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Abstract

A symmetric matrix is Robinsonian if its rows and columns can be simultane-
ously reordered in such a way that entries are monotone nondecreasing in rows and
columns when moving toward the diagonal. The adjacency matrix of a graph is
Robinsonian precisely when the graph is a unit interval graph, so that Robinsonian
matrices form a matrix analogue of the class of unit interval graphs. Here we pro-
vide a structural characterization for Robinsonian matrices in terms of forbidden
substructures, extending the notion of asteroidal triples to weighted graphs. This
implies the known characterization of unit interval graphs and leads to an efficient
algorithm for certifying that a matrix is not Robinsonian.
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1 Introduction

1.1 Background

Robinsonian matrices are a special class of structured matrices introduced by Robin-
son [24] to model the seriation problem, a combinatorial problem arising in data analysis,
which asks to sequence a set of objects according to their pairwise similarities in such a
way that similar objects are ordered close to each other. Seriation has many applications
in a wide range of different subjects, including archaeology [21, 13], data visualization
and exploratory analysis [12, 1], bioinformatics (e.g., microarray gene expression [25]),
machine learning (e.g., to pre-estimate the number and shape of clusters [6, 11]). We
refer to the survey [18] for details and further references.

A symmetric n×n matrix A is called a Robinson similarity if its entries are monotone
nondecreasing in the rows and columns when moving toward the main diagonal, i.e., if

Axz 6 min{Axy, Ayz} (1)

for all 1 6 x < y < z 6 n. Throughout we will call any ordered triple (x, y, z) satisfying
the condition (1) a Robinson triple. If the rows and columns of A can be symmetrically
reordered by a permutation π in such a way that the permuted matrix is a Robinson
similarity, then A is said to be a Robinsonian similarity and π is called a Robinson ordering
of A. By construction, π is a Robinson ordering of A if any triple (x, y, z) ordered in π as
x ≺π y ≺π z is Robinson. Hence Robinsonian matrices best achieve the goal of seriation,
which is to order similar objects close to each other.

Several Robinsonian recognition algorithms are known, permitting to check whether
a matrix is Robinsonian in polynomial time. Most of the known algorithms rely on
characterizations of Robinsonian matrices in terms of interval (hyper)graphs and the
consecutive-ones property (C1P). Specifically, call a ball of A any set of the form B(x, ρ) :=
{y ∈ V : Axy > ρ} for some x ∈ V and scalar ρ > 0. Let the ball hypergraph of A be
the hypergraph whose vertex set is V and with hyperedges the balls of A. Then A is
Robinsonian if and only if its ball hypergraph is an interval hypergraph [20]. Equivalently,
define the ball intersection graph of A as the graph whose vertex set is the set of balls of
A, with an edge between two distinct balls if they intersect. Then, it is known that A is
a Robinsonian matrix if and only if its ball intersection graph is an interval graph (see
[22]). Using the above characterizations, distinct recognition algorithms were introduced
by Mirkin and Rodin [20] with running time O(n4), by Chepoi and Fichet [2] with running
time O(n3), and by Préa and Fortin [22] with running time O(n2), when applied to a n×n
symmetric matrix.

Different algorithms were recently introduced in [14, 15], based on a link between
Robinsonian matrices and unit interval graphs (pointed out in [23]) and exploiting the
fact that unit interval graphs can be recognized efficiently using a simple graph search algo-
rithm, namely Lexicographic Breadth-First Search (Lex-BFS) (see [4, 3]). The algorithm
of [14] is based on expressing Robinsonian matrices as conic combinations of (adjacency
matrices of) unit interval graphs and iteratively using Lex-BFS to check whether these
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are unit interval graphs; its overall running time is O(L(m+ n)), where L is the number
of distinct values in the matrix and m is its number of nonzero entries. The algorithm
of [15] relies on a new search algorithm, Similarity-First Search (SFS), which can be seen
as a generalization of Lexicographic Breadth-First Search (Lex-BFS) to the setting of
weighted graphs. The SFS algorithm runs in O(n + m log n) time and the recognition
algorithm for Robinsonian matrices terminates after at most n iterations of SFS, thus
with overall running time O(n2 + nm log n) [15].

All the current recognition algorithms return a certificate (i.e., a Robinson ordering)
only if the matrix is Robinsonian, and otherwise they just return a negative answer. In
this paper we give a new structural characterization of Robinsonian matrices in terms of
forbidden substructures. We provide a simple, succinct certificate for non-Robinsonian
matrices, which represents a natural extension of the known structural characterization
for unit interval graphs. Specifically, our certificate involves the new notion of weighted
asteroidal triple, which generalizes to the matrix setting the known obstructions for unit
interval graphs (namely, chordless cycles, claws and asteroidal triples), see Section 1.3 for
details. Moreover we also give a simple, efficient algorithm for finding such a certificate,
running in time O(n3) for a matrix of size n.

Observe that other certificates could be obtained from the alternative characteriza-
tions of Robinsonian matrices in terms of interval (hyper)graphs. Indeed, as the minimal
obstructions for interval graphs are known (namely, they are the chordless cycles and the
asteroidal triples), we can derive from this an alternative structural characterization for
Robinsonian matrices. However this characterization is expressed in terms of the ball
intersection graph of A, whose vertex set is the set of balls rather than the index set of
A, and thus it is not directly in terms of A as in our main result (Theorem 3 below).

In the rest of the introduction, we first recall some properties of unit interval graphs,
which will also serve as motivation for the notions and results we will introduce for Robin-
sonian matrices, and then we state our main structural result for Robinsonian matrices.

1.2 Structural characterization of unit interval graphs

Recall that a graph G = (V = [n], E) is a unit interval graph if one can label its vertices
by unit intervals in such a way that adjacent vertices correspond to intersecting intervals.
Roberts [23] observed that a graph G is a unit interval graph if and only if its adjacency
matrix AG is a Robinsonian similarity matrix.

In particular, G is a unit interval graph if and only if there exists an ordering π of its
vertices such that {x, z} ∈ E implies {x, y} ∈ E and {y, z} ∈ E whenever x ≺π y ≺π z.
This condition, known as the 3-vertex condition, is thus a specialization of the Robinson
condition (1) (see, e.g., [19]).

We now mention an alternative characterization of unit interval graphs in terms of
forbidden substructures. We recall some definitions. Let G = (V,E) be a graph. Given
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x, y, z ∈ V , a path from x to y missing1 z is a path P = (x = x0, x1, · · · , xk, y = xk+1) in
G which is disjoint from the neighborhood of z, i.e., all pairs {xi, xi+1} (0 6 i 6 k) are
edges of G and z is not adjacent to any node of P . An asteroidal triple in G is a set of
nodes {x, y, z} which is independent in G (i.e., induces no edge) and such that between
any two nodes in {x, y, z} there exists a path in G between them which misses the third
one. Asteroidal triples were introduced for the recognition of interval graphs in [16], where
it is shown that a graph is an interval graph if and only if it is chordal and does not have
an asteroidal triple. As unit interval graphs are precisely the claw-free interval graphs
(see [23]) we get the following characterization.

Theorem 1. (see [23, 8]) A graph G is a unit interval graph if and only if it satisfies the
following three conditions:

(i) G is chordal, i.e., G does not contain an induced cycle of length at least 4;

(ii) G does not contain an induced claw K1,3;

(iii) G does not contain an asteroidal triple.

1.3 Structural characterization of Robinsonian matrices

We now extend the above notion of asteroidal triple to the general setting of matrices and
we then use it to state our main structural characterization for Robinsonian matrices.

Let V be a finite set and let A be a symmetric matrix indexed by V . Given z ∈ V ,
a path avoiding z in A is of the form P = (v0, v1, · · · , vk), where v0, · · · , vk are distinct
elements of V and, for each 1 6 i 6 k, the triple (vi−1, z, vi) is not Robinson, i.e.,
Avi−1vi > min{Avi−1z, Aviz}. Throughout, for distinct elements x, y, z ∈ V , we will use

the notation x
z∼ y to denote that there exists a path from x to y avoiding z in A.

This concept was introduced in [15, Definition 2.3], where it is used as a key tool for
analyzing the new recognition algorithm for Robinsonian matrices. Indeed, saying that
the pair (x, y) avoids z means that the triple (x, z, y) is not Robinson (and the same for
its reverse (y, z, x)), so that z cannot be placed between x and y in any Robinson ordering
of A. An important consequence, as observed in [15, Lemma 2.4], is then that if there
exists a path from x to y avoiding z, i.e., x

z∼ y, then z cannot be placed between x and
y in any Robinson ordering of A.

Therefore, if there exist three distinct elements x, y, z with x
z∼ y, y

x∼ z and z
y∼ x in

A, then we can conclude that no Robinson ordering of A exists and thus that A is not a
Robinsonian similarity matrix. This motivates the following definition.

Definition 2. Let A be a symmetric matrix. A triple {x, y, z} of distinct elements of V

is called a weighted asteroidal triple of A if x
z∼ y, y

x∼ z and z
y∼ x hold, i.e., for any two

elements of {x, y, z} there exists a path between them avoiding the third one.

1Sometimes one also says that the path avoids z (e.g. in [5]). We use here the word “miss” instead of
“avoid”, in order to keep the word “avoid” for the context of matrices and to prevent possible confusion.
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Our main result is that weighted asteroidal triples are the only obstructions to the
Robinsonian property.

Theorem 3. A symmetric matrix A is a Robinsonian similarity matrix if and only if
there does not exist a weighted asteroidal triple in A.

If we apply this result to the adjacency matrix AG of a graph G we obtain that G is a
unit interval graph if and only if there does not exist a weighted asteroidal triple in AG.
As we will show in Section 4.1, the structural characterization of unit interval graphs from
Theorem 1 can in fact be derived from our main result in Theorem 3. Indeed, we will
show that the notion of weighted asteroidal triple in AG subsumes the notions of claw,
chordless cycle and asteroidal triple in G.

1.4 Organization of the paper

In Section 2 we group preliminary notions and results that will be used in the rest of the
paper, in particular, about homogeneous sets, critical elements, and similarity layer struc-
tures. Section 3 is devoted to the proof of our main result (Theorem 3). In Section 4, we
first show how to recover the known characterization of unit interval graphs (Theorem 1)
from our main result. Then we give a simple algorithm for finding all weighted asteroidal
triples (or decide that none exists), that runs in O(n3). Finally we conclude with some
remarks about the problem of finding the largest Robinsonian submatrix when the given
matrix is not Robinsonian.

2 Preliminary results

In this section we introduce some notation and basic results that we will need throughout
the paper.

2.1 Homogeneous sets and critical elements

We first introduce the notion of ‘homogeneous set’ for a given symmetric matrix A, which
we then use to reduce the problem of checking whether A is Robinsonian to the same
problem on two smaller submatrices of A.

Definition 4. Let A be a symmetric matrix indexed by V . A set S ⊆ V is said to be:

• homogeneous for A if Axy = Axz for all x ∈ V \X and y, z ∈ X;

• strongly homogeneous for A if Axy = Axz 6 Ayz for all x ∈ V \X and y, z ∈ X;

• proper if 2 6 |S| 6 |V | − 1.

Assume that S is proper strongly homogeneous for A. We will consider the following two
submatrices of A:

• the restriction A[S] of A to S, which is the submatrix of A indexed by S;
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• the contraction A/S of A by S, which is defined as the submatrix A[S ∪{s}], where
S = V \S and s is an arbitrary element of S (thus contracting S to a single element).

These definitions are motivated by the following lemma which shows that, if S is a proper
strongly homogeneous set for A, then the problem of recognizing whether A is Robinsonian
and if not of finding a weighted asteroidal triple can be reduced to the same problem for
the two matrices A[S] and A/S.

Lemma 5. Let A be a symmetric matrix and let S be a proper strongly homogeneous
set for A. Then A is Robinsonian if and only if both A[S] and A/S are Robinsonian.
Moreover:

(i) If σ1 = (x1, · · · , xp) is a Robinson ordering of S and σ2 = (y1, · · · , yj−1, s, yj, · · · , yq)
is a Robinson ordering of A/S, then σ = (y1, · · · , yj−1, x1, · · · , xp, yj, · · · , yq) is a
Robinson ordering of A.

(ii) Any weighted asteroidal triple of A[S] or of A/S is a weighted asteroidal triple of
A.

Proof. Direct verification.

In view of this lemma, the core difficulty in the proof of Theorem 3 is the case when
A has no proper strongly homogeneous set. The following notion of critical element will
play a key role for analyzing this case.

Definition 6. Let A be a symmetric matrix indexed by V . Then a ∈ V is said to be
critical for A if x

a∼ y holds for all distinct elements x, y ∈ V \ {a}.

Note that if a is a critical element of a Robinsonian matrix A, then it must be an end
point of any Robinson ordering of A. On the other hand, an end point of a Robinson
ordering might not be critical. In this work, we will study critical elements for arbitrary
(not necessarily Robinsonian) matrices. The following lemma shows that any symmetric
matrix A has a critical element or a proper strongly homogeneous set.

Lemma 7. Given a symmetric matrix A, one can find a critical element or a proper
strongly homogeneous set for A.

Proof. The proof relies on the following algorithm. Pick an arbitrary element a ∈ V and
construct a set Z as follows.

• Initially set Z = V \ {a}.

• Repeat the following until |Z| = 1.

(i) If there exists an element v ∈ V \ Z such that argmin{Avz : z ∈ Z} 6= Z, then
pick any such v and let Z ← argmin{Avz : z ∈ Z}.
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(ii) Otherwise Z is homogeneous for A. If there exist distinct elements x, y, z with
x ∈ V \ Z and y, z ∈ Z such that Axy = Axz > Ayz, then let Z ← Z \ {z}.
Otherwise Z is strongly homogeneous and output Z.

• If |Z| = 1 then output the element in Z.

