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Laplace transform and Pollaczek-Khintchine representation of the workload of the second
queue. Additionally we obtain the exact distribution of the workload in the case of Brownian and
Poisson input, as well as some insightful formulas representing the exact asymptotics for alpha-
stable Lévy inputs.
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1 Introduction

Traffic engineering greatly benefits from models that are capable of accurately describing
and predicting the performance of the system. The network nodes are usually modeled
as queues, and queueing theory can be used to analyze the performance (in terms of loss,
delay, throughput, etc.) of these nodes. However, most studies address performance is-
sues for single nodes, which is evidently an oversimplification of reality. This justifies the
growing interest in the performance of traffic streams traversing concatenations of queues.
Measurement studies have provided empirical evidence that in particular cases network
traffic can be approximated by Gaussian processes, e.g., Brownian motion or fractional
Brownian motion (fBm). Mikosch et al. [27] and Kaj and Taqqu [22] have focused on the
cases in which it is not accurate to assume Gaussianity; in [27] it is argued that, if the
rate at which connections are initiated is modest relative to the tail of the connection-
length distribution (which is assumed regularly varying), it is preferred to approximate
the traffic stream by a stable Lévy motion. More justification for the use of Lévy motions
in a communication networking context can be found in, e.g., [10].
This paper focuses on a two-node tandem network with Lévy input – we note, however,
that it is straightforward to extend the analysis to tandem networks with more than two
nodes. Our purpose is to analyze the buffer content distribution of the downstream (i.e.,
second) queue. Some results are known for special cases of this model. The tandem
queue with Poisson arrivals, for instance, was analyzed in detail, but a considerable part
of the results is in terms of Laplace transforms; see, e.g., [33, 37, 41]. For Brownian motion
input the exponential decay rate of the queue-size distribution of the second queue is
given in, e.g., [26].
Our paper is related to earlier works by Kella and Whitt [25] and Kella [23]. These pa-
pers also consider tandem queues with Lévy input, but there it is required that the input
is non-decreasing. This assumption, however, excludes classes of input processes such as
Brownian motion and α−stable Lévy motions (with α < 2). The approach taken in this
paper covers these important cases. Moreover, in [25] and [23] the emphasis is on mo-
ments and Laplace transforms, whereas a substantial part of our results is in terms of
explicit expressions for the probability distribution of the downstream queue (or its tail
behavior).
This paper is organized as follows. Section 2 finds a remarkable new representation of
the queue size of the downstream queue. The new formula holds for general (not only
Lévy) input processes and involves the difference of two suprema over two adjacent
intervals. The derivation relates to results of [26]. The specification of this represen-
tation for spectrally-positive Lévy input enables us to analyze (in Section 3) the down-
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stream queue in terms of Laplace transforms. This leads to the analogue of the result
by Zolotarev [42] for the single queue. Additionally we derive the Pollaczek-Khintchine
representation of the distribution of the downstream queue that extends Theorem 4.1 in
[25] from ‘subordinator Lévy input’ to spectrally-positive Lévy input.
Section 4 applies the general results to a number of examples with light-tailed input. For
both Brownian and Poisson input we give the exact distribution of the workload of the
second queue. Our analysis indicates that in this light-tailed case there are two regimes:
there is a critical service rate c?

1 such that (i) for c1 > c?
1 all traffic entering the first queue is

essentially served immediately, and goes directly into the second queue, such that traffic
is not ‘reshaped’ by the first queue; (ii) for c1 ≤ c?

1, the first queue does play a role in
delaying and reshaping the traffic before entering the second queue. This behavior is in
line with earlier results in, e.g., [11, 26].
Section 5 deals with examples featuring heavy-tailed input. We find asymptotics and
bounds of the tail distribution when the input is α-stable Lévy motion and compound
Poisson (with regularly-varying jumps).

2 Model and fundamental result

In this section we first describe our tandem queueing model. Then we present our fun-
damental result.

2.1 Model

In this paper we consider a two-node tandem network with service rate c1 at the first
node, and service rate c2 < c1 at the second node; the buffering capacity is infinite at
both nodes. Although traffic may enter the first queue in ‘quanta’ of positive size, we
assume that it leaves the first queue as ‘fluid’. In the standard example of packets fed
into a communication network, it would mean that during the service of packets in the
first queue, the second queue fills at (net) rate c1 − c2.
Let {A(t), t ∈ R} be the input process; then the amount of traffic generated in the interval
(s, t], where s < t and s, t ∈ R, is denoted by A(s, t) := A(t) − A(s). We first assume
that {A(t), t ∈ R} has stationary increments; later we focus on the case of stationary
independent increments. We denote by Q1, Q2 the steady-state workload at the first and
second queue, respectively. Analogously, we denote by Q the total steady-state workload
in the tandem network. We assume that µ := E{A(1)} < c2 to ensure that both Q1 and
Q2 are finite a.s.
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In this paper we focus on the probability that the stationary buffer content at the down-
stream (i.e., second) node exceeds level u:

P(Q2 > u), for u > 0.

Following Reich’s representation [30] we can write for the first queue, using the fact that
A(·) has stationary increments,

Q1 =d sup
t≥0

{A(−t, 0)− c1t} =d sup
t≥0

{A(t)− c1t}. (1)

Now notice that the following ‘reduction property’ applies, which was also used in [25].
Consider a single queue fed by the original input process {A(t), t ∈ R}, and drained
at the slowest of the service rates min{c1, c2}. Then it is not hard to see that the buffer
content of this queue is equal to the total buffer content of our tandem system, see, e.g.,
Avi-Itzhak [5] and Friedman [18]. Hence, we have for the total workload Q that

Q =d sup
t≥0

{A(−t, 0)− c2t} =d sup
t≥0

{A(t)− c2t}, (2)

because we assumed that c2 < c1.
The above observations directly lead to the following representation for Q2:

Q2 =d sup
t≥0

{A(t)− c2t} − sup
t≥0

{A(t)− c1t}. (3)

