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ABSTRACT

Numerical solution of flows that are partially bounded by a freely moving boundary is of great importance in

practical applications such as ship hydrodynamics. The usual method for solving steady viscous free-surface flow

subject to gravitation is alternating time integration of the kinematic condition, and the Navier-Stokes equations

with the dynamic conditions imposed, until steady state is reached. This paper shows that at subcritical Froude

numbers this time integration approach is necessarily inefficient and proposes an efficient iterative method for

solving the steady free-surface flow problem. The new method relies on a different but equivalent formulation

of the free-surface flow problem, involving a so-called quasi free-surface condition. The convergence behavior

of the new method is shown to be asymptotically mesh width independent. Numerical results are presented for

2D flow over an obstacle in a channel. The results confirm the mesh width independence of the convergence

behavior and comparison of the numerical results with measurements shows good agreement.
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1. Introduction

The numerical solution of flows that are partially bounded by a freely moving boundary is of great
importance in ship hydrodynamics [1, 6, 7, 12], hydraulics, and many other practical applications,
such as coating technology [15, 16]. In ship hydrodynamics, an important area of application is the
prediction of the wave pattern that is generated by the ship at forward speed in still water. This wave
generation is responsible for a substantial part of the ship’s resistance and, therefore, it should be
minimized by a proper hull form design. Computational methods play an important role in this design
process. Most computational tools that are currently in use for solving gravity subjected free-surface
flows around a surface-piercing body rely on a potential flow approximation. Present developments
primarily concern the solution of the free-surface Navier-Stokes (or RANS) flow problem.

For time-dependent free-surface flows, generally there is no essential difference in the treatment of
the free surface between numerical methods for potential flow or Navier-Stokes flow. Typically, the
solution of the flow equations and the adaptation of the free boundary are separated. Each time step
begins with computing the flow field with the dynamic conditions imposed at the free surface. Next,
the free surface is adjusted through the kinematic condition, employing the newly computed velocity
field.

For steady free-surface flows, however, such a conformity of approaches for viscous and inviscid flow
cannot be observed. For instance in ship hydrodynamics, whereas dedicated techniques have been de-
veloped for solving the free-surface potential flow problems (see, e.g., [14]), methods for Navier-Stokes
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flow usually continue the aforementioned transient process until a steady state is reached (see, e.g.,
[1, 7]). However, this time integration method is often computationally inefficient. In particular, at
subcritical Froude numbers the convergence to steady state is retarded by slowly attenuating tran-
sient surface-gravity-waves. Moreover, the separate treatment of the flow equations and the kinematic
condition yields a restriction on the allowable time-step. Due to the specific transient behavior of free-
surface flows and the time-step restriction, at subcritical Froude numbers the performance of the time
integration method deteriorates rapidly with decreasing mesh width. In practical computations, tens
of thousands of time steps are often required, rendering the time integration approach prohibitively
expensive in actual design processes.

Alternative solution methods for steady free-surface Navier-Stokes flow exist, but they have not
been widely applied in the field of ship hydrodynamics. In the field of coating technology succes-
sive approximation techniques are often employed, in particular, kinematic iteration and dynamic
iteration [16]. Kinematic iteration imposes the dynamic conditions at the free surface and uses the
kinematic condition to displace the boundary. Dynamic iteration imposes the kinematic and the
tangential dynamic conditions at the free surface and uses the normal dynamic condition to adjust
the boundary position. However, the convergence behavior of both iteration schemes depends sensi-
tively on parameters in the problem, see, e.g., [5, 18]. A method that avoids the deficiencies of the
aforementioned iterative methods, is Newton iteration of the full equation set [16]. The positions of
the (free-surface) grid nodes are then added as additional unknowns and all equations, including the
free-surface conditions, are solved simultaneously. An objection to this method is that simultaneous
treatment of all equations is infeasible for problems with many unknowns, such as three-dimensional
problems and problems requiring sharp resolution of boundary layers. Finally, the free-surface flow
problem can be reformulated into an optimal-shape design problem, which can then in principle be
solved efficiently by the adjoint optimization method. A problem with this approach is its complexity:
although much progress has been made in the formulation of adjoint equations for problems from fluid
dynamics, including the Navier-Stokes equations [8], setting up the adjoint method remains involved.
Moreover, efficiency is only obtained if proper preconditioning is applied [19, 20], and constructing the
preconditioner for the free-surface Navier-Stokes flow problem is intricate.

The current work presents an iterative method for efficiently solving steady free-surface Navier-
Stokes flow problems. Although our interest is the previously outlined ship hydrodynamics application,
it is anticipated that the method is also applicable to other gravity dominated steady viscous free-
surface flows at high Reynolds numbers, such as occur, for instance, in hydraulics. The proposed
method is analogous to the method for solving steady free-surface potential flow problems presented
in [14]. The method alternatingly solves the steady Navier-Stokes equations with a so-called quasi free-
surface condition imposed at the free surface, and adjusts the free surface using the computed solution.
The quasi free-surface condition ensures that the disturbance induced by the subsequent displacement
of the boundary is negligible. Each surface adjustment then yields an improved approximation to the
actual free-boundary position.