The proof of the lemma will be complete if we can show that, if the final set Z is a
singleton set with (say) Z = {b}, then b is critical for A. For this it suffices to show:

a
b∼ v for any v ∈ V \ {a, b}, (2)

since then, for any distinct x, y ∈ V \ {a, b}, we have x
b∼ a

b∼ y. We denote by Zi the set
Z obtained at the i-th step in the above algorithm. Then, Z0 = V \ {a} and Zi+1 ( Zi
for all i > 0, with Zk = {b} at the last k-th iteration. Relation (2) follows if we can show
that, for any 0 6 i 6 k − 1,

a
b∼ v for any v ∈ Zi \ Zi+1. (3)

We prove (3) using induction on i. Let 0 6 i 6 k − 1 and assume that (3) holds for all
j 6 i− 1 (when i > 1); we show that (3) also holds for index i. For this let v ∈ Zi \Zi+1.

Assume first that Zi+1 is constructed from Zi as in (i). Then there exists vi ∈ V \ Zi
such that Zi+1 = argmin{Aviz : z ∈ Zi} ( Zi. As v ∈ Zi \ Zi+1 and b ∈ Zk ⊆ Zi+1 we
have Aviv > Avib and thus (vi, v) avoids b. If vi = a we are done. Otherwise, vi belongs to
one of the sets Zj−1 \Zj for some 0 6 j 6 i−1 and thus, using the induction assumption,
we can find a path from a to vi avoiding b. Concatenating it with (vi, v) we get a path

from a to v avoiding b, i.e., v
b∼ a.

Assume now that Zi+1 is constructed from Zi as in (ii). Then Zi is homogeneous for
A and there exist elements x 6∈ Zi, y ∈ Zi+1 and v ∈ Zi \ Zi+1 such that Zi+1 = Zi \ {v}
and Axy = Axv > Ayv. As b ∈ Zi+1 we have v 6= b. We first claim that Ayv > Abv. For
this assume for contradiction that Ayv < Abv. As b, y ∈ Zi+1 we have i 6 k−2. Moreover,
as v 6∈ Zi+1 and Ayv < Abv, the set argmin{Avu : u ∈ Zi+1} does not contain b and thus
is a strict subset of Zi+1. Note that v is the only element in V \ Zi+1 with this property
(i.e., argmin{Awu : u ∈ Zi+1} = Zi+1 for w ∈ V \ (Zi+1 ∪ {v})) since Zi is homogeneous.
Hence, at the next step we would construct Zi+2 from Zi+1 as in (i) and thus we would
have Zi+2 ( Zi+1 \ {b}, a contradiction. Therefore, Axb = Axy = Axv > Ayv > Avb holds.
Hence the path (x, v) avoids b. If x = a we are done. Otherwise, as x 6∈ Zi, x lies in
Zj \ Zj−1 for some 0 6 j 6 i− 1 and thus, by the induction assumption, there is a path
from a to x avoiding b. Concatenating it with (x, v) we get a path from a to v avoiding

b, i.e., v
b∼ a.

2.2 Similarity layer partitions

We begin with the notion of ordered partition. An ordered partition ψ = (X1, . . . , Xk)
of V is an ordered list of mutually disjoint subsets of V that cover V . Then ψ defines a

the electronic journal of combinatorics 24(2) (2017), #P2.21 7



partial order �ψ on V such that x �ψ y if and only if x ∈ Xi and y ∈ Xj with i 6 j. If
i = j then we denote x =ψ y while if i < j we denote x ≺ψ y. When all classes Xi are
singletons then ψ is a linear order of V , usually denoted by σ.

Given a linear order σ and an ordered partition ψ of V , we say that σ is compatible
with ψ if, for any x, y ∈ V , x ≺ψ y implies x ≺σ y.

A key ingredient in the proof of Theorem 3 is the notion of similarity layer structure,
which was introduced in [15, Section 4.2] and played a crucial role there in the study of
the multisweep SFS algorithm. Fix an element a ∈ V . We define subsets Xi (i > 0) of V
in the following iterative manner: set X0 = {a} and for i > 1

Xi = {y 6∈ X0 ∪ · · · ∪Xi−1 : Axy > Axz ∀x ∈ X0 ∪ · · · ∪Xi−1,∀z 6∈ X0 ∪ · · · ∪Xi−1}. (4)

We let k denote the largest integer for which Xk 6= ∅. The sets X0, · · · , Xk are called the
similarity layers of A rooted at a and we denote by ψa = (X0, X1, · · · , Xk) the ordered
collection of the similarity layers and call it the similarity layer structure rooted at a. As
we will see in Lemma 9 below, when A is Robinsonian and a is critical for A, ψa is an
ordered partition of V . The following basic properties of the similarity layers follow easily
from their definition.

Lemma 8. The following properties hold for ψa = (X0, X1, · · · , Xk), the similarity layer
structure of A rooted at a:

(L1) If x ∈ Xi, y, z ∈ Xj with 0 6 i < j 6 k, then Axy = Axz.

(L2) If x ∈ Xi, y ∈ Xj, z ∈ Xh with 0 6 i < j < h 6 k, then Axz 6 Axy.

(L3) If x ∈ Xi with 0 6 i 6 k and y ∈ V \ (X0 ∪ · · · ∪Xi), then a
y∼ x.

(L4) Assume V = X0 ∪ · · · ∪Xk. Then the set Xk is homogeneous for A. Moreover, if
|Xk| = 1 with (say) Xk = {b}, then b is critical for A.

In the above lemma no assumption is made on the root of the similarity layer structure.
We now group further properties that hold when the root a is assumed to be critical.

Lemma 9. Assume that a is critical for A and let ψa = (X0, X1, · · · , Xk) be the ordered
collection of similarity layers of A rooted at a. If X0 ∪ X1 ∪ · · · ∪ Xk 6= V then we can
find a weighted asteroidal triple of A.

Proof. Assume that U := X0 ∪ X1 ∪ · · · ∪ Xk 6= V . By assumption, Xk+1 = ∅. We use
the following notation: for x ∈ U set Mx := argmax{Axv : v ∈ V \ U}. We claim that
there exist elements x 6= x′ ∈ U such that Mx \Mx′ 6= ∅ and Mx′ \Mx 6= ∅. For, if not,
then Mx1 ⊆ · · · ⊆ Mxp for some ordering of the elements of U = {x1, · · · , xp} and thus
Xk+1 =

⋂
x∈U Mx = Mx1 , contradicting the assumption Xk+1 = ∅. Let u ∈ Mx \Mx′

and v ∈ Mx′ \Mx. Then Axu > Axv implying x
v∼ u, and Ax′v > Ax′u, implying x′

u∼ v.
Combining with a

v∼ x, and a
u∼ x′ obtained from (L3) since x, x′ ∈ U and u, v 6∈ U , we

obtain a
v∼ u and a

u∼ v. Finally, u
a∼ v since a is critical, so that {a, u, v} is a weighted

asteroidal triple of A.
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Lemma 10. Assume that a is critical for A and let ψa = (X0, X1, · · · , Xk) be the ordered
collection of similarity layers of A rooted at a. Consider the properties:

(L1*) For all x ∈ Xi and y, z ∈ Xj with 0 6 i < j 6 k, we have Axy = Axz 6 Ayz.

(L2*) For all x ∈ Xi, y ∈ Xj, z ∈ Xh with 0 6 i < j < h 6 k, Axz 6 min{Axy, Ayz}.

The following holds:

(i) If (L1*) or (L2*) does not hold then we can find a weighted asteroidal triple in A.

(ii) If (L1*) holds then the last layer Xk is strongly homogeneous.

Proof. (i) Assume (L1*) does not hold, i.e., in view of (L1), there exist x ∈ Xi, y 6= z ∈ Xj

with 0 6 i < j 6 k and Axy = Axz > Ayz. Then x
z∼ y and x

y∼ z. Combining with a
z∼ x

and a
y∼ x from (L3) we deduce that a

z∼ y and a
y∼ z. Finally, y

a∼ z since a is critical
and thus {a, y, z} is a weighted asteroidal triple. Assume now that (L2*) does not hold,
i.e., in view of (L2), there exist x ∈ Xi, y ∈ Xj, z ∈ Xh with 0 6 i < j < h 6 k and

Ayz < Axz 6 Axy. Then, again we have x
z∼ y and x

y∼ z and thus {a, y, z} is a weighted
asteroidal triple for A. Finally, (ii) follows directly from (L4) and (L1*).

3 Structural characterization

3.1 Main result

We can now formulate the main technical result of this paper, from which our main
Theorem 3 will easily follow. The proof of Theorem 11 will be given in the next section.

Theorem 11. Let A be a symmetric matrix indexed by V and let a be a critical element
for A. Then one can find one of the following three objects:

(i) a proper strongly homogeneous set;

(ii) a weighted asteroidal triple;

(iii) a Robinson ordering of A compatible with the similarity layer structure ψa of A
rooted at a.

As an application we obtain the following result, which directly implies Theorem 3.

Corollary 12. Let A be a symmetric matrix indexed by V . Then one can find either a
weighted asteroidal triple, or a Robinson ordering of A.

Proof. The proof is by induction on the size |V | of A. In view of Lemma 7, one can
find either a critical element a, or a proper strongly homogeneous set for A. If we have a
critical element a, then we can apply Theorem 11 to (A, a) and find either a proper strongly
homogeneous set, or a weighted asteroidal triple, or a Robinson ordering compatible with
ψa. In the latter two cases we obtain the desired conclusion. So we now only need to
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consider the case when a proper strongly homogeneous set S has been obtained in one of
the above steps. Then we consider the two matrices A[S] and A/S which have smaller size
than A since S is proper. By the induction assumption applied to both A[S] and A/S,
either we find a weighted asteroidal triple in A[S] or in A/S, in which case we also have
an asteroidal triple in A (by Lemma 5 (ii)), or we find Robinson orderings of A[S] and
A/S, which we can then combine to get a Robinson ordering of A (by Lemma 5 (i)).

3.2 Proof of Theorem 11

This section is devoted to the proof of Theorem 11. Let A be a symmetric matrix indexed
by V and let a ∈ V be a critical element for A. The proof is by induction on the size
|V | of A. Moreover, it is algorithmic. It will go through a number of steps where, either
we stop and return a proper strongly homogeneous set or a weighted asteroidal triple,
or we end up with constructing a Robinson ordering compatible with the similarity layer
structure ψa rooted at a.

We start with computing the similarity layer structure ψa = (X0, · · · , Xk) rooted at
a. If X0 ∪ · · · ∪Xk 6= V or if property (L1*) or (L2*) does not hold, then we can find a
weighted asteroidal triple (by Lemma 9 and Lemma 10 (i)) and we are done. Hence we
now assume that X0 ∪ · · · ∪ Xk = V and that (L1*) and (L2*) hold for ψa. If |Xk| > 2
then Xk is proper strongly homogeneous (by Lemma 10 (ii)) and we are done. Hence we
now assume that |Xk| = 1, say Xk = {b}, and, in view of property (L4), we know that b
too is critical for A.

We can repeat the above reasoning to the similarity layer structure ψb = (Y0, · · · , Y`)
rooted at b. Hence we may now also assume that Y0 ∪ · · · ∪ Y` = V , (L1*) and (L2*) hold
for ψb, and |Y`| = 1.

Next we check if the similarity layer structure ψa is compatible with the reverse of
the similarity layer structure ψb, which will imply in particular that the last layer of ψb is
Y` = {a}.

Claim 13. If there exist two distinct elements x, y ∈ V with x ≺ψa y and x ≺ψb
y, then

one can find a weighted asteroidal triple of A.

Proof. Assume a �ψa x ≺ψa y �ψa b and b �ψb
x ≺ψb

y, so y 6= b. Assume first x = a.

Then, using (L3) applied to ψa and ψb we get, respectively, a
b∼ y and b

y∼ a. As a is
critical we also have b

a∼ y and thus {a, b, y} is a weighted asteroidal triple.

Assume now x 6= a. Using again (L3) applied to ψa and ψb, we get a
y∼ x and b

y∼ x,

implying a
y∼ b. Moreover, b

a∼ y since a is critical, and a
b∼ y since b is critical. Hence

{a, b, y} is again a weighted asteroidal triple.

To recap, from now on we will assume that ψa = (X0, · · · , Xk) is compatible with the
reverse of ψb = (Y0, · · · , Y`), i.e., there do not exist x, y ∈ V with x ≺ψa y and x ≺ψb

y,
and therefore X0 = Y` = {a} and Xk = Y0 = {b}. We show the shape of the similarity
layer partitions ψa and ψb in Figure 1, where the similarity layers Xi and Yj are indicated
by ellipses and rectangles, respectively. We also indicate the set Xk−1 ∩ Yj∗ , where j∗ is
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a b

X0 X1 Xk−1 Xk

Y` Y`−1 Y2 Y1 Y0

Figure 1: The similarity layer structures ψa, ψb and the set Xk−1 ∩ Yj∗ for j∗ = 2.

the largest integer j > 1 for which Xk−1 ∩ Yj 6= ∅, which will play a crucial role in the
rest of the proof.

Claim 14. Let j∗ be the largest integer j > 1 such that Xk−1∩Yj 6= ∅. If |Xk−1∩Yj∗| > 2
then Xk−1 ∩ Yj∗ is proper strongly homogeneous for A.

Proof. For this pick x 6∈ Xk−1 ∩ Yj∗ and distinct elements y, z ∈ Xk−1 ∩ Yj∗ . If x lies
in Xk−1 ∪ Xk then x ∈ Yj for some 0 6 j < j∗ and thus Axy = Axz 6 Ayz follows
from property (L1*) applied to ψb. Otherwise x lies in some Xi with i 6 k − 2 and
Axy = Axz 6 Ayz follows from property (L1*) applied to ψa.

From now on we assume that |Xk−1 ∩ Yj∗| = 1 and we set Xk−1 ∩ Yj∗ = {c}. Thus we
may partition the set V as

V = X0 ∪ · · · ∪Xk−2︸ ︷︷ ︸
=:X

∪{c} ∪ Yj∗−1 ∪ · · · ∪ Y0︸ ︷︷ ︸
=:Y

= X ∪ {c} ∪ Y.

For further use we record the following consequence of (L3) applied to ψa and ψb:

For any u, v ∈ X (resp., u, v ∈ Y ), u
c∼ v in A. (5)

At this step we now need to work with two new matrices AX and AY that are indexed,
respectively, by X ∪ {c} and Y ∪ {c} and constructed by modifying the entries of A in
the following way. Let M be a positive integer, chosen sufficiently large, so that

M > 2 max{|Auv| : u, v ∈ V }. (6)

Let AX be the symmetric matrix indexed by X ∪ {c}, obtained from A[X] by adjoining
a new column/row indexed by c with entries:

AXcv = −M − j +
Acv
M

for v ∈ X with v ∈ Yj. (7)

Similarly, let AY be the symmetric matrix indexed by Y ∪ {c}, obtained from A[Y ] by
adding a new column/row indexed by c with entries:

AYcv = −M − i+
Acv
M

for v ∈ Y with v ∈ Xi. (8)

Note that j∗ 6 j 6 ` in (7) and k − 1 6 i 6 k in (8).
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Claim 15. (i) The element a is critical in AX and the similarity layer structure of AX

rooted at a, denoted as ψXa , is equal to ψXa = ({a}, X1, · · · , Xk−2, {c}).

(ii) The element b is critical in AY and the similarity layer structure of AY rooted at b,
denoted as ψYb , is equal to ψYb = ({b}, Y1, · · · , Yj∗−1, {c}).

Proof. (i) We show that a is critical for AX . For any v ∈ X\{a}, note first using definition
(7) that AXvc > AXac holds, since

AXvc − AXac = −j + `+
Avc − Aac

M
> 1 +

Avc − Aac
M

> 0,

where the first two relations follow from v ∈ Yj and a ∈ Y` with j 6 `− 1 and the third
inequality follows from (6). Hence, the path (v, c) avoids a in AX . Now, for x 6= y ∈
X \{a}, the path (x, c, y) avoids a in AX , which shows that a is critical for AX . Moreover,
as AXvc < AXxy for all v, x, y ∈ X, it follows that the similarity layer structure of AX rooted
at a has indeed the desired form.

The proof of (ii) is analogous.

Since the size of both matrices AX and AY is smaller than that of A, we can apply
the induction assumption to (AX , a) and (AY , b), which gives the following three cases:
Case 1: we find a proper strongly homogeneous set in AX or in AY ;
Case 2: we find a weighted asteroidal triple in AX or in AY ;
Case 3: or we find Robinson orderings of AX and AY that are compatible with ψXa and
ψYb , respectively.
We now deal with each of these three cases separately.

Case 1: We assume that we have found a proper strongly homogeneous set S in AX .
(The case of AY is similar and thus omitted.) As we now show, either we can claim that
S is strongly homogeneous in A, or we find a weighted asteroidal triple in A.

Claim 16. Let S be a proper strongly homogeneous set in AX . Then, either S is strongly
homogeneous in A, or there exist x 6= x′ ∈ S such that {x, x′, c} is a weighted asteroidal
triple for A.

Proof. Let S ⊆ X ∪ {c} be a proper strongly homogeneous set in AX . We first show
c 6∈ S. For this, suppose for contradiction that c ∈ S. Since S is proper, we can take
elements x ∈ S \ {c} and v ∈ X \ S. Since S is homogeneous in AX , we have AXvc = AXvx,
which gives −M − j + Avc

M
= Avx if v ∈ Yj. This however contradicts the choice of M in

(6). Therefore, c /∈ S.
Take any x, x′ ∈ S. As c /∈ S and S is homogeneous in AX , we have AXcx = AXcx′ , which

gives −M − j + Acx

M
= −M − j′ + Acx′

M
, where x ∈ Yj and x′ ∈ Yj′ . Using again (6) we

derive that j = j′ and
Acx = Acx′ for all x, x′ ∈ S. (9)

Therefore, S is contained in some layer Yj of ψb for some j > j∗. Moreover,

if j > j∗ then Acx = Acx′ 6 Axx′ for all x, x′ ∈ S, (10)
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which follows from (L1*) applied to ψb (since c ∈ Yj∗ and x, x′ ∈ Yj with j > j∗). Next
we claim that

Avx = Avx′ 6 Axx′ for all x, x′ ∈ S, v ∈ V \ (S ∪ {c}). (11)

If v ∈ X, then Avx = Avx′ 6 Axx′ follows from AXvx = AXvx′ 6 AXxx′ since A and AX coincide
on the triple {v, x, x′} ⊆ X. If v /∈ X, then v ∈ Y and thus v ∈ Yh for some h < j, in
which case Avx = Avx′ 6 Axx′ follows from (L1*) applied to ψb since x, x′ ∈ Yj.

Hence, in view of relations (10) and (11), if the set S is not strongly homogeneous in
A, then necessarily j = j∗ and there exist x 6= x′ ∈ S such that Acx = Acx′ > Axx′ . Then

c
x∼ x′ and c

x′∼ x. On the other hand, by (L3) applied to ψa, we have x
c∼ a

c∼ x′ (since
c ∈ Xk−1, x ∈ Xi, x

′ ∈ Xi′ with i, i′ < k − 1). Thus {x, x′, c} forms a weighted asteroidal
triple in A.

Case 2: We now assume that we have found a weighted asteroidal triple in AX . (The
case of having a weighted asteroidal triple in AY is similar and thus omitted.) Our goal is
to construct from it a weighted asteroidal triple in A. For this we use the following claim.

Claim 17. Given u, v ∈ X and a path from u to c avoiding v in AX , the following holds:

(i) If v 6=ψb
c, one can find a path from u to b avoiding v in A;

(ii) If v =ψb
c, one can find a path from u to c avoiding v in A;

(iii) If v ≺ψb
u, one can find a weighted asteroidal triple in A.

Proof. Say, P = (u, · · · , u′, c) is a path from u to c avoiding v in AX , with (u′, c) as its
last edge. Note that P ′ = (u, · · · , u′) is a path avoiding v in A and thus u

v∼ u′ not only
in AX but also in A. We claim:

either u′ ≺ψb
v, or u′ =ψb

v and Au′c > Avc. (12)

Indeed, since (u′, c) avoids v in AX , we have AXu′c > min{AXu′v, AXvc} = AXvc, where the last
equality follows from the definition of AX and the choice of M . Say v ∈ Yj and u′ ∈ Yj′ .
Then, AXu′c > AXvc implies j − j′ > Avc−Au′c

M
. We cannot have j′ > j since then one would

have

0 < j − j′ − Avc − Au′c
M

< −1− Avc − Au′c
M

< 0,

reaching a contradiction. Hence, either j′ < j (i.e., u′ ≺ψb
v), or j = j′ (i.e., v =ψb

u′)
and Avc < Au′c.

(i) Assume v 6=ψb
c. Then, c ≺ψb

v and, by (L3) applied to ψb, b
v∼ c in A. If u′ ≺ψb

v,

then u′
v∼ b in A (again by (L3) applied to ψb) and thus u

v∼ u′
v∼ b in A, giving the

desired conclusion. Otherwise, in view of (12), u′ =ψb
v and Au′c > Avc, which implies

u′
v∼ c in A. We obtain u

v∼ u′
v∼ c

v∼ b in A, giving again the desired conclusion.

(ii) Assume v =ψb
c. Then u′ ≺ψb

v cannot occur since c �ψb
u′. In view of (12), we have

Au′c > Avc, which implies u′
v∼ c and thus u

v∼ u′
v∼ c in A, giving the desired conclusion.
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(iii) We assume v ≺ψb
u. We consider two cases depending whether v =ψb

c or not.

Assume first that v 6=ψb
c. By Claim 17(i), we have u

v∼ b in A. Moreover, as v ≺ψb
u,

we get b
u∼ v in A (by (L3) applied to ψb). Finally, u

b∼ v in A, since b is critical in A,
and thus the triple {b, u, v} is a weighted asteroidal triple in A. Finally assume v =ψb

c.

Then, by Claim 17(ii), we have u
v∼ c in A. Also, as c =ψb

v ≺ψb
u, we get v

u∼ b
u∼ c

in A (applying (L3) to ψb). Finally, using (5), we get u
c∼ v in A. Hence, {c, u, v} is a

weighted asteroidal triple in A.

As a direct application of Claim 17, we get the following result, which we use to show
Claim 19 below.

Corollary 18. Consider distinct elements u, v, w ∈ X and a path P from u to w avoiding
v in AX . If P does not contain c then P is also a path avoiding v in A. If P contains c
then one can construct from it a path P ′ from u to w avoiding v in A.

Claim 19. Given a weighted asteroidal triple {x, y, z} in AX , one can construct from it
a weighted asteroidal triple in A.

Proof. We may assume without loss of generality that x �ψb
y �ψb

z. If {x, y, z}∩{c} = ∅
then it follows directly from Corollary 18 that {x, y, z} is also a weighted asteroidal triple
in A. Without loss of generality, we now assume that c = x. By Claim 17(iii) one can find
a weighted asteroidal triple in A if y ≺ψb

z. Hence we now assume that c = x �ψb
y =ψb

z.

If c = x =ψb
y =ψb

z then, by Claim 17(ii), we have c
y∼ z and c

z∼ y in A. Moreover,

by (5), y
c∼ z in A. Hence {c, y, z} is a weighted asteroidal triple in A.

If c = x ≺ψb
y =ψb

z then, by Claim 17(i), we have b
y∼ z and b

z∼ y in A. Moreover,

as b is critical in A, y
b∼ z in A. Hence {b, y, z} is a weighted asteroidal triple in A.

Case 3: The remaining case is when we have found a Robinson order σX (resp., σY ) of
AX (resp., of AY ), which is compatible with the similarity layer structure ψXa of AX rooted
at a (resp., with the similarity layer structure ψYb of AY rooted at b). By Claim 15, we
must have σX = (a, · · · , c) and σY = (b, · · · , c). We define the linear order σ = (σX , σ

−1
Y )

of V , obtained by concatenating σX and the reverse of σY along the element c. In view of
the form of ψXa in Claim 15, it follows that σ is compatible with ψa. In order to complete
the proof of Theorem 11 we need to show that, either σ is a Robinson ordering of A, or
we can find a weighted asteroidal triple in A.

Recall that an ordered triple (x, y, z) is Robinson in A if Axz 6 min{Axy, Ayz} holds.
We will show that for any triple (x, y, z) with x ≺σ y ≺σ z, either (x, y, z) is Robinson,
or {x, y, z} is a weighted asteroidal triple for A.

Assume x ≺σ y ≺σ z. Then, x �ψa y �ψa z, since σ is compatible with ψa. If
x ≺ψa y �ψa z, then we can conclude that (x, y, z) is Robinson (using (L1*)-(L2*) applied
to ψa). Hence from now on we may assume that x =ψa y �ψa z. In the next two claims
we will consider separately the two cases: x =ψa y ≺ψa z and x =ψa y =ψa z.

Note that we can analogously conclude that (x, y, z) is Robinson if z ≺ψb
y �ψb

x
(using (L1*)-(L2*) applied to ψb).
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Claim 20. Consider x, y, z ∈ V such that x ≺σ y ≺σ z and x =ψa y ≺ψa z. If the triple
(x, y, z) is not Robinson in A then {x, y, z} is a weighted asteroidal triple in A.

Proof. Assume x ≺σ y ≺σ z, x =ψa y ≺ψa z, and (x, y, z) is not a Robinson triple in A.

Then Axz > min{Axy, Ayz} and thus x
y∼ z in A. We first claim that z 6∈ X. Indeed,

assume z ∈ X. Then, as x =ψa y ≺ψa z we have {x, y, z} ⊆ X and thus, as σ restricts to
σX on X, x ≺σX y ≺σX z. As σX is a Robinson ordering of AX , this implies that (x, y, z)
is a Robinson triple in AX and thus in A, a contradiction. Therefore, z ∈ Xk−1 ∪ {b}.

Next we claim that
z ≺ψb

x ≺ψb
y does not hold. (13)

For this assume z ≺ψb
x ≺ψb

y. As x =ψa y ≺ψa z, we have x, y ∈ Xi for some i 6 k − 1.
We first claim that i 6 k−2. This is clear if z ∈ Xk−1. Assume now z = b and x, y ∈ Xk−1.
Then {x, y, z} ⊆ Y ∪ {c} and, as σ restricts to σ−1Y on Y ∪ {c} and σY is compatible with
ψYb , x ≺σ y ≺σ z implies z �ψb

y �ψb
x, a contradiction. So we have shown that x, y ∈ Xi

for some i 6 k − 2. This implies x ≺σ y ≺σ c and thus x ≺σX y ≺σX c. Say x ∈ Yj,
y ∈ Yh, with h > j as x ≺ψb

y. As σX is a Robinson ordering of AX we can conclude

AXxc 6 min{AXxy, AXyc} = AXyc, which implies 1 6 h− j 6 Acy−Acx

M
< 1 (by the choice of M

in (6)), a contradiction. So we have shown (13).
Recall that the reverse of ψb is compatible with ψa. Hence it follows from x =ψa y ≺ψa z

that z �ψb
x and z �ψb

y. Moreover, we claim that

z =ψb
x or z =ψb

y. (14)

Indeed, if (14) does not hold, then z ≺ψb
x ≺ψb

y or z ≺ψb
y �ψb

x. The former does not
hold by (13), while the latter does not hold since (x, y, z) is not Robinson (as observed
just before Claim 20). Thus (14) holds. Then, by x =ψa y ≺ψa z, (14) implies z = c.

We next claim that y �ψb
x. For this assume for contradiction that x ≺ψb

y. As
above, let x ∈ Yj, y ∈ Yh with h > j. From this (and the definition of M in (6)), it
follows that AXcx > min{AXcy, AXxy} = AXcy. As σX is a Robinson ordering of AX we must
have y ≺σX x ≺σX c, which implies y ≺σ x ≺σ c, a contradiction.

In total we have shown that the following relation holds:

c = z =ψb
y �ψb

x.

We will now show that {x, y, z} is a weighted asteroidal triple in A. We already have x
y∼ z,

since by assumption the triple (x, y, z) is not Robinson in A. Moreover, as x =ψa y ≺ψa z

we have x
z∼ y. Indeed, this follows from (L3) applied to ψa: if a 6∈ {x, y} then x

z∼ a
z∼ y

and, if (say) a = x, then x = a
z∼ y. Remains to show y

x∼ z. We distinguish two
cases. If c = z =ψb

y ≺ψb
x then y

x∼ b
x∼ z follows (using (L3) applied to ψb). Assume

now c = z =ψb
y =ψb

x. Then, we have {x, y, z} ⊆ X ∪ {c}, and x ≺σ y ≺σ z implies
x ≺σX y ≺σX z. This in turn implies AXxz 6 min{AXxy, AXyz} = AXyz and thus Axz 6 Ayz.
Combining with Axz > min{Axy, Ayz} we get Axz > Axy and thus Ayz > Axz > Axy which

gives y
x∼ z. So we have shown that {x, y, z} is a weighted asteroidal triple in A and this

concludes the proof.
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Claim 21. Consider x, y, z ∈ V such that x ≺σ y ≺σ z and x =ψa y =ψa z. If (x, y, z) is
not a Robinson triple in A then {x, y, z} is a weighted asteroidal triple in A.

