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Abstract. We introduce a new model of congestion games that cap-
tures several extensions of the classical congestion game introduced by
Rosenthal in 1973. The idea here is to parameterize both the perceived
cost of each player and the social cost function of the system designer.
Intuitively, each player perceives the load induced by the other players
by an extent of ρ ≥ 0, while the system designer estimates that each
player perceives the load of all others by an extent of σ ≥ 0. For specific
choices of ρ and σ, we obtain extensions such as altruistic player behav-
ior, risk sensitive players and the imposition of taxes on the resources. We
derive tight bounds on the price of anarchy and the price of stability for
a large range of parameters. Our bounds provide a complete picture of
the inefficiency of equilibria for these games. As a result, we obtain tight
bounds on the price of anarchy and the price of stability for the above
mentioned extensions. Our results also reveal how one should “design”
the cost functions of the players in order to reduce the price of anarchy.
Somewhat counterintuitively, if each player cares about all other players
to the extent of ρ = 0.625 (instead of 1 in the standard setting) the price
of anarchy reduces from 2.5 to 2.155 and this is best possible.

1 Introduction

Congestion games constitute an important class of non-cooperative games which
was introduced by Rosenthal in 1973 [13]. In a congestion game, we are given a
set of resource from which a set of players can choose. Each resource is associ-
ated with a cost function which specifies the cost of this resource depending on
the total number of players using it. Every player chooses a subset of resources
(from a set of resource subsets available to her) and experiences a cost equal to
the sum of the costs of the chosen resources. Congestion games are both theo-
retically appealing and practically relevant. For example, they have applications
in network routing, resource allocation and scheduling problems.

Rosenthal [13] proved that every congestion game has a pure Nash equilib-
rium, i.e., a strategy profile such that no player can decrease her cost by unilat-
erally deviating to another feasible set of resources. This result was established
through the use of an exact potential function (known as Rosenthal potential)
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satisfying that the cost difference induced by a unilateral player deviation is equal
to the potential difference of the respective strategy profiles. In fact, Monderer
and Shapley [11] showed that the class of games admitting an exact potential
function is isomorphic to the class of congestion games.

One of the main research directions in algorithmic game theory focusses on
quantifying the inefficiency caused by selfish behavior. The idea is to assess the
quality of a Nash equilibrium relative to an optimal outcome. Here the quality
of an outcome is measured in terms of a given social cost objective (e.g., the sum
of the costs of all players). Koutsoupias and Papadimitriou [10] introduced the
price of anarchy as the ratio between the worst social cost of a Nash equilibrium
and the social cost of an optimum. Anshelevich et al. [1] defined the price of
stability as the ratio between the best social cost of a Nash equilibrium and the
social cost of an optimum.

In recent years, several extensions of Rosenthal’s congestion games were pro-
posed to incorporate aspects which are not captured by the standard model.
For example, these extensions include risk sensitivity of players in uncertain set-
tings [12], altruistic player behavior [4,5] and congestion games with taxes [3].
We elaborate in more detail on these extensions in Sect. 2. These games were
studied intensively with the goal to obtain a precise understanding of the price
of anarchy.

In this paper, we introduce a new model of congestion games, which we term
perception-parameterized congestion games, that captures all these extensions
(and more) in a unifying way. The key idea here is to parameterize both the
perceived cost of each player and the social cost function. Intuitively, each player
perceives the load induced by the other players by an extent of ρ ≥ 0, while the
system designer estimates that each player perceives the load of all others by an
extent of σ ≥ 0. The above mentioned extensions reduce to special cases of our
model by choosing the parameters ρ and σ accordingly.

Despite the fact that we deal with a more general class of congestion games,
we manage to derive tight bounds on the price of anarchy and the price of
stability for a large range of parameters. Our bounds provide a complete picture
of the inefficiency of equilibria for these perception-parameterized congestion
games. As a consequence, we obtain tight bounds on the price of anarchy and
the price of stability for the above mentioned extensions. While the price of
anarchy bounds are (mostly) known from previous results, the price of stability
results are new. As in [3–5,12], we focus on congestion games with affine cost
functions.