The contents of the paper are organized as follows: In Section 2 the equations governing incom-
pressible, viscous free-surface flow are stated and the quasi free-surface condition is derived. Section 3
proves that the usual time integration approach is necessarily inept for solving steady free-surface
flows at subcritical Froude numbers. Section 4 outlines the iterative solution method and examines
its convergence behavior. Numerical experiments and results for a two-dimensional test case are pre-
sented in Section 5. The application to actual ship wave computations is in progress and will be
reported in a sequel. Section 6 contains concluding remarks.

2. Governing equations

2.1 incompressible viscous flow
An incompressible, viscous fluid flow, subject to a constant gravitational force is considered. Although
only steady solutions are of interest, for the purpose of analysis the equations are considered in time-
dependent form.
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Figure 1: Schematic illustration of the free-surface problem.

The fluid occupies an open, time-dependent domain Vη ⊂ Rd (d = 2, 3), which is enclosed by the
free boundary, Sη, and a fixed boundary, ∂Vη \ Sη. Positions in Rd are identified by their horizontal
coordinates (x1, . . . , xd−1) and a vertical coordinate y, with respect to the Cartesian base vectors
e1, . . . , ed−1 and j, respectively. The origin is located in the undisturbed free surface S0, and the
gravitational acceleration, g, acts in the negative vertical direction. We consider free surfaces that
can be represented by a so-called height-function, i.e., Sη = {(x, η(x, t))}. The height function η
is assumed to be a smooth function of the horizontal coordinates and time. See Figure 1 for an
illustration.

The distinguishing parameters of the viscous free-surface flow problem are the Froude number,
Fr ≡ U/

√
g`, and the Reynolds number, Re ≡ ρU`/µ, with U an appropriate reference velocity, g

the gravitational acceleration, ` a reference length and µ the dynamic viscosity of the fluid. The
fluid density ρ is assumed to be constant. The state of the flow is then characterized by the (non-
dimensionalized) fluid velocity v(x, y, t) and pressure p(x, y, t). Incompressibility of the fluid implies
that the velocity field is solenoidal:

div v = 0, (x, y) ∈ Vη, t > 0. (2.1a)

Conservation of momentum in the fluid is described by the Navier-Stokes equations. The pressure is
separated into a hydrodynamic component ϕ and a hydrostatic contribution as p(x, y, t) = ϕ(x, y, t)−
Fr−2y. Because the gradient of the hydrostatic pressure and the gravitational force cancel, the Navier-
Stokes equations for a gravity subjected incompressible fluid read:

∂v
∂t

+ div vv +∇ϕ− div τ (v) = 0, (x, y) ∈ Vη, t > 0, (2.1b)

where τ (v) is the viscous stress tensor for an incompressible Newtonian fluid:

τ (v) = Re−1
(
(∇v) + (∇v)T

)
. (2.1c)

2.2 Free-surface conditions
Free-surface flows are essentially two-phase flows, of which the properties of the contiguous bulk fluids
are such that their mutual interaction at the interface can be ignored. For an elaborate discussion
of two-phase flows, see, for example, [2] and [17]. The free-surface conditions follow from the general
interface conditions and the assumptions that both density and viscosity of the adjacent fluid vanish at
the interface and, furthermore, that the interface is impermeable. Here it will moreover be assumed
that interfacial stresses can be ignored, which is a valid assumption in the practical applications
envisaged.
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On the free surface, the fluid satisfies a kinematic condition and d dynamic conditions. Imperme-
ability of the free surface is expressed by the kinematic condition

∂η

∂t
+ v ·∇(η − y) = 0, (x, y) ∈ Sη, t > 0. (2.2a)

Supposed that the viscous contribution to the normal stress at the free surface is negligible, continuity
of stresses at the interface requires that the pressure vanishes at the free surface. This results in the
normal dynamic condition

ϕ− Fr−2η = 0, (x, y) ∈ Sη, t > 0. (2.2b)

The requirement that the tangential stress components vanish at the free surface is expressed by the
d− 1 tangential dynamic conditions

ti ·τ (v) ·n = 0, (x, y) ∈ Sη, t > 0. (2.2c)

Here, ti (i = 1, . . . , d− 1) are orthogonal unit tangent vectors to Sη and n denotes the unit normal
vector to Sη.

One may note that the number of free-surface conditions for the viscous free-surface flow problem
is d+ 1. The incompressible Navier-Stokes equations in Rd require d boundary conditions. Hence, the
number of free-surface conditions is indeed one more than the number of required boundary conditions.

2.3 Quasi free-surface condition
A fundamental problem in analyzing and computing free-surface flow problems, is the interdependence
of the state variables v, p and their spatial domain of definition through the free-surface conditions.
This problem can be avoided by deriving a condition that holds to good approximation on a fixed
boundary in the neighborhood of the actual free boundary. We refer to such a condition as a quasi
free-surface condition, because the qualitative solution behavior of the initial boundary value problem
with this condition imposed is similar to that of the free-boundary problem, but the boundary does not
actually move. A suitable quasi free-surface condition for the free-surface Navier-Stokes flow problem
is derived below.

Let Sη denote the actual free surface, as defined before. In a similar manner, a nearby fixed
boundary Sθ = {(x, θ(x))} is introduced, with θ(x) a smooth function on S0. We require that Sθ is
close to the actual free surface in such a manner that

δ(x, t) ≡ η(x, t)− θ(x) , (2.3)

is small and sufficiently smooth. In particular, for all t > 0, δ must satisfy ‖δ‖Sθ+‖∇δ‖Sθ+‖δt‖Sθ ≤ ε,
for some ε � 1. Here ‖ · ‖Sθ is a suitable norm on the approximate boundary. Assuming that p and
v can be extended smoothly beyond the boundary Sθ, Taylor expansion in the neighborhood of Sθ
yields for p and v at the actual free surface,

p(x, η(x, t), t) = p(x, θ(x), t) + δ(x, t) j ·∇p(x, θ(x), t) +O(ε2), (2.4a)

v(x, η(x, t), t) = v(x, θ(x), t) + δ(x, t) j ·∇v(x, θ(x), t) +O(ε2), (2.4b)

The normal dynamic condition (2.2b) demands that the left-hand side of (2.4a) vanishes. Hence,
the elevation of the free surface can be expressed in terms of the pressure and its gradient at the
approximate surface:

η(x, t) = θ(x)− p(x, θ(x), t)
j ·∇p(x, θ(x), t)

+O(ε2) . (2.5)
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To obtain an O(ε2) accurate quasi free-surface condition, i.e., an O(ε2) approximation of the condi-
tions at Sθ, η and v in the kinematic condition (2.2a) can be replaced by (2.5) and (2.4b), respectively.
The resulting condition is, however, intractable. Instead, two additional assumptions concerning v
and p are introduced to obtain a convenient quasi free-surface condition. The first assumption is that
the vertical derivative of the pressure is dominated by the hydrostatic component, −Fr−2. Generally,
this assumption is valid for waves of moderate steepness. Specifically, we suppose that a constant
σp � 1 exists such that for all t > 0,

‖1 + Fr2 j ·∇p‖Sθ ≤ σp . (2.6)

The second assumption is that the vertical derivative of v is small, in such a manner that a constant
σv � 1 exists with the property that for all t > 0,

‖j ·∇v‖Sθ ≤ σv . (2.7)

Under this assumption, the velocity at the actual free-boundary, v(x, η(x, t), t), can be accurately
approximated by the velocity at the fixed boundary, v(x, θ(x), t). By (2.4b), the error in the ap-
proximation is only O(εσv). In [3] it is shown that the velocity-deviation through the free-surface
boundary layer is proportional to the surface curvature and 1/

√
Re. Moreover, σv in (2.7) increases

with the wave steepness. Therefore, the assumption σv � 1 is valid if the steepness and curvature of
the free-surface-waves are moderate and if Re is sufficiently large.

Under the above assumptions a convenient quasi free-surface condition can be derived. Substitution
of the hydrostatic approximation of the pressure gradient in (2.5) yields

η(x, t) = θ(x)− p(x, θ(x), t)
−Fr−2(1 +O(σp))

= θ(x) + Fr2p(x, θ(x), t)(1 +O(σp)) . (2.8)

The dynamic condition (2.2b) and (2.4a) imply that p = O(ε) on Sθ. Hence, ignoring terms O(ε2, εσp),
the free-surface elevation is related to the hydrodynamic pressure at the approximate boundary by

η(x, t) = θ(x) + Fr2p(x, θ(x), t) = Fr2ϕ(x, θ(x), t) . (2.9)

To transfer the kinematic condition (2.2a) to the approximate surface Sθ, η is replaced by (2.9) and
v on Sη is replaced by v on Sθ. The error thus introduced is only O(ε2, εσp, εσv). Special care is
required in expressing the gradient of η, because (2.9) relates η to ϕ on the curvilinear surface Sθ:

∇η = Fr2 dϕ

dx
= Fr2

(∂ϕ
∂x

+
∂ϕ

∂y

∂θ

∂x

)
= Fr2

(
∇ϕ+

∂ϕ

∂y

( ∂θ
∂x
− j
))

. (2.10)

It then follows that

∂η

∂t
+ v ·∇(η − y) = Fr2

(∂ϕ
∂t

+ v ·∇(ϕ− Fr−2y)
)

+

Fr2 ∂ϕ

∂y
v ·
( ∂θ
∂x
− j
)

+ O(ε2, εσp, εσv) = 0 . (2.11)

Using the kinematic condition (2.2a) and definition (2.3), the second term on the right-hand side
of (2.11) can be recast into

Fr2 ∂ϕ

∂y
v ·∇(θ − y) = Fr2 ∂ϕ

∂y
v ·∇(η − δ − y) = −Fr2 ∂ϕ

∂y
(v ·∇δ + δt) (2.12)

Due to the smoothness of δ, the term in parenthesis is just O(ε) and (2.12) is only O(εσp). The second
term on the right-hand side of (2.11) can therefore be ignored. Hence, it follows that

∂ϕ

∂t
+ v ·∇(ϕ− Fr−2y) = 0 , (2.13)
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approximates the conditions at the boundary Sθ to O(ε2, εσp, εσv). This implies that (2.13) is a
quasi free-surface condition on any fixed boundary that is sufficiently close to the actual free surface,
provided that (2.6) and (2.7) are fulfilled.

One may note that (2.13) is exactly satisfied at the actual free surface. Therefore, the quasi
free-surface condition can replace either the kinematic condition (2.2a) or the normal dynamic condi-
tion (2.2b) in the formulation of the free-surface conditions in §2.2.

The importance of the quasi free-surface condition is that the quasi free-surface flow solution, i.e.,
the solution of the Navier-Stokes equations with (2.13) and (2.2c) imposed at a fixed boundary in the
neighborhood of the actual free surface, is an accurate approximation to the actual free-surface flow
solution. Because the the tangential dynamic conditions are largely irrelevant to the shape of the free
surface [3], it is anticipated that the change in the solution due to imposing (2.2c) at Sθ instead of Sη
is negligible. In that case, if (2.13) holds at Sθ, then the free surface conditions (2.2b) and (2.2a) are
satisfied to O(ε2, εσp, εσv) at the boundary

{(x,Fr2ϕ(x, θ(x, t)))} . (2.14)

Therefore, the solution of the quasi free-surface flow problem is an O(ε2, εσp, εσv) approximation to
the solution of the free-surface flow problem. Moreover, (2.14) is an equally accurate approximation
of the actual free-surface position. One may note that (2.14) just uses the normal dynamic condition
to determine the position of the free surface.

3. Time Integration methods

The most widely applied iterative method for solving gravity dominated steady free-surface Navier-
Stokes flow is alternating time integration of the kinematic condition, and the Navier-Stokes equations
subject to the dynamic conditions, until steady state is reached. This section examines the compu-
tational complexity of this time integration method, i.e., the number of operations per grid point
expended in the solution process.

The computational complexity of the time integration method depends on the physical time that is
required to reduce transient wave components in the initial estimate to the level of other errors in the
numerical solution. The transient behavior of surface-gravity-waves therefore plays an essential part
in the complexity analysis. This transient behavior is discussed in §§3.1,3.2. Next, the implications
on the computational complexity are examined in §3.3.

3.1 Surface-gravity-waves
We consider the specific case of a small amplitude disturbance of a uniform horizontal flow on a
domain V ⊂ Rd of infinite horizontal extent and unit vertical extent. The domain is bounded by
the undisturbed free surface S0 = {(x, 0)} and a rigid impermeable free-slip bottom B = {(x,−1)}.
The uniform flow velocity is v(0) = (v(0)

1 , . . . , v
(0)
d−1, 0), with |v(0)| = 1. The above implies that the

undisturbed fluid-depth and flow velocity are designated as reference length and velocity, respectively.
Suppose that a disturbance is generated in the flow, such that for all t > 0 the resulting surface-

elevation satisfies ‖η‖S0 +‖∇η‖S0 +‖ηt‖S0 ≤ ε, for some positive ε. We assume that the corresponding
perturbed free-surface flow solution can be written as(

v

ϕ

)
(x, y, t; ε) =

(
v(0)

0

)
+ ε

(
v(1)

ϕ(1)

)
(x, y, t) +O(ε2), as ε→ 0 . (3.1)

From §2.3 it follows that the solution of the quasi free-surface flow problem on V is an O(ε2, εσp, εσv)
approximation of the actual free-surface flow, with σp and σv defined by (2.6) and (2.7), respectively.
However, (3.1) implies that σp and σv are of O(ε). Hence, the quasi free-surface flow solution on V is
an O(ε2) approximation to the actual free-surface flow solution. Consequently, for sufficiently small
and smooth perturbations the results on the behavior of the quasi free-surface flow solution apply
immediately to the behavior of the actual free-surface flow solution.
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Suppose that the disturbance can be written as a linear combination of horizontal Fourier modes
exp
(
ik ·x + iωt

)
, with k ∈ Rd−1 the wave-number of the Fourier mode and ω its frequency. Because

the perturbed quasi free-surface flow problem is linear to O(ε2), it suffices to consider a single mode.
If the following Fourier mode is inserted for the perturbations in (3.1),

v
(1)
1

...

v
(1)
d−1

v
(1)
d

ϕ(1)


(x, y, t) =



ik1 cosh(|k| (1 + y))
...

ikd−1 cosh(|k| (1 + y))
|k| sinh(|k| (1 + y))

(−1)j iΦ(k) cosh(|k| (1 + y))


exp
(
ik ·x + iωj(k) t

)
, (3.2a)

where ωj(k) is either of the two roots of the dispersion relation:

ωj(k) = −v(0) ·k− (−1)jΦ(k), j = 1, 2, (3.2b)

and

Φ(k) =
√

Fr−2|k| tanh(|k|) , (3.2c)

then the corresponding v and ϕ comply to O(ε2) with the quasi free-surface flow problem, except the
tangential dynamic conditions (2.2c), which yield

ti ·τ (v) ·n = Re−1 ε 2 i kj |k| sinh(|k|) exp
(
ik ·x + iωj(k) t

)
. (3.3)

Because (3.3) is only O(ε|k|3/Re) as |k| → 0, the error is negligible for sufficiently small k and
large Re. Hence, equation (3.2a) accurately describes the behavior of smooth free-surface waves in
a uniform horizontal flow at sufficiently high Reynolds numbers. The perturbations (3.2a) are called
surface-gravity-waves. For an elaborate discussion of surface-gravity-waves in potential flow see, e.g.,
[10, 11].

3.2 Asymptotic temporal behavior
The asymptotic temporal behavior of surface-gravity-waves is determined by the asymptotic properties
of the Fourier-integral of the modes (3.2a). The behavior of the integral transform for t→∞ can be
determined by means of the asymptotic expansion∫ ∞

0

F (k) exp
(
itψ(k)

)
dk = F (k0)

√
2π

t|ψ′′(k0)| exp
(
i[tψ(k0) + 1

4π signψ′′(k0)]
)

+O(e−βt), (3.4)

with β a positive constant, F (k) an analytic function and k0 a stationary point of ψ(k), i.e., ψ′(k0) = 0.
The expansion (3.4) requires that ψ(k) is smooth in the neighborhood of stationary points in the sense
that the ratio ψ′′′(k0)/|ψ′′(k0)|3/2 is small; see [10]. The method of stationary phase (sometimes called
method of steepest descent) can be used to prove (3.4); see, e.g., [11, 22].

The Fourier-integral of (3.2a) can be evaluated for t → ∞ by introducing a suitable coordinate
transformation for k and applying (3.4) recursively with respect to the transformed coordinates.
Denoting by σ(x, y, t) a component in (3.2a) and by σ̂(k, y) its Fourier-transform, one obtains

σ(x, y, t) = σ̂(k0, y) (2π/t)(d−1)/2
(
det H(k0)

)−1/2 exp
(
itψ(k0) + iζ

)
+O(e−βt), (3.5a)

as t→∞, where

ψ(k) = k ·x/t+ ωα(k) , (3.5b)
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H(k) denotes its Hessian and ζ is a multiple of π/4 depending on the properties of the Hessian; see
also [21]. By (3.2b) and (3.2c), for fixed x and t→∞, a stationary point k0 of ψ(k) occurs when

∂Φ(k)
∂kj

= Fr−1 tanh |k|+ |k|(1− tanh2 |k|)
2
√
|k| tanh |k|

kj
|k| = v

(0)
j , j = 1, . . . , d− 1. (3.6)

Assuming that v(0) is scaled such that |v(0)| = 1, a sufficient and necessary condition for a stationary
point to exist is Fr−2Λ(|k|) = 1, with

Λ(|k|) =
(tanh |k|+ |k|(1− tanh2 |k|))2

4 |k| tanh |k| . (3.7)

One can show that Λ(|k|) is a bijection from R+ to (0, 1]. Therefore, a single stationary point exists
iff Fr ≤ 1, i.e., for subcritical flows. This stationary point corresponds to a wave of which the group-
velocity (see, e.g., [11, 21]) equals the flow-velocity. Consequently, the energy associated with this
wave remains at a fixed position and decays only due to dispersion.

By (3.5a), for subcritical Froude numbers the asymptotic temporal behavior of the surface-gravity-
waves (3.2) in Rd is O(t(1−d)/2) as t→∞. In particular, surface-gravity-waves attenuate as 1/

√
t in

R2 and as 1/t in R3. At supercritical Froude numbers, a stationary point of ψ(k) does not exist and
the first term in (3.5a) disappears. The surface-gravity-waves then vanishes exponentially as t→∞.

3.3 Computational complexity
Suppose the objective is to solve a steady free-surface flow problem by the time integration method.
The asymptotic temporal behavior of surface-gravity-waves can then be used to estimate the asymp-
totic computational complexity of the method.

Spatial discretization of the incompressible Navier-Stokes equations with appropriate boundary
conditions on fixed boundaries and the free-surface conditions on the free boundary yields a discrete
operator Lh : Ah 7→ Bh, withAh denoting the space of grid functions on a grid with characteristic mesh
width h. The operator Lh is assumed to be stable and p-th order consistent, i.e., the discretization
error, εh, is O(hp) as h→ 0.

Numerical time integration of the spatially discretized free-surface flow problem yields a sequence
qnh ∈ Ah, n = 0, 1, 2, . . . The grid-function q0

h is a restriction of initial conditions to the grid. Assuming
the time step in the time-integration method, τ , to be constant, qnh approximates the solution of the
free-surface flow problem at time t = nτ . Suppose that the discretized free-surface flow problem has a
unique solution q∗h ∈ Ah, and that the sequence qnh indeed approaches q∗h as nτ →∞. The evaluation
error is defined by

γn = ‖qnh − q∗h‖. (3.8)

If the aim is to approximate the solution of the steady free-surface flow problem, it is sufficient to
reduce the evaluation error to the level of the discretization error. Further reduction does not yield
an essential improvement in the approximation of the continuum solution anyway. By (3.5a), the
asymptotic behavior of the evaluation error at subcritical Froude numbers is γn = O((nτ)(1−d)/2) as
nτ →∞. Therefore, γn ≤ εh requires

n = O(h2p/(1−d)τ−1), as h→ 0 . (3.9)

Equation (3.9) implies an increase of the number of time-steps to reach steady state within the
required tolerance. This is particularly manifest for high-order discretizations (large p) and low spatial
dimension (d = 2).

