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ON THE LINEAR EXTENSION COMPLEXITY OF STABLE SET

POLYTOPES FOR PERFECT GRAPHS

HAO HU AND MONIQUE LAURENT

Abstract. We study the linear extension complexity of stable set polytopes of perfect

graphs. We make use of known structural results permitting to decompose perfect graphs

into basic perfect graphs by means of two graph operations: 2-join and skew partitions.

Exploiting the link between extension complexity and the nonnegative rank of an associ-

ated slack matrix, we investigate the behaviour of the extension complexity under these

graph operations. We show bounds for the extension complexity of the stable set polytope

of a perfect graph G depending linearly on the size of G and involving the depth of a

decomposition tree of G in terms of basic perfect graphs.

1. Introduction

The polyhedral approach is a classical, fundamental approach to solve combinatorial op-
timization problems, which aims to represent the convex hull of feasible solutions by linear
inequalities and then to use linear programming to solve the optimization problem. One of
the major difficulties is that the explicit linear description of the corresponding polytope
may need an exponentially large number of linear inequalities (facets) in its natural space.
This is the case, e.g., for spanning tree polytopes or for matching polytopes while the
corresponding combinatorial optimization problems are in fact polynomially solvable. A
widely investigated approach consists in searching for a compact extension (aka extended
formulation) of a given polytope P , i.e., searching for another polytope Q lying in a higher
dimensional space, which projects onto P and has less facets than P . The smallest number
of facets of such an extension is known as the extension complexity of P , investigated in
the seminal work of Yannakakis [29]. The interest in this parameter lies in the fact that
linear optimization over P amounts to linear optimization over Q.

Understanding which classes of polytopes have small extension complexity has received
considerable attention recently (see, e.g., the surveys [9, 20]). Well known classes admit-
ting polynomial extension complexity include ℓ1-balls, spanning tree polytopes [24, 28],
permutahedra [16]. On the negative side Rothvoss [26] showed the existence of 0/1 poly-
topes whose extension complexity grows exponentially with the dimension and Fiorini et
al. [14] show that this is the case for classes of combinatorial poytopes including cut,
traveling salesman and stable set polytopes of graphs. In particular, a class of graphs
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on n vertices is constructed in [14] whose stable set polytope has extension complexity

at least 2Ω(
√
n). While the latter polytopes correspond to hard cominatorial optimization

problems, Rothvoss [27] shows that the matching polytope of the complete graph Kn has

exponentially large extension complexity 2Ω(n), answering a long-standing open question
of Yannankakis [29].

Yannakakis [29] investigated the extension complexity of stable set polytopes for perfect
graphs. While their linear inequality description is explicitly known (given by nonnegativity
and clique constraints [8]) it may involve exponentially many inequalites since perfect
graphs may have exponentially many maximal cliques. This is the case, for instance,
for double-split graphs (see Section 3.1 below). Using a reformulation of the extension
complexity in terms of the nonnegative rank of the so-called slack matrix and a link to
communication complexity Yannakakis [29] proved that the extension complexity for a

perfect graph on n vertices is in the order nO(logn). It is an open problem whether this
is the right regime or whether the extension complexity can be polynomially bounded
in terms of n. This question is even more puzzling in view of the fact that compact
semidefinite extensions (instead of linear ones) do exist. Indeed the stable set polytope of
a perfect graph on n vertices can be realized as projection of an affine section of the cone
of (n+1)× (n+1) positive semidefinite matrices (using the so-called theta body, see [18]).
In fact the only known polynomial-time algorithms for the maximum stable set problem
in perfect graphs are based on semidefinite programming, and it is open whether efficient
algorithms exist that are based on linear programming. We note that it has also been
shown in [21] that compact semidefinite extensions do not exist for cut, traveling salesman
and stable set polytopes for general graphs.

In this paper we revisit the problem of finding upper bounds for the extension complexity
of stable set polytopes for perfect graphs. We make use of the recent decomposition results
for perfect graphs by Chudnovsky et al. [6], who proved that any perfect graph can be
decomposed into basic perfect graphs by means of two graph operations (special 2-joins
and skew partitions). There are five classes of basic perfect graphs: bipartite graphs and
their complements, line graphs of bipartite graphs and their complements, and double-
split graphs. As a second crucial ingredient we use the fundamental link established by
Yannakakis [29] between the extension complexity of a polytope and the nonnegative rank
of its slack matrix. We investigate how the nonnegative rank of the slack matrix behaves
under the graph operation used for decomposing perfect graphs. This allows to upper
bound the extension complexity of the stable set polytope of a perfect graph in terms of its
number n of vertices and the depth of a decomposition tree. As an application the extension
complexity is polynomial for the class of perfect graphs admitting a decomposition tree
whose depth is logarithmic in n.

The paper is organized as follows. In Section 2 we recall definitions and preliminary
results that we need in the paper. First we consider extended formulations and slack
matrices and we recall the result of Yannakakis [29] expressing the extension complexity in
terms of the nonnegative rank of the slack matrix. After that we consider perfect graphs
and their stable set polytopes and recall the structural decomposition result of Chudnovsky
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et al. [6] for perfect graphs. In Section 3 we consider the basic perfect graphs and show
that their extension complexity is (at most) linear in the number of vertices and edges. In
Section 4 we consider the behaviour of the extension complexity of the stable set polytope
under several graph operations: graph substitution, 2-joins and skew partitions. Finally in
Section 5 we use these results to upper bound the extension complexity for arbitrary perfect
graphs in terms of the number of vertices and edges and of the depth of a decomposition
tree into basic perfect graphs.

2. Preliminaries

Here we group some definitions and preliminary results that we will need in the rest of
the paper. In Section 2.1 we consider extended formulations of polytopes and recall the
fundamental result of Yannakