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Evaluation of ‘user-oriented’ and ‘black-box’ traffic
models for link provisioning

ABSTRACT
To offer users a sufficient performance level, network links should be properly provisioned. The
required bandwidth capacity may be determined through the use of a model of the real network
traffic. In this paper, we study the use of two classes of traffic models: (i) ‘user-oriented models’,
which capture the behavior of individual flows, and (ii) ‘black-box models’, which statistically
describe the superposition of many users (and do not distinguish between individual flows).
User-oriented models have the advantage that they allow for sensitivity analysis: the impact of a
change in the user parameters (access rate, flow-size distribution) can be assessed. In general,
however, our measurements indicated that blackbox models are easier to estimate, and yield
accurate provisioning guidelines.
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Evaluation of ‘user-oriented’ and ‘black-box’
traffic models for link provisioning

Remco van de Meent and Michel Mandjes

Abstract— To offer users a sufficient performance level,
network links should be properly provisioned. The re-
quired bandwidth capacity may be determined through
the use of a model of the real network traffic. In this
paper, we study the use of two classes of traffic models:
(i) ‘user-oriented models’, which capture the behavior
of individual flows, and (ii) ‘black-box models’, which
statistically describe the superposition of many users (and
do not distinguish between individual flows). User-oriented
models have the advantage that they allow for sensitivity
analysis: the impact of a change in the user parameters
(access rate, flow-size distribution) can be assessed. In
general, however, our measurements indicated that black-
box models are easier to estimate, and yield accurate
provisioning guidelines.

I. INTRODUCTION

Traditionally, bandwidth provisioning in IP backbones
is done by applying a set of ‘rules of thumb’. For
instance, a commonly used procedure is to collect 5-
minute measurements (e.g., by using SNMP) of the
traffic offered, take its, say, 95% quantile, and add
some safety margin. As these methods do not use the
detailed characteristics of the traffic processes involved
(i.e., fine-grained rate fluctuations), it is evident that such
provisioning procedures cannot provide any performance
guarantees that relate to these detailed timescales. Hence,
as the user-perceived performance is crucially affected
by the availability of sufficient resources over relatively
detailed timescales, it is clear that the ‘coarse’ procedure
described above has serious drawbacks.

Consequently, in order to do adequate provisioning
(i.e., not too little bandwidth capacity, as that would
negatively affect the performance; and also not too much,
as that would evidently lead to a waste of resources), it
is necessary to have a more thorough understanding of
the detailed statistical properties of the traffic offered;
information from coarse measurements does not suffice.
Clearly, link provisioning would greatly benefit from the
availability of accurate traffic models, as these would
facilitate the prediction of the offered performance as a
function of the amount of allocated resources (i.e., link
bandwidth).

There are different classes of traffic models, with their
specific pros and cons. Recently, much attention has been
paid to ‘flow-level models’. These group the aggregate

traffic streams into ‘flows’, which are ‘coherent strings’
of packets, for instance packets within the same TCP
connection or UDP stream, or packets with the same
origin-destination pair, etc. Flows arrive according to
some random process (usually one assumes a Poisson
process), stay in the system for some random time, and
during their stay they transmit packets (for instance at
a constant rate). We could call such a model ‘user-
oriented’, as it relates to the traffic profiles of the users.

The most prominent advantage of using this type
of models is that it facilitates sensitivity analysis. For
instance, it enables the assessment of the effect of the
migration of (a part of) the user population from a ‘slow’
access technology to a ‘faster’ one: what is the impact
on the bandwidth needed? Also the effect of a change
in the flow-size distribution could be quantified.

A second class of models could be named ‘black-
box models’: they do not model individual flows, but
rather attempt to find an accurate statistical description
of the aggregate of all users. A commonly used subclass
of black-box models are the Gaussian models. With
A(s, t) denoting the amount of traffic arriving in [s, t), a
Gaussian model with stationary increments is such that
A(s, t) only depends on the interval length t − s. More
specifically, A(s, t) follows a Normal law, with mean
µ(t − s) (for some mean µ > 0) and variance v(t − s)
(for some nonnegative function v(·)), for any s, t such
that s ≤ t.

It is clear that the Gaussian model is in some sense an
‘artifact’, as it, at least in principle, allows for negative
input. However, when µ(t−s) is substantially larger than
the standard deviation

√
v(t − s) it is highly unlikely that

over an interval of length t−s the increment is negative.