An additional complication is that usually the allowable time-step decreases with h. Time integra-
tion of free-surface flow problems typically proceeds in two alternating steps:
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(T1) Integrate the incompressible Navier-Stokes, subject to the dynamic conditions at the free surface
and appropriate boundary conditions at fixed boundaries.

(T2) Integrate the kinematic condition to adjust the free-surface position, using the solution from
(T1).

Due to this separate treatment and the hyperbolic character of the kinematic condition, stability of
the numerical time integration method requires that the time step complies with a CFL-condition,
τ ∝ h.

Summarizing, equation (3.9) and the CFL-condition imply that the number of time steps required
to reach γn ≤ εh is O(h−(1+2p/(d−1))). Assuming that the computational complexity of the time
integration method is proportional to the number of time steps, at subcritical Froude numbers the
computational complexity is

W = O
(
h−(1+2p/(d−1))

)
, as h→ 0. (3.10)

Equation (3.10) implies a severe increase in the computational expenses as h decreases. For example,
in the typical case of a 2-nd order discretization of the 3-dimensional problem, if the mesh-width is
halved, the required computational work per gridpoint increases by a factor of 8.

4. Efficient solution of steady free-surface flows

From Section 3 it is evident that the usual time-integration approach is inept for solving steady
free-surface flows at subcritical Froude numbers. In this section we present an efficient iterative
solution method for gravity subjected steady free-surface flows. The method is outlined in §4.1. The
convergence properties of the method and its computational complexity are examined in §4.2 and §4.3.

4.1 Iterative solution method
From the results in §2.3, it follows that an accurate approximation to the free-surface flow and to the
free-surface position can be obtained by the following operations:

(I1) For a given initial boundary S, solve (v, ϕ) from

div vv +∇ϕ− div τ (v) = 0
div v = 0

}
, (x, y) ∈ V, (4.1a)

B(v, p) = b(x, y), (x, y) ∈ ∂V \ S, (4.1b)

ti ·τ (v) ·n = 0

v ·∇ϕ− Fr−2 j ·v = 0

}
, (x, y) ∈ S , (4.1c)

where (4.1b) represents boundary conditions on the fixed boundary.

(I2) Use the solution of (I1) to adjust the boundary S to{
(x, y + Fr2ϕ(x, y)) : (x, y) ∈ S

}
. (4.2)

Note the appearance of the quasi free-surface condition in its steady form in (4.1c). The modified
boundary approximates the actual free surface more accurately than the initial boundary, provided
that the conditions discussed in §2.3 are fulfilled. Hence, it is anticipated that the solution to the
free-surface flow problem can be obtained by iterating the operations (I1) and (I2).

If S is the actual free surface, then the normal dynamic condition is satisfied, i.e., p vanishes on
S. In that case, n ‖ ∇p, and (4.1c) implies that the solution of (4.1) complies with the kinematic
condition and the tangential dynamic conditions. Hence, operation (I1) then yields the free-surface
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flow. Moreover, the normal dynamic condition ensures that the surface-adjustment in (I2) vanishes,
so that the solution of the free-surface flow problem is indeed a fixed point of the iteration.

It is important to notice the absence of time-dependent terms in (I1) and (I2). Therefore, the slow
decay of transient waves described in Section 3 is irrelevant to the convergence of the iterative process.
The actual convergence properties of (I1)-(I2) are examined below.

4.2 Convergence
The convergence behavior of the iterative method (I1)-(I2) can be conveniently examined by rephrasing
the the free-surface flow problem as an optimal-shape design problem. A general characteristic of free-
boundary problems is that the number of free-boundary conditions is one more than the number of
boundary conditions required by the governing boundary-value problem. A free-boundary problem can
therefore be reformulated into the equivalent optimal-shape design problem of finding the boundary
that minimizes a norm of the residual of one of the free-surface conditions, subject to the boundary-
value problem with the remaining free-surface conditions imposed.

To obtain an optimal-shape design formulation of the steady free-surface flow problem, the cost
functional E is defined by

E
(
S, (v, p)

)
≡
∫
S
|p(x, y)|dS . (4.3)

Assuming that (4.1) is well-posed for all surfaces S in a space of admissible boundaries O, and that
O contains the actual free-surface, the free-surface flow problem is equivalent with the optimal-shape
design problem

min
S∈O

{
E
(
S, (v, p)

)
: (v, p) satisfies (4.1)

}
. (4.4)

Notice that (4.4) is in fact a constrained optimization problem, with the boundary value problem (4.1)
serving as a constraint on (v, p).

The optimal-shape design formulation of the free-surface flow problem allows convenient assess-
ment of the convergence properties of the iterative method (I1)-(I2). Each iteration adjusts the
approximation to the free-surface position. Convergence of the iterative method is ensured if each
surface-adjustment yields a reduction of the cost functional (4.3). Moreover, the reduction of the
cost-functional between successive iterations is a measure of the efficiency of the method.

To determine the effect of a surface-adjustment, consider the boundary S and the modified boundary

Sεα = {(x, y) + εα(x, y) j : (x, y) ∈ S} , (4.5)

for a suitably smooth function α independent of ε on S. The modified boundary is the boundary of
a domain Vεα, which approaches V as ε → 0. Following [13], V and Vεα are embedded in a bounded
set E and it is assumed that for all V ⊂ E with S ∈ O, a solution of (4.1) can be extended smoothly
beyond the boundary, so that (v, p) is well defined everywhere in E .

The displacement of the boundary from S to Sεα induces a disturbance in the solution of (4.1).
Denoting by (v, p)εα the solution of (4.1) on Vεα, the induced disturbance is defined by

(v, p)′α ≡ lim
ε→0

1
ε

(
(v, p)εα − (v, p)

)
. (4.6)

Taylor expansion of the cost-functional then yields

E
(
Sεα, (v, p)εα

)
=
∫
S
|p+ ε(α j ·∇p+ p′α)| (1 + εµα) dS +O(ε2) , as ε→ 0 , (4.7)

In (4.7), the function µα : S 7→ R accounts for the change in the surface area from dS to dSεα.
Ignoring terms O(ε2), the modified boundary Sεα improves on S if a positive constant ζ < 1 exists
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such that∫
S
|p+ ε(α j ·∇p+ p′α)| (1 + εµα) dS ≤ ζ

∫
S
|p|dS . (4.8)

If (4.8) holds for some ζ < 1, then the modification of the boundary from S to Sεα yields a reduction
of the cost-functional. The smallest positive constant that satisfies (4.8) is called the contraction
number. Clearly, a small contraction number implies a successful surface modification.

Operation (I2) in the iterative procedure gives a correction of the boundary position εα = Fr2p. In
that case, the value of the cost-functional corresponding to the modified surface is bounded by

E
(
Sεα, (v, p)εα

)
≤
∫
S
|p| |1 + Fr2j ·∇p| (1 + εµα) dS +

∫
S
|εp′α|dS (4.9)

Hence, the contraction number ζ of the iterative process (I1)-(I2) is bounded by

ζ ≤ σp +

∫
S |εp′α|dS∫
S |p|dS

+O(ε) , (4.10)

with σp defined by (2.6). From (4.10) it follows that if ε and σp are indeed small, then the induced
disturbance determines the convergence behavior of the iterative method.

To establish convergence of (I1)-(I2), it remains to show that the induced disturbance p′α is indeed
small. In §2.3 it was shown that the quasi free-surface condition (2.13) approximates the conditions
at a fixed boundary in the neighborhood of the free-surface to O(ε2, εσp, εσv). Hence, displacing this
condition from S to Sεα yields no greater disturbance than that. In [3] it is shown that the tangential
dynamic conditions are largely irrelevant to the shape of the free surface. Conversely, the induced
disturbance due to enforcing the tangential dynamic conditions at S instead of Sεα can be neglected.
Therefore, the contraction number of the iterative method (I1)-(I2) is estimated

ζ = O(ε, σp, σv) . (4.11)

4.3 Computational complexity
Equation (4.11) provides an upper bound for the contraction number of the iterative method (I1)-
(I2). One may note that if the approximate boundary is sufficiently close to the actual free surface (ε
small), then (4.11) depends on properties of the continuum solution only. Therefore, if the free-surface
flow problem is solved numerically, the convergence behavior of the iterative method is asymptotically
independent of the mesh width.

The iteration must be continued until the pressure defect at the free surface (4.3) has been reduced
to the level of the spatial discretization error. Further reduction does not essentially improve the
approximation of the continuum solution anyway. Each iteration reduces the pressure defect at the
free-surface by a factor ζ. Therefore, the number of iterations n must satisfy

ζn = O(hp). (4.12)

This implies that n = O(p log h/log ζ). Assuming that the computational complexity of the iterative
method is proportional to the number of iterations, the following estimate of the computational
complexity is obtained:

W = O(log h) (4.13)

Hence, the efficiency of the iterative method (I1)-(I2) deteriorates only moderately with decreasing
mesh width.

To eliminate the remaining weak h-dependence of the computational complexity, nested iteration can
be employed. Generally, an iterative solution method is used to solve the boundary value problem (4.1)
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in step (I1) of the algorithm. The nesting involves the use of the solution from the previous iteration
as an initial estimate for the solution process. Because this initial estimate becomes increasingly
accurate, the cost of performing (I1) reduces as the iteration progresses. In particular, assuming that
the cost of solving (4.1) is proportional to the pressure defect at the free surface, the amount of work
that is required to achieve (4.12) is

W = w + ζ w + ζ2w + · · ·+ ζnw ≤ 1
1− ζ w , (4.14)

with w denoting the cost of solving (4.1) initially. Observe that the computational complexity (4.14)
is indeed entirely independent of the mesh width.

