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1. INTRODUCTION

Voting has been a very popular method for preference ag-
gregation in multi-agent environments. It is often the case
that a set of agents with different preferences need to make
a choice among a set of alternatives, where the alternatives
could be various entities such as potential committee mem-
bers, or joint plans of action. A standard methodology for
this scenario is to have each agent express his preferences
and then select an alternative according to some voting pro-
tocol. Several decision making applications in AI have fol-
lowed this approach including problems in collaborative fil-
tering [10] and planning [3, 4].

In this work we focus on solution concepts for approval
voting, which is a voting scheme for committee elections
(multi-winner elections). In such a protocol, the voters are
allowed to vote for, or approve of, as many candidates as
they like. In the last three decades, many scientific societies
and organizations have adopted approval voting, including,
among others, the American Mathematical Society (AMS),
the Institute of Electrical and Electronics Engineers (IEEE)
and the Game Theory Society (GTS).

A ballot in an approval voting protocol can be seen as a
binary vector that indicates the candidates approved of by
the voter. Given the ballots, the obvious question is: what
should the outcome of the election be? The solution concept
that has been used in almost all such elections is the minisum
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solution, ¢.e., output the committee which, when seen as a
0/1-vector, minimizes the sum of the Hamming distances
to the ballots. If there is no restriction on the size of the
elected committee this is equivalent to a majority vote on
each candidate. If there is a restriction, e.g., if the elected
committee should be of size exactly k, then the minisum
solution consists of the k candidates with the highest number
of approvals [2].

Recently, a new solution concept, the minimax solution,
was proposed by Brams, Kilgour and Sanver [1]. The min-
imax solution chooses a committee which, when seen as a
0/1-vector, minimizes the maximum Hamming distance to
all ballots. When there is a restriction that the size of the
committee should be exactly k, then the minimax solution
picks, among all committees of size k, the one that minimizes
the maximum Hamming distance to the ballots.

The main motivation behind the minimax solution is to
address the issues of fairness and compromise. Since min-
imax minimizes the disagreement with the least satisfied
voter, it tends to result in outcomes that are more widely ac-
ceptable than the minisum solution. Also, majority tyranny
is avoided: a majority of voters cannot guarantee a specific
outcome, unlike under minisum. On the other hand, advan-
tages of the minisum approach include simplicity, ease of
computation and nonmanipulability. A further discussion
on the properties and the pros and cons of the minisum and
the minimax solutions can be found in [1, 2].

In this work we address computational aspects of the min-
imax solution, with a focus on elections for committees of
fixed size. In contrast to the minisum solution, which is
easy to compute in polynomial time, we show that find-
ing a minimax solution is NP-hard. We therefore resort to
polynomial-time heuristics and approximation algorithms.

We first exhibit a simple algorithm that achieves an ap-
proximation factor of 3. We then propose a variety of local
search heuristics, some of which use the solution of our ap-
proximation algorithm as an initial point. All our heuristics
run relatively fast and we evaluated the quality of their out-
put both on randomly generated data as well as on the 2003
Game Theory Society election. Our simulations show that
the heuristics perform very well, finding a solution very close
to optimal on average. In fact for some heuristics the aver-
age error in the approximation can be as low as 0.05%.

Finally, in Section 5, we focus on the question of manip-
ulating the minimax solution. We show that any algorithm
that computes an optimal minimax solution is manipula-
ble. However, the same may not be true for approximation
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algorithms.

2. DEFINITIONSAND NOTATION

We now formally define our problem. We have an election
with m ballots and n candidates. Each ballot is a binary vec-
tor v € {0,1}", with the meaning that the i¢th coordinate
of v is 1 if the voter approves of candidate ¢. For two bi-
nary vectors v;,v; of the same length, let H(v;,v;) denote
their Hamming distance, which is the number of coordinates
in which they differ. For a vector v € {0,1}", we will de-
note by wt(v) the number of coordinates that are set to 1 in
v. The maxscore of a binary vector is defined as the Ham-
ming distance between it and the ballot farthest from it:
maxscore(v) = max; H(v,v;) where v; is the ith ballot. We
first define the problem in its generality.

Problem [Bounded-size Minimax (BSM (&1, k2))]
Given m ballots, vi,...,v, € {0,1}", and 2 in-
tegers ki, k2, with 0 < ki1, k2 < n, find a vector

v* such that k1 < wt(v*) < k2 so as to minimize
maxscore(v*).

BSM includes as a special case the endogenous version,
BSM(0, n), i.e., no restrictions on the size of the commit-
tee. Also, since in some committee elections, the size of the
committee to be elected is fixed (e.g., the Game Theory So-
ciety elections), we are interested in the variant of BSM with
k1 = k2 = k, which we call Fixed-size Minimax (FSM(k)).

In this preliminary version, we focus on elections with
committees of fixed size and report our findings for FSM.
We briefly mention in the relevant sections throughout the
paper as well as in Section 6 which of our results extend to
the general BSM problem.

3. NP-HARDNESSAND APPROXIMATION
ALGORITHMS

We first show that it is unlikely to have a polynomial-
time algorithm for the minimax solution. In fact for the
endogenous version of BSM, BSM(0, n), NP-hardness has
already been established by Frances and Litman [5], where
the problem is stated in the context of coding theory. It
follows that BSM in general is NP-hard. We have shown
that FSM is also NP-hard.

THEOREM 1. FSM is NP-hard.

We will say that an algorithm for a minimization problem
achieves an approximation ratio of « if for every instance
of the problem the algorithm outputs a solution with cost
at most a times the cost of an optimal solution. We will
show that a very simple and fast algorithm achieves an ap-
proximation ratio of 3 for FSM(k), for every k, but before
stating the algorithm we need to introduce some more nota-
tion. Given a vector v, we will say that u is a k-completion
of v, if wt(u) = k, and H(u,v) is the minimum possible
Hamming distance between v and any vector of weight k.
It is very easy to obtain a k-completion for any vector v: if
wt(v) < k, then pick any k£ —wt(v) coordinates in v that are
0 and set them to 1; if wt(v) > k then pick any wt(v) — k
coordinates that are set to 1 and set them to 0.

The algorithm is now very simple to state: Pick arbitrar-
ily one of the m ballots, say v;. Output a k-completion
of v;, say u. Obviously the algorithm runs in time O(n),
independent of the number of voters.

THEOREM 2. The above algorithm achieves an approzi-
mation ratio of 3.

We can also show that if at least one voter has weight £,
then the algorithm achieves a ratio of 2. The algorithm can
be easily adapted to give a ratio of 3 for the BSM version
too; we only need to modify the notion of a k-completion
accordingly. In fact, for BSM(0, n), the ratio is 2.

Note also that the analysis shows that there can be many
different solutions that constitute a 3-approximation, since
a ballot can potentially have many different k-completions.

We are not aware of any better approximation algorithm
for FSM. The endogenous version BSM(0, n), admits a Poly-
nomial Time Approximation Scheme (PTAS), i.e., for every
constant ¢, there exists a (1 + €)-approximation, which is
polynomial in n and m and exponential in 1/e. The PTAS
was obtained in [9], in the context of computational biology.
Before that, constant-factor approximations for BSM(0, n)
had been obtained in [6] and [7]. We believe that algorithms
with such better factors may also be obtainable for FSM (k).

4. LOCAL SEARCH HEURISTICSFOR
FIXED-SIZE MINIMAX

Although the algorithm of Section 3 gives a theoretical
worst-case guarantee (we may even have a better perfor-
mance in practice), a factor 3-algorithm may still be far
away from acceptably good outcomes. Thus we focus on
polynomial-time heuristics, which turn out to perform well
in practice, if not optimally, even though we cannot obtain
an improved worst-case guarantee. The heuristics that we
investigate are based on local search; some of them use the
3-approximation as a starting point and retain its ratio.

41 A Framework for FSM Heuristics

Our overall heuristic approach is as follows. We start from
a binary vector (picked according to some rule) and then we
investigate if neighboring solutions to the current one im-
prove the current maxscore. The local moves that we allow
are removing some candidates from the current committee
and adding the same number of candidates in, from the set
of candidates who do not belong to the current committee.
‘We keep making local moves until no improvement in maxs-
core is seen for n consecutive moves.