Both modeling approaches have their advantages and
disadvantages, and this is exactly what we want to assess
in this paper. Let us consider the following aspects:
• Black-box models abstract from the relation with the
‘user-level’, in that they only model the superposition
of (usually many) flows. An immediate consequence
is that this type of modeling does not lend itself to
performing sensitivity analysis with respect to the ‘user-
level parameters’ (such as access rates, etc.).
• Usually there is a strong heterogeneity between flows.



This can have several causes. In the first place, the end
users use different applications, which are character-
ized by different bandwidth consumption patterns. For
instance: streaming applications could use a constant
bit rate (possibly well below the access rate), whereas
file transfers are based on TCP (and grab as much
bandwidth as possible, constrained by the access rate,
the maximum window size, and the bottleneck elsewhere
in the network). A second (perhaps more important)
cause of heterogeneity lies in the fact that the bottleneck
for different flows could be at different links or routers
somewhere else in the network. For instance, two down-
loads from different servers at different locations in the
network, could result in very different transmission rates.
• Flow-level models use the notion of flow. Flows could
be defined as TCP connections or UDP streams, but these
could be small and numerous. A practical alternative
is to do some aggregation, for instance by identifying
flows as transmissions between origin-destination pairs,
as long as the ‘gaps’ between packets do not exceed
some predefined interval τ . Of course, the parameter τ

is a ‘tuning knob’ for which an appropriate value needs
to be selected.

The heterogeneity described above makes it worth-
while to split the user population in several subclasses,
with their own characteristics. For instance, flows with a
size (in bits) smaller than f could behave very differently
from call bigger than f (cf. mice and elephants). But of
course, then this parameter f should also be chosen and
tuned, so this leads to a similar problem.

In addition, when the set of applications changes
(which happens every now and then), these parameters
have to be tuned again.

Related work. There is a vast body of literature on
network traffic models; we mention a few studies that
are particularly relevant in the scope of the present study.
A classical contribution is by Leland et al. [1], who
establish the self-similar nature of Ethernet-traffic; also
for other types of traffic self-similar models, such as
fractional Brownian motion (fBm), have proved to be
adequate. These models are typically of the black-box
type, as they model the aggregate of a (large) number
of users. The use of fBm was further motivated by
showing that it arises as a limiting model of a specific
user-oriented model: the superposition of many on-off
flows with heavy-tailed on- or off-times converges (after
rescaling time) to fBm, see Crovella and Bestavros [2].
For smaller timescales, it is noted that Gaussianity cannot
be assumed, see for instance Kilpi and Norros [3] and
Fraleigh et al. [4]. Recently attention shifted somewhat
to user-oriented models, such as the flow-level models
of Ben Fredj et al. [5] and Barakat et al. [6]. We also
mention a recent study by Ben Azzouna et al. [7] who

succeed in finding a detailed flow-level description of
ADSL traffic by decomposing the aggregate stream into
several classes, of which the parameters are estimated
separately. As indicated above, the thresholds character-
izing the different ‘flow groups’ are parameters, and need
to be tuned; it is also noted that some components are
estimated by black-box models (i.e., models in which the
user behavior cannot be recognized).

Contribution. In this paper we develop bandwidth
provisioning formulae for various traffic modeling ap-
proaches, both of user-oriented and black-box nature.
These models are systematically compared, considering
different scenarios (i.e., different access technologies,
different aggregation levels), to investigate which type of
modeling is more appropriate. Our analysis shows that,
particularly due to the strong heterogeneity, flow-level
models (of the type M/G/∞) are often inappropriate.
Gaussian models do fit nicely, but have the inherent
drawback that they hardly allow for sensitivity analysis.
We also show the accuracy of the resulting provisioning
guidelines.

Approach and organization. In Section 2 we treat a
number of preliminaries; in particular we introduce two
important traffic models, namely M/G/∞ traffic (which
is a user-oriented model) and Gaussian traffic (which
is a black-box model). In Section 3, we attempt to
fit the M/G/∞ model for various traces, and find a
number of intrinsic difficulties. Section 4 shows that
Gaussian models are easy to apply, and lead to accurate
provisioning guidelines. Section 5 concludes.