5. Numerical Experiments & Results

The method is tested for subcritical flow over an obstacle in a channel of unit depth, at Fr = 0.43 and
Re = 1.5× 105, with the undisturbed fluid depth and the undisturbed flow velocity at the free surface
assigned as the reference length and velocity, respectively. The geometry of the obstacle is

y(x) = −1 +
27
4
H

L3
x (x− L)2 , 0 ≤ x ≤ L , (5.1)

with H and L the (non-dimensionalized) height and length of the obstacle, respectively. Choosing
H = 0.2 and L = 2, the setup is in agreement with [5]. At the bottom boundary no-slip boundary
conditions are imposed. A boundary-layer velocity profile in accordance with the experiments from [5]
is imposed at the inflow boundary.

The test case with H = 0.2 displays large amplitude waves that exhibit typical nonlinear effects,
such as sharp wave crests and wave-length reduction. In addition, H = 0.15 is considered. This test
case displays waves more in accordance with linear wave-theory, see, e.g., [10, 11].

The experiments are performed on grids with horizontal mesh widths h = 2−5, 2−6. The number
of grid cells in the vertical direction is 70 and exponential grid stretching is applied to resolve the
boundary layer at the bottom. Furthermore, the grid is coarsened towards the inflow and outflow
boundaries to reduce reflections. A typical example of a grid used in the numerical experiments is
presented in Figure 2. The (Reynolds-Averaged) Navier-Stokes equations and the boundary conditions
are discretized and solved by the method described in [9]. After each evaluation, the grid is adapted
using vertical stretching. An initial estimate of the solution on the adapted grid is subsequently
generated by linear interpolation from the solution on the previous grid. Details of the discretization
method and the setup of the numerical experiments can be found in [4].

Figure 3 shows the wave profile obtained in successive iterations for H = 0.2. The initial estimate
(0-th iterate) is just the undisturbed free surface. One may note that the first iterate already displays
a qualitatively correct wave profile. This confirms that the quasi free-surface flow solution is an
accurate approximation to the actual free-surface flow solution. A converged solution is obtained in
less than 10 iterations. Due to the decreasing computational cost of each iteration (refer to §4.3), the
entire computation is just 2 to 3 times as expensive as the corresponding fixed domain problem with
symmetry boundary conditions at the undisturbed surface.

Figure 4 displays the pressure defect at the free surface after consecutive iterations. The results
confirm convergence of the method. For H = 0.15, the average contraction number is ζ ≈ 0.15 and
the convergence behavior is indeed independent of h. After several iterations the contraction number
increases. However, this is entirely due to the fact that the quasi free-surface flow problem (4.1)
is solved only by approximation. If the tolerance on the residual of (4.1) is reduced, i.e, if (4.1)
is solved more accurately, then the original contraction number is recovered. For H = 0.20, the
average contraction number is ζ ≈ 0.45 for h = 2−5 and ζ ≈ 0.52 for h = 2−6. As a result of strong
nonlinearity, the asymptotic mesh width independence of the convergence behavior is in this case not
yet apparent.
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Figure 2: Example of a grid used in the numerical experiments. The grid is coarsened for illustration
purposes.
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Figure 3: Wave profile obtained after successive iterations (H = 0.2).
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Figure 4: Pressure defect at the free surface versus the iteration number for H = 0.15, h =
2−5 (2), h = 2−6 (◦) and H = 0.20, h = 2−5 (+), h = 2−6 (�).
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Figure 5: Computed wave elevation for h = 2−6 (solid line) and measurements from [5] (markers
only), for H = 0.20. The obstacle is located in the interval x ∈ [0, 2].

Figure 5 compares the computed wave elevation with measurements from [5]. In [5], a non-
dimensionalized amplitude a = 4.5× 10−2± 15% and wavelength λ = 1.10± 10% are reported for the
trailing wave. The trailing wave of the computed wave elevation on the grid with h = 2−6 displays
amplitude a = 6.5× 10−2 and wavelength λ = 1.11. Hence, the amplitude is slightly overestimated.
The computed wavelength agrees well with the measurements.

6. Conclusion

The usual time integration method for solving steady free-surface Navier-Stokes flow problems was
shown to be necessarily inefficient at subcritical Froude numbers, due to the specific transient behavior
of surface-gravity-waves and a CFL-condition on the allowable time step.

Motivated by the demand for efficient computational methods in practical applications, we proposed
a new iterative solution method. The method alternatingly solves the steady Navier-Stokes equations
with a quasi free-surface condition imposed at the free surface, and adjusts the free surface using the
computed solution and the normal dynamic condition.

Examination of the convergence properties of the iterative method revealed that the method uses
the quasi free-surface condition to ensure that the disturbance induced by the displacement of the
boundary is small. It was shown that the convergence behavior of the method is asymptotically
independent of the mesh width. The asymptotic computational complexity of the iterative method
deteriorates only moderately with decreasing mesh width. Mesh width independence of the compu-
tational complexity can be achieved by means of nested iteration.

Numerical results were presented for 2-dimensional flow over an obstacle in a channel. For the
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presented test cases, a converged solution was obtained in at most 10 iterations. The numerical
results agree well with measurements. The numerical experiments confirmed that the convergence
behavior of the method is asymptotically independent of the mesh width.

We believe that the proposed method will be useful in ship-hydrodynamics, hydraulics and other
fields of application in which the efficient computation of steady free-surface flows at high Reynolds
number is required.
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