case� Moreover� test case II is used to verify
the asymptotic behavior of the error in the approximate intermediate states and in the shock�speed
approximation� as the shock strength vanishes� refer to Sec� �


�� Test Case I

We consider the two��uid Euler equations 
������ provided with the equation of state 
����� The
primary and secondary �uid comply with Tait�s equation of state 
see� e�g�� Ref� ���	��

�p�s
p� �� ��p�s

�

p�p�� � ��p�s

� � ��p�s

���
�
p�s

� 
����

with p� 
�� �� an appropriate reference pressure� ��p�s the corresponding densities of the primary and

secondary �uid and ��p�s and ��p�s �uid�speci�c constants� The constants for test case I are listed in
Table �� These constants are chosen such that the primary �uid models water and the secondary �uid
models air in homentropic �ow� Appropriate constants for other �uids are provided in ���	�
Test case I concerns a Riemann problem with


��v
g

�
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�

�
A and
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g
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A
�
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����	

�
�

�
A � 
����



�� Numerical Experiments and Results 
�

��p ��p ��p ��s ��s ��s
Test case I � ��� � ���	 � ���
Test case II � �� � ���� � ���

Table �� Constants in Tait�s equation of state 
���� for test case I and test case II�

x

p

�

���

�

���

�

�� ���� � ��� �

�a� pressure p at t � ����

x

�

�

���

��

���

���

�

�� ���� � ��� �

�b� density � at t � ����

Figure � Test case I� Computed result 
markers only� and exact solution 
solid line��

So� p
x� �� � � and v
x� �� � � for all x� i�e�� the pressure and velocity are uniform� The solution then
corresponds to a translation of the interface�
The two��uid �ow problem is discretized by means of a Godunov�type �nite volume method� with the

numerical �uxes based on the modi�ed Osher scheme from x���� Instead of a �rst order discretization
conform 
���� we use a limited second order scheme with the minmod limiter 
see� e�g�� ���	�� The
intermediate pressure  p��� is solved from 
����� by means of Newton�s method� The integrals in 
�����
are approximated by ���point Gauss quadrature� We use a uniform grid with mesh width h � �����
The time step is set to � � h�����
Figure  plots the results for test case I� The initial position of the interface is set at x � �� The

results con�rm the pressure invariance of the scheme�


�� Test Case II

Test Case II is illustrated in Figure �� The equation of state of the primary and secondary �uid is
speci�ed by 
����� with the constants listed in Table �� The states q�� qI and q� are determined by


��v
g

�
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������ � � �
������� � � �

�

�
A �



��
v
g

�
A
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��
�
�

�
A and



��
v
g

�
A
�

��



�����

�
�

�
A � 
���

The pressure corresponding to q� is pp
��� � ��� The states q� and qI are connected by a �shock
with speed s � ������� � � � � and qI is connected to q� by a steady contact discontinuity� representing
the interface� At time t � �� the shock collides with the interface� which is set at x � � 
see Figure ���
The states q� and q� are then contiguous and� hence� the collision induces a Riemann problem� The




�

pp
q�� � p� p���	 s� s����

� � ��� ������� ��� ������ ���� ������ ���� ������� ���	 ������ ���

� � ��� ������� ���� ������� ���� ������ ���� ���� ���� ������ ���

� � ���� ������� ���� ������� ����� ������� ���� ������ ���� ������� ���

� � ���� ������� ���	 ������� ���� ������ ���� ������ ���� ������� ���

� � ���	 ������� ��� ������� ����� ������� ���� ������ ����� ������ ���

� � ��� ������� ���� ������� ����� ������� ���� ������ ����	 ������� ���

� � ���� ������� ���� ������� ����	 ������� ���� ����� ����� ������� ���

Table �� Errors p� ��  p���� p��� and s� �� s�
�

	
q�� �
	
qI�

�
�� and the ratios p���	 and s���� for

di�erent � �� 
	
q��� 
	
qI��

corresponding Riemann solution assumes the form of a re�ected rarefaction wave� a moving interface
and a transmitted shock�
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Figure �� Test case II� The shock�interface collision at t � � induces a Riemann problem�

The details of the set up of the numerical experiment for test case II are identical to test case I�
In �gure � we have plotted the results for test case II� The numerical results exhibit good agreement
with the exact Riemann solution� We also monitored the mass�conservation errors for the two �uids
separately and the momentum�conservation error for this test case� these errors are indeed of the
order of the machine precision 
results not displayed��
Furnished with di�erent settings of the parameters� test case II can corroborate that the error in

the intermediate states of the rarefaction�waves�only approximation behaves as O
�	� as the shock
strength � �� 
	
q�� � 
	
qI� � � 
cf� x��� and that the error in the shock�speed approxima�
tion 
����d� is O
��� 
cf� x����� For this purpose� we consider di�erent states q� on the �shock path
through qI � These states are characterized by the corresponding pressure� We then determine the
intermediate states of the actual Riemann solution� q��	 and q��	� by means of the appropriate shock
and rarefaction relations and� subsequently� the corresponding intermediate pressure p���� The ap�
proximate intermediate pressure is extracted from 
������ Furthermore� we determine the exact shock
speed s� and its approximation according to 

	
q�� � 
	
qI����� The results are listed in Table ��
The entries indeed con�rm the asymptotic behavior of the errors� the error in the approximate in�
termediate pressure satis�es p� ��  p��� � p��� � �	 and the error in the shock�speed approximation
satis�es s� �� s� 

	
q�� � 
	
qI���� � ��� as �� ��



�� Numerical Experiments and Results 
�

x

p

�

�

�

��

�� �� � � �

�a� pressure p at t � ��� �log�scale��

x

�

����

����

���

�� �� � � �

�b� density � at t � ��� �log�scale��

x

�v

�

���

��

���

���

�

�� �� � � �

�c� momentum �v at t � ����

x

�g

�

���

��

���

���

�

�� �� � � �

�d� primary partial density �g at t�����

Figure �� Test case II� Computed result 
markers only� and exact solution 
solid line��




� References

�� Conclusions

We presented a non�oscillatory conservative method for barotropic two��uid �ows� The conservative
form of the two��uid �ow problem is well suited to treatment by a Godunov�type method� We
considered an approximate Riemann solver for barotropic two��uid �ows� based on the rarefaction�
waves�only approximation that underlies Osher�s scheme� We established that the interface appears
as a contact discontinuity� both in the exact solution and in the rarefaction�waves�only approximation�
This implies ful�llment of the interface conditions�
Numerical results were presented for two Riemann problems� viz�� a translating�interface test case

and a shock�interface�collision test case� The �rst test case con�rms the pressure invariance of the
method� The second test case con�rms its conservation properties� In both cases� the computed results
agree well with the exact Riemann solution� Furnished with di�erent settings� the second test case
also con�rmed the anticipated asymptotic behavior of the error in the approximate intermediate states
and in the shock�speed approximation underlying the modi�ed Osher scheme� as the shock�strength
vanishes�

References

�� R� Abgrall� How to prevent pressure oscillations in multicomponent �ow calculations� A quasi
conservative approach� J� Comput� Phys�� ������������ �����

�� R� Abgrall and S� Karni� Computations of compressible multi�uids� J� Comput� Phys�� ��������
��� �����

� E�H� van Brummelen� Numerical Methods for Steady Viscous Free�Surface Flows� PhD thesis�
University of Amsterdam� �����

�� Y�C� Chang� T�Y� Hou� B� Merriman� and S� Osher� A level set formulation of Eulerian interface
capturing methods for incompressible �uid �ows� J� Comput� Phys�� ������������ �����

�� R�P� Fedkiw� T� Aslam� B� Merriman� and S� Osher� A non�oscillatory Eulerian approach to
interfaces in multimaterial �ows 
the ghost�uid method�� J� Comput� Phys�� ������������ �����

�� S�K� Godunov� Finite di�erence method for numerical computation of discontinuous solutions of
the equations of �uid dynamics� Mat� Sbornik� ���������� ����� 
In Russian��

�� R� Hartmann and P� Houston� Adaptive discontinuous Galerkin �nite element methods for nonlin�
ear hyperbolic conservation laws� Technical Report IWR�SFB�Preprints �������� Ruprecht�Karls�
Universit!at� Heidelberg� ����� Available at http���www�iwr�uni�heidelberg�de�sfb����PP�

Preprint�		
��	�ps�gz�

�� P�W� Hemker and S�P� Spekreijse� Multiple grid and Osher�s scheme for the e�cient solution of
the steady Euler equations� Appl� Numer� Math�� ��������� �����

�� C� Hirsch� Numerical Computation of Internal and External Flows� Volume I� Fundamentals of

Numerical Discretization� Numerical Methods in Engineering� Wiley� New York� �����

��� E� Isaacson and H�B� Keller� Analysis of Numerical Methods� Wiley� New York� �����

��� P� Jenny� B� M!uller� and H� Thomann� Correction of conservative Euler solvers for gas mixtures�
J� Comput� Phys�� ���������� �����

��� S� Karni� Multicomponent �ow calculations by a consistent primitive algorithm� J� Comput�

Phys�� �������� �����

�� S� Karni� Hybrid multi�uid algorithms� SIAM J� Sci� Comput�� ������������ �����

��� F�J� Kelecy and R�H� Pletcher� The development of a free surface capturing approach for multi�
dimensional free surface �ows in closed containers� J� Comput� Phys�� ���������� �����

��� B� Koren� M�R� Lewis� E�H� van Brummelen� and B� van Leer� Godunov and level�set approaches
for homentropic two��uid �ow computations� J� Comput� Phys� 
to appear��



References 
	

��� P�D� Lax� Hyperbolic systems of conservation laws II� Comm� Pure Appl� Math�� ����������
�����

��� B� van Leer� On the relation between the upwind�di�erencing schemes of Godunov� Engquist�
Osher and Roe� SIAM J� Sci� Stat� Comput�� ������� �����

��� W� Mulder� S� Osher� and J�A� Sethian� Computing interface motion in compressible gas dynamics�
J� Comput� Phys�� ������������ �����

��� S� Osher and F� Solomon� Upwind di�erence schemes for hyperbolic conservation laws� Math�

Comput�� ������� �����

��� R� Saurel and R� Abgrall� A multiphase Godunov method for compressible multi�uid and multi�
phase �ows� J� Comput� Phys�� ������������ �����

��� R� Saurel and R� Abgrall� A simple method for compressible multi�uid �ows� SIAM J� Sci�

Comput�� ������������� �����

��� J� Smoller� Shock Waves and Reaction�Di�usion Equations� Grundlehren der mathematischen
Wissenschaften� Springer� New York� ����

�� S� Spekreijse� Multigrid solution of monotone second�order discretizations of hyperbolic conser�
vation laws� Math� Comput�� ���������� �����

��� E� S!uli� P� Houston� and B� Senior� hp�discontinuous Galerkin �nite element methods for hy�
perbolic problems� error analysis and adaptivity� In M�J� Baines� editor� Numerical Methods for

Fluid Dynamics VII� Oxford� U�K�� ����� March �����

��� P�K� Sweby� High resolution schemes using �ux limiters for hyperbolic conservation laws� SIAM
J� Numer� Anal�� ������������ �����

��� P�A� Thompson� Compressible Fluid Dynamics� Advanced Engineering Series� McGraw�Hill� New
York� �����

��� P� Wesseling� Principles of Computational Fluid Dynamics� volume �� of Springer Series in Com�
putational Mathematics� Springer� Berlin� �����


