
An Overview of Centralised Middleware
Components for Sensor Networks

Martijn Onderwater1,2

1Center for Mathematics and Computer Science (CWI),
Stochastics Group, Science Park 123, 1098 XG Amsterdam, The

Netherlands, m.onderwater@cwi.nl,

2VU University Amsterdam, Department of Mathematics, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

April 30, 2014

Abstract

Sensors are increasingly becoming part of our daily lives: motion detection,
lighting control, environmental monitoring, and keeping track of energy
consumption all rely on sensors. Combining data from this wide variety
of sensors will result in new and innovative applications. However, access
to these sensors – or the networks formed by them – is often provided
via proprietary protocols and data formats, thereby obstructing the de-
velopment of applications. To overcome such issues, middleware compo-
nents have been employed to provide a universal interface to the sensor
networks, hiding vendor-specific details from application developers. The
scientific literature contains many descriptions of middleware components
for sensor networks, with ideas from various fields of research. Recently,
much attention in literature is aimed at what we, in this paper, define
as ‘centralised’ middleware components. These components consider sen-
sor networks that have no capacity – in terms of memory, data storage,
and cpu power – to run middleware components (partially) on the sen-
sor nodes. Often, viewed from the position of the middleware component,
these sensor networks function as simple data providers for applications.

In this paper we introduce the term ‘centralised’ for such middleware
components, guided by a literature review of existing middleware com-
ponents for sensor networks. We describe their general architecture, give
a description of a representative set of four centralised middleware com-
ponents, and discuss advantages and disadvantages of these components.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:m.onderwater@cwi.nl

Finally, we identify directions of further research that will impact cen-
tralised middleware systems in the near future.

Keywords: Sensor network middleware, Centralised middleware compo-
nents, Sensor web enablement, Middleware categorisation, Sensor web,
Web services, Sensor networks.

Biographical notes: Martijn Onderwater is a Ph.D. student at the Cen-
ter for Mathematics and Computer Science (Amsterdam, The Nether-
lands), and at VU University Amsterdam (The Netherlands). He received
a M.Sc. degree in Mathematics (2003) from the University of Leiden (The
Netherlands), and a M.Sc. degree in Business Mathematics & Informatics
(2010, Cum Laude) from VU University Amsterdam. He also has several
years of commercial experience as a software engineer. His research focuses
on sensor networks, and his interests include middleware components for
sensor networks, dimensionality reduction, outlier detection, caching in
sensor networks, Markov decision processes, and evolutionary algorithms.

1 Introduction

Sensor networks have been used for decades in a wide variety of applications, for
instance habitat monitoring (Szewczyk et al. (2004)), the Smart Kindergarten
(Srivastava et al. (2001)), health care (Baker et al. (2007)), and monitoring of
infrastructural performance (Knobbe et al. (2010)). Sensors also play an increas-
ing role in our daily lives: smart electricity meters provide real-time consump-
tion information, washing machines contain fuzzy intelligence to dynamically
determine the amount of needed water, lights turn on only when movement is
detected nearby, and mobile phones contain a myriad of sensors as well.

Sensors

Sensors

Middleware
platform

Figure 1: Illustration of the position of sensor middleware component

2

Sharing sensor data can be quite challenging in practice, because each sensor
potentially has different capabilities, unique data representations, and propri-
etary access interfaces. How can we easily share sensor data, without troubling
the user with such specifics? In traditional it-systems, a middleware compo-
nent is often used to provide a generic method for accessing resources, and the
same approach is used in sensor networks. Figure 1 illustrates the position of
a middleware platform in the context of sensor networks. The platform collects
data from sensor networks located in, e.g., a house or an office. On the right
side of the picture, the collected data is shared with 3rd party applications. For
instance, an alarm can be sent to the fire department when a fire is suspected,
or a weekly report on the kids’ tv-time can be generated.

Hence, the middleware component is responsible for collecting data from the sen-
sor networks, and for publishing their data for use by applications. In essence,
a middleware component forms a bridge between the sensor network and appli-
cations relying on data from these networks. This broad description of the term
‘middleware component’ allows for a wide variety of approaches inspired by ideas
from various fields of research and industry. Consequently, a large body of lit-
erature covering sensor network middleware components already exists, jointly
containing more than 100 different components. These middleware components
can be divided into two groups: components that (partly) run on the sensors in
the network, and those that do not run on the sensors. Middleware components
in the first group often require some software to be installed on each sensor in
order to perform their tasks, thereby creating an intelligent sensor network. The
second group views sensors as simple data providers and combines data from
these sensors into intelligent applications.

In this paper we focus on components from the second group: those aimed at
sensor networks that have no capacity – in terms of memory, data storage, and
cpu power – to run middleware components (partially) on the sensor nodes. Re-
cently, such components form a popular research topic and have high practical
relevance. We will introduce the term centralised for these middleware com-
ponents, and illustrate their importance using a literature review of existing
middleware components. After an overview of their general architectural setup,
we describe and discuss the most important centralised middleware components.

The next section contains a literature review of non-centralised middleware com-
ponents, and discusses why centralised components have become popular in re-
cent years. Section 3 starts with a general description of centralised middleware,
then describes one of the standards for publishing sensor data on the web in
Section 3.2, and continues with a description of the most well-known centralised
middleware components in Section 3.3. We identify directions for future research
in Section 3.4, and conclude in Section 4.

3

2 Middleware components in literature

Middleware platforms for sensor networks have received abundant attention
in the scientific literature. Until a few years ago, the following categorisation of
sensor network middleware was often used (adapted from Andreou et al. (2011);
Hadim and Mohamed (2006a,b); Henricksen and Robinson (2006); Masri and
Mammeri (2007)):

• Database-inspired components;

• Virtual Machine-motivated components;

• Agent-based components;

• Application-driven components;

• Message-oriented components.

We will use this categorisation as a guideline to give a high-level overview of
sensor middleware components in the literature. For a more in-depth review we
refer the readers to, e.g., the surveys by Wang et al. (2008); Molla and Ahamed
(2006), or to the specialized surveys by Mohamed and Al-Jaroodi (2011) (on
service-oriented middleware approaches) and by Sugihara and Gupta (2008) (on
programming sensor networks).

Below, we will describe each of the categories, illustrate the architectural simi-
larities within a category, and list several middleware components contained in
the category. Table 1 contains the middleware components per category, with a
timeframe, a reference to a publication, and a link to a website (if available).

2.1 Database-inspired components

This subclass of middleware views the sensor network as a distributed database
and adapts existing querying techniques to the sensor network. Figure 2 illus-
trates a simple network with three sensor nodes, and a laptop interesting in
collecting data from these nodes. Each node typically has a local database (db)
and a query engine for dealing with queries. Together, the storage and query
processing facilities form the middleware component. As an example, suppose
that the laptop issues a query to the network, requesting all measurements from
sensors 2 and 3 at intervals of 1 second for the next 10 seconds. In sql-like
notation, this could be SELECT * FROM sensors WHERE id IN (1,2) SAM-
PLE RATE 1s FOR 10s. The laptop passes this query to node 1, which in turn

4

forwards it to nodes 2 and 3. There the query is executed and the results are
returned.

This example illustrates three important aspects of middleware components in
this category. First, issued queries should be routed to the correct nodes and thus
the middleware should maintain some structured representation of the network.
The second aspect concerns the need for a sensor-specific query language, which
usually is a modified form of standard sql. In the example above, the keywords
“SAMPLE RATE” and “FOR” are extensions to conventional sql. Thirdly, in
conventional database systems the results of the queries are always immediately
returned after it has been processed. In the context of sensor networks, however,
queries can run and produce output continuously, resulting in a stream of data.

Middleware platforms in this category include TinyDB (Madden et al. (2005)),
IRISNet (Gibbons et al. (2003)), SINA (Shen et al. (2001)), Cougar (Yao
and Gehrke (2002)), DSWare (Li et al. (2004)), SNEE (Galpin et al. (2008)),
and KSPOT Andreou et al. (2009).

QUERY

Sensor 1

Query
engineDB

Sensor 2

Query
engineDB

Sensor 3

Query
engineDB

Figure 2: Simple sensor network where the nodes are viewed as parts of a dis-
tributed database. Each node comprises of a local database and query engine.
The engine interprets and forwards queries to the correct nodes, and executes
them to retrieve data from its local database

5

2.2 Virtual Machine-motivated components

A Virtual Machine (vm) is a platform-independent programming environment
that hides details of the underlying operating system and hardware. Software
developers can thus write programs in one language, and deploy it to any device
running a virtual machine. Since sensors are based on a wide variety of software
and hardware, using a virtual machine is also appropriate for sensor networks.
When each sensor runs a virtual machine, then creating reusable programs for
sensor networks becomes considerably easier.

Figure 3 illustrates the setup, containing a simple sensor network of three nodes,
each running a virtual machine. The application on the laptop sends a program
into the sensor network, where it arrives at Sensor 1. There, it is split into three
parts (resulting in this case in three parts, one for each sensor) and forwarded
to the correct nodes. Each node then executes the part it received, until the
program ends.

Applications for sensor networks typically use data from multiple sensors, so
a key feature of vm-motivated middleware is that it facilitates the splitting of
programs. Additionally, it sends the parts of the program to the correct sensor
nodes, so the middleware component also needs to maintain a structured view of
the network. Finally, the middleware component must manage software updates
across the sensor network.

Maté (Levis and Culler (2002)), MUSE (Rittle et al. (2005)), and Magnet
(Liu et al. (2005)) are components in this category.

2.3 Agent-based components

Agents are small pieces of software that work together to achieve a predefined
goal. Unlike conventional computer programs, agents are not activated by exter-
nal commands but act autonomously based on a set of rules and on information
from their environment. Additionally, agents are mobile and capable of moving
from one environment to another.

The principles of agent-based systems have also been applied in the context of
sensor networks. To facilitate the execution and migration of agents in sensor
networks, middleware components in this category typically equip each node in
the network with a special execution environment (ee). This is illustrated in
Figure 4, which shows a sensor network with three nodes and two agents, one
at the second sensor node, and one en-route from sensor 1 to sensor 3.

As with the vm-oriented frameworks, agent-based middleware components need

6

Sensor 1
VM

Sensor 2

VM

Sensor 3

VM

Figure 3: vm-based middleware components deploy a Virtual Machine on each
node, and thus provide an execution environment for small pieces of code. In this
example, a program is split into three parts and forwarded to the appropriate
node. There, the program is executed until it is finished

a structured view of the network, require special skills from the software devel-
opers, and must facilitate the distribution of software updates.

Well-known agent-based approaches are Impala (Liu and Martonosi (2003)),
Agilla (Fok et al. (2009)), SWAP (Moodley and Simonis (2006)), and MAPS
(Aiello (2009)).

2.4 Application-driven components

Whereas the middleware components in the previous categories were grouped
by an architectural similarity, the components in this category have a common
goal: optimising Quality of Service (QoS). There is no formal definition of QoS,
so the various QoS aspects are typically application-specific. This is why this
category is named ‘application-driven’, although perhaps ‘QoS-driven’ is a more
appropriate name. An example of an application-driven middleware component
is MiLAN (Middleware Linking Applications and Networks, by Heinzelman
et al. (2004)), which considers both the QoS requirements of an application and
the QoS capabilities of the available sensors. These requirements and capabilities

7

Sensor 1
EE

Sensor 2

EE

Sensor 3

EE

Figure 4: Agent-based middleware components equip each sensor with an exe-
cution environment (ee) allowing agents to, e.g., migrate to other sensors

are then matched to select the sensors involved in the application. In MiLAN,
the QoS levels reflect uncertainty in sensor measurements, i.e., if faced with a
choice between using a sensor with level 0.7 and a sensor with level 0.8, the
latter is preferred due to its higher reliability.

Besides MiLAN, MidFusion (Alex et al. (2008)) and the adaptive middleware
component (AMC) by Huebscher and McCann (2004) also belong this category.

2.5 Message-oriented components

In sensor networks, measurements often occur because of events that happen in
the monitored environment. For instance, a high temperature measurement may
result in the transmission of that measurement to all interested applications. In
traditional it-systems, the publish/subscribe mechanism is often used to provide
such event-driven communication, and it has also been used in the context of sen-
sor networks. In the publish/subscribe mechanism each sensor node broadcasts
a standardized description of its capabilities across the network to interested
applications. If an application is interested in the measurements of a sensor, it
notifies this sensor that it wants to subscribe the sensors events. When a sensor
detects an event, the resulting measurement is forwarded (‘published’) across

8

the network to all subscribing applications. Hence, applications are triggered if
an event happens to which they have subscribed.

We use Mires from Souto et al. (2005) as an example of a middleware compo-
nent in this category, with Figure 5 illustrating the architecture of a sensor node
as used by Mires. At the heart of each node is the Publish/subscribe service,
which provides communication between the services offered by the node and
the rest of the sensor network. The Node application reads values from the sen-
sors and notifies the Publish/subscribe service that new readings are available.
Other local services (if any), for instance an Aggregation Service, can now do
the processing that they require. After completion, the results are handed off
to the Routing component, which publishes them to the sensor network. Full-
featured user oriented applications can be constructed on Mires by notifying
the network which nodes and node applications are needed.

The event-based nature of many sensor networks makes the publish/subscribe
mechanism a useful tool for middleware components in this category. Moreover,
this mechanism fully decouples applications and sensor nodes, so that adding
or removing applications and/or sensor nodes does not require global changes
to the middleware component. Finally, the publish/subscribe mechanism hides
vendor and hardware specific details about sensors from applications. Thereby,
developing applications in networks with heterogeneous sensors becomes more
convenient.

In this category AWARE (Ollero et al. (2007)), WMOS (Zhai et al. (2011)),
and TinyMQ (Shi et al. (2011)) are also included.

Figure 5: Architecture of one Mires node, copied from Souto et al. (2005)

9

2.6 Discussion

Most of the middleware components in the categories from the previous sections
have not been widely adopted in practice. One of the reasons for this is that the
middleware components were motivated by increased technological possibilities
of sensors (e.g., more memory, larger storage capacity, and better processors),
but many of the sensors used in practice today are still resource-limited devices
with no possibilities to run, e.g., a virtual machine.

A second reason is that industry standards such as Zigbee (2007) have received
little attention in the literature for sensor network middleware. As the authors
of Mottola and Picco (2011) put it: Academic WSN research and ZigBee appear
to intersect only seldom, if at all. [. . .] This progressively caused industry to lose
interest in academic wsn research, as compliance with standards [. . .] is key to
industry applications.

Finally, one can question whether a sensor middleware component should extend
into the sensor network. If it does, then the middleware component is faced with
typical network-issues such as routing, and perhaps the responsibility for this
should be assigned to the network, not to the middleware.

In recent years the scientific community picked up on these concerns and gradu-
ally moved towards a new generation of middleware components. These are the
topic of this survey, and we elaborate on them in the next section.

3 Centralised middleware components

3.1 High-level outline

As explained in the previous section, the ideas underlying the approaches from
the various categories have not been widely adopted in practice. Many real-
world applications provide their services based on sensor measurements only,
without requiring middleware components to extend into the sensor network. For
these applications, sensor networks function primarily as simple data sources.
Moreover, in recent years sensor-driven applications have started combining
data from multiple existing sensor networks, and sensor middleware research
has shifted in the same direction. Consequently, data collection from existing
sensor networks, and data publishing for use by 3rd parties are now popular
topics in sensor middleware research.

To illustrate the position of such middleware components, Figure 6 shows three
sensor networks that are connected to a middleware component. This middle-

10

Timeframe Reference Website
Database-inspired

SINA 2001 Shen et al. (2001) -
Cougar 2000-2005 Yao and Gehrke (2002) Cougar (2002)
IRISNet 2002-2005 Gibbons et al. (2003) IRISNet (2003)
TinyDB 2002-2005 Madden et al. (2005) TinyDB (2005)
DSWare 2004 Li et al. (2004) -
KSPOT 2007-2011 Andreou et al. (2009) KSPOT (2009)
SNEE 2008-2009 Galpin et al. (2008) SNEE (2008)

Virtual Machine-motivated
Maté 2002-2005 Levis and Culler (2002) Maté (2002)
Magnet 2001-2005 Liu et al. (2005) Magnet (2005)
MUSE 2005 Rittle et al. (2005) -

Agent-based
Impala 2002-2004 Liu and Martonosi (2003) -
Agilla 2004-2007 Fok et al. (2009) Agilla (2009)
SWAP 2006 Moodley and Simonis (2006) -
MAPS 2009-now Aiello (2009) MAPS (2009)

Application-driven
MiLAN 2002-2004 Heinzelman et al. (2004) -
AMC 2004 Huebscher and McCann (2004) -
MidFusion 2008 Alex et al. (2008) -

Message-oriented
Mires 2005 Souto et al. (2005) -
AWARE 2006-2009 Ollero et al. (2007) AWARE (2001)
WMOS 2011 Zhai et al. (2011) -
TinyMQ 2011 Shi et al. (2011) -

Table 1: Overview of the middleware components per category. Each component
has a reference to a paper describing the architecture, and a link to a website
(if one exists)

11

ware component is responsible for collecting the data from these networks, and
publishing it to 3rd party applications. Figure 6 contains two example appli-
cations: an indoor climate monitoring dashboard, and a building management
application. Note that the middleware component forms a bridge between the
applications and the sensor networks, hence we refer to this type of component
as a ‘centralised middleware component ’.

Building
management

Indoor climate
monitoring

Centralised Middleware Component

Data publishing

Data collection

Figure 6: Position of the centralised middleware component with respect to the
sensor network and applications

In the remainder of this section we show several examples of centralised middle-
ware components from the scientific literature, and discuss their advantages and
disadvantages. Before that, in the next section, we describe the leading indus-
try standard for data publishing, as this is included in many of the middleware
components.

3.2 Sensor Web Enablement initiative

Several years ago an international group of companies, government agencies
and universities from the OpenGeospatial-Consortium (2010) (ogc) started the
Sensor Web Enablement (swe) initiative. This initiative aims to support the
discovery and exchange of sensor information, as well as the tasking of sensor
systems. It consists of standards covering the topics of modelling sensors and
observations, and of interfaces for communicating with sensors. The standards
and interfaces in swe are defined as web services, and include the following
specifications:

12

• Observations & Measurements: a schema for describing sensor observa-
tions and measurements.

• Sensor Model Language: an interface for describing sensor systems and
their capabilities.

• Sensor Observation Service (sos): a web service to obtain observations
and sensor and platform descriptions from one or more sensors.

• Sensor Planning Service (sps): provides users with a standard interface
for setting their own data collection requests.

• Sensor Alert Service (sas): defines an interface for publishing and sub-
scribing to sensor alerts.

• Web Notification Service (wns): handles the asynchronous message deliv-
ery to the subscribers of the sas and sps.

We illustrate the swe specifications with a use-case from the SensorSA mid-
dleware by Bleier et al. (2010), one of the middleware components we describe
in the following section. In this case study, a decision support system for marine
risk management is created using SensorSA. The system monitors the quality
of seawater in areas where people often swim, and also predicts this quality for
the near future. Authorities use this information to close beaches with a high
risk of contamination, thereby preventing sickness due to microbial pollution.

An abstract view of the application is shown in Figure 7. On the top, his-
torical and online sensor data is imported into SensorSA and used to tune
and update forecasting models. The import is done using the Sensor Obser-
vation Service, which provides methods for requesting, filtering, and retrieving
sensor data and information. The forecasting in this application is done by a
(application-specific) modelling service, which generates an alarm when a pre-
diction indicates future bad water quality. This alarm is passed to the Alerting
Service, an instance of the Sensor Alert Service. This service uses the pub-
lish/subscribe mechanism to allow applications to send and receive alarms, cor-
responding meta-data, or any other form of output. Sending the alarm is done
using Web Notification Service, which provides the ability to send an alarm as,
e.g., an email or a text message.

Despite swe’s popularity, several drawbacks of the standards have been iden-
tified in the scientific literature (from Bai et al. (2011); Moodley and Simonis
(2006))

• There is no explicit ontological structure in the swe framework.

• Security and privacy issues are not addressed.

13

Figure 7: Abstract view of an application for monitoring the quality of seawater
using the SensorSA architecture, adapted from Bleier et al. (2010)

• Conversion from a network-specific format to swe standards requires de-
tailed knowledge of both formats. Typically, off the shelve sensors do not
provide their data in swe form. We will return to this drawback in Section
3.4.

• There are no guidelines for the communication between services.

• Services are passive, so for example, a user can contact the SOS, but not
vice versa.

Despite these drawbacks, swe is currently the main standard for publishing
data from sensor networks.

3.3 Overview of components

In this section we describe four centralised middleware components from the
scientific literature. First, we describe SensorSA, because it is a clear example

14

showing the use of swe standards, and because it is well documented. Then we
discuss SenseWeb, to show that non-swe web services can also play a valuable
role. Next we present pulsenet, the most complete centralised middleware com-
ponent available, featuring both swe-based interfaces as well as various other
industry standards for dealing with sensor data. Finally, we describe the mid-
dleware component lsm that utilizes the streaming nature of sensor data (one
of the future research directions we identify in Section 3.4), and provides a way
of publishing data without using web services.

3.3.1 SensorSA

SensorSA, short for Sensor Service Architecture, is a middleware component
developed in the sany (Sensors Anywhere) project. sany aims to improve the
interoperability of in-situ sensors and sensor networks, allowing quick and cost-
efficient reuse of data and services from currently incompatible sources[. . .]
(Bleier et al. (2010)). Its central role is illustrated in Figure 8, with in-situ
sensors at the bottom, users at the top, and SensorSA in the middle.

Its use of open standards from swe makes SensorSA an interesting component
for companies seeking to include sensor data into their it infrastructure. Several
use cases are discussed in Bleier et al. (2010) and illustrate the use of swe in
practice. Additionally, SensorSA uses several non-swe interfaces from ogc for,
e.g., visualisation.

SensorSA also serves as an example of how a centralised approach simplifies
security issues. Since the middleware component is not responsible for security
on the sensor network (this networks is considered to be owned and managed
by a 3rd party), it only needs to secure its own services. For this, SensorSA
relies on well-known security mechanisms for access control to service networks,
see (Bleier et al., 2010, Chap. 5).

Furthermore, SensorSA contains several data fusion algorithms for analysis
along both the time-dimension and the space-dimension of sensor data. Together
with a time series toolbox for analysing streaming sensor data, SensorSA thus
addresses two fields that we recognize as important future research directions
in Section 3.4.

Despite the steps forward provided by SensorSA, several of the drawbacks
to swe remain: there is no ontological structure, and services still seem to be
passive. Moreover, there is no implementation of SensorSA available for down-
load, so a quick experiment with SensorSA on an existing sensor network is
not possible.

15

SensorSA

Figure 8: Illustration of the role of SensorSA, a centralised middleware com-
ponent (adapted from Bleier et al. (2010))

3.3.2 SenseWeb

SenseWeb is a sensor middleware component from Microsoft Research, de-
signed to let multiple concurrent applications share sensing resources contributed
by several entities in a flexible but uniform manner (Kansal et al. (2007)). The
key elements of SenseWeb are illustrated in Figure 9, and strongly resemble
the high-level description of a centralised middleware component from Figure 6.
The primary building block is the Coordinator, which collects data via the Sense
gateway and publishes this data to Applications and Transformers. Sensors can
be addressed through a Sense gateway, which provides a uniform interface for
the rest of Senseweb, hiding any vendor-specific aspects. Transformers are
components that process sensor data into other formats, for instance by calcu-
lating averages, or by creating figurative representations of data. In this way,
transformers provide low-level elements that can be easily included in applica-
tions.

The Coordinator consists of two separate modules, the SenseDB and the Task-
ing Module. SenseDB provides load-balancing facilities by analysing requests
for data to find overlap in their desired responses, and by using a cache for
sensor data. Additionally, it is responsible for keeping track of the various sen-
sors attached to the coordinator, and of their descriptions and capabilities. The
Tasking Module determines which sensors are most suitable for answering a

16

query, taking into account, e.g., bandwidth, availability, and power levels. Thus,
these two models together provide an intelligent mechanism for load balancing,
which is the key distinguishing feature of SenseWeb.

Figure 9: Overview of SenseWeb, showing how the coordinator mitigates be-
tween applications and sensors (adapted from Kansal et al. (2007))

3.3.3 pulsenet

pulsenet is a sensor web framework developed at the Northrop Grumman Cor-
poration, with the objective to provide a standards-based framework for the
discovery, access, use and control of heterogeneous sensors, their metadata, and
their observation data (Fairgrieve et al. (2009)). It is based on the standards
provided by swe, supplemented by a wide variety of non-swe standards for,
e.g., describing public safety alerts, detailing military events, and visualisa-
tion (see Table 2 in Fairgrieve et al. (2009)). Sensor networks are connected
to pulsenet via plugins, which hide vendor-specific interfaces and perform the
translation to and from the swe standards.

From a practical point of view, pulsenet has been tried and tested extensively.
It is used, for instance, in the Defense and Intelligence domain, which contains
sensors and platforms with many modalities, levels of complexity, data formats,
and privacy issues. Other domains include the Ocean Science community, and
Air Quality applications. This emphasizes the practical relevance of pulsenet,
and of centralised middleware components in general.

17

The authors of Fairgrieve et al. (2009) also provide a list of best practices when
dealing with swe. These can be summarized as:

• Apply the swe standard only when needed. Using swe for data publishing
typically means sacrificing some performance, due to swe’s complexities.
So apply swe only when a device has sufficient capacity to run web services
and parse xml. Otherwise, consider using more low-level standards.

• Keep it simple. swe is a large and flexible standard, offering both simple
and complex data structures. Use the complex structures only if necessary
to keep swe overhead as low as possible.

• Use [. . .] the swe compliance tests. Ogc offers a compliance engine that
allows 3rd parties to test their implementations of swe standards. Passing
the compliance test adds significant value to a swe-enabled middleware
component.

• Avoid reinventing the wheel. Several open source implementations for swe
webservices are available, and using them is advisable considering devel-
opment time and software quality.

Unfortunately, the source code for pulsenet is unavailable from the correspond-
ing website, so real-life experimentation with pulsenet is not possible. Also, we
could not find a more detailed description of the pulsenet architecture than
described in Fairgrieve et al. (2009).

3.3.4 lsm

lsm (Linked Stream Middleware), by Le-Phuoc et al. (2011, 2012) is a middle-
ware framework from the field of Linked Stream Data. It aims to simplify the
integration of sensor data with data from other sources by providing semantic
descriptions for sensor sources and sensor data streams. As the name suggests,
Linked Stream Data has two main properties: the data has mutual relationships
(i.e. it is linked), and it is available via streams. The links are visible in Figure
10 in the Linked Data layer, and together form a complex structure of current
and historical information. The data (both static and streaming) is collect in the
Data Acquisition layer, and transformed to a Linked Data format via ‘Wrap-
pers’ (which are similar to, e.g., the plugins in pulsenet). Access to the data
for applications is provided by a query processor, using a query language for
streaming data: cqels. This query language is not a standard, but developed
by lsm’s author in Le-Phuoc et al. (2011).

A nice feature of lsm is that it uses w3c’s Semantic Sensor Network ontology
(described in Compton et al. (2012)), which also yields the relationships between

18

Timeframe Reference Website
SensorSA 2006-2010 Bleier et al. (2010) -
SenseWeb 2006-2010 Kansal et al. (2007) SenseWeb (2007)
pulsenet 2009 Fairgrieve et al. (2009) PULSENet (2009)
lsm 2011-2012 Le-Phuoc et al. (2011, 2012) LSM (2011)

Table 2: Overview of four centralised middleware components, which together
form a representative set of the centralised components

data points (for instance, they can be linked via their ‘location’ property). By
using an ontology, standard query options become available via sparql (from
Prud’Hommeaux and Seaborne (2008)). The query language cqels is based on
sparql and enables the expressiveness of an ontology for streaming data. A
working demo of lsm is available online at http://lsm.deri.ie/.

Although the concept of Linked Stream Data is promising, it is relatively new in
the context of sensor networks, and therefore untested in practice. More research
and experiments are necessary, and will show, e.g., if the cqels query language
is applicable in a broad range of applications.

Figure 10: Overview of the elements of lsm, adapted from Le-Phuoc et al. (2011)

19

http://lsm.deri.ie/

3.4 Outlook

The centralised middleware components in Section 3.3 all aim to collect data
from sensor networks and to publish it for use by applications. With respect to
data publishing, a huge step forward is provided by the swe-initiative. Their
standards are widely used in both industry and the scientific community, and
the initiative is still vibrant and continually improving the standards. Read-
ers interested in swe-implementations can best start with the book describing
SensorSA by Bleier et al. (2010) and the article on pulsenet (Fairgrieve et al.
(2009)). These references contain general information on the standards, links to
reusable components, and best practices.

Contrary to data publishing, data collection is still not based on standards.
swe attempts to solve this issue, but its overhead is often too large for sensors,
which in practice seldom communicate in an swe-based format. This leaves an
‘interoperability gap’ (identified by Walter and Nash (2009)), which requires
conversion from sensor-specific formats to swe or other (standards-based) for-
mats. The frameworks described above convert collected data using gateways
(SenseWeb), plugins (SensorSA, pulsenet), or wrappers (lsm). These are
all synonyms for similar elements that bridge the interoperability gap, and at
the time of writing there is no consensus yet on what is the best approach.

Looking forward, we expect that bridging the interoperability gap will be the
natural next step in the development of sensor network middleware components.
In this context the OpenMTC (2013) platform is worth mentioning. This plat-
form is based on standards for Machine-to-Machine communication from the
European Telecommunications Standards Institute, and is also suitable for use
with sensor networks. In particular, OpenMTC’s gateway (which bridges the
interoperability gap) supports various popular access technologies (including
Zigbee), and is aligned with industry standards. Additionally, OpenMTC can
be deployed in the cloud, supports a RESTful architecture, and uses open apis
for data publishing.

Another next step in sensor network middleware research concerns the ‘classic’
issues of Quality of Service, Privacy, and Security. Much research on these topics
already exists (see, e.g., Chen and Varshney (2004), Massaguer et al. (2009), and
Ren et al. (2011); Zhou et al. (2008) respectively), but has been hampered by
a lack of clear definitions in the context of sensor networks. As applications
relying on sensors and sensor networks become ubiquitous, research on Quality
of Service, Privacy, and Security will most likely regain momentum.

A third promising research direction is formed by semantic specifications of sen-
sors. Giving a semantic description of a sensor makes it clear what type a sensor
is (e.g. a ’Temperature’ sensor), what units its measurements are in (e.g. ‘De-
grees Celsius’), and how these measurements were obtained (e.g., ‘Average of 10

20

measurements in the last 1 second’). Such properties of sensors become particu-
larly important once sensor data is published for use by 3rd party applications,
because they must understand exactly what the offered data represents. The
papers by Compton et al. (2009, 2012) give a good overview of this topic.

Furthermore, as evidenced by lsm, techniques from the ‘Data Streams’ domain
will become more popular. A large body of literature is available (see, e.g.,
Aggarwal (2006); Gama and Gaber (2007)) and is ready to be applied. Of par-
ticular interest are applications that combine streaming sensor measurements
with static data from other sources, because centralised middleware components
are in a unique position to collect and process both types of data.

Then, since sensor middleware components provide the ability to share sensor
data, we foresee that applications will increasingly combine sensor data with
other sources of data. This process is known as Data Fusion, and we think that
techniques from this domain will boost the development of a new generation
of innovative and intelligent sensor-related applications. Interested readers are
referred to Khaleghi et al. (2013), which contains a review of the state-of-the-art
in this domain.

Finally, we think it is important to determine a set of clearly defined criteria
that allow centralised middleware components to be compared in an objective
way. This will help keep track of the state-of-the-art, steer future research, and
hopefully also prevent a proliferation of middleware components as we have
witnessed in the past.

4 Conclusion

Recently, research in sensor network middleware components has shifted, re-
sulting in a new type of middleware component for sensor networks. These
components regard sensor networks as simple data providers, with no capac-
ity to run (part of) the middleware component on the sensor nodes. They are
aimed at collecting data from multiple existing sensor networks, and at publish-
ing this data via (web-based) technologies. As such, they form the tie between
sensor networks and applications, resulting in the name ‘centralised’ middleware
component.

In this paper we started with a literature review of non-centralised middle-
ware components, and explained several concerns that lead research to shift to
centralised middleware components. Then, we gave a high-level outline of cen-
tralised middleware components, and provided descriptions of four such middle-
ware components. Finally, we identified several ‘next steps’ for the development
of sensor network middleware components: (1) bridging the interoperability gap;

21

(2) addressing the classical issues of Quality of Service, Privacy, and Security;
(3) providing semantic specification of sensors; (4) employing procedures from
the Data Streams domain; (5) applying Data Fusion techniques; (6) the identi-
fication of clearly defined criteria for comparing centralised middleware compo-
nents.

From the discussions in this paper we conclude that research has indeed shifted
and resulted in a new type of middleware component. These centralised com-
ponents are highly relevant, both for industry and for the scientific community.
Widely used standards for data publishing are available, and provide mature in-
terfaces that enable the use of sensor networks in real-world applications. With
research continuing in the identified directions, we foresee the development of
increasingly complete sensor middleware components that form the tie between
sensor networks and innovative applications.

Acknowledgements

This work was performed within the RRR Project (2011) (Realisation of Reliable
and Secure Residential Sensor Platforms) of the Dutch program IOP Generieke
Communicatie, number IGC1020, supported by the Subsidieregeling Sterktes in
Innovatie.

References

Aggarwal, C. C. (2006). Data Streams: Models and Algorithms (Advances in
Database Systems). Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Agilla (2009). http://mobilab.cse.wustl.edu/projects/agilla.

Aiello, F. (2009). MAPS: a mobile agent platform for Java Sun SPOTs. In 3rd
International Workshop on Agent Technology for Sensor Networks (ATSN-
09).

Alex, H., M. Kumar, and B. Shirazi (2008). MidFusion: an adaptive middle-
ware for information fusion in sensor network applications. Inf. Fusion 9 (3),
332–343.

Andreou, P., D. Zeinalipour-Yazti, G. Samaras, and P. Chrysanthis (2011). To-
wards a network-aware middleware for wireless sensor networks.

Andreou, P., D. Zeinalipour-Yazti, M. Vassiliadou, P. K. Chrysanthis, and
G. Samaras (2009). KSpot: effectively monitoring the k most important events
in a wireless sensor network. In IEEE 25th International Conference on Data
Engineering, 2009. ICDE ’09, pp. 1503–1506. IEEE.

22

http://mobilab.cse.wustl.edu/projects/agilla

AWARE (2001). http://grvc.us.es/aware/.

Bai, Q., S. Guru, D. Smith, Q. Liu, and A. Terhorst (2011). A multi-agent view
of the sensor web. Advances in Practical Multi-Agent Systems, 435–444.

Baker, C. R., K. Armijo, S. Belka, M. Benhabib, V. Bhargava, N. Burkhart,
A. D. Minassians, G. Dervisoglu, L. Gutnik, M. B. Haick, C. Ho, M. Koplow,
J. Mangold, S. Robinson, M. Rosa, M. Schwartz, C. Sims, H. Stoffregen,
A. Waterbury, E. S. Leland, T. Pering, and P. K. Wright (2007). Wire-
less sensor networks for home health care. In Proceedings of the 21st Inter-
national Conference on Advanced Information Networking and Applications
Workshops - Volume 02, Volume 2 of AINAW ’07, Washington, DC, USA,
pp. 832–837. IEEE Computer Society.

Bleier, T., B. Bozic, R. Bumerl-Lexa, A. Da Costa, S. Costes, I. Iosifescu,
O. Martin, S. Frysinger, D. Havlik, D. Hilbring, P. Jacques, M. Klopfer,
S. Kunz, P. Kutschera, M. Lidstone, S. E. Middleton, Z. Roberts, Z. Sabeur,
J. Schabauer, S. Schlobinski, T. Shu, I. Simonis, B. Stevenot, T. Usländer,
K. Watson, and K. Wittamore (2010). SANY - an open service architecture
for sensor networks. The SANY Consortium.

Chen, D. and P. K. Varshney (2004). QoS support in wireless sensor networks:
A survey. In Proc. of the 2004 International Conference on Wireless Networks
(ICWN 2004), Las Vegas, Nevada, USA.

Compton, M., P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz,
W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov,
K. Page, A. Passant, A. Sheth, and K. Taylor (2012). The SSN ontology of
the W3C semantic sensor network incubator group. Web Semantics: Science,
Services and Agents on the World Wide Web (0).

Compton, M., C. Henson, H. Neuhaus, L. Lefort, and A. Sheth (2009). A survey
of the semantic specification of sensors. In 2nd International Workshop on
Semantic Sensor Networks, at 8th International Semantic Web Conference,.

Cougar (2002). http://www.cs.cornell.edu/bigreddata/cougar.

Fairgrieve, S. M., J. A. Makuch, and S. R. Falke (2009). PULSENetTM: an
implementation of sensor web standards. In Collaborative Technologies and
Systems, 2009. CTS ’09. International Symposium on, pp. 64–75. Northrop
Grumman, CO.

Fok, C. L., G. C. Roman, and C. Lu (2009). Agilla: A mobile agent middleware
for self-adaptive wireless sensor networks. ACM Transactions on Autonomous
and Adaptive Systems 4.

Galpin, I., C. Y. Brenninkmeijer, F. Jabeen, A. A. Fernandes, and N. W. Paton
(2008). An architecture for query optimization in sensor networks. In IEEE

23

http://grvc.us.es/aware/
http://www.cs.cornell.edu/bigreddata/cougar

24th International Conference on Data Engineering, 2008. ICDE 2008, pp.
1439–1441. IEEE.

Gama, J. and M. M. Gaber (2007). Learning from Data Streams: Processing
Techniques in Sensor Networks (1 ed.).

Gibbons, P. B., B. Karp, Y. Ke, S. Nath, and S. Seshan (2003). IrisNet: an
architecture for a worldwide sensor web. IEEE Pervasive Computing 2 (4),
22–33.

Hadim, S. and N. Mohamed (2006a). Middleware for wireless sensor networks:
A survey. pp. 1–7. IEEE.

Hadim, S. and N. Mohamed (2006b). Middleware: Middleware challenges and
approaches for wireless sensor networks. IEEE Distributed Systems Online 7.

Heinzelman, W. B., A. L. Murphy, H. S. Carvalho, and M. A. Perillo (2004).
Middleware to support sensor network applications. IEEE Network 18 (1),
6–14.

Henricksen, K. and R. Robinson (2006). A survey of middleware for sensor
networks: state-of-the-art and future directions. In Proceedings of the in-
ternational workshop on Middleware for sensor networks, MidSens ’06, New
York, NY, USA, pp. 60–65. ACM.

Huebscher, m. C. and J. A. McCann (2004). Adaptive middleware for context-
aware applications in smart-homes. In Proceedings of the 2nd workshop on
Middleware for pervasive and ad-hoc computing, MPAC ’04, New York, NY,
USA, pp. 111–116. ACM.

IRISNet (2003). http://www.intel-iris.net.

Kansal, A., S. Nath, J. Liu, and F. Zhao (2007). SenseWeb: an infrastructure
for shared sensing. IEEE MultiMedia 14, 8–13.

Khaleghi, B., A. Khamis, F. O. Karray, and S. N. Razavi (2013). Multisensor
data fusion: A review of the state-of-the-art. Information Fusion 14 (1), 28 –
44.

Knobbe, A., H. Blockeel, A. Koopman, T. Calders, B. Obladen, C. Bosma,
H. Galenkamp, E. Koenders, and J. Kok (2010). InfraWatch: data manage-
ment of large systems for monitoring infrastructural performance advances
in intelligent data analysis IX. Volume 6065 of Lecture Notes in Computer
Science, pp. 91–102. Berlin, Heidelberg: Springer Berlin / Heidelberg.

KSPOT (2009). http://www.cs.ucy.ac.cy/~panic/kspot/.

Le-Phuoc, D., M. Dao-Tran, J. X. Parreira, and M. Hauswirth (2011). A native
and adaptive approach for unified processing of linked streams and linked
data. In The Semantic Web–ISWC 2011, pp. 370–388. Springer.

24

http://www.intel-iris.net
http://www.cs.ucy.ac.cy/~panic/kspot/

Le-Phuoc, D., H. Q. Nguyen-Mau, J. X. Parreira, and M. Hauswirth (2012).
A middleware framework for scalable management of linked streams. Web
Semantics: Science, Services and Agents on the World Wide Web 16, 42–51.

Le-Phuoc, D., H. N. Quoc, J. X. Parreira, and M. Hauswirth (2011). The
linked sensor middleware–connecting the real world and the semantic web.
Proceedings of the Semantic Web Challenge.

Levis, P. and D. Culler (2002). Maté: a tiny virtual machine for sensor networks.
ASPLOS-X: Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems 37, 85–95.

Li, S., Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei (2004). Event detec-
tion services using data service middleware in distributed sensor networks.
Telecommunication Systems 26 (2), 351–368.

Liu, H., T. Roeder, K. Walsh, R. Barr, and E. G. Sirer (2005). Design and
implementation of a single system image operating system for ad hoc net-
works. In Proceedings of the 3rd international conference on Mobile systems,
applications, and services, MobiSys ’05, New York, NY, USA, pp. 149–162.
ACM.

Liu, T. and M. Martonosi (2003). Impala: a middleware system for managing
autonomic, parallel sensor systems. PPoPP ’03: Proceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of parallel programming 38,
107–118.

LSM (2011). http://lsm.deri.ie/.

Madden, S. R., M. J. Franklin, J. M. Hellerstein, and W. Hong (2005). TinyDB:
an acquisitional query processing system for sensor networks. ACM Transac-
tions on Database Systems 30 (1), 122–173.

