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Sparse-grid Combination Technique and a Rosenbrock Solver
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ABSTRACT

In the current paper the e�ciency of the sparse-grid combination technique applied to time-dependent advection-

di�usion problems is investigated. For the time integration we employ a third-order Rosenbrock scheme im-

plemented with adaptive step-size control and approximate matrix factorization. Two model problems are

considered, a scalar 2D linear, constant-coe�cient problem and a system of 2D nonlinear Burgers' equations.

In short, the combination technique proved more e�cient than a single grid approach for the simpler linear

problem. For the Burgers' equations this gain in e�ciency was only observed when one of the two solution

components was set to zero, making the problem more grid-aligned.
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1. Introduction

In modern CFD codes accurate resolution of thin solution layers is still very time consuming. Espe-
cially for high Reynolds numbers many grid points are needed to resolve the very thin layers. The
common remedy is to use adapted grids that have small cells near the layers and large cells else-
where. In this paper we investigate another approach to resolve the thin layers, namely the sparse
grid combination technique (CT) as introduced by Griebel, Schneider and Zenger [4].
The CT is attractive because, asymptotically, it can yield a smaller spatial error for a given com-

plexity than a single grid approach (SG) can [14], [1]. Consider a problem of spatial dimension d that
is solved on a single grid with spatial discretization of order p, i.e., on a single grid of mesh width h
the spatial error is O(hp). On a single grid this problem would have a complexity � h�d. With the
CT a spatial error of order O(hp(logh)d�1) can be obtained with a complexity � h�1(log h)d�1, i.e.,
an asymptotically �rst-order complexity is obtained with only a slightly larger error than for the SG.
Furthermore, the CT can be easily and e�ciently implemented on a parallel computer, see [3].
In [9] we investigated the e�ciency of the CT when applied to a pure advection equation and

concluded that for a non-grid-aligned solution the CT does not perform very well (see [9] for a more
complete report). In [11] this was also found for some elliptic PDEs. Note that in [5] the CT is also
applied to a pure advection equation, but here the e�ciency of the CT is not considered.
In practice, advection-di�usion problems are usually solved on boundary-�tted grids. The corre-

sponding solutions are usually grid-aligned. In this paper we study model advection-di�usion problems
having this type of solution.
An essential ingredient for a CT solver for time-dependent problems is an e�cient time accurate

integrator. We use a three-stage, third-order Rosenbrock method implemented with built-in step-
size control and approximate matrix factorization. Without step-size control the method can be
implemented as a two-stage scheme. It uses approximate matrix factorization to greatly speed up the
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solution process, hence we call it factorized ROS3. In [7] the same factorized ROS3 has been used,
independently from the current paper and without the CT.
As model problems we consider a scalar two-dimensional, constant-coe�cient advection-di�usion

equation and a system of two-dimensional Burgers' equations. To evaluate the e�ciency of the CT
we compare it with a straightforward SG approach.

2. The model problems

2.1 Model problem 1: The advection-di�usion equation

We consider the constant-coe�cient advection-di�usion equation

ut + ux � " (uxx + uyy) = 0 (2.1)

on the spatial domain [�1; 1]�[�1; 1] and take u(x; y; 0) = 0 as initial solution. As boundary conditions
we impose

u(�1; y; t) =
8<
:

0; y < 0
1
2 ; y = 0
1; y > 0

; uy(x;�1; t) = 0; u(1; y; t) = 0:

For " = 10�2 the solution at t = 1 is shown in Fig. 1. It possesses a horizontal and a vertical grid-
aligned solution layer. The thickness of both layers is proportional to

p
" as " ! 0. For the steady

state solution we have derived an exact expression in terms of a Fourier sum,

u(x; y) =
3=2�

1� e
1
"

�e x" �1� e
(1�x)

"

�
+

1X
n=1

Bn(x) cos (n�y) ;

Bn(x) =
2 sin

�
n�
2

�
=n�

e
2
q

1
4"2

+n2�2 � 1

e
x

2"

�
e
x
q

1
4"2

+n2�2 � e
(2�x)

q
1

4"2
+n2�2

�
;

and have used this expression to con�rm that our numerical method converges to the correct solution
in the limit t!1.

2.2 Model problem 2: Burgers' equations

The two-dimensional Burgers' equations

ut = �uux � vuy + " (uxx + uyy) ;

vt = �uvx � vvy + " (vxx + vyy) ;

are considered on the spatial domain [�1; 1]� [�1; 1]. The boundary conditions we impose are

u(�1; y; t) =
�

1� 4(y � 1
2 )

2; y � 0
1� 4(y + 1

2 )
2; y < 0

; u(x;�1; t) = 0; ux(1; y; t) = 0;

and

v(�1; y; t) = �0:35 sin
�
1

2
�y

�
; vy(x;�1; t) = 0; vx(1; y; t) = 0:

As initial solutions we take

u(x; y; 0) =

�
1� 4(y � 1

2 )
2; y � 0

1� 4(y + 1
2 )

2; y < 0
;

v(x; y; 0) = �0:35 sin
�
1

2
�y

�
:
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Figure 1: Solution of model problem 1 at t = 1 for � = 0:01

In Figures 2 and 3 the u and v components of the solution at t = 3 are shown for " = 10�2. The v
component shows a sharpening from the sinusoidal inlet condition at x = �1 to a much steeper slope
at the out
ow boundary at x = 1. This is a grid-aligned phenomenon since near the out
ow boundary
the solution varies much stronger in y direction than in x direction. The u component shows a mixing
of two jets. This phenomenon is not especially grid-aligned.
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Figure 2: u-component of the solution of model problem 2 at t = 3 for � = 0:01

3. The sparse grid combination technique

In the CT several solutions on di�erent grids are combined to get a solution which has the accuracy
of a much �ner grid. The two-dimensional CT is based on a grid of grids as shown in Fig. 4. Grids
within the grid of grids are denoted by 
l;m where upper indices label the level of re�nement relative
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Figure 3: v-component of the solution of model problem 2 at t = 3 for � = 0:01

to the root grid 
0;0. The mesh-widths in x and y direction of 
l;m are hx = 2�lH and hy = 2�mH ,
where H is the mesh width of the uniform root grid 
0;0. We denote the mesh width of the �nest
grid 
N;N by h. Note that hx and hy are dependent on the position (l;m) in the grid of grids while
h is not.
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semi-discrete approximate solution on 

restriction operator that maps onto
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H
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Figure 4: Grid of grids

In the time-dependent combination technique a given initial pro�le u(x; y; 0) is restricted, by injec-
tion, onto the grids 
N;0, 
N�1;1, � � � , 
0;N and onto 
N�1;0, 
N�2;1, � � � , 
0;N�1, see Fig. 4. The
resulting coarse representations are then all evolved in time with our ROS3 time integrator. Then, at
a chosen point in time, the coarse approximations are prolongated with q-th order interpolation onto
the �nest grid 
N;N , where they are combined to obtain a more accurate solution. The notation is
summarized in Fig. 4.
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Considering the exact solution u, the combination technique, as introduced in [4], constructs a grid
function buN;N on the �nest grid 
N;N in the following manner,

buN;N �
X

l+m=N

PN;NRl;mu �
X

l+m=N�1

PN;NRl;mu:

The corresponding so-called representation error rN;N is

rN;N � buN;N �RN;Nu: (3.1)

Likewise, assuming exact time integration and considering semi-discrete solutions U l;m, resulting from
a spatial discretization, the combination technique constructs an approximate solution bUN;N on the
�nest grid 
N;N from the coarse-grid approximate solutions according to

bUN;N =
X

l+m=N

PN;NU l;m �
X

l+m=N�1

PN;NU l;m: (3.2)

Let dl;m denote the discretization error on grid 
l;m, i.e.,

dl;m � U l;m �Rl;mu: (3.3)

The total error eN;N = bUN;N �RN;Nu present in bUN;N is written as

eN;N = rN;N + bdN;N ;

where the combined discretization error bdN;N = bUN;N � buN;N is given by

bdN;N =
X

l+m=N

PN;Ndl;m �
X

l+m=N�1

PN;Ndl;m: (3.4)

In [8] the representation error rN;N is analysed and in [10] an analysis is given of the combined

discretization error bdN;N for pure advection problems. In the next section we give similar results for
the combined discretization error for our model problem 1, the linear, constant-coe�cient advection-
di�usion equation.

4. Spatial discretization errors

For the �rst test problem, the linear constant-coe�cient advection-di�usion problem, we can derive an
expansion in mesh widths for the spatial discretization error, as we did for the pure advection problem
in [10]. Since essentially the same approach is used as in [10] we state only the results. We consider
the error in the spatially discrete solution due to spatial discretization only, i.e., we assume here
time integration to be exact. In (2.1) the di�usion terms are discretized with second-order central
di�erences and the advection term is discretized with the third-order upwind biased discretization
[6]. We only consider the error away from the boundaries, i.e., we neglect the in
uence of boundary
conditions. When solved on a single grid with mesh widths hx and hy in x- and y-direction, the
resulting spatial discretization error can then formally be expanded as

d(x; y; t) =

1X
i=1

(�tEadv � tEdiff )
i

i!
u(x; y; t);

Eadv =

1X
j=3

�(�2)j + 3(�1)j + 1

3(j + 1)!
hjx@

j+1
x ;

Ediff = "

1X
j=2

(�1)j + 1

(j + 2)!

�
hjx@

j+2
x + hjy@

j+2
y

�
;
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assuming that u(x; y; t) is a C1 function. Neglecting O(h4x) and O(h4y) but including O(h2xh
2
y) for

later comparison yields the following leading order expression

d(x; y; t) = � t"

12

�
h2x@

4
x + h2y@

4
y

�
u(x; y; t)� t

12
h3x@

4
xu(x; y; t)

+
t2"2

144
h2xh

2
y@

4
x@

4
yu(x; y; t) +O(h4x) +O(h4y):

Just as in [10] we use this result to determine the resulting spatial discretization error in the
combined solution. It is given by

bd(t) = � t"h2

12

�
@4x + @4y

�
u(t)� th3

12
@4xu(t) (4.1)

+
t2"2

144
H2h2(1� 3 log2

H

h
)@4x@

4
yu(t) +O(h3 log2

1

h
):

The �rst error term is the usual leading error term on 
N;N coming from the di�usion operator.
Similarly, the second term comes from the advection operator. The third term comes forth from the
mixing of di�usion in x- and y-direction in the combination process. Since there is only advection in
the x-direction, advection does not produce any additional error in the combined solution. In order for
the CT to be e�ective the third term should be small compared to the �rst two terms. Asymptotically
(as h and H tend to zero) this is clearly the case. In practice the asymptotics are not always strong
enough for the third term, and higher mixed terms, to be negligible.

5. The Rosenbrock solver ROS3

We consider autonomous ODE systems of the form

dU

dt
= f(U);

which are supposed to result from spatial discretization on one of our grids and seek a numerical
approximation Un � U(t) at t = tn. To obtain this approximation we apply a third-order consistent
two-stage Rosenbrock method, ROS3 (also being used in [7]), which can be written as

Un+1 = Un +
5

4
k1 +

3

4
k2;

(I � 
�A)k1 = �F (Un);

(I � 
�A)k2 = �F (Un +
2

3
k1)� 4

3
k1;

where � = tn+1 � tn is the step size and A is the Jacobian matrix f 0(Un) or an O(�) approximation
thereof. This scheme is a variation to the scheme ROS2 as presented in [13] and belongs to a family
of schemes discussed on p. 233 of [2]. Its stability function is

R(z) =
1 + (1� 2
)z + ( 12 � 2
 + 
2)z2

(1� 
z)2
;

which shows that the scheme is A-stable if and only if 
 � 1=4. The scheme is third-order accurate
provided A is an O(�) approximation of the Jacobian matrix and 
 = 1=2 +

p
3=6. Note that this

speci�c 
 yields A-stability. Because our spatially discrete problems are sti� due to the di�usion term,
A-stability is a desirable property.
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5.1 Factorization

Since the ROS3 scheme remains of third-order for any O(�) perturbation to A = f 0(Un), we can split
A as A = A1 +A2 and use

Un+1 = Un +
5

4
k1 +

3

4
k2;

(I � 
�A1)(I � 
�A2)k1 = �F (Un);

(I � 
�A1)(I � 
�A2)k2 = �F (Un +
2

3
k1)� 4

3
k1:

The latter, factorized ROS3 scheme, is still of third-order since

(I � 
�A1)(I � 
�A2) = I � 
�(A � 
�A1A2):

In the current work we use directional factorization to separate the horizontal and vertical coupling
such that A1 only couples unknowns in the horizontal direction and A2 only couples unknowns in the
vertical direction. This leads to enormous savings in required computational work since it reduces the
two-dimensional linear algebra to one-dimensional linear algebra.
Without factorization, spatial discretization leads to pq coupled linear algebraic equations for the

Rosenbrock vectors k1 and k2 where p is the number of unknowns in horizontal direction and q the
number in vertical direction. With factorization, we have p sets of q coupled equations and q sets of p
coupled equations for k1 and likewise for k2. This is a clear advantage of factorization since p sets of
q coupled equations are solved much faster than one set of pq coupled equations. Another bene�t of
directional factorization is that the resulting sets of equations have band diagonal matrices and can
therefore be solved very e�ciently by means of LU decomposition.
In [7] it has been proven that a similar property as A-stability holds for the factorized ROS3 scheme.

For our model problems this means that we have unconditional stability in the sense of Fourier-Von
Neumann. Finally it should be noted that the above approximate matrix factorization is well known
in the numeric PDE literature, see [7] for some references.

5.2 Time step size control

In our implementation of ROS3 we compute another auxiliary vector, k3, to obtain an estimate for
the local time error. The corresponding extra auxiliary equation is

(I � 
�A1)(I � 
�A2)k3 = �F (Un+1) +
24
2 � 9
 � 1

6
(1� 2
)
k1 +

3
 � 1

2
(1� 2
)
k2:

Our error estimate is

Eest = � 6
2 � 1

6
(1� 2
)
k1 +

6
2 � 6
 + 1

2
(1� 2
)
k2 � k3

=
1

6
�3

d3c

ct3
+O(�4);

which is the last term in the Taylor expansion of the updated solution that our scheme still handles
correctly. We strive for an equidistribution of errors, i.e., we attempt to keep Eest, measured in the
L1 norm, �xed at some tolerance Tol during the integration. To achieve this we adjust the step size
� according to

�new = 0:8�old

�
Tol

kEestk1

�1=3

:

Solution updates are only performed when kEestk1 � Tol at the new time level, otherwise the update
is computed again with a smaller step size. The factor 0:8 is a safety factor and serves to avoid
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excessive numbers of rejected updates. In our implementation the ratio �new=�old was kept bounded
between 0:1 and 10.
Now consider the global time error en at time level tn, i.e., the di�erence between the computed

solution at time level tn and the exact solution at the same time level. This error is in fact proportional
to the tolerance Tol that we imposed, i.e.,

en � Tol:

This property of tolerance proportionality follows from [12], p. 350, when we identify our scheme as
an XEPS scheme, i.e., an error per step control with local extrapolation. The proportionality between
the imposed tolerance and the global time error is a nice property since it allows the user to control
the global error in a very direct manner.

5.3 Numerical illustration of factorized ROS3

Figure 5 displays the integration history for the Burgers' equations solved up to t = 3 on a single
33 � 33 spatial grid with Tol = 10�3. The step size � is shown in the left graph and the error
estimate kEestk1 in the right graph. We start with an initial step size � = 10�2 which turns out to be
somewhat too small for the imposed tolerance value. As the integration progresses larger step sizes
are permissible. In the intermediate stage of the integration the step size remains almost constant.
Finally, as the solution approaches steady state the size of the allowed step size quickly grows. During
the integration the step size control keeps the error estimate kEestk1 at a nearly constant level, as can
be seen from Fig. 5.
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Figure 5: Integration history of model problem 2

In Table 1 the ratio of maximal global time errors ETol is shown for solutions with tolerance Tol
and tolerance Tol=2 as a function of the tolerance. The time errors were estimated by subtracting a
reference solution obtained with Tol = 10�8. As the tolerance, and hence the step size, gets smaller
we see that the ratio approaches 2, which con�rms that the global time error is proportional to the
imposed tolerance.

6. Results

In this section the CT is compared with the standard SG approach. Both are implemented with the
same spatial discretization, i.e., second-order central discretization for the di�usion operator and third-
order upwind-biased discretization for the advection part. The Neumann condition on the out
ow
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Tol L1(ETol)=L1(ETol=2)
10�3 1:748
10�4 1:597
10�5 1:878
10�6 1:973

Table 1: Ratio of global time errors for model problem 2

boundary in model problem 1 is only imposed on the di�usion operator to avoid spurious re
ections
at that boundary.

6.1 Validation of the sparse grid error expression

In Fig. 6 a numerical illustration of the sparse grid error behaviour is given. Spatial errors are shown
for solutions of (2.1) with initial pro�le

u(x; y; 0) = e�16(x
2+y2);

integrated up to t = 0:25, with " = 0:05 and zero Dirichlet boundary conditions. A sparse grid with
N = 5, i.e., containing 11 semi-coarsened grids, was used. The top row of Fig. 6 corresponds to
solutions obtained with a root mesh width H = 1=2, the bottom row corresponds to H = 1=8. The
errors in the left column were obtained numerically, i.e., by subtracting a reference solution obtained
on a �ner grid (N = 5, H = 1=32). The errors in the right column are predictions according to (4.1)
where the derivatives of the solution were replaced by numerical di�erences of the reference solution.
The errors in the top row show oscillatory behaviour that is due to the third term in (4.1), i.e., the

term due to combination. This behaviour is absent in the lower row. Here the third term, which is
proportional to H2, is negligible due to the smaller H = 1=8. The error prediction (4.1) illustrated in
the right column clearly matches this transition in error behaviour.

6.2 Model problem 1: the advection di�usion equation

In Fig. 7 the e�ciency of the CT is compared with the SG when applied to the linear constant-
coe�cient advection-di�usion equation. Along the vertical axes the error is plotted, measured in the
L1 norm for the left column of graphs and in the L1 norm for the right column. Along the horizontal
axes the computational work is plotted in terms of number of required cell updates. The graphs in
the top, middle and bottom row correspond to " = 10�2, 10�3 and 10�5, respectively.
We see that for all these " the CT is more e�cient than the SG when we consider the errors in the

L1 norm. Also, the gain in e�ciency becomes larger as " is decreased. This is expected since for small
" the grid-aligned advection becomes more dominant rendering the test case more grid-aligned and
hence better suited to the CT. For " = 10�3 and 10�5 the same holds for the L1 norm. For " = 10�2

the CT does not perform well when measured in the L1 norm. Examination of the corresponding
spatial error distribution shows that the maximum error occurs near the discontinuity in the inlet
condition. The mixed derivative uxxyy is large near this discontinuity leading, for large ", to a large
term "2uxxyy present in the spatial error due to the CT. Hence it is to be expected that for relatively
large " the CT performs poorly locally near the discontinuity.

6.3 Model problem 2: Burgers' equations

In Fig. 8 again the CT and SG are compared in terms of e�ciency, this time for the 2D Burgers'
test case. In Fig. 8 the di�usion parameter is kept �xed at " = 10�2 since varying the di�usion
parameter does not change the qualitative conclusions that can be drawn from this �gure. The top
row corresponds to the Burgers' test case as described in Section 2.2. For this test case it is clear that
the CT does not perform very well relative to the SG, either when measured in L1 norm or in L1



6. Results 10

−1

0

1

−1

0

1

−4

−2

0

2

4

6

x 10
−4

x

Observed error, H=1/2

y −1

0

1

−1

0

1

−2

0

2

4

6

x 10
−4

x

Predicted error, H=1/2

y

−1

0

1

−1

0

1

0

5

10

15

x 10
−6

x

Observed error, H=1/8

y −1

0

1

−1

0

1

0

5

10

15

x 10
−6

x

Predicted error, H=1/8

y

Figure 6: Spatial errors



6. Results 11

10
5

10
6

10
7

10
8

10
−4

10
−3

10
−2

10
−1

# cell updates

||s
pa

tia
l e

rr
or

|| ∞

SG

CT

10
5

10
6

10
7

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

SG

CT

ε = 10−2

# cell updates

||s
pa

tia
l e

rr
or

|| 1

10
5

10
6

10
7

10
8

10
−5

10
−4

10
−3

10
−2

# cell updates

||s
pa

tia
l e

rr
or

|| 1

ε = 10−3

SG

CT

10
5

10
6

10
7

10
8

10
−4

10
−3

10
−2

10
−1

10
0

# cell updates

||s
pa

tia
l e

rr
or

|| ∞
ε = 10−3

SG

CT

10
5

10
6

10
7

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

# cell updates

||s
pa

tia
l e

rr
or

|| 1

ε = 10−5

SG

CT

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

# cell updates

||s
pa

tia
l e

rr
or

|| ∞

ε = 10−5

SG

CT

ε = 10−2

Figure 7: E�ciency comparisons for model problem 1
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norm. It was expected that the Burgers' test case would be less well suited to the CT than the linear
test case since the former is not as clearly grid-aligned.

10
5

10
10

10
−6

10
−5

10
−4

10
−3

10
−2

||s
pa

tia
l e

rr
or

|| 1

# cell updates

Full Burgers

SG

CT

10
5

10
10

10
−5

10
0

||s
pa

tia
l e

rr
or

|| ∞

# cell updates

Full Burgers

SG

CT

10
5

10
10

10
−6

10
−5

10
−4

10
−3

10
−2

||s
pa

tia
l e

rr
or

|| 1

# cell updates

Reduced

SG

CT

10
5

10
10

10
−6

10
−5

10
−4

10
−3

10
−2

||s
pa

tia
l e

rr
or

|| ∞

# cell updates

Reduced
SG

CT

Figure 8: E�ciency comparisons for model problem 2

To see how the CT performs on the Burgers' test case when this is made more grid-aligned, we
now take as initial condition v = 0 which guarantees that v remains zero. Furthermore we replace the
parabolic inlet condition by

u(�1; y; t) =
�

cos2(y � 1
2 ); y � 0;

cos2(y + 1
2 )

2; y < 0:

This removes a strong peak in the error at (x; y) = (�1; 0) which would otherwise dominate the error.
The results for this reduced Burgers' test case are shown in the lower row of Fig. 8. Measured in the
L1 norm the CT outperforms a SG when applied to this reduced test case. Measured in the L1 norm
this is still not the case, but at least the CT is comparable.

7. Conclusions

When applied to the simple grid-aligned, linear constant-coe�cient test case the CT is clearly superior
to the SG approach in terms of e�ciency. Especially when the di�usion parameter " is small, the
linear test case is strongly grid-aligned and very well suited to the CT.
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When applied to the 2D Burgers' test case, the CT does not perform so well. The CT does perform
reasonably well for a reduced version of the Burgers' test case with advection in only one direction.
Based on these observations, our expectation that the CT is well suited to advection-di�usion

problems that are strongly grid-aligned has been con�rmed. But it seems that the CT is less suited
to more general problems.
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