Remark 2.1 It is tempting to explicitly impose the assumption that A(t) is increasing in
t, bearing in mind that A(t) is interpreted as the amount of traffic entering the queue in
[0, t). However, there are good reasons to not assume a priori that A(·) is increasing, the
most prominent being the following.
Consider the superposition of a number of i.i.d. on-off sources, i.e., sources alternating
between sending at some constant, positive rate, and being silent; the corresponding
input process is evidently increasing. When the number of sources grows large, however,
there is, after some appropriate rescaling, convergence to ‘limit processes’ which are not
necessarily increasing, for instance (fractional) Brownian motion (with drift), or Lévy
input models, see e.g. [15, 40]. This motivates our choice to not restrict ourselves to
increasing inputs.
Two additional comments need to be made. In the first place, we mention that in many
cases the above-mentioned convergence of traffic aggregates carries over to the stationary
buffer-content process. Loosely speaking, the queue fed by the aggregate input process
converges to the queue fed by the ‘limit process’, see, e.g., [10, 14, 15]. Secondly, notice
that, when using representation (3), the queue length in the downstream node is neces-
sarily positive. ♦
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2.2 A representation for the workload distribution

In this section we prove a fundamental result that simplifies the representation (3) for the
queue length in the downstream queue Q2. In particular, we show that the set over which
both suprema in (3) should be taken can be decomposed into two adjacent intervals.
Define tu := u/(c1 − c2), which can be interpreted as the minimum time it takes for the
second queue to exceed level u, starting empty.

Proposition 2.2 Let c1 > c2 > 0, and let {X(t), t ≥ 0} be a stochastic process satisfying
limt→∞{X(t)− c2t} = −∞ a.s. Then, for each u ≥ 0,

P
(

sup
t≥0

{X(t)− c2t} − sup
t≥0

{X(t)− c1t} > u

)
=

P

(
sup

t∈[tu,∞)
{X(t)− c2t} − sup

t∈[0,tu]
{X(t)− c1t} > u

)
.

Proof We use the short notation Y
(i)
S := supt∈S{X(t) − cit}, for i = 1, 2 and S ⊆ R+.

Define also t?i := arg supt≥0{X(t)− cit}. We have to prove that

P
(
Y

(2)
[0,∞) − Y

(1)
[0,∞) > u

)
= P

(
Y

(2)
[tu,∞) − Y

(1)
[0,tu] > u

)
.

Our proof is in four steps.

• We first prove that Y
(2)
[0,∞) − Y

(1)
[0,∞) > u implies that t?2 ≥ tu. To show this, suppose

that t?2 < tu; then we have that

Y
(2)
[0,∞) − Y

(1)
[0,∞) = sup

t∈[0,tu)
{X(t)− c2t− sup

s≥0
{X(s)− c1s}}

≤ sup
t∈[0,tu)

{X(t)− c2t− {X(t)− c1t}} = u.

• Because of the first step, we can restrict ourselves to t?2 ≥ tu. Consequently, we can
decompose our probability into

P
(
Y

(2)
[0,∞) − Y

(1)
[0,∞) > u

)
= P

(
Y

(2)
[tu,∞) − Y

(1)
[0,∞) > u

)
= P

(
Y

(2)
[tu,∞) − Y

(1)
[0,∞) > u; t?1 > tu

)
+ P

(
Y

(2)
[tu,∞) − Y

(1)
[0,∞) > u; t?1 ≤ tu

)
;

call the latter probabilities P1 and P2, respectively.

• First consider P1. Note that under t?1 > tu, it holds that

Y
(2)
[tu,∞) − Y

(1)
[0,∞) ≥ (X(t?1)− c2t

?
1)− (X(t?1)− c1t

?
1) > u,
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which combined with the fact that{
Y

(2)
[tu,∞) − Y

(1)
[0,∞) > u

}
⊆
{

Y
(2)
[tu,∞) − Y

(1)
[0,tu] > u

}
implies that

P1 = P
(
Y

(2)
[tu,∞) − Y

(1)
[0,tu] > u; t?1 > tu

)
.

• We trivially have

P2 = P
(
Y

(2)
[tu,∞) − Y

(1)
[0,tu] > u; t?1 ≤ tu

)
.

Thus

P1 + P2 = P
(
Y

(2)
[tu,∞) − Y

(1)
[0,tu] > u

)
.

This completes the proof. �

We now return to the class of arrival processes with stationary increments, that was in-
troduced in Section 2.1. For this class the above result enables us to rewrite (3) as follows.

Theorem 2.3 For each u ≥ 0,

P(Q2 > u) = P

(
sup

t∈[tu,∞)
{A(t)− c2t} − sup

t∈[0,tu]
{A(t)− c1t} > u

)
.

Proof The statement follows immediately by combining (3) with Proposition 2.2. �

If the increments of A(·) are also independent, then we get the following representation.

Theorem 2.4 Let {A(t), t ∈ R} be a stochastic process with stationary independent increments
and let µ = EA(1) < c2. Then for each u ≥ 0, and A1(·) and A2(·) independent copies of the
process A(·),

P(Q2 > u) = P

(
sup

t∈[0,∞)
{A1(t)− c2t} > sup

t∈[0,tu]
{−A2(t) + c1t}

)
. (4)

Proof To get the result, use that

sup
t∈[tu,∞)

{A(t)− c2t} − sup
t∈[0,tu]

{A(t)− c1t} =

sup
t∈[tu,∞)

{A(t)−A(tu)− c2(t− tu)} − sup
t∈[0,tu]

{A(t)−A(tu)− c1(t− tu)}+ (c1 − c2)tu.

Now the stated follows immediately from the independence and stationarity of the in-
crements of A(·), in conjunction with the fact that (c1 − c2)tu = u. �
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3 Distribution of P(Q2 > u)

This section studies the distribution of P(Q2 > u). Direct application of the new repre-
sentation of the downstream queue, as derived in the previous section, yields the Laplace
transform Ee−xQ2 and the Pollaczek-Khintchine representation of the distribution of Q2.

3.1 Laplace transform

In this section we assume that A(·) ≡ {A(t), t ∈ R} is a spectrally positive Lévy process,
see, e.g., [35] (thus allowing positive jumps). Hence its Laplace transform is uniquely
determined by the Laplace exponent κ(·) through

Ee−sA(t) = etκ(s),

s ≥ 0; see for instance [4, Ch. IX.9].

We need the following additional notation:

S1 := sup
t≥0

{A1(t)− c2t};

S2,T := sup
t∈[0,T ]

{−A2(t) + c1t},

where A1(·), A2(·) are independent copies of the process A(·). So we can rewrite for-
mula (4) in Theorem 2.4, with tu := u/(c1 − c2), to

P(Q2 ≤ u) = P(S1 − S2,tu ≤ 0). (5)

It appears that the function θ1(·), with

θ1(s) := log(Ee−sA(1)+sc1),

is of crucial importance in the further analysis; observe that θ1(s) = κ(s) + c1s. Addition-
ally let Ry denote the first-passage time of level y: Ry := inf{t ≥ 0 : −A2(t) + c1t > y}, so
that

P(S2,tu < y) = P(Ry > tu) (6)

for each y ≥ 0. We first summarize some useful properties of θ1(·) and Ry.

Proposition 3.1 Let {A(t), t ∈ R} be a spectrally positive Lévy process with Laplace exponent
κ(·) and µ := EA(1) < c2. Then
(i) θ1(s) is strictly increasing on s ∈ [0,∞);
(ii) θ1(s)/s → c1 − µ as s ↓ 0;
(iii) Ee−sRy = e−yθ−1

1 (s), for s ≥ 0 and y ≥ 0, where θ−1
1 (·) is the inverse function of θ1(·).
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Proof Part (i) follows from the fact that θ′1(0+) = −EA(1) + c1 = −µ + c1 > 0, in
conjunction with the well known property that κ(·) is convex. Part (ii) is a consequence
of θ1(s)/s → θ′1(0+) as s ↓ 0. Part (iii) is an immediate implication of Sato [35, Theorem
46.3]; see also, e.g., [8, 19]. �

In the following theorem we obtain an explicit formula for the Laplace transform of the
downstream queue Q2.

Theorem 3.2 Let {A(t), t ∈ R} be a spectrally positive Lévy process with Laplace exponent κ(·)
and µ := EA(1) < c2. Then, for each x > 0,

Ee−xQ2 =
c2 − µ

c1 − c2
· θ−1

1 (x(c1 − c2))
x− θ−1

1 (x(c1 − c2))
.

Proof Let x > 0. In the first step we prove that

Ee−xQ2 = Ee−θ−1
1 (x(c1−c2))S1 . (7)

Note that integration by parts yields

Ee−xQ2 =
∫ ∞

0
e−xudP(Q2 ≤ u) = x

∫ ∞

0
e−xuP(Q2 ≤ u)du

= 1− x

∫ ∞

0
e−xuP(Q2 > u)du. (8)

Moreover, due to (5) and (6) we have∫ ∞

0
e−xuP(Q2 > u)du =

∫ ∞

0
e−xuP(S1 − S2,tu > 0)du

=
∫ ∞

0
e−xu

∫ ∞

0
P(S2,tu < y)dP(S1 ≤ y)du

=
∫ ∞

0
e−xu

∫ ∞

0
P(Ry > tu)dP(S1 ≤ y)du.

Applying the change of variable v := u/(c1 − c2), this leads to∫ ∞

0
e−xuP(Q2 > u)du =

= (c1 − c2)
∫ ∞

0

∫ ∞

0
e−x(c1−c2)vP(Ry > v)dvdP(S1 ≤ y)

= (c1 − c2)
∫ ∞

0

(
1

x(c1 − c2)
−
∫ ∞

0
e−x(c1−c2)vP(Ry ≤ v)dv

)
dP(S1 ≤ y)

=
1
x

(
1−

∫ ∞

0

∫ ∞

0
e−x(c1−c2)vdP(Ry ≤ v)dP(S1 ≤ y)

)
=

1
x

(
1−

∫ ∞

0
e−yθ−1

1 (x(c1−c2))dP(S1 ≤ y)
)

(9)

=
1
x

(
1− Ee−θ−1

1 (x(c1−c2))S1

)
, (10)
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where (9) is due to part (iii) of Proposition 3.1. Now (7) follows directly from combining
(8) with (10).
In order to complete the proof note that, following Zolotarev’s result for spectrally posi-
tive Lévy processes [42], for x > 0

Ee−xS1 =
c2 − µ

θ2(x)
x, (11)

where θ2(s) := log(Ee−sA(1)+sc2); observe that θ2(s) = κ(s) + c2s = θ1(s) + (c2 − c1)s.
Combining (7) with (11) leads to

Ee−xQ2 =
(c2 − µ)θ1

−1(x(c1 − c2))
θ2(θ−1

1 (x(c1 − c2)))

=
c2 − µ

c1 − c2

θ−1
1 (x(c1 − c2))

x− θ−1
1 (x(c1 − c2))

.

This completes the proof. �

Remark 3.3 Theorem 3.2 can be considered as an analogue of the result of Zolotarev [42];
there the Laplace transform of P(Q1 < u) was given for A(·) being a spectrally positive
Lévy process, whereas here we present the corresponding result for P(Q2 < u). ♦

Remark 3.4 Recall that Q denotes the (steady-state) of the total workload. Since S1 =d Q,
it follows that (7) is equivalent to

Ee−xQ2 = Ee−θ−1
1 (x(c1−c2))Q, (12)

for x ≥ 0. This relation plays a crucial role in Proposition 5.1. ♦

Remark 3.5 We note that for special cases the above theorem can be derived in alterna-
tive ways. Consider for instance the case of compound Poisson input. We assume that
A(t) =

∑N(t)
i=1 Xi, where N(·) is a Poisson process with rate λ. The random variables

Xi are i.i.d., nonnegative and independent of N(·). We denote by X the generic random
variable, and by F (·) its distribution function. Under the above notation, we say that A(·)
is a compound Poisson process, characterized by (λ, F ). Let f := EX.

Observe that, in the tandem setting, the downstream queue is fed by an on-off process:
during on-periods, which are distributed as the busy period of the first queue, the down-
stream queue fills at rate c1 − c2, whereas during off-periods, which have an exponential
distribution (with mean λ−1), it drains at rate c2. Assume for ease µ = λf < 1 = c2 < 2 =
c1 (the analysis can be extended straightforwardly to the case of general service rates).
Under this choice, our formula for Ee−xQ2 reduces to

Ee−xQ2 = (1− µ) · θ−1
1 (x)

x− θ−1
1 (x)

.
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Denoting by P the busy period of the first queue, and π(s) := Ee−sP , and ξ(s) := Ee−sX ,
then [2, Eq. (3)] gives

Ee−xQ2 =
1− λEP

1 + λEP
· x + λ− λπ(x)
x− λ + λπ(x)

.

It is now left to check that the above two formulas coincide. As the input rate of the first
queue equals the output rate of the first queue

µ = λf =
EP

1/λ + EP
· 2,

we obtain that 1− µ = (1− λEP )/(1 + λEP ). Hence it is left to show that

θ−1
1 (x)

x− θ−1
1 (x)

=
x + λ− λπ(x)
x− λ + λπ(x)

,

or, equivalently, 2θ−1
1 (x) = x + λ− λπ(x), or

θ1

(
x

2
+

λ

2
− λ

2
π(x)

)
= x. (13)

By definition we have θ1(x) = −λ+λξ(x)+2x. Also, we have the well-known fixed-point
equation for the busy period of the M/G/1 queue (with service rate 2):

π(x) = ξ

(
x

2
+

λ

2
− λ

2
π(x)

)
.

Hence we obtain (13):

θ1

(
x

2
+

λ

2
− λ

2
π(x)

)
= −λ + λ ξ

(
x

2
+

λ

2
− λ

2
π(x)

)
+ x + λ− λ π(x) = x,

as desired. Related results can be found in [24, 36]. ♦

3.2 Pollaczek-Khintchine representation

Theorem 3.2 enables us to determine Pollaczek-Khintchine representation for the distri-
bution function of Q2. Define R̃y := (c1 − c2)Ry and observe that, due to Proposition 3.1,
{R̃y : y ≥ 0} is a subordinator with Ee−xRy = e−yϑ(x), where ϑ(x) := θ−1

1 ((c1 − c2)x), for
y ≥ 0 and x ≥ 0. Recalling (ii) in Proposition 3.1, we have

% := lim
x↓0

ϑ(x)
x

=
c1 − c2

c1 − µ

with % ∈ (0, 1).
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Thus, following e.g. Takács [38, Eq. (23)], define a distribution function H(·) such that
H(x) = 0 for x < 0 and its Laplace transform ˆ̀

H(s) is of the form

ˆ̀
H(x) =

∫ ∞

0
e−xvdH(v) =

ϑ(x)
%x

(14)

for x ≥ 0.

Theorem 3.6 Let {A(t), t ∈ R} be a spectrally positive Lévy process with Laplace exponent κ(·)
and µ := EA(1) < c2. Then

P(Q2 ≤ u) = (1− %)
∞∑
i=1

%i−1H?i(u).

Proof Application of Theorem 3.2 immediately yields

Ee−xQ2 =
c2 − µ

c1 − c2

ϑ(x)
x− ϑ(x)

=
c2 − µ

c1 − c2

%ϑ(x)
%x

1− %ϑ(x)
%x

=
c2 − µ

c1 − c2

∞∑
i=1

(
% ˆ̀

H(x)
)i

= (1− %)
∞∑
i=1

%i−1 ˆ̀ i
H(x).

This implies the stated immediately. �

Remark 3.7 Theorem 3.6 is related to Theorem 4.1 in [25], where it was assumed that the
input process is a compound Poisson. ♦

Remark 3.8 The distribution H(·) has a natural representation in the language of the
Lévy measure associated with {R̃y : y ≥ 0}. Indeed, since {R̃y : y ≥ 0} is a subordinator,
then, following e.g. [7, Section 3.1, Eq. (3)], the Lévy-Khintchine representation of the
Laplace exponent ϑ(·) has the following form:

ϑ(x) = dx + x

∫ ∞

0
e−xsΠ(s)ds,

where d is the drift coefficient and Π(s) = Π((s,∞)) is the tail of the Lévy measure. Then

ˆ̀
H(x) =

d

%
+

1
%

∫ ∞

0
e−xsΠ(s)ds.

Hence

H(t) =
d

%
+

1
%

∫ t

0
Π(s)ds

for all t ≥ 0. Observe also that % = d +
∫∞
0 Π(s)ds. ♦
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4 Examples: light-tailed case

In this section we apply results of previous sections to two special cases. The first focuses
on Brownian input, the second on Poisson input; hence, in all cases the increments are
independent, and consequently Equation (4) can be used. Before analyzing particular
examples, let us first identify a ‘dichotomy’ in the distribution of Q2.

4.1 A dichotomy

If κ(s) exists for negative s, the Lévy process could be called ‘light-tailed’, as the tail of
the distribution of A(1) decays exponentially or faster. In this section we use the results
of the previous section to further investigate this light-tailed case, eventually leading to
an interesting dichotomy. Throughout this subsection, we tacitly assume that the Lévy
input is spectrally positive.
Bearing in mind part (iii) in Proposition 3.1, it is seen that by analytic continuation, The-
orem 3.2 holds for all x for which θ−1

1 (x(c1 − c2)) is well defined. For light-tailed Lévy
processes, this means that we could pick any x larger than x1 := (c1 − c2)−1 miny∈R θ1(y)
(use that θ1(·) is convex). Theorem 3.2 implies that if, in addition, x > θ−1

1 (x(c1− c2)), we
have that Ee−xQ2 is finite, and hence ‘Chernoff’ implies that

P(Q2 > u) ≤ Mexu, (15)

for some finite constant M – see also [1, Lemma 3.2]. Let x2 solve x2 = θ−1
1 (x2(c1 − c2)),

or, equivalently, θ2(x) = 0; if there is no solution, then take the infimum of all x such that
θ2(x) ≤ 0 (this x2 is necessarily negative). The above arguments immediately lead to the
following result, yielding the tightest x for which (15) holds.

Proposition 4.1 If x2 > arg miny θ1(y) then Inequality (15) holds (for some M < ∞) for all
x > x1; else Inequality (15) holds (for some M < ∞) for all x > x2.

Assuming that κ(·) is differentiable, define c?
1 := −κ′(x2); notice that x2 depends on c2

only (not on c1), and consequently also c?
1 depends on c2 only. The next result indicates

that c?
1 can be viewed as a critical service rate, demarcating two regimes.

Proposition 4.2 If c1 < c?
1 then Inequality (15) holds (for some M < ∞) for all x > x1; else

Inequality (15) holds (for some M < ∞) for all x > x2.

Proof Due to the convexity of θ1(·), requiring x2 > arg infy θ1(y) is equivalent to requir-
ing θ′1(x2) > 0. This implies the stated immediately. �
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The above indicates that there are in fact two regimes: there is essentially different behav-
ior for c1 > c?

1 and c1 ≤ c?
1. It is noted that in the first case the exponential bound (with

decay rate x2) coincides with the traditional Kingman-type bound of a single queue with
service rate c2. We return to this phenomenon later in this paper; there we also give an
interpretation of the two regimes.

4.2 Tandem with Brownian motion input

In this subsection we analyze representation (4) for the case where A(·) = B(·), a standard
Brownian motion (with zero drift). It appears that an explicit formula can be derived for
P(Q2 > u). Let Ψ(·) denote the tail distribution of a standard Normal random variable N :
Ψ(x) = P(N > x).

Theorem 4.3 Let A(·) be a standard Brownian motion. Then, for each u ≥ 0,

P(Q2 > u) =
c1 − 2c2

c1 − c2
e−2c2u

(
1−Ψ

(
c1 − 2c2√

c1 − c2

√
u

))
+

c1

c1 − c2
Ψ
(

c1√
c1 − c2

√
u

)
.

Proof Following Theorem 2.4 we have

P(Q2 > u) = P

(
sup

t∈[0,∞)
{B1(t)− c2t} > sup

t∈(0,tu]
{B2(t) + c1t}

)
,

where B1(·), B2(·) are independent standard Brownian motions. Using the well-known
fact that, for each x ≥ 0,

P

(
sup

t∈[0,∞)
{B1(t)− c2t} > x

)
= e−2c2x

and (see, e.g., Baxter and Donsker [6])

ρ(x) :=
d
dx

P

(
sup

t∈(0,tu]
{B2(t) + c1t} ≤ x

)

=
√

2
πtu

exp
(
−(x− c1tu)2

2tu

)
− 2c1e2c1xΨ

(
x + c1tu√

tu

)
,

we get two integrals, that we will calculate separately:

P(Q2 > u) =
∫ ∞

0
e−2c2xρ(x)dx = I1(u)− I2(u),

where

I1(u) :=
∫ ∞

0
e−2c2x

√
2

πtu
exp

(
−(x− c1tu)2

2tu

)
dx;

I2(u) :=
∫ ∞

0
e−2c2x2c1e2c1xΨ

(
x + c1tu√

tu

)
dx.

13



Integral I1(u) is evaluated as follows:

I1(u) = 2
∫ ∞

0

1√
2πtu

exp
(
−x2 − 2c1tux + c2

1t
2
u + 4c2xtu

2tu

)
dx

= 2e−c2(c1−c2)tu

∫ ∞

0

1√
2πtu

exp
(
−(x− (c1 − 2c2)tu)2

2tu

)
dx

= 2e−2c2u

(
1−Ψ

(
c1 − 2c2√

c1 − c2

√
u

))
. (16)

For I2(u) we find

I2(u) =
∫ ∞

0
2c1e2x(c1−c2)Ψ

(
x + c1tu√

tu

)
dx

=
c1

c1 − c2

∫ ∞

0
2(c1 − c2)e2x(c1−c2)Ψ

(
x + c1tu√

tu

)
dx.

Now, integration by parts gives that I2(u) = c1Ĩ2(u)/(c1 − c2), with

Ĩ2(u) = −Ψ(c1

√
tu) +

∫ ∞

0
e2x(c1−c2) 1√

2πtu
exp

(
−(x + c1tu)2

2tu

)
dx

= −Ψ(c1

√
tu) + exp

(
−c2

1tu
2

+
(c1 − 2c2)2tu

2

)
×∫ ∞

0

1√
2πtu

exp
(
−x2 − 2xtu(c1 − 2c2) + (c1 − 2c2)2t2u

2tu

)
dx

= −Ψ(c1

√
tu) + e−c2(2c1−2c2)tu

∫ ∞

0

1√
2πtu

exp
(
−(x− (c1 − 2c2)tu)2

2tu

)
dx

= −Ψ(c1

√
tu) + e−2c2u

(
1−Ψ

(
c1 − 2c2√

c1 − c2

√
u

))
. (17)

Combining (16) and (17) yields the desired result. �

The next corollary finds the exact asymptotics of the buffer content distribution in the
second node, by applying the general result of Theorem 4.3.

Corollary 4.4 Let A(·) be a standard Brownian motion.
(i) If c1 > 2c2, then

P(Q2 > u) =
c1 − 2c2

c1 − c2
e−2c2u(1 + o(1)) as u →∞.

(ii) If c1 = 2c2, then

P(Q2 > u) =
1√
2πc2

1√
u

e−2c2u(1 + o(1)) as u →∞.

14



(iii) If c1 < 2c2, then

P(Q2 > u) =
1√
2π

(
c1 − c2

u

)3/2 4c2

c2
1(c1 − 2c2)2

exp
(
− c2

1

2(c1 − c2)
u

)
(1+o(1)) as u →∞.

Proof Let J1(u) and J2(u) be defined as

J1(u) :=
c1 − 2c2

c1 − c2
e−2c2u

(
1−Ψ

(
c1 − 2c2√

c1 − c2

√
u

))
and

J2(u) :=
c1

c1 − c2
Ψ
(

c1√
c1 − c2

√
u

)
;

recall from Theorem 4.3 that P(Q2 > u) = J1(u) + J2(u). We also recall the standard ‘first
order’ asymptotic result

Ψ(u) =
1√
2π

1
u

e−u2/2(1 + o(1)), (18)

and ‘second order’ result

1√
2π

1
u

e−u2/2 −Ψ(u) =
1√
2π

1
u3

e−u2/2(1 + o(1)). (19)

We now consider the three cases separately.

(i) c1 > 2c2. Then

lim
u→∞

log J1(u)
log J2(u)

=
c2
1

4c2(c1 − c2)
=

(c1/c2)
2

4(c1/c2 − 1)
> 1,

due to x2 > 4(x− 1) > 0 for x > 2. The stated follows after applying (18).

(ii) c1 = 2c2. Then J1(u) = 0, and the stated follows from (18).

(iii) c1 < 2c2. In this case, remarkably, both −J1(u) and J2(u) equal, as u →∞,√
1

c1 − c2

1√
2π

1√
u

exp
(
− c1

2(c1 − c2)
u

)
(1 + o(1)),

due to (18). As a consequence, we have to rely on the more precise asymptotics (19).
After tedious computations we derive the stated. �
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We see that there are two regimes: with c?
1 := 2c2, there is essentially different behavior

for c1 > c?
1 and c1 ≤ c?

1; notice that, in the terminology of Section 4.1, we indeed have
that c?

1 = −κ′(x2) (with κ(s) = 1
2s2 and x2 = −2c2). In the first case, upon overflow in

the second queue the first queue remains essentially empty, and consequently the large-
buffer asymptotics resemble those of a single queue with service rate c2. In the second
case, the first queue will be exactly ‘balanced’, as traffic is generated at about a rate of c1,
during tu units of time.

4.3 Tandem with Poisson input

Now we assume that Ai(t), with i = 1, 2, is Poisson distributed with mean λt (for some
λ ∈ (0, c2)). We first determine

P

(
sup

t∈[0,∞)
{A1(t)− c2t} > x

)
and P

(
sup

t∈[0,tu]
{−A2(t) + c1t} ≥ x

)
.

Consider the first of these probabilities. For instance using the Beneš approach, see, e.g.,
Roberts et al. [31, Eq. (15.1.3)], with ρ := λ/c2,

ζ(x) := P

(
sup

t∈[0,∞)
{A1(t)− c2t} > x

)
= (1− ρ)

∞∑
n=dxe

(ρ(n− x))n

n!
e−ρ(n−x). (20)

Now consider the second probability. Evidently,

η(x) := P

(
sup

t∈[0,tu]
{−A2(t) + c1t} ≥ x

)
= P (∃t ∈ [0, tu] : A2(t) ≤ c1t− x) .

This expression can be computed by conditioning on the value of A2(tu), as follows:

P (∃t ∈ [0, tu] : A2(t) ≤ c1t− x) = P(A2(tu) ≤ c1tu − x)

+
∞∑

i=dc1tu−xe

P (∃t ∈ [0, tu] : A2(t) ≤ c1t− x | A2(tu) = i) P(A2(tu) = i).

Obviously,

P(A2(tu) ≤ c1tu − x) =
bc1tu−xc∑

i=0

(λtu)i

i!
e−λtu ; P(A2(tu) = i) =

(λtu)i

i!
e−λtu .

Finally, focus on P (∃t ∈ [0, tu] : A2(t) ≤ c1t− x | A2(tu) = i) . Reversing time, it is easily
seen that this probability coincides with

P (∃t ∈ [0, tu] : A2(t) ≥ i + x− c1tu + c1t | A2(tu) = i) . (21)
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Given A2(tu) = i, these i arrivals are uniformly distributed on [0, tu]. Hence, probabil-
ity (21) equals p(i + x − c1tu, c1 | i, tu), where p(x, c | N,D) is the overflow probability
over level x in a queue with N periodic inputs (with period D) and service rate c (which
is sometimes referred to as the N ·D/D/1 queue). An explicit expression for p(x, c | N,D)
is given in the following lemma.

Lemma 4.5 For x ∈ [0, N ] and N < x + c ·D, it holds that

p (x, c | N,D) =
∑

n∈N: n∈(x,N ]

Bin
(

n

∣∣∣∣N,
n− x

c ·D

)
· c ·D −N + x

c ·D − n + x
,

with

Bin(n | N, p) :=
(

N

n

)
pn(1− p)N−n.

If N ≥ x + c ·D, then p(x, c | N,D) = 0.

Proof See Humblet et al. [21, Section III.C], and Roberts and Virtamo [32]. �

This leads to the following expression:

η(x) = P

(
sup

t∈[0,tu]
{−A2(t) + c1t} > x

)
=

bc1tu−xc∑
i=0

(λtu)i

i!
e−λtu +

∞∑
i=dc1tu−xe

p(i + x− c1tu, c1 | i, tu)
(λtu)i

i!
e−λtu . (22)

Theorem 4.6 Let A(·) be a Poisson process with rate λ ∈ (0, c2). Then, for each u ≥ 0,

P(Q2 > u) = −
∫

[0,∞)
ζ(x)dη(x), (23)

where ζ(·) and η(·) are given by (20) and (22), respectively.

Remark 4.7 As in Corollary 4.4 one could pursue the exact distribution of Q2, as in The-
orem 4.6, to find its large-buffer asymptotics. However, this turns out to be a non-trivial
task, due to the complicated structure of (23).
An alternative is to use a procedure that is similar to the one pursued in [1] for the priority
queue. First realize that the output process of the first queue consists of independent on-
and off-periods. The off-periods are obviously exponential (with mean λ−1), whereas the
on-periods correspond to the duration of the busy period, say B, in the first queue. The
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asymptotics of the busy period are known since Cox and Smith [13, Section 5.6], and are
of the type

P(B > u) = αu−3/2e−βu(1 + o(1)),

for positive numbers α, β, and u → ∞. Standard results for the large-buffer asymptotics
of queues fed by a single on-off source now indicate that, as in the Brownian case, there
are two regimes, separated by a critical service rate.
The critical service rate can be found as follows. Let θ? > 0 solve log EeθA(t) = c2θt,

or, equivalently, λ(eθ − 1) = c2θ, and define λ? := λeθ?
. If c1 > c?

1 := λ?, then the first
queue is essentially transparent, and the large-buffer asymptotics are purely exponen-
tial: α+e−β+u, with β+ := θ?. For c1 < c?

1, the large-buffer asymptotics are of the form
α−u−3/2e−β−u; in this case

β− =
(

1
c1 − c2

) (
c1 log

c1

λ
− c1 + λ

)
. (24)

We recognize in (24) the Kullback-Leibler distance of a Poisson(c1) random variable with
respect to a Poisson(λ) random variable. Indeed, (24) can be interpreted as the decay rate
of the Poisson source generating traffic at rate c1 during tu units of time, thus building
up an amount of traffic u in the downstream queue. ♦

Remark 4.8 The approach presented in this subsection is not restricted to Poisson input
of batches of deterministic (unit) size. Let us for instance consider the situation of a
Poisson(λ) stream of nonnegative i.i.d. batches (Ai)i∈N. It turns out that Theorem 1 of
Takács [39, p. 24] is quite useful here. To make this theorem directly applicable, assume
for the moment that time is slotted (i.e., the number of batches arriving per slot has a
Poisson distribution with mean λ), c1 = 1, and that the batch sizes are i.i.d. and take on
nonnegative integral values.
We can repeat the above argument. Now ζ(·) is the overflow probability in the corre-
sponding M/G/1 queue, which is explicitly given by the Pollaczek-Khintchine formula,
see for instance [4, Thm. 5.7, Eq. (5.5)]. Also η(·) follows easily: we can use exactly the
same procedure as above, by first conditioning on the value of A2(tu) – notice that the
per-slot arrivals are interchangeable random variables, such that the counterpart of prob-
ability (21) follows immediately from [39, Thm. 1, p. 24]. ♦

5 Examples: heavy-tailed case

In this section we analyze the asymptotics of the tail distribution of Q2 in a case when
A(·) possesses a heavy-tailed structure.
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Before we focus on particular examples, we need the following proposition, which relates
the asymptotic behavior of P(Q2 > u) with P(Q > u); recall that Q represents the total
workload.

Proposition 5.1 Let v ∈ (0, 1) and

P(Q > u) = u−v`(u)(1 + o(1))

as u →∞, where `(·) is slowly varying at ∞. Then

P(Q2 > u) = %vu−v`(u)(1 + o(1))

as u →∞.

Proof Assume that, as u → ∞, P(Q > u) = u−v`(u)(1 + o(1)) for v ∈ (0, 1). Then,
following Lemma 2.2 in [9], we have

Ee−xQ − 1 = Γ(1− v)xv `

(
1
x

)
(1 + o(1))

as x → 0. Thus, the use of (12) leads to

Ee−xQ2 − 1 = Ee−θ−1
1 (x(c1−c2))Q − 1 =

= Γ(1− v)θ−1
1 (x(c1 − c2))v`

(
1

θ−1
1 (x(c1 − c2))

)
(1 + o(1))

= Γ(1− v)
(

θ−1
1 (x(c1 − c2))

x

)v

xv`

(
x

θ−1
1 (x(c1 − c2))

1
x

)
(1 + o(1))

= Γ(1− v)%vxv`

(
1
x

)
(1 + o(1)),

as x → 0, since limx↓0 θ−1
1 (x(c1 − c2))/x = %. Thus, again, the use of [9, Lemma 2.2]

completes the proof. �

In the following proposition we give the exact asymptotics of the tail distribution of Q2

in a case when H(·) belongs to the class of subexponential distributions.

Proposition 5.2 Let {A(t), t ∈ R} be a spectrally positive Lévy process with µ := EA(1) < c2.
If H(·) defined in (14) is subexponential, then

P(Q2 > u) =
c1 − µ

c2 − µ
H(u)(1 + o(1))

as u →∞.
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Proof From Theorem 3.6 we have that for each u ≥ 0

P(Q2 ≤ u) = (1− %)
∞∑
i=1

%i−1H?i(u)

= (1− %)
∞∑
i=0

%i(H?i ? H)(u) = (K ? H)(u), (25)

where K(u) = (1− %)
∑∞

i=0 %iH?i(u) and %, as before, defined as (c1 − c2)/(c1 − µ). Now,
following e.g. Embrechts et al. [16],

K(u) =
%

1− %
H(u)(1 + o(1))

as u → ∞; the bars indicate complementary distribution functions. Thus using the con-
volution closure property of the class of subexponential random variables; see e.g. Em-
brechts & Goldie [17] or Cline [12], we conclude that

P(Q2 > u) = K ? H(u) =
(

%

1− %
+ 1
)

H(u)(1 + o(1))

=
1

1− %
H(u)(1 + o(1)) =

c1 − µ

c2 − µ
H(u)(1 + o(1)).

This completes the proof. �

5.1 Tandem with α-stable Lévy input

In this subsection we focus on the case of α-stable Lévy input. Let Xα,σ,β(·) denote an
α-stable Lévy motion with scale parameter σ and skewness parameter β, see, e.g., [34].
We analyze P(Q2 > u) for A(·) an α-stable Lévy motion with α ∈ (1, 2), σ = 1 and
β ∈ (−1, 1]. for the general case of β ∈ (−1, 1] we present the generic asymptotic upper
and lower bounds for P(Q2 > u) in the large-buffer regime, i.e., u → ∞. Moreover, if
β = 1, then the application of Proposition 5.1 provides us with the exact asymptotics of
P(Q2 > u).
In the rest of this section we use the notation

B1(α, β) :=
Γ(1 + α)

π

√
1 + β2 tan2(πα/2) sin

(πα

2
+ arctan (β tan (πα/2))

)
;

B2(α, β) :=
1 + β

2
α− 1

Γ(2− α) cos(π(α− 2)/2)
.