We illustrate our model by means of a simple example; formal definitions of
our perception-parameterized congestion games are given in Sect. 2. Suppose we
are given a set of m resources and that every player has to choose precisely one
of these resources. The cost of a resource e ∈ [m]1 is given by a cost function
ce that maps the load on e to a real value. In the classical setting, the load of
a resource e is defined as the total number of players xe using e. That is, the
cost that player i experiences when choosing resource e is ce(xe). In contrast, in

1 Given a positive integer m, we use [m] to refer to the set {1, . . . , m}.
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Table 1. An overview of (tight) price of anarchy and price of stability results for
certain values of ρ and σ. Here h(1) ≈ 0.625 (see Theorem 1 for a formal definition).
The respective references where these bounds were established first are given in the
column “Ref.”; an asterisk indicates that this result is new.

Model Parameters PoA Ref. PoS Ref.

Classical ρ = σ = 1 5/2 [6] 1.577 [3]

Altruism (1) σ = 1, 1 ≤ ρ ≤ 2 4ρ+1
1+ρ

[4,5]
√
3+1√

3+ρ−1
[∗]

Altruism (2) σ = 1, 2 ≤ ρ ≤ ∞ ρ + 1 [5] – –

Risk-neutral players σ = ρ = 1/2 5/3 [12] 1.447 [∗]

Wald’s minimax σ = 1/2, ρ = 1 2 [2,12] 1 [∗]

Constant universal taxes σ = 1, ρ = h(1) 2.155 [3] 2.013 [∗]

Generalized affine CG − ∞ [∗] 2 [∗]

our setting players have different perceptions of the load induced by the other
players. More precisely, the perceived load of player i choosing resource e is
1 + ρ(xe − 1), where ρ ≥ 0 is a parameter. Consequently, the perceived cost of
player i for choosing e is ce(1 + ρ(xe − 1)). Note that as ρ increases players care
more about the presence of other players.2 In addition, we introduce a similar
parameter σ ≥ 0 for the social cost objective. Intuitively, this can be seen as the
system designer’s estimate of how each player perceives the load of the other
players. In our example, the social cost is defined as

∑
e∈[m] ce(1 + σ(xe − 1))xe.

Our Results. We prove the following bounds on the price of anarchy (PoA)
and the price of stability (PoS) of affine congestion games for a large range of
parameters (ρ, σ) (specified below):

PoA ≤ max
{

ρ + 1,
2ρ(1 + σ) + 1

ρ + 1

}

and PoS ≤
√

σ(σ + 2) + σ
√

σ(σ + 2) + ρ − σ
. (1)

We prove that these bounds are tight for general affine congestion games. Fur-
ther, for the special case of symmetric network congestion games we show that
the bound of (2ρ(1 + σ) + 1)/(ρ + 1) on the price of anarchy is asymptotically
tight. In contrast, for this case we derive a better (tight) bound on the price of
stability for σ = 1 and ρ ≥ 0. An overview of the price of anarchy and the price
of stability results that we obtain from (1) for several applications known in the
literature is given in Table 1; see Fig. 2 for an illustration of our PoA bound. The
connection between these applications and our model is discussed at the end of
Sect. 2.

In light of the above bounds, we obtain an (almost) complete picture of the
inefficiency of equilibria (parameterized by ρ and σ); for example, see Fig. 1 for

2 In this work, we concentrate on the homogeneous player case.
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ρ0 h(1) ≈ 0.625 1 2

PoA(Γ, ρ, 1)

ρ + 1

4ρ + 1

ρ + 1
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ρ(4 − ρ)

Fig. 1. Lower bounds on the price of anarchy for σ = 1. The bounds (4ρ + 1)/(ρ + 1)
and ρ + 1 are also tight upper bounds. The dotted horizontal line indicates the lower
bound following from [4, Theorem 3.7]. The bound 4/(ρ(4 − ρ)) is a lower bound for
symmetric singleton congestion games given in the proof of Theorem 5. A tight bound
for 0 < ρ ≤ h(1) remains an open problem.

σ0 1
2

1

ρ

ρ = σ

ρ = 2σ

ρ = h(σ)

ρ + 1

2ρ(1 + σ) + 1

ρ + 1

?

Fig. 2. The bound ρ+1 holds for ρ ≥ 2σ ≥ 1. The bound (2ρ(1+σ)+1)/(1+ρ) holds
for σ ≤ ρ ≤ 2σ. Roughly speaking, this bound also holds for h(σ) ≤ ρ ≤ σ, but our
proof of Theorem 1 only works for a discretized range of σ (hence the vertical dotted
lines in this area). The function h is given in Theorem 1.

an illustration of the price of anarchy if σ = 1. Note that the price of anarchy
decreases from 5

2 for ρ = 1 to 2.155 for ρ = h(1) ≈ 0.625.3

3 The price of anarchy for ρ = h(1) was first established by Caragiannis et al. [3].
However, our bounds reveal that the price of anarchy is in fact minimized at ρ = h(1)
(see also Fig. 1).
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2 Our Model, Applications and Related Work

We first formally introduce our model of congestion games with parameterized
perceptions. We then show that our model subsumes several other models that
were studied in the literature as special cases.

A congestion game Γ is given by a tuple (N,E, (Si)i∈N , (ce)e∈E) where N =
[n] is the set of players, E the set of resources (or facilities), Si ⊆ 2E the set
of strategies of player i, and ce : R≥0 → R≥0 the cost function of facility e.
Given a strategy profile s = (s1, . . . , sn) ∈ ×iSi, we define xe as the number of
players using resource e, i.e., xe = xe(s) = |{i ∈ N : e ∈ si}|. If Si = Sj for all
i, j ∈ N , the game is called symmetric. For a given graph G = (V,E), we call Γ
a (directed) network congestion game if for every player i there exist si, ti ∈ V
such that Si is the set of all (directed) (si, ti)-paths in G. An affine congestion
game has cost functions of the form ce(x) = aex + be with ae, be ≥ 0. If be = 0
for all e ∈ E, the game is called linear.

We introduce our unifying model of perception-parameterized congestion
games with affine latency functions. For a fixed parameter ρ ≥ 0, we define
the cost of player i ∈ N by

Cρ
i (s) =

∑

e∈si

ce(1 + ρ(xe − 1)) = ae[1 + ρ(xe − 1)] + be (2)

for a given strategy profile s = (s1, . . . , sn). For a fixed parameter σ ≥ 0, the
social cost of a strategy profile s is given by

Cσ(s) =
∑

i∈N

Cσ
i (s) =

∑

e∈E

xe(ae[1 + σ(xe − 1)] + be). (3)

We refer to the case ρ = σ = 1 as the classical congestion game with cost
functions ce(x) = aex + be for all e ∈ E.

A strategy profile s is a Nash equilibrium if for all players i ∈ N it holds that
Cρ

i (s) ≤ Cρ
i (s′

i, s−i) for all s′
i ∈ Si, where (s′

i, s−i) denotes the strategy profile
in which player i plays s′

i and all the other players their strategy in s. The price
of anarchy (PoA) and price of stability (PoS) of a game Γ are defined as

PoA(Γ, ρ, σ) =
maxs∈NE Cσ(s)

mins∗∈×iSi
Cσ(s∗)

and PoS (Γ, ρ, σ) =
mins∈NE Cσ(s)

mins∗∈×iSi
Cσ(s∗)

,

where NE = NE(ρ) denotes the set of Nash equilibria with respect to the
player costs as defined in (2). For a collection of games H, PoA(H, ρ, σ) =
supΓ∈H PoA(Γ, ρ, σ) and PoS(H, ρ, σ) = supΓ∈H PoS(Γ, ρ, σ). Unless stated oth-
erwise, our results refer to the class of perception-parameterized congestion
games with affine latency functions; we therefore drop the parameter H below.
Rosenthal [13] shows that classical congestion games (i.e., ρ = σ = 1) have
an exact potential function: Φ : ×iSi → R is an exact potential function for a
congestion game Γ if for every strategy profile s, for every i ∈ N and every
s′

i ∈ Si: Φ(s) − Φ(s−i, s
′
i) = Ci(s) − Ci(s−i, s

′
i). The Rosenthal potential
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Φ(s) =
∑

e∈E

∑xe

k=1 ce(k) is an exact potential function for classical congestion
games.

We review various models that fall within, or are related to, the framework
proposed above (for certain values of ρ and σ). These models sometimes interpret
the parameters differently than explained above.

Altruism [4,5]. We can rewrite the cost of player i as Cρ
i (s) =

∑
e∈si

(aexe +
be) + (ρ − 1)ae(xe − 1). The term (ρ − 1)ae(xe − 1) can be interpreted as a
“dynamic” (meaning load-dependent) tax that players using resource e have to
pay. For 1 ≤ ρ ≤ ∞ and σ = 1, this model is equivalent to the altruistic player
setting proposed by Caragiannis et al. [4]. Chen et al. [5] also study this model
of altruism for 1 ≤ ρ ≤ 2 and σ = 1.

Constant Taxes [3]. We can rewrite the cost of player i as Cρ
i (s) =

∑
e∈si

ρaexe+
(1 − ρ)ae + be. Dividing by ρ gives that s is a Nash equilibrium with respect to
Cρ

i if and only if s is a Nash equilibrium with respect to T ρ
i (s) = Cρ

i /ρ =∑
e∈si

(aexe + be/ρ) +
∑

e∈si
(1 − ρ)/ρae. That is, s is a Nash equilibrium in a

classical congestion game in which players take into account constant resource
taxes of the form (1 − ρ)/ρ · ae. Caragiannis, Kaklamanis and Kanellopoulos [3]
study this type of taxes, which they call universal tax functions, for ρ satisfying
(1− ρ)/ρ = 3/2

√
3− 2. They consider these taxes to be refundable, i.e., they are

not taken into account in the social cost, which is equivalent to the case σ = 1.
Note that the function τ : (0, 1] → [0,∞) defined by τ(ρ) = (1−ρ)/ρ is bijective.4

Caragiannis et al. [3] showed that the price of anarchy can be decreased to 2.155
by the usage of universal tax functions, which improves significantly the classical
bound of 2.5. Furthermore, from [3, Theorem 3.7] it follows that the price of
anarchy can never be better than 2.155 for 0 ≤ ρ ≤ h(1). However, in this work
we show that the price of stability increases from 1.577 (for classical games) to
2.013, for this specific set of tax functions.

Risk Sensitivity Under Uncertainty [12]. Nikolova, Piliouras and Shamma [12]
consider congestion games in which there is a (non-deterministic) order of the
players on every resource. A player is only affected by players in front of her. That
is, the load on resource e for player i in a strict ordering r, where re(i) denotes
the position of player i, is given by xe(i) = |{j ∈ N : re(j) ≤ re(i)}|. The cost of
player i is then Ci(s) =

∑
e∈si

ce(xe(i)). Note that xe(i) is a random variable if
the ordering is non-deterministic. The social cost of the model is defined by the
sum of all player costs C

1
2 (s) =

∑
e∈E

1
2aexe(xe + 1) + be which is independent

of the ordering r.5 Note that the social cost corresponds to the case σ = 1
2 in our

framework. Nikolova et al. [12] study various risk attitudes towards the ordering
r that is assumed to have a uniform distribution over all possible orderings.
The two relevant attitudes are that of risk-neutral players and players applying
Wald’s minimax principle. Risk-neutral players define their cost as the expected
cost under the ordering r, which correspond to the case ρ = 1

2 in (2). This

4 This relation between altruism (or spite) and constant taxes is also mentioned by
Caragiannis et al. [4].

5 In every ordering there is always one player first, one player second, and so on.
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can roughly be interpreted as that players expect to be scheduled in the middle
on average. Wald’s minimax principle implies that players assume a worst-case
scenario, i.e., being scheduled last on all the resources. This corresponds to the
case ρ = 1.

Approximate Nash Equilibria [7]. Suppose that s is a Nash equilibrium under
the cost functions defined in (2). Then, in particular, we have C1

i (s) ≤ Cρ
i (s) ≤

Cρ
i (s′

i, s−i) ≤ ρC1
i (s′

i, s−i) for any player i and s′
i ∈ Si and ρ ≥ 1. That is, we

have C1
i (s) ≤ ρC1

i (s′
i, s−i) which means that the profile s is a ρ-approximate

equilibrium, as studied by Christodoulou, Koutsoupias and Spirakis [7]. In par-
ticular, this implies that any upper bound on the price of anarchy, or price of
stability, in our framework yields an upper bound on the price of stability for
ρ-approximate equilibria for the same class of games. For σ = 1 and 1 ≤ ρ ≤ 2,
we obtain a bound of (

√
3 + 1)/(

√
3 + ρ − 1) on the price of stability. In partic-

ular, this also yields the same bound on the price of stability for ρ-approximate
equilibria. This bound was previously obtained by Christodoulou et al. [7]. Con-
ceptually our approach is different: We prove our bound by observing that every
Nash equilibrium in our framework yields an approximate equilibrium. In par-
ticular, this gives rise to a potential function that can be used to carry out the
technical details (namely the potential function that is exact for our congestion
game).6

Generalized Affine Congestion Games. Let A′ denote the class of all congestion
games Γ for which all resources have the same cost function c(x) = ax + b,
where a = a(Γ ) and b = b(Γ ) satisfy a ≥ 0 and a + b > 0. The class of affine
congestion games with non-negative coefficients is contained in A′ since every
such game can always be transformed7 into a game Γ ′ with ae = 1 and be = 0
for all resources e ∈ E′, where E′ is the resource set of Γ ′. Without loss of
generality we can assume that a + b = 1, since the cost functions can be scaled
by 1/(a + b). The cost functions of Γ ∈ A′ can then equivalently be written as
c(x) = ρx + (1 − ρ) for ρ ≥ 0. This is precisely the definition of Cρ

i (s) (with
ae = 1 and be = 0 taken there). In particular, if we take σ = ρ, meaning that
Cρ(s) =

∑
i∈N Cρ

i (s), we have PoA(A′) = supρ≥0 PoA(A, ρ, ρ) and PoS(A′) =
supρ≥0 PoS(A, ρ, ρ), where A denotes the class of affine congestion games with
non-negative coefficients.

Due to page limitations some material is omitted below. All missing details
can be found in the full version of this paper [9].

3 Price of Anarchy

We derive the upper bound on the price of anarchy given in (1). We start with
the bound of (2ρ(1 + σ) + 1)/(ρ + 1).
6 Nevertheless, the framework of Christodoulou et al. [7] is somewhat more general

and might be used to obtain a tight bound for the price of stability of approximate
equilibria (which is not known to the best of our knowledge).

7 This transformation can be done in such a way that both PoA and PoS of the game
do not change. For a proof the reader is referred to, e.g., [5, Lemma 4.3].
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We need the following technical lemma for the proof of Theorem1:

Lemma 1. Let s be a Nash equilibrium under the cost functions Cρ
i (s) and let

s∗ be a minimizer of Cσ(·). For ρ, σ ≥ 0 fixed, if there exist α(ρ, σ), β(ρ, σ) ≥ 0
such that

(1 + ρx)y − ρ(x − 1)x − x ≤ −β(ρ, σ)(1 + σ(x − 1))x + α(ρ, σ)(1 + σ(y − 1))y

for all non-negative integers x and y, then β(ρ, σ)Cσ(s) ≤ α(ρ, σ)Cσ(s∗).

Theorem 1. We have PoA(ρ, σ) ≤ (2ρ(1 + σ) + 1)/(ρ + 1) if

(i) 1
2 ≤ σ ≤ ρ ≤ 2σ, or

(ii) σ = 1 and h(σ) ≤ ρ ≤ 2σ, where h(σ) = g(1 + σ +
√

σ(σ + 2), σ) is the
optimum of the function

g(a, σ) =
σ(a2 − 1)

(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)
.

Further, there exists a function Δ = Δ(σ) satisfying for every fixed σ0 ≥ 1/2: if
Δ(σ0) ≥ 0, then the stated bound is true for all h(σ0) ≤ ρ ≤ 2σ0.

Proof (Sketch). For the functions α(ρ, σ) = (2ρ(1+σ)+1)/(1+2σ) and β(ρ, σ) =
(1 + ρ)/(1 + 2σ), we prove the inequality in Lemma1. We show that for certain
functions f1 and f2, the smallest ρ satisfying the inequality of Lemma1 is given
by the quantity

h(σ) = sup
x,y∈N:f1(x,y,σ)>0

−f2(x, y, σ)
f1(x, y, σ)

.

We divide the set (x, y) ∈ N × N in lines of the form x = ay and determine
the supremum over every line. After that we take the supremum over all lines,
which then gives the desired result. We first show that the case x ≤ y is trivial.
We then focus on y < x. In this case, we show that h(σ) = max{γ1(σ), γ2(σ)}
for certain functions γ1 and γ2. Numerical experiments suggest that Δ(σ) :=
γ1(σ) − γ2(σ) ≥ 0, that is, the maximum is always attained for γ1 (which is the
definition of h given in the statement). In particular, this means that if for a
fixed σ the non-negativity of Δ(σ) is satisfied, then this yields an exact proof of
the inequality of Lemma 1 for h(σ) ≤ ρ ≤ 2σ. The function Δ is specified in the
full version of this paper [9]. 
�

Numerical experiments suggest that Δ(σ) is non-negative for all σ ≥ 1/2.
We emphasize that for a fixed σ, with Δ(σ) ≥ 0, the proof that the inequality
holds for all h(σ) ≤ ρ ≤ 2σ is exact in the parameter ρ. The first two cases of
Theorem 1 capture all the price of anarchy results from the literature.

We next show that the bound of Theorem1 is also an (asymptotic) lower
bound for linear symmetric network congestion games.8 This improves a result
8 In the the full version [9] we show tightness for general congestion games.
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in the risk-uncertainty model of Piliouras et al. [12], who only prove asymptotic
tightness for symmetric linear congestion games (for their respective values of ρ
and σ). It also improves a result in the altruism model by Chen et al. [5], who
show tightness only for general congestion games.

Christodoulou and Koutsoupias [6] showed that for symmetric congestion
games (ρ = σ = 1) the bound of 5

2 on the price of anarchy is asymptotically
tight. More recently, Correa et al. [8] proved that the bound of 5

2 is tight for
symmetric network congestion games. Our lower bound proof is a generalization
of their construction.

Theorem 2. For ρ, σ > 0 fixed, there exists a symmetric network linear con-
gestion game such that for every ε > 0, PoA(ρ, σ) ≥ (2ρ(1 + σ) + 1)/(ρ + 1) − ε.

For ρ ≥ 2σ, we can obtain a tight bound of ρ + 1 on the price of anarchy.
Remarkably, the bound itself does not depend on σ, only the range of ρ and σ
for which it holds. For the parameters σ = 1 and ρ ≥ 2 in the altruism model
of Caragiannis et al. [4], this bound is known to be tight for non-symmetric
singleton congestion games (where all strategies consist of a single resource).
We only provide tightness for general congestion games, but the construction is
significantly simpler.

Theorem 3. We have PoA(ρ, σ) ≤ ρ+1 for 1 ≤ 2σ ≤ ρ and this bound is tight.

4 Price of Stability

We show the bound given in (1) to be an (asymptotically) tight bound for the
price of stability for a large range of pairs (ρ, σ). We need the following technical
lemma.

Lemma 2. For all non-negative integers x and y, and σ ≥ 0 arbitrary, we have
(

x − y +
1
2

)2

− 1
4

+ 2σx(x − 1) + (
√

σ(σ + 2) + σ)[y(y − 1) − x(x − 1)] ≥ 0.

Theorem 4. We have

PoS(ρ, σ) ≤
√

σ(σ + 2) + σ
√

σ(σ + 2) + ρ − σ
for σ > 0 and

2σ

1 + σ +
√

σ(σ + 2)
≤ ρ ≤ 2σ

and this bound is asymptotically tight.

Our proof is similar to a technique of Christodoulou, Koutsoupias and Spirakis
[7] for upper bounding the price of stability of ρ-approximate equilibria. However,
for a general σ the analysis is more involved. The main technical contribution
comes from establishing the inequality in Lemma 2. The proof of the asymptotic
tightness is also based on a construction due to Christodoulou et al. [7] used
for obtaining a (non-tight) lower bound on the price of stability of approximate
equilibria. The lower bound proof is omitted here.
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Proof. Note that we can write Cρ
i (s) = aexe + be + (ρ − 1)aexe. By Rosenthal

[13],

Φρ(s) :=
∑

e∈E

ae
xe(xe + 1)

2
+ bexe + (ρ − 1)

∑

e∈E

ae
(xe − 1)xe

2

is an exact potential for Cρ
i (s). The idea of the proof is to combine the Nash

inequalities and the fact that the global minimum of Φρ(·) is a Nash equilibrium.
Let s denote the global minimum of Φρ and s∗ a socially optimal solution.

We can without loss of generality assume that ae = 1 and be = 0. The Nash
inequalities (as in the price of anarchy analysis) yield

∑

e∈E

xe(1 + ρ(xe − 1)) ≤
∑

e∈E

(1 + ρxe)x∗
e.

The fact that s is a global optimum of Φρ(·) yields Φρ(s) ≤ Φρ(s∗), which reduces
to

∑

e∈E

ρx2
e + (2 − ρ)xe ≤

∑

e∈E

ρ(x∗
e)

2 + (2 − ρ)x∗
e.

If we can find γ, δ ≥ 0, and some K ≥ 1, for which
(
0 ≤ ) γ

[
ρ(x∗

e)
2 + (2 − ρ)x∗

e − ρx2
e − (2 − ρ)xe

]
+ δ [(1 + ρxe)x

∗
e − xe(1 + ρ(xe − 1)]

≤ K · x∗
e [1 + σ(x∗

e − 1)] − xe[1 + σ(xe − 1)], (4)

then this implies that Cσ(s)/Cσ(s∗) ≤ K. We take δ = (K − 1)/ρ and γ =
((ρ − 1)K + 1)/(2ρ). It is not hard to see that δ ≥ 0 always holds, however, for
γ we have to be more careful. We will later verify for which combinations of ρ
and σ the parameter γ is indeed non-negative. Rewriting the expression in (4)
yields that we have to find K satisfying K ≥ f2(xe, x

∗
e, σ)/f1(xe, x

∗
e, ρ, σ), where

f2(xe, x
∗
e , σ) := (x∗

e)
2 − 2xex

∗
e + (1 + 2σ)x2

e − x∗
e + (1 − 2σ)xe

f1(xe, x
∗
e , ρ, σ) := (1 − ρ + 2σ)(x∗

e)
2 − 2xex

∗
e + (1 + ρ)x2

e + (ρ − 1 − 2σ)x∗
e − (ρ − 1)xe.

Note that this reasoning is correct only if f1(xe, x
∗
e, ρ, σ) ≥ 0. This is true

because

f1(xe, x
∗
e, ρ, σ) =

(

xe − x∗
e +

1
2

)2

− 1
4

+ (2σ − ρ)x∗
e(x

∗
e − 1) + ρxe(xe − 1)

is non-negative for all xe, x
∗
e ∈ N, σ ≥ 0 and 0 ≤ ρ ≤ 2σ. Furthermore, the

expression is zero if and only if (xe, x
∗
e) ∈ {(0, 1), (1, 1)}. But for these pairs the

nominator is also zero, and hence, the expression in (4) is therefore satisfied for
those pairs. We can write

f2(xe, x
∗
e, σ) =

(

xe − x∗
e +

1
2

)2

− 1
4

+ 2σxe(xe − 1)
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and therefore f2/f1 = A
A+(2σ−ρ)B , where

A =
(

xe − x∗
e +

1
2

)2

− 1
4

+ 2σxe(xe − 1) and B = x∗
e(x

∗
e − 1) − xe(xe − 1).

Note that if ρ = 2σ, we have f2/f1 = 1, and hence we can take K = 1. Otherwise,

A

A + (2σ − ρ)B
≤

√
σ(σ + 2) + σ

√
σ(σ + 2) + ρ − σ

=: K ⇔ A + (
√

σ(σ + 2) + σ)B ≥ 0.

The inequality on the right is true by Lemma2.
To finish the proof, we determine the pairs (ρ, σ) for which the parameter γ

is non-negative. This holds if and only if

(ρ − 1)K + 1 = (ρ − 1)

√
σ(σ + 2) + σ

√
σ(σ + 2) + ρ − σ

+ 1 ≥ 0.

Rewriting this yields the bound on ρ in the statement of the theorem. 
�
The price of anarchy bound of (1 + 2ρ(1 + σ))/(1 + ρ) is tight even for

symmetric network congestion games with linear cost functions (see Theorem 2).
In contrast, this is not true for the price of stability bound (for σ = 1):

Theorem 5. Let Γ be a linear symmetric network congestion game, then

PoS(Γ, ρ, 1) ≤
⎧
⎨

⎩

4/(ρ(4 − ρ)) if 0 ≤ ρ ≤ 1
4/(2 + ρ) if 1 ≤ ρ ≤ 2
(2 + ρ)/4 if 2 ≤ ρ < ∞.

In particular, if Γ is a symmetric congestion game on an extenstion-parallel9

graph G, then the upper bounds even hold for the price of anarchy. All bounds
are tight.

For ρ ≥ 1, the bounds were previously shown by Caragiannis et al. [4] for the
price of anarchy of singleton symmetric congestion games (which can be modeled
on an extension-parallel graph).

Since any Nash equilibrium under the player cost Cρ
i (·) is in particular a

ρ-approximate Nash equilibrium, we also obtain the following result.

Corollary 1. The price of stability for ρ-approximate equilibria, with 1 ≤ ρ ≤ 2,
is upper bounded by 4/(2 + ρ) for linear symmetric network congestion games.

Acknowledgements. We thank the anonymous referees for their very useful
comments.

9 A graph G is extension-parallel if it consists of (i) a single edge, (ii) a single edge
and an extension-parallel graph composed in series, or (iii) two extension-parallel
graphs composed in parallel.
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