Proof. By assumption, x, y, z ∈ Xi for some i 6 k − 1 and the triple (x, y, z) is not
Robinson in A. We first claim that i = k−1. For this assume i 6 k−2. Then {x, y, z} ⊆ X
and thus x ≺σ y ≺σ z implies x ≺σX y ≺σX z. As σX is a Robinson ordering of AX and
thus of A[X] it follows that (x, y, z) is Robinson in A, contradicting our assumption. Hence
we know that x, y, z ∈ Xk−1. Then c �σ x ≺σ y ≺σ z, which implies z ≺σY y ≺σY x �σY c
and thus the triple (z, y, x) is Robinson in AY (since σY is a Robinson ordering of AY ). If
x 6= c then (z, y, x) is also a Robinson triple in A, contradicting our assumption. Therefore
we must have x = c. In turn, this gives AYxz 6 min{AYxy, AYyz} = AYxy, which implies
Axz 6 Axy. On the other hand, Axz > min{Axy, Ayz}, since (x, y, z) is not Robinson in

A. This implies Axz > Ayz and thus Axy > Axz > Ayz, so that x
z∼ y and x

y∼ z. Lastly,

y
c=x∼ z follows from (5) and thus we have shown that {x, y, z} is a weighted asteroidal

triple in A.

This concludes the proof of Theorem 11.

4 Applications

In this section we group some applications of our characterization of Robinsonian matrices
in terms of weighted asteroidal triples. First we indicate how we can derive from it the
known structural characterization of unit interval graphs from Theorem 1. As we will
see, weighted asteroidal triples offer a common framework to formulate the three types of
obstructions for the graph case: chordless cycles, claws and asteroidal triples.

As another application, in order to decide whether a matrix A is Robinsonian it
suffices to check whether it has a weighted asteroidal triple. The proof of Theorem 11
is algorithmic and yields a polynomial time algorithm for finding a weighted asteroidal
triple (if some exists), however we can give a much simpler, direct algorithm permitting
to find all weighted asteroidal triples in time O(n3) for a n× n symmetric matrix A.

Finally we mention a possible application of our characterization for identifying large
Robinsonian submatrices. In particular we obtain an explicit characterization of the
maximal subsets I for which the principal submatrix A[I] is Robinsonian in terms of
forbidden ‘weighted asteroidal cycles’.

4.1 Recovering the structural characterization of unit interval graphs

In this section we indicate how to recover from our main result (Theorem 3) the known
structural characterization of unit interval graphs in Theorem 1.

Let G = (V,E) be a graph. Given x, y, z ∈ V and a path P from x to y in G,
recall that P misses z if P is disjoint from the neighborhood of z. In other words, if AG
denotes the adjacency matrix of G, then P = (x = x0, x1, · · · , xk, y = xk+1) misses z if
(AG)xi,xi+1

> max{(AG)xiz, (AG)xi+1z} for all 0 6 i 6 k. Hence if P misses z, then it also
avoids z in AG, but the converse is not true in general.
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An asteroidal triple in G is a set of nodes {x, y, z} containing no edge and such that
there exists a path in G between any two nodes in {x, y, z} that misses the third one.
Hence, if {x, y, z} is an asteroidal triple in G, then it is also a weighted asteroidal triple
in the adjacency matrix AG of G, but the converse is not true in general.

As was recalled earlier, G is a unit interval graph if and only if its adjacency matrix
AG is Robinsonian. In view of Theorem 3, AG is Robinsonian if and only if it does not
contain a weighted asteroidal triple. Combining those two facts with Theorem 1, we have
the following.

Theorem 22. Let G be a graph and AG its adjacency matrix. The conditions (i), (ii),
and (iii) in Theorem 1 hold if and only if AG has no weighted asteroidal triple.

We now give a direct proof of Theorem 22, which in turn implies an alternative proof
of Theorem 1.

Lemma 23. Let G be a graph and AG its adjacency matrix. Assume that one of the
conditions (i), (ii), or (iii) in Theorem 1 is violated. Then one can find a weighted
asteroidal triple in AG.

Proof. Assume first that we have an induced cycle C = (x1, · · · , xk) of length k > 4 in

G. Then, (x1, x2) avoids xk in AG and thus x1
xk∼ x2, and (x1, xk) avoids x2 in AG and

thus x1
x2∼ xk. In addition, the path (x2, x3, · · · , xk−1, xk) avoids x1 in AG, which gives

x2
x1∼ xk. Hence {x1, x2, xk} is a weighted asteroidal triple in AG.
Assume now that we have a claw K1,3 in G, say u is adjacent to x, y, z and {x, y, z} is

independent in G. Then, x
z∼ u

z∼ y, x
y∼ u

y∼ z, y
x∼ u

x∼ z in AG, and thus {x, y, z} is a
weighted asteroidal triple in AG.

Finally, if {x, y, z} is an asteroidal triple inG then clearly it is also a weighted asteroidal
triple in AG.

To prove the converse we will use the following result.

Lemma 24. Let G be a graph with adjacency matrix AG and consider distinct elements
x, y, z ∈ V . Assume P is a path from x to y avoiding z in AG which has the smallest
possible number of nodes. Then one of the following holds:

(i) P is a path in G that misses z (i.e., z is not adjacent to any node of P );

(ii) we find a claw or an induced cycle of length at least 4 in G;

(iii) P is an induced path in G, z is adjacent to exactly one node u of P and u ∈ {x, y}.

Proof. Let P = (x = x0, x1, · · · , xk, xk+1 = y) be a path satisfying the assumptions of
the lemma. As P avoids z in AG, it follows that z cannot be adjacent to two consecutive
nodes in P . If z is not adjacent to any node of P then we are in case (i). Assume
first that z is adjacent to at least two nodes of P . Say, z is adjacent to xi and xj with
0 6 i 6 j − 2 6 k − 1, and z is not adjacent to any xh with i < h < j. Consider
the subpath (xi, · · · , xj) of P . If this subpath is not induced in G then we could find a
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shorter path than P going from x to y and avoiding z in AG, contradicting our minimality
assumption on P . Hence this subpath is induced, so we find an induced cycle of length
at least 4 and we are in case (ii).

We can now assume that z is adjacent to exactly one node xi of P . Then the path P
is induced in G (for if not one would contradict the minimality of P ). If xi is not the first
or last node of P then we find a claw and thus we are again in case (ii). Hence we can
conclude that z is adjacent to exactly one of x and y. Hence we are in case (iii).

Lemma 25. Let G be a graph and AG its adjacency matrix. If there exists a weighted
asteroidal triple in AG then one of the conditions (i), (ii), (iii) in Theorem 1 is violated.