II. SOME PRELIMINARIES ON LINK PROVISIONING

AND TRAFFIC MODELING

Provisioning of network resources addresses the in-
terrelationship between (i) offered traffic (in terms of
both average load and burstiness), (ii) desired level
of performance, and (iii) the required capacity. Gener-
ally, more capacity is needed when offered load and
burstiness increase, or when the performance criterion
becomes more stringent. To operate a network in a
viable way, provisioning procedures balancing (i), (ii)
and (iii) are required: scarce provisioning inevitably
leads to performance degradation, whereas (too much)
over-provisioning results in a waste of resources.

In the present paper, we model traffic with the fol-
lowing (performance) objective in mind: an organization
wants its ‘uplink’ (the link between the organization’s
network and its Internet Service Provider) to be transpar-
ent to the users, i.e., no negative impact on performance,
see also, for instance, [6]. This objective will be achieved
when the uplink’s bandwidth capacity C is chosen such
that only during a small fraction of time ε, the aggregate



rate of the offered traffic (measured on sufficiently small
timescale T ) exceeds the bandwidth capacity.

In more formal terms, this performance objective can
be stated as follows. Let A(T ) denotes the (aggregated)
amount of traffic offered in an (arbitrary) interval of
length T . Then it is required that

P (A(T ) ≥ CT ) ≤ ε (1)
For provisioning purposes, the crucial question is: “for

given T and ε, what is the minimally required bandwidth
C(T, ε) to meet the performance target?” In the remainder
of this section we derive provisioning formulae that
answer this question. First, we do this for general traffic
(i.e., without modeling assumptions), then for the flow-
level M/G/∞ model, and finally for (black-box) Gaussian
models.
A. General traffic

Based on classical Markov inequality P(X ≥ a) ≤
(EX)/a (for nonnegative random variables X), we find
the following upper bound on the target probability – see
(1) – by putting X = eθA(T ), for θ ≥ 0:

P (A(T ) ≥ CT ) = P

(
eθA(T ) ≥ eθCT

)

≤ EeθA(T )−θCT .

Because this upper bound holds for all nonnegative θ,
we can choose the tightest upper bound, viz.:

P (A(T ) ≥ CT ) ≤ min
θ≥0

(
EeθA(T )−θCT

)
. (2)

This bound, also known as the Chernoff bound, is usually
quite tight, but unfortunately rather implicit: it involves
both the computation of the moment generating function
EeθA(T ) as well as an optimization over θ.

To meet performance criterion (1), it suffices to choose
C such that the right-hand side of (2) is below ε. It
is easy to derive that the following generic bandwidth
provisioning formula gives the lowest C to meet (1):

C(T, ε) = min
θ≥0

log EeθA(T ) − log ε

θT
. (3)

It is noted that in this generic bandwidth provisioning
formula no modeling assumptions are imposed on the
traffic, other than stationarity: as long as the distribution
of the offered traffic at timescale T , i.e., A(T ), is known,
the formula can be applied.

Essentially, formula (3) captures the following effects,
which are intuitively clear: (i) the minimally required
capacity consists of two parts, i.e., the average rate,
plus some margin (following from Jensen’s inequality
for convex functions); and (ii) C is decreasing in ε both
as well as T (the looser the performance constraints, the
less capacity is required).

In the sequel, we further develop the generic band-
width provisioning formula, for two classes of models:
M/G/∞ (‘flow-level’) and Gaussian (‘black-box’) input.

B. M/G/∞ traffic

In the M/G/∞ input model [8], flows arrive according
to a Poisson process with rate λ, and stay in the sys-
tem for some random duration D. During this ‘holding
period’, traffic is generated at some rate. An obvious
choice is to take this rate constant and deterministic (at
some value r > 0). For instance, in a peak-rate limited
environment (say, a ‘slow’ connection via a modem),
r could be taken equal to the access rate: the ‘slow’
connection will always be the limiting factor for the
rate at which traffic is generated, see for instance [5].
Alternatively, the rate could be constant but random:
during each flow traffic arrives at a constant rate R,
but this R is the realization of some random variable
(and hence flows do not necessarily have the same rate).
Finally, the M/G/∞ model even covers the case in which
the rate at which traffic is generated during the ‘holding’
period follows some stochastic process, see e.g., [9],
[10].

The M/G/∞ model is inherently flexible and compre-
hensive: by choosing specific flow-length distributions
D, both short-range and long-range dependent inputs
can be modeled (so-called heavy-tailed durations lead
to long-range dependence). An important advantage of
M/G/∞ modeling, is that it allows for ‘sensitivity’
analysis. For instance, in the model with constant and
deterministic traffic rates, it is possible to predict the
impact of changing traffic rates r of individual flows on
the performance, which may be of particular interest in
the area of bandwidth provisioning: “what is the effect of
an upgrade of the network access speed on the aggregate
traffic?”

In order to derive the minimally required bandwidth
for M/G/∞ input, we determine the log-moment gen-
erating function in the generic bandwidth provisioning
formula (3); for ease focus on the case of constant and
deterministic traffic rates r. Let the mean flow duration
ED be denoted by δ, such that the mean input rate
µ = λδr. We denote by FD(·) the distribution function of
D, and by FDr (·) the distribution function of the residual
flow length. The corresponding densities are denoted
by fD(·) and fDr (·). With A(t) the amount of traffic
generated by a single M/G/∞ input in an interval of
length t, we distinguish between
• flows that were already active at the start of the interval.
The number of these sources has a Poisson distribution
with mean λδ. Their residual duration has density fDr (·);
with probability (1−FDr (t)) they generate traffic during
the entire interval.
• flows that arrive during the interval. Their number has a
Poisson(λt) distribution. Given that the number of these
arrivals is a nonnegative integer, their arrival epochs are



i.i.d. random variables, uniformly over the interval (with
density 1/t). Their duration has density fD(·).

Straightforward computations now yield the desired
log-moment generating function, cf. [10]:

log EeθA(t) = λδ(Mt(rθ) − 1) + λt(Nt(rθ) − 1), with

Mt(rθ) :=
∫ t

0

erθxfDr (x)dx + erθt(1 − FDr (t)) and

Nt(rθ) :=
∫ t

0

∫ t

u

1
t
erθ(x−u)fD(x − u)dxdu +

∫ t

0

1
t
erθ(t−u)(1 − FD(t − u))du .

From the above we conclude that in order to determine
the required bandwidth capacity, the model parameters r

and λ, as well as the distribution D have to be known.
There is a vast body of literature on the choice of
these. Often r plays the role of the access rate, see for
instance Ben Fredj et al. [5]; supported by extensive
measurements D is often assumed to have a power-law
tail, see for instance Crovella and Bestavros [2]. We also
refer to the detailed study by Ben Azzouna et al. [7] and
the references therein.C. Gaussian traffic

We recall the notion of a ‘black-box’ model, in that
it abstracts from modeling individual users or flows. A
commonly used subclass of black-box models are the
Gaussian models. Assuming that the traffic aggregate
A(T ) contains contributions of many individual users,
in many situations it is justified to assume that A(T ) is
Gaussian if T is not too small, see e.g., [4], [3].

In other words, A(T ) ∼ Norm (µT, v(T )), where µ

denotes the (long-term) average offered traffic rate. The
log-moment generating function in the generic band-
width provisioning formula (3) is then given by

log EeθA(T ) = θµT +
1
2
θ2v(T ) .

Substitution in (3) and minimization over θ yields the
following bandwidth provisioning formula for Gaussian
traffic:

C(T, ε) = µ + min
θ≥0

( 1
2θv(T )

T
− log ε

θT

)

= µ +
1
T

√
(−2 log ε) · v(T ) . (4)

We note that (4) is in the same spirit as the equivalent
bandwidth formula given in [11].
D. Test cases

In this study we make extensive use of ‘packet traces’
from operational IP networks. The traces are taken from
five distinct networks, each with different traffic charac-
teristics in terms of network access technologies (e.g.,
ADSL, Ethernet), link speeds (ranging from 512 kbit/s
to 1 Gbit/s), number of subscribers, types of users (e.g.,
students, ‘normal consumers’), etc. These networks are
selected to resemble various common real-life scenarios.
Note that we have focused on traffic from and to the
access network (that is, to and from the core network

(Internet), respectively), i.e., traffic that is sent over the
‘uplink’. LAN traffic as well as backbone traffic, has
been subject of various other studies, see e.g., [1], [7].

The measurement procedure to gather the packet
traces in our study is as follows. For each network, we
have hooked up an off-the-shelf PC to a router/switch
that copies all traffic from/to the network to the mea-
surement PC. Using the standard tcpdump software, all
packet headers are captured, time-stamped, and subse-
quently made anonymous through the tcpdpriv tool to
protect the privacy of users; the procedure is detailed
in [12]. In this way we have obtained over 400 traces
in total, each of them containing 15 minutes of traffic.
The traces are available online [13]. Because of space
restrictions, we cannot discuss all traces or all networks
here, and instead have to limit to two test cases. We
stress that analysis of the other traces has not lead to
results that are contradictory to the findings presented in
this paper.

The first test case, referred to as loc1, considers the 1
Gbit/s uplink of a Dutch research institute. The institute
employs about 200 researchers and support staff, who all
have a 100 Mbit/s access link. The uplink is only mildly
loaded – about 1% on average (long-term). The traces
from this uplink have been gathered in Summer 2003.
The second test case, referred to as loc2, considers the 1
Gbit/s uplink of an ADSL access network with several
hundreds of subscribers. The ADSL access speeds vary
from 512 kbit/s to 8 Mbit/s. The traces from this uplink
were collected in Summer 2004. For the discussions in
this paper, we have randomly selected traces from these
locations.

In the next two sections we will use these test cases
to investigate and illustrate the applicability of M/G/∞
(Section III) and Gaussian (Section IV) traffic modeling
to support bandwidth provisioning.

III. M/G/∞ MODEL

As said before, a prominent advantage of M/G/∞
input modeling is that it allows sensitivity analysis
of ‘user-level parameters’ – an attractive feature for
bandwidth provisioning purposes. In this section we
investigate the applicability of this model using the traffic
traces described above, and we study to what extent it
provides insight into the impact of the rate at which flows
generate traffic. We first verify whether the basic version
of the M/G/∞ model holds, i.e., the model in which r is
constant and deterministic (i.e., all flows transmit at the
same constant rate).

Heterogeneity of traffic flows may have various
causes. In the first place, flows themselves may generate
traffic at fluctuating rates, various flows may have differ-
ent (possibly constant) rates, etc. Differences in traffic
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rates among flows are the result of the use of various
applications (that cause different traffic patterns), and the
end-to-end nature of TCP/IP connections, in that any link
within the path between the two end-points may reduce
the achieved traffic rate.

In this section, we first investigate whether traffic
within a single flow is generated at a (more or less)
constant rate (Section II.B). Secondly, we compare traffic
rates among various flows (Section III.B). Motivated
by measurements that show that most of the traffic is
generated by only a limited number of large flows (‘ele-
phants’), we then repeat this exercise only taking into
account these long flows. As access rate limitations are
imposed on the user’s transmission rate rather than the
transmission rate of an individual flow, we also aggregate
all (concurrent) flows as generated by the same user and
investigate whether these aggregated traffic flows streams
exhibit homogeneity. Based on these observations we
argue that the model with a constant and deterministic
rate does not apply, and therefore we shift our attention
to the model with a constant but random transmission
rate (Section III.C).
A. Rate within a flow

Various definitions of a flow of network traffic are
in use. At this point, we define a flow following the
common 5-tuple definition: a flow comprises all packets
with the same (source IP address, destination IP address,
transport protocol, source port, destination port), as long
as the ‘gap’ between such packets does not exceed some
predefined interval. For instance, in this definition all IP
packets within the same TCP-connection belong the a
single flow.

Figure 1 shows four (relatively large) flows, picked
from the approximately 60000 flows in the loc1 trace.
The slopes of the lines indicate the rate of the flows; the
traffic rate of the ‘fastest’ flow is about eight times as
high as the rate of the ‘slowest’. The traffic rate within
the flows, however, appears more or less constant (given
the fairly straight lines). The differences in traffic rates
may be explained by heterogeneity, for instance because
the various flows stem from different applications with
varying demands from the network. Another possible
explanation for the different traffic rates may be that
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various end-to-end paths may have different bottlenecks
that restrict the transmission rate.

This observation shows that one may not assume the
traffic rate r to be a fixed value in M/G/∞ modeling.
The next subsection further study this heterogeneity.

B. Rate between flows
In this subsection we compare traffic rates between

flows. We assume, motivated by the discussion above,
that traffic rates within single flows are constant –
every flow may have a different traffic rate though. To
investigate the traffic rates between flows, we plot the
duration of every flow against its size - their ratio is the
traffic rate. Figure 2 shows all flows (according to the 5-
tuple definition) in the loc1 trace. Clearly, various flows
of the same size, may take longer or shorter to complete.
Similarly, the duration of a flow, does not provide us
with any information on the flow’s size; we observe an
extreme heterogeneity.

One may wonder whether this heterogeneity may
be caused by the above-mentioned mice-elephants di-
chotomy, or by the fact that we should aggregate flows
per user. We now investigate these options.

The widely used assumption that Internet traffic is
heavy tailed, motivates our choice to ‘zoom in’ larger
flows. Therefore we first investigate which percentage
of the flows cause what fraction of the traffic. Figure 3
clearly shows that only a small percentage of all flows
account for most of the traffic. We decided to ‘zoom in’
on the approximately 3000 largest flows (corresponding
to 95% of all traffic, and about 5% of all flows). For this
sub-set of all flows, the duration-size pair of each flow is
plotted in Fig. 4; again, the spread of the (duration,size)-
tuples suggests great heterogeneity.

A single user may have multiple flows generating
traffic concurrently, e.g., he may be browsing the web
while a file download is going on in the background.
These flows may interact with each other with regard
to the rate at which each flow generates traffic when
(partly) following the same Internet path; in any case,
they share the access line. Such interaction may affect
the ‘homogeneity’ in terms of rates of individual flows.



Therefore, we aggregate flows generated by the same
user that are ‘overlapping in time’, and with this new
definition of flow we again plot the duration-size tuples.
Note that we left out the 95% smallest flows, like above,
because of their negligibly small contribution to the
total traffic. With the new definition of flow, some 160
‘aggregated flows’ remain. Figure 5 shows the resulting
(duration,size)-tuples. The cloud in Fig. 5 is not as dense
as before, however, but the ‘spread’ is still considerable.

From the discussions above we conclude that traffic
rates in trace loc1 are not fixed between flows; this
conclusion remains valid when only ‘elephants’ are
considered, and when flows are aggregated per user. This
conclusion is also supported by analysis of an extensive
number of other traces, taken from the same and other
networks; although the specifics of the achieved rates,
and spread of flow sizes and durations may differ, the
clouds suggest strong rate heterogeneity.
C. Random rate

The previous section showed that one cannot assume
that the traffic rate is constant and deterministic. There-
fore, we now consider a second option: the transmission
rates are constant within flows, but the value R of this
rate is random. In this subsection, we try to ‘fit’ real
traffic in an M/G/∞ model with random transmission
rate R.

For every single flow, the rate R is determined by its
size and duration, according to S = RD, where S denotes
the flow’s size and D its duration. We first investigate
whether R and D are independent. A necessary condition
for independence is

ED · ER

ES
= 1 . (5)

We compute ED, ER, and ES for 10 different traces
taken from the same uplink as trace loc1, and plot the
resulting fraction (5) in Fig. 6. Fraction (5) is also plotted
for the set of all flows that together constitute 95% of all
the traffic in every trace, leaving the majority of flows
(i.e., the smaller flows) out (‘top contributing flows’).
Clearly, in only 2 of the 10 traces the resulting fraction
comes close to 1. Therefore, from Fig. 6 we conclude
that R and D are not independent in these traces of real
traffic.

The dependence between the rate and duration implies
that the traces considered do not fit in the framework of
the M/G/∞ input model.

Of course one could split the aggregate traffic stream
into various smaller ‘sub-streams’, on the basis of size,
but also application, etc. Such an approach was pursued
in recent studies on flow-level modeling, e.g., [7]. There
it was found that it is possible to describe real traffic
using an M/G/∞ model, but the accuracy of the fit
is at the expense of the number of sub-streams, and
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the corresponding tuning parameters (for instant the
threshold that distinguishes the mice from the elephants).
We remark that a lot of effort is put into grouping flows
that are similar, for instance elephants, together. The
extra effort that is required to estimate the modeling
parameters accurately, may be unattractive to network
operators. Also, when the nature of the traffic changes,
for instance because of new popular applications, the
estimation of the parameters has to be redone, which
may require significant effort.

An other important remark is that we have not suc-
ceeded in recognizing the access rate in our traces: the
transmission rates (which where, as said before, constant
during the flow’s holding time) are apparently limited by
other bottlenecks than the access rate. As a consequence,
it appeared infeasible to do sensitivity analysis of the
required bandwidth as a function of the access rate.