This heuristic framework finishes in polynomial time and
has two parameters: the starting point for the binary vector
¢ and the constant number p of candidates to replace in one
local move. While many combinations are possible, we will
investigate using four different approaches to determining
the ¢ starting point and two values of p—1 and 2—resulting
in eight specific heuristics. The c starting points are (1) a
fixed-size-minisum solution, (2) the FSM 3-approximation
presented above, (3) a random set of k candidates and (4)
a k-completion of a ballot with highest maxscore. (The en-
dogenous minimax equivalent of each of these approaches
was investigated by LeGrand [8].)

We will use the notation h;, ; to refer to the heuristic with
starting point ¢ and p = j. For example, h3 1 is the heuristic
that starts with a random set of k candidates and swaps at
most one 0-bit with one 1-bit at a time.

4.2 Evaluating the Heuristics

Our experimental approach was as follows: given n, m
and k, some large number of simulated elections were run.



For each election, m ballots of n candidates were generated
according to one of two simple distributions. The maxscores
of the optimal minimax set and the winner sets found using
each of the heuristics and our 3-approximation (with ballot
and flipped bits chosen at random) were then calculated.

We ran 5000 simulated elections in each of seven different
configurations, varying n, m, k and the ballot-generating
distribution. We also ran the heuristics 5000 times each
on the ballots from the 2003 Game Theory Society coun-
cil election. For each heuristic in each configuration, we
noted both the highest and the average realized approxima-
tion ratio (maxscore of committee found divided by optimal
ImMaxscore).

We found that the heuristics find good, if not optimal,
winner sets on average. Also our 3-approximation in practice
performs appreciably better than its guarantee—its ratio
was less than 2 for every simulated election.

Given the ballot distributions we used, very rarely would a
heuristic find a solution that is unacceptably poorer than the
optimal minimax solution. In particular, h2,1 and hs 2 vastly
outperform the plain 3-approximation (while retaining its
ratio-3 guarantee) with only a modest increase in running
time.

The heuristics perform significantly better on average when
p = 2 than when p = 1; i.e., performance improved with a
larger local-search neighborhood. Increasing p further can
be expected to improve performance further, at the expense
of increased running time.

Comparing the performance of the heuristics with equal
p, all four perform similarly overall, but the best c-starting-
point approach on average seems to be the first (a fixed-size-
minisum solution); it significantly outperforms the other
three sometimes and is never outperformed by them with
any statistical significance.

5. MANIPULATION

Unfortunately, in addition to being possibly hard to com-
pute exactly, the minimax solution is easily shown to be
manipulable for the FSM version.

DEFINITION 1. Fiz an approval voting algorithm A and a
set of ballots v = (v1,V2, ..., Um). Fiz a voter i, and let v
denote the ballots of the rest of the voters. The loss Ly (v)
of voter i is defined as H(v;, A(v)). Algorithm A is said to
be manipulable if there exist ballots v, a voter i, and a ballot
v # v, st Ly (v, v > Ly (v, v7Y).

We have proved FSM’s manipulability by giving an ex-
ample of a voter gaining a superior outcome by voting in-
sincerely (an analogous example for the endogenous version
was provided by LeGrand [8]).

THEOREM 3. Any algorithm that computes an optimal so-
lution for FSM is manipulable.

Although algorithms that always compute an optimal min-
imax solution are manipulable, the same may not be true if
we allow approximation algorithms. The following theorem
shows that we can have nonmanipulable algorithms if we are
willing to settle for approximate solutions.

THEOREM 4. The voting procedure that results from wus-
ing the 3-approzimation algorithm described in Section 8 is
nonmanipulable.

The above theorems give rise to the following question:
What is the smallest value of a for which there exists a
nonmanipulable polynomial-time approximation algorithm
with ratio a?

6. FUTURE WORK

There are still many interesting directions for future re-
search. First, we are planning to adjust our heuristics for the
weighted version of the minimax solution [2]. We are also in-
vestigating variations of local search that may improve even
more the performance, e.g., can there be a better starting
point or can we enrich the set of local moves? Another in-
teresting topic would be to compare local search with other
heuristic approaches that could be adapted for our problem,
like simulated annealing or genetic algorithms.

In terms of theoretical results, the most compelling ques-
tion is to determine the best approximation ratio that can
be achieved in polynomial time for the minimax solution.
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