Proof. Assume that {x, y, z} is a weighted asteroidal triple in AG. Select paths Pxy, Pxz
and Pyz that avoid, respectively, z, y, x in AG and have the smallest possible lengths. We
apply Lemma 24 to each of the three paths Pxy, Pxz and Pyz. If for some of these three
paths we are in case (ii) of Lemma 24, then we find a claw or an induced cycle and we
are done. Hence, for each of the three paths we are in case (i) or (iii) of Lemma 24. If for
all the three paths we are in case (i), then we can conclude that {x, y, z} is an asteroidal
triple of G and we are done.

Therefore, we may now assume that (say) for the path Pxy, we are in case (iii). Then
Pxy is an induced path in G and (say) z is adjacent to x. In turn, this implies that we are
in case (iii) also for the path Pyz and thus Pyz is induced in G. Together with the edge
{x, z} the two paths Pxy and Pyz form a cycle C with at least 4 nodes. If C is induced
in G then we are done. So let us now assume that C has a chord. As both paths Pxy
and Pyz are induced there must exist an edge of the form {u, v} where u belongs to Pxy
and v belongs to Pyz. First we choose u to be the ‘first’ node on Pxy which is adjacent
to some node v of Pyz, ‘first’ when traveling from x to y on Pxy. After that, we choose
for v the ‘last’ node of Pyz which is adjacent to u, ‘last’ when traveling from y to z on
Pyz. Note that u 6= x, u 6= y, v 6= z, and v 6= y since we are in case (iii). Thus, from the
choice of u and v, it follows that the cycle obtained by traveling along Pxy from x to u,
then traversing edge {u, v}, then traveling along Pyz from v to z, and finally traversing
edge {z, x}, is an induced cycle in G of length at least 4. This concludes the proof.

Combining Lemmas 23 and 25 completes the proof of Theorem 22.

4.2 An algorithm for enumerating the weighted asteroidal triples

As an application of our main theorem we obtain an alternative algorithm to decide
whether a given matrix A is Robinsonian, namely by checking the existence of a weighted
asteroidal triple for A. We indicate a simple algorithm for doing this.

A first observation is that, given distinct elements x, y, v ∈ V , one can check whether
x

v∼ y, i.e., whether there exists a path from x to y avoiding v in A, in time O(n2). For
this consider the graph Hv with vertex set V \ {v}, where two nodes u,w ∈ V \ {v} are
adjacent if Avw > min{Auv, Avw}. Then x

v∼ y precisely when x and y lie in the same
connected component of Hv. Building Hv and checking the existence of a path from x to
z in Hv can be done in time O(n2).
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A first elementary algorithm to decide existence of a weighted asteroidal triple in A
would be to test all possible triples, which can be done in time O(n5). The following simple
algorithm permits to check existence of a weighted asteroidal triple more efficiently, in
time O(n3). It computes a function f defined on the set

(
V
3

)
of all triples of elements of

V , whose value records whether a triple is a weighted asteroidal triple.

Algorithm 1:

input: a symmetric matrix A (indexed by V )
output: A weighted asteroidal triple {x, y, z} or “A has no weighted asteroidal

triple”.

1 Initialize f :
(
V
3

)
→ Z by f({x, y, z}) = 0 for every {x, y, z} ∈

(
V
3

)
.

2 for each v ∈ V do
3 Compute the graph Hv with vertex set V \ {v} and with edges the pairs {u,w}

such that Auw > min{Auv, Avw}.
4 f({x, y, v})← f({x, y, v}) + 1 for every pair {x, y} of elements lying in the

same connected component of Hv.
5 end

6 if there exists {x, y, z} ∈
(
V
3

)
with f({x, y, z}) = 3 then

7 return {x, y, z}
8 else
9 return “A has no weighted asteroidal triple”

10 end

In fact the final function f returned by the above algorithm permits to return all the
weighted asteroidal triples, which are precisely the triples {x, y, z} with f({x, y, z}) = 3.

4.3 Maximal Robinsonian submatrices

When a given symmetric matrix A indexed by V is not Robinsonian, one might be in-
terested in the maximal subsets indexing a Robinsonian submatrix or, equivalently, in
the minimal subsets whose deletion leaves a Robinsonian submatrix. Note that finding
a Robinsonian submatrix of largest possible size is in fact a hard problem, already for
binary matrices. Indeed it is known that finding in a given graph a smallest cardinality
set of nodes whose deletion leaves a unit interval graph is an NP-complete problem (see
[17, 10]).

Let IA denote the collection of all maximal subsets I ⊆ V for which A[I] is a Robin-
sonian matrix and let FA consist of the minimal subsets F ⊆ V for which A[V \ F ] is
Robinsonian, i.e., FA = {V \ I : I ∈ IA}. Let also CA denote the collection of minimal
transversals of FA (i.e., the minimal sets intersecting all sets in FA). In other words, IA
coincides with the collection of maximal independent sets of the hypergraphHA = (V, CA),
whose dual (or transversal) hypergraph is Hd

A = (V,FA) (see, e.g., [7]).
In order to describe the minimal transversals of FA we introduce the following defini-

tion. A set C ⊆ V is called a weighted asteroidal cycle of A if there exists a weighted aster-
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oidal triple {x, y, z} of A and paths Pxy, Pxz, Pyz such that C = V (Pxy)∪V (Pxz)∪V (Pyz),
where Pxy (resp., Pxz, Pyz) is a path from x to y avoiding z (resp., from x to z avoiding
y, from y to z avoiding x). Then, as a direct application of Theorem 3, for sets I, C ⊆ V ,
we have:

A[I] is Robinsonian ⇐⇒ I does not contain a weighted asteroidal cycle,

C ∈ CA ⇐⇒ C is a minimal weighted asteroidal cycle of A.

Furthermore, a set C is a minimal weighted asteroidal cycle of A if and only if A[C]
is not Robinsonian, but A[C \ {x}] is Robinsonian for any x ∈ C, and thus one can
check in polynomial time membership in the collection CA. Analogously, one can check
membership in the collection IA in polynomial time, since I ∈ IA if and only if A[I] is
Robinsonian, but A[I ∪ {x}] is not Robinsonian for any x ∈ V \ I.

As mentioned above, it is of interest to generate the elements of IA (which correspond
to the maximal Robinsonian submatrices of A) as well as the sets in CA (which correspond
to the minimal obstructions to the Robinsonian property). For this one can apply the
algorithmic approach developed in [9], which gives a quasi-polynomial time incremental
algorithm for the joint generation of the collections (FA, IA). Namely, given X ⊆ FA and
Y ⊆ IA, the algorithm of [9] permits to decide whether (X ,Y) = (FA, IA) and if not to
find a new set in (FA \ X ) ∪ (IA \ Y), in time O(n4 +mO(logm)), where m = |FA|+ |IA|.
Then, starting (X ,Y) = (∅, ∅), this incremental algorithm can find (FA, IA) in |FA|+ |IA|
iterations.

On a more practical point of view, when A is not Robinsonian, one may try to remove
some of its rows/columns and/or modify some of its entries in order to eliminate its
weighted asteroidal cycles. Investigating whether this may lead to useful heuristics to get
good Robinsonian approximations will be the subject of future research.
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