IV. GAUSSIAN MODEL

In Section III we have seen that the strong heterogene-
ity of the traffic in our traces appears to be a key problem
to flow-level modeling. In this section we abstract from
flow-level modeling, and turn to a black-box model, i.e.,
describing a traffic aggregate. We focus on the case of
Gaussian traffic (as introduced in Section II.C).

First, we investigate if a Gaussian model accurately
describes the traffic aggregate in our traces for T =
1 second, and determine a quantitative measure for
the ‘goodness-of-fit’ (similar to the procedure followed
in [3]) (Section IV.A). Second, we investigate whether a
Gaussian traffic model may also be used to describe the
real traffic on other timescales, and estimate the variance
curve v(·) (Section IV.B). The variance function is then,
third, used to showcase the provisioning procedure cf. (4)
(Section IV.C).

We emphasize that the procedures described in this
section are all but new – see e.g., [3]. The main goal
of this section is the comparison with the procedure
highlighted in Section III. There it turned out to be quite
cumbersome to find an M/G/∞ model with a good fit,
whereas the present section indicates that it is relatively
easy to find appropriate black-box models.
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A. Model fitting
We investigate whether the traffic in our traces is

accurately described by a Gaussian process: A(T ) ?∼
Norm(µT, v(T )). Note that literature suggests that this
may be true for T not too small [3], [4]. We choose
T = 1 second to start with, motivated by our expectation
that timescales of this order are relevant for performance
as perceived by end-users of interactive applications like
web-browsing. In the next subsection, we also consider
other timescales.

The estimates µ̂ and v̂(T ) of the average and (sample)
variance of the traffic rates in our traces can straight-
forwardly determined: µ̂ = 1/n

∑n
i=1 Ai, and v̂(T ) =

1/(n − 1)
∑n

i=1(Ai − µ̂)2, where Ai denotes the amount
of traffic offered in an interval of length T , and n the
number of slots (i.c., 900 slots of 1 second). We note
that the convergence of the estimator of the sample
variance could be rather slow when traffic is long-range
dependent [14, Ch. I]. We find that, for the loc1 trace,
µ̂ = 18.9 Mbit/s and v̂(1) = 24.3 Mbit2/s2. With the
regard to the loc2 trace, these are µ̂ = 103.0 Mbit/s and
v̂(1) = 37.02 Mbit2/s2.

We use a so-called quantile-quantile plot (Q-Q plot)
for testing the Gaussianity of the traffic. In this Q-Q
plot, the order statistics are plotted against the inverse of
the normal cumulative distribution function with mean
µ̂ and variance v̂(T ). The closer the point-pairs are to
the diagonal in such a Q-Q plot, the more Gaussian the
distribution of A(T ) is.

Figure 7 shows the comparison between the traffic
in trace loc1 and the Gaussian traffic model. Visually,
the traffic seems to be ‘fairly Gaussian’, as most point-
pairs are close to the diagonal. Note, however, how
the Gaussian model fails to capture the head and tail
of the distribution of A(T ). This motivates conservative
bandwidth provisioning: if a Gaussian traffic model is
assumed, one should be aware that the model is not
accurate when traffic rates are relatively high.

In order to get a quantitative measure of goodness-of-
fit, we use the linear correlation coefficient as defined
in [3], which we denote with γ. Note that −1 ≤ γ ≤ 1,
and γ = 1 means that the empirical distribution is
identical to the model distribution. We find that γ =

0.994 for the loc1 trace, supporting the ‘fairly Gaussian’
characterization above. It turns out that the loc2 trace is
similarly well approximated by Gaussian: γ = 0.992 (for
time scale T = 1 second).
B. Variance estimation

In the previous paragraphs we have seen that, for T =
1 second, the traffic from our traces is well approximated
by a Gaussian traffic model. We now look into other
timescales, and also determine the variance v(T ) for T

ranging from 0.01 to 128 seconds.
First, to investigate to what extent the loc1 trace is

Gaussian on various timescales, we compare the distri-
bution of A(T ) in the loc1 trace with Norm(µT, v(T )) by
computing the linear relation coefficient γ for each T .
The resulting goodness-of-fit is plotted in Fig. 8 (right
axis). In line with other measurement studies (e.g., [4]),
the loc1 appears Gaussian for T > 0.5 seconds, and not-
perfectly-Gaussian for smaller T . Also, the Gaussianity
of the loc1 traces reduces for T > 10 seconds, which may
be partly caused by the relative low number of possible
observations from the loc1 trace for relatively large T .