Magnet (2005). http://www.cs.cornell.edu/people/egs/magnetos/.

MAPS (2009). http://maps.deis.unical.it.

Masri, W. and Z. Mammeri (2007). Middleware for wireless sensor networks:
A comparative analysis. Network and Parallel Computing Workshops, IFIP
International Conference on 0, 349–356.

Massaguer, D., B. Hore, M. Diallo, S. Mehrotra, and N. Venkatasubramanian
(2009). Middleware for pervasive spaces: Balancing privacy and utility. In
J. Bacon and B. Cooper (Eds.), Middleware 2009, Volume 5896 of Lecture
Notes in Computer Science, pp. 247–267. Springer Berlin / Heidelberg.

Maté (2002). http://www.cs.berkeley.edu/~pal/mate-web.

25

http://lsm.deri.ie/
http://www.cs.cornell.edu/people/egs/magnetos/
http://maps.deis.unical.it
http://www.cs.berkeley.edu/~pal/mate-web

Mohamed, N. and J. Al-Jaroodi (2011). Service-oriented middleware approaches
for wireless sensor networks. In Proceedings of the 2011 44th Hawaii Inter-
national Conference on System Sciences, HICSS ’11, Washington, DC, USA,
pp. 1–9. IEEE Computer Society.

Molla, M. M. and S. I. Ahamed (2006). A survey of middleware for sensor
network and challenges. In Proceedings of the 2006 International Conference
Workshops on Parallel Processing, Washington, DC, USA, pp. 223–228. IEEE
Computer Society.

Moodley, D. and I. Simonis (2006). A new architecture for the sensor web: The
SWAP framework. In ISWC 2006: 5th International semantic web conference.

Mottola, L. and G. Picco (2011). Middleware for wireless sensor networks: an
outlook. Journal of Internet Services and Applications, 1–9.

Ollero, A., M. Bernard, M. La Civita, L. van Hoesel, P. J. Marron, J. Lepley, and
E. de Andres (2007). AWARE: platform for autonomous self-deploying and
operation of wireless sensor-actuator networks cooperating with unmanned
AeRial vehiclEs. In IEEE International Workshop on Safety, Security and
Rescue Robotics, 2007. SSRR 2007, pp. 1–6. IEEE.

OpenGeospatial-Consortium (2010). http://www.opengeospatial.org/ogc/
markets-technologies/swe.

OpenMTC (2013). http://www.open-mtc.org/index.html.

Prud’Hommeaux, E. and A. Seaborne (2008). SPARQL query language for
RDF. W3C recommendation 15.

PULSENet (2009). http://www.northropgrumman.com/Capabilities/
PULSENet/Pages/default.aspx.

Ren, Y., V. Oleshchuk, F. Y. Li, and X. Ge (2011). Security in mobile wireless
sensor networks – a survey. Journal of Communications 6 (2).

Rittle, L. J., V. Vasudevan, N. Narasimhan, and C. Jia (2005). Muse: Middle-
ware for using sensors effectively. In INSS2005.

RRR Project (2011). http://www.therrrproject.nl.

SenseWeb (2007). http://research.microsoft.com/en-us/projects/
senseweb.

Shen, C. C., C. Srisathapornphat, and C. Jaikaeo (2001). Sensor informa-
tion networking architecture and applications. IEEE Personal Communi-
cations 8 (4), 52–59.

Shi, K., Z. Deng, and X. Qin (2011). TinyMQ: a content-based Pub-
lish/Subscribe middleware for wireless sensor networks. pp. 12–17.

26

http://www.opengeospatial.org/ogc/markets-technologies/swe
http://www.opengeospatial.org/ogc/markets-technologies/swe
http://www.open-mtc.org/index.html
http://www.northropgrumman.com/Capabilities/PULSENet/Pages/default.aspx
http://www.northropgrumman.com/Capabilities/PULSENet/Pages/default.aspx
http://www.therrrproject.nl
http://research.microsoft.com/en-us/projects/senseweb
http://research.microsoft.com/en-us/projects/senseweb

SNEE (2008). http://snee.cs.manchester.ac.uk/welcome.html.

Souto, E., G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and
J. Kelner (2005). Mires: a publish/subscribe middleware for sensor networks.
Personal Ubiquitous Comput. 10 (1), 37–44.

Srivastava, M., R. Muntz, and M. Potkonjak (2001). Smart kindergarten: sensor-
based wireless networks for smart developmental problem-solving environ-
ments. In Proceedings of the 7th annual international conference on Mobile
computing and networking, MobiCom ’01, New York, NY, USA, pp. 132–138.
ACM.

Sugihara, R. and R. K. Gupta (2008). Programming models for sensor networks:
A survey. ACM Transactions on Sensor Networks 4 (2), 1–29.

Szewczyk, R., A. Mainwaring, J. Polastre, J. Anderson, and D. Culler (2004).
An analysis of a large scale habitat monitoring application. In Proceedings
of the 2nd international conference on Embedded networked sensor systems,
SenSys ’04, New York, NY, USA, pp. 214–226. ACM.

TinyDB (2005). http://telegraph.cs.berkeley.edu/tinydb.

Walter, K. and E. Nash (2009). Coupling wireless sensor networks and the
sensor observation service-bridging the interoperability gap. In 12th AGILE
International Conference on Geographic Information Science, pp. 1–9.

Wang, M. M., J. N. Cao, J. Li, and S. K. Dasi (2008). Middleware for wire-
less sensor networks: A survey. Journal of Computer Science and Technol-
ogy 23 (3), 305–326.

Yao, Y. and J. Gehrke (2002). The Cougar Approach to In-Network Query
Processing in Sensor Networks.

Zhai, L., C. Li, and L. Sun (2011). Research on the message-oriented middleware
for wireless sensor networks. Journal of Computers 6 (5).

Zhou, Y., Y. Fang, and Y. Zhang (2008). Securing wireless sensor networks: a
survey. IEEE Communications Surveys & Tutorials 10 (3), 6–28.

Zigbee (2007). http://www.zigbee.org/.

27

http://snee.cs.manchester.ac.uk/welcome.html
http://telegraph.cs.berkeley.edu/tinydb
http://www.zigbee.org/

