
Comparison of Exact and Approximate
Discrete Adjoint for Aerodynamic Shape
Optimization

Giampietro Carpentieri1, Michel J.L van Tooren2, and Barry Koren3

1 Delft University of Technology G.Carpentieri@tudelft.nl
2 Delft University of Technology M.J.L.vanTooren@tudelft.nl
3 Delft University of Technology B.Koren@tudelft.nl

Summary. The effect of approximations in the discrete adjoint on constrained
shape optimization is investigated. The different approximations are compared with
the exact discrete adjoint, which is capable of producing exact gradient/sensitivity
information. The purpose of such a comparison is to understand whether or not
approximate adjoint codes can be effective for shape optimization in spite of the
error in the computed gradient.

1 The Discrete Adjoint

The discrete adjoint method is well established in the field of aerodynamic
shape optimization [7]. In order to implement the method, the residuals vector
R must be differentiated to obtain the residuals Jacobian, ∂R/∂U. The latter
must be transposed and used to solve a linear system of equations with the
adjoint variables Λ as unknown:

∂R
∂U

T

Λ =
∂J

∂U

T

, (1)

where U is the conservative variables vector and J a functional (e.g. lift, drag
or pitching Moment coefficient) that is to be optimized. The vectors U, R
and Λ have dimensions N × nvar, with N the number of nodes in the mesh
and nvar the number of variables (for the 2D Euler equations nvar = 4).
The practical implementation of the method can be challenging due to the
differentiation of the residuals vector and the derivation of the assembly for the
left–hand side of Eq. (1), which preferably is to be performed in a matrix–free
fashion due to the large storage that otherwise would be required.

In the present work, the flow solver is based upon a median–dual discretiza-
tion and a MUSCL–type reconstruction scheme. On each edge of the mesh
the second order numerical fluxes are computed by means of Roe’s approxi-
mate Riemann solver using reconstructed primitive variables. Reconstruction

H. Deconinck, E. Dick (eds.), Computational Fluid Dynamics 2006,
DOI 10.1007/978-3-540-92779-2 82, c© Springer-Verlag Berlin Heidelberg 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

526 Giampietro Carpentieri, Michel J.L van Tooren, and Barry Koren

is performed using a least–squares gradient and a multi–dimensional type of
limiter [2]. For the purpose of deriving the transposed residuals Jacobian, the
vector of numerical fluxes, H, and the vector of reconstructed left and right
states, UL and UR, can be introduced [3]. The three vectors have dimen-
sions E × nvar, with E the number of edges in the mesh. According to the
MUSCL–type scheme the residuals vector has a dependency on the conser-
vative variables vector of the type R = R(H(UL(U),UR(U))). Therefore,
by means of the chain rule and transposition, the left–hand side of Eq. (1)
becomes:

∂R
∂U

T

Λ =

(
∂UL

∂U

T ∂H
∂UL

T

+
∂UR

∂U

T ∂H
∂UR

T
)
∂R
∂H

T

Λ , (2)

where ∂R/∂H is a dummy matrix that only contains −1 and 1. ∂H/∂UL

and ∂H/∂UR are diagonal matrices containing the differentiation of the
fluxes with respect to the left and the right states respectively. ∂UL/∂U and
∂UR/∂U are sparse rectangular matrices that represent the reconstruction
operator, i.e., the differentiation of the reconstructed states with respect to
the conservative variables.

In practice, none of the matrices introduced in Eq. (2) is stored but more
likely the assembly is performed on the edges similarly to what is done for
the residuals vector. Details about the edge–based assembly can be found
in [4] where Eq. (2) is derived in detail, rather than only in abstract matrix
form. Exactness of the differentiation was demonstrated showing that the
residuals Jacobian is capable of yielding quadratic convergence when employed
in Newton iterations. Quadratic convergence can only be attained when the
Jacobian is exact [2].

Approximations can be introduced in the differentiation in order to sim-
plify the implementation of the discrete adjoint. Three approximations are
considered in this work: (i) The first approximation is obtained by neglecting
the differentiation of the limiter in the reconstruction operator. The simplifi-
cation is appreciable since the limiter implemented here requires a construc-
tion phase which is quite involved compared to that of mono–dimensional
limiters [2]. (ii) The second approximation is obtained by neglecting the dif-
ferentiation of the Jacobian matrix in the Roe flux. The approximation saves
lot of human work since the differentiation is cumbersome [1]. (iii) The third
approximation is that obtained by ignoring the complete reconstruction op-
erator, which makes the implementation of the adjoint trivial.

The price to pay for the simplifications is the detrimental effect on the
accuracy of the computed gradient. For instance, for the test cases presented
below, the first and second approximations show a percentage error of 0.1–
2.5% compared to the exact adjoint code. The error increases to 10–30% for
the third approximation. However, the error on the gradient can’t be used to
judge whether or not an approximation is acceptable. It seems more reasonable
to consider the effect that the gradient has on the behavior of the optimization
process [6, 4].

Comparison of Exact and Approximate Discrete Adjoint 527

2 Numerical results

Numerical results for constrained shape optimization are presented. The pur-
pose is to minimize the drag coefficient while keeping the lift coefficient of
the airfoil constant by means of an equality constraint. Also, lower inequal-
ity constraints are enforced on the relative maximum thickness, on the nose
radius and on the trailing edge angle. Unconstrained optimization algorithms
that include the constraints as penalty terms in the objective could be used.
However, their accuracy is known to be poor and moreover they can be ill–
conditioned. Therefore, optimization algorithms capable of handling directly
equality and inequality constraints are necessary. Two algorithms have been
employed: a widely used sequential quadratic programming (SQP) algorithm
and a sequential linear programming (SLP) algorithm known as the method
of centers [8].

(a) Mesh (b) NACA64A410 (c) Exact

(d) Approx 1 (e) Approx 2 (f) Approx 3

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2

(g) Airfoils

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

NACA64A410
EXACT

APPROX 1
APPROX 2
APPROX 3

(h) Mach number

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12 14

EXACT, [49/19]

APPROX 1, [44/17]

APPROX 2, [86/34]

APPROX 3, [2000/17]

(i) Objective

Fig. 1. Optimization of the NACA64A410 airfoil.

528 Giampietro Carpentieri, Michel J.L van Tooren, and Barry Koren

(a) RAE2822 (b) Exact (c) Approx 1

(d) Approx 2 (e) Approx 3

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0 0.2 0.4 0.6 0.8 1

EXACT
APPROX 1
APPROX 2

(f) Mach number

Fig. 2. Optimization of the RAE2822 airfoil.

The flow and the adjoint equations are solved using an implicit pseudo–
time stepping scheme. During the optimization, the two solvers are converged
until the residual norm is reduced about 6 orders of magnitude. A spring
analogy is used to deform the mesh and automatic differentiation in forward
mode has been used to derive the geometric sensitivities, i.e., the derivatives
with respect to the shape parameters. The shape of the airfoil is parameterized
by means of Chebyschev polynomials. Further details can be found in [4, 5].

The computations presented below have been performed on an unstruc-
tured mesh of triangles, see Fig. 1.a, with 12161 nodes, 500 of which are on the
airfoil. The mesh has been deformed in order to be used for all airfoils. In or-
der to make sure that the mesh was capable of capturing weak shocks, a mesh
of 30092 nodes, 700 of which are on the airfoil, has been used to check the
optimization results. The shock–free pressure distributions obtained on the
first mesh after optimization have been re–obtained on the second mesh. The
SQP algorithm from the Matlab Optimization Toolbox4 has been used for the
NACA64A410 and RAE2822 cases whereas the SLP algorithm [5] has been
used for the NACA0012 case. For the two algorithms a tolerance of 10−5 for
both the objective function and the constraints has been adopted as criterion
to stop the optimization.

NACA64A410, M∞ = 0.75 and α = 0 deg angle of attack. The pressure con-
tours for the original airfoil are shown in Fig. 1.b. The airfoils optimized using
the exact and the first two approximations are shock–free, see Figs. 1.c, 1.d

4 Matlab c©1984–2004, The Mathworks, Inc.

Comparison of Exact and Approximate Discrete Adjoint 529

and 1.e. As can be seen from Fig. 1.g the three airfoils are different. Com-
pared to the airfoil obtained from the exact adjoint, the other two airfoils
show a maximum difference in y–coordinates of 5.6 × 10−3 and 2 × 10−3 re-
spectively. However, they all satisfy the design problem accurately. The airfoil
obtained using the third approximation shows three weak shocks on the upper
side because its optimization has stalled, see Fig. 1.f. In Fig. 1.i the objec-
tive function, which is the drag divided by its initial value, is shown at each
gradient iteration and, in the legend, the ratio of function/flow evaluations to
gradient/adjoint evaluations is shown. The ratio is around 2.6 except for the
third approximation. The latter has exceeded the maximum number, 2000, of
allowed function calls.

RAE2822, M∞ = 0.75 and α = 2 deg angle of attack. The pressure contours
for the original airfoil are shown in Fig. 2.a. As before, the airfoils obtained
from the exact and the first two approximate adjoint codes are shock–free, see
Figs. 2.b, 2.c and 2.d. The geometry of the three airfoils is different, especially
for the first 40% of the chord on the lower side, see Fig. 2.f. Maximum differ-
ence in y–coordinates are of the order of 10−3. The optimization stalled when
the third approximation was used. The airfoil still exhibits a weak shock, see
Fig. 2.e.

(a) NACA0012 (b) Exact (c) Approx 3

Fig. 3. Optimization of the NACA0012 airfoil.

NACA0012, M∞ = 0.75 and α = 2 deg angle of attack. The pressure contours
for the original airfoil are shown in Fig. 3.a. The SLP algorithm seems to be
insensitive to the approximations and identical shock–free airfoils are obtained
when using the exact and the first two approximations. The airfoils can be
said to be identical since the maximum difference between the y–coordinates
is of the order of 10−4. Since they are identical, only one of them is shown,
see Fig. 3.b. When using the third approximations, also the SLP algorithm
stalls and the resulting airfoil exhibits a shock on the upper side, see Fig. 3.c.

530 Giampietro Carpentieri, Michel J.L van Tooren, and Barry Koren

3 Conclusions

It has been shown that the first two approximate adjoint codes considered
in this work can be effective for shape optimization purposes. However, the
SQP algorithm has shown to converge to different airfoils, i.e., different local
minima, for each approximation. Nevertheless, each of these airfoils satisfied
the design problem. The SLP algorithm appeared to be insensitive to the two
approximations and converged to a single airfoil.

The third approximation, which neglects the reconstruction operator, has
shown to be ineffective. For the third approximation, both the SQP and the
SLP algorithms have stalled during the optimization process, failing to con-
verge to a shock–free airfoil.

Acknowledgments: This research was supported by the Dutch Technology
Foundation STW, applied science division of NWO and the technology pro-
gram of the Dutch Ministry of Economic Affairs.

References

1. Barth, T.J.:Analysis of Implicit Local Linearization Techniques for Upwind and
TVD Algorithms. AIAA Paper 87–0595 (1987).

2. Barth, B.J.: Aspects of Unstructured Grids and Finite–Volume Solvers for the
Euler and Navier–Stokes Equations. VKI Lecture Series, 1991-06 (1991).

3. Barth, T.J., Linton S.W.: An Unstructured Mesh Newton Solver for Compress-
ible Fluid Flow and its Parallel Implementation. AIAA Paper 95–0221 (1995).

4. Carpentieri, G., van Tooren, M.J.L., Koren, B.: Improving the Efficiency of Aero-
dynamic Shape Optimization on Unstructured Meshes. AIAA Paper 2006-298
(2006).

5. Carpentieri, G., van Tooren, M.J.L., Koren, B.: Aerodynamic Shape Optimiza-
tion by Means of Sequential Linear Programming Techniques. ECCOMAS CFD
2006 Paper, to appear (2006).

6. Dwight, R.P., Brezillon, J.: Effect of Various Approximations of the Discrete
Adjoint on Gradient–Based Optimization. AIAA Paper 2006-690 (2006).

7. Giles, M.B., Pierce, N.A.: An Introduction to the Adjoint Approach to Design.
Flow, Turbulence and Combustion, 65, 393–415 (2000)

8. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design.
3th Edition, Vanderplaats Reasearch & Development (2001)

	Comparison of Exact and Approximate Discrete Adjoint for Aerodynamic Shape Optimization
	Giampietro Carpentieri, Michel J.L van Tooren, Barry Koren