Second, we compute the sample variance v̂(T ) of trace
loc1, as a function of T , with T ranging from 0.01 to
128 seconds. The results are also plotted in Fig. 8 (left
axis). We compare these results with one of the key
models in traffic modeling: fractional Brownian motion
(fBm), which is a Gaussian model; see, e.g., [15] for
more information on fBm. The variance function for fBm
is given by v(t) = σ2t2H , where H is the so-called Hurst
parameter. For H > 1/2 this corresponds to long-range
dependent traffic. We now fit (using the least-squares
method) the sample variances from the loc1 trace with
the variance curve of fBm traffic; we find that with
H = 0.82 and scaling with σ = 5.38, the sample and
fBm variances are close to each other, for all inspected
T .
C. Provisioning

We return to our primary objective of bandwidth
provisioning (1). The analysis in the previous paragraphs
has shown that it is justified to use a Gaussian model
to describe the network traffic in our traces. Hence,
the bandwidth provisioning formula (4) for Gaussian
traffic can be used to determine the minimally required
bandwidth capacity C to meet the performance criterion
(1) for ‘link transparency’. In this subsection we study
the accuracy of the resulting provisioning procedure.

We specify our performance criterion as ‘only during
at most 1% of time, the rate per second of the offered
traffic may exceed the available capacity’, i.e., T = 1
second, and ε = 0.01. Using our estimates µ̂ and v̂(T ), we
estimate using (4) that the minimally required capacity to
meet that criterion, for the loc1 trace, is C ≈ 34 Mbit/s.
For the loc2 trace, for which we specify T = 1 and
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ε = 0.05, the required capacity is estimated at C ≈ 118
Mbit/s.

In order to assess the accuracy of the estimations
for the required bandwidth capacity, we compare these
figures with the actual traffic rates, averaged per second,
that we derive from the packet header traces. The assess-
ment is graphically shown in Fig. 9 and Fig. 10. Clearly,
the computed required capacity is sufficient to meet the
offered traffic in almost all intervals. One might argue
that the estimated required capacity may be exceeded
more often without violating the performance criterion
(actually 9 intervals, instead of the about 3 intervals as
it shows from Fig. 9) – which is true. A reason for the
slight ‘overshooting’ may be in (2), in that the Chernoff
bound which gives not an exact value but rather an upper
bound on the overflow probability. This actually leads
to a somewhat conservative capacity estimation – which
we believe is to be preferred over a scarce capacity
figure, because of its inherent effect on (user perceived)
performance.

V. CONCLUDING REMARKS

We have presented a comparison between two fun-
damentally different approaches of traffic modeling: (i)
‘flow-level’ modeling, capturing the behavior of indi-
vidual flows, and (ii) ‘black-box’ modeling, which sta-
tistically describe the superposition of many users. In
particular, we compare the ‘flow-level’ M/G/∞ model
and a Gaussian model as ‘black-box’. The application
that we have in mind in this study is network link
provisioning; in particular, we are interested in achiev-
ing link transparency, i.e., the link should not have a
negative impact on the performance. An accurate traffic
model helps, in that it facilitates the prediction of the
offered performance as function of the link utilization.
We provide link provisioning formulae for both traffic
modeling approaches.

Our comparison between the two modeling ap-
proaches is supported by packet header traces that were
obtained from various real-life settings. The analysis of
these traces has shown that the strong heterogeneity often
makes the use of ‘flow-level’ models (of the M/G/∞-
type) unattractive. Contrarily, Gaussian models fit nicely,

especially for timescales larger than 0.5 second. Subse-
quent validation of the provisioning formula for Gaussian
traffic, using the traces, shows that an (somewhat con-
servative, but still) accurate estimation of the required
capacity is obtained.

In future work we intend to further investigate the
applicability of a Gaussian traffic model in real-life
settings. Special focus will be on its limitations: up
to which timescales and user aggregation levels can
the model be used? Also, the dominant use of Internet
changes over time, and this may have consequences to
traffic modeling – whether or not a Gaussian traffic
model is still appropriate is a topic that requires further
research. REFERENCES
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