Theorem 5.3 Let A(t) = Xα,1,β(t) with α ∈ (1, 2) and β ∈ (−1, 1]. Then
(i) as u →∞,

P(Q2 > u) ≤
(

B1(α, β)
c2α(α− 1)

+
B2(α, β)

c1

)(
c1

c1 − c2

)1−α

u1−α(1 + o(1));
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(ii) as u →∞,

P(Q2 > u) ≥ B1(α, β)
c2α(α− 1)

(
c1

c1 − c2

)1−α

u1−α(1 + o(1)).

The following lemma from [29] – see also [20, Prop. 3.7], where the substitution β := −β

matches our notation – is needed in our analysis.

Lemma 5.4 Let α ∈ (1, 2), β ∈ (−1, 1] and c > 0. Then

P

(
sup

t∈[0,∞)
{Xα,1,β(t)− ct} > u

)
=

B1(α, β)
cα(α− 1)

u1−α(1 + o(1)),

as u →∞.

Proof of Theorem 5.3 Let Xα,1,β(·) and Yα,1,β(·) be mutually independent α-stable Lévy
motions and recall that, as before, tu = u/(c1 − c2).
Ad. (i): following Theorem 2.4 we have that

P(Q2 > u) ≤ P

(
sup

t∈[0,∞)
{Xα,1,β(t)− c2t}+ Yα,1,β(tu) > c1tu}

)
.

Moreover, using self-similarity of Yα,1,β(·) and following [34, Property 1.2.15],

P(Yα,1,β(tu) > c1tu) = P(Yα,1,β(1) > c1t
(α−1)/α
u )

= B2(α, β)c−α
1 t1−α

u (1 + o(1)), (26)

as u →∞.
Combining (26) with Lemma 5.4 and using that both asymptotics are regularly varying
at infinity, we immediately obtain

P(Q2 > u) ≤
(

B1(α, β)
c2α(α− 1)

c1−α
1 + B2(α, β)c−α

1

)
t1−α
u (1 + o(1))

=
(

B1(α, β)
c2α(α− 1)

+
B2(α, β)

c1

)(
c1

c1 − c2

)1−α

u1−α(1 + o(1)),

as u →∞, which completes the proof of (i).

Ad. (ii): Following Theorem 2.4 we have that

P(Q2 > u) = P

(
sup

t∈[0,∞)
{Xα,1,β(t)− c2t} > sup

t∈[0,tu]
{−Yα,1,β(t) + c1t}

)
.
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Hence

P(Q2 > u) ≥ P

(
sup

t∈[0,∞)
{Xα,1,β(t)− c2t} − sup

t∈[0,tu]
{−Yα,1,β(t)} > c1tu

)

= P

(
sup

t∈[0,∞)
{Xα,1,β(t)− c2t} > c1tu

)
(1 + o(1)) (27)

=
B1(α, β)

c2α(α− 1)

(
c1

c1 − c2

)1−α

u1−α(1 + o(1)), (28)

as u → ∞, where (27) follows from [28, Lemma 6.3] combined with the fact that, due
to Lemma 5.4, supt∈[0,∞){Xα,1,β(t) − c2t} belongs to the class of subexponential random
variables. Equation (28) straightforwardly follows from Lemma 5.4. This completes the
proof. �

In the following theorem we analyze an important special case of the α-stable Lévy input
process where β = 1. The importance of this class of input processes stems, e.g., from
[27, 40], where it was proved that Xα,1,1(·) (α ∈ (1, 2)) may be used as an approximation
for an appropriately scaled superposition of many on-off input processes.

Theorem 5.5 Let A(·) = Xα,1,1(·) with α ∈ (1, 2). Then as u →∞,

P(Q2 > u) =
1

Γ(2− α) cos(π(α− 2)/2)
1
c2

(
c1

c1 − c2

)1−α

u1−α(1 + o(1)).

Proof The combination of Proposition 5.1 with Lemma 5.4 gives that

P(Q2 > u) =
B1(α, β)

c2α(α− 1)

(
c1

c1 − c2

)1−α

u1−α(1 + o(1)).

Routine calculation, as in [20, Ch. 3], yields that

B1(α, 1) =
α(α− 1)

Γ(2− α) cos(π(α− 2)/2)
,

which completes the proof. �

Remark 5.6 Observe that the exact asymptotic presented in Theorem 5.5 matches the
lower bound given in Theorem 5.3. We conjecture that this observation extends to the
whole range of parameters β ∈ (−1, 1]. ♦
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5.2 Tandem with compound Poisson input, with regularly varying jumps

Consider again the case of compound Poisson (λ, F ) input. In the following theorem we
present the exact asymptotics of the tail distribution of Q2 under the assumption that F (·)
is regularly varying at ∞.

Theorem 5.7 Let A(·) correspond to a compound Poisson process (λ, F ). Suppose that

1− F (x) = x−α`(x),

where α ∈ (1, 2), `(·) is slowly varying at ∞ and c2 > λ EX . Then

P(Q2 > u) =
λ

c2 − λ EX

(
c1 − λ EX

c1 − c2

)1−α 1
α− 1

u1−α`(u) (1 + o(1))

as u →∞.

Proof Observe that EA(t) = λ EX t. Following e.g. [3, Thm. 2.1] we have that

P(Q > u) =
λ EX

c2 − λ EX

1
EX

(∫ ∞

u
(1− F (x))dx

)
(1 + o(1))

as u →∞. Thus, using Karamata’s theorem, we have that

P(Q > u) =
λ

c2 − λ EX

1
α− 1

u1−α`(u)(1 + o(1))

as u →∞. Hence the stated follows by application of Proposition 5.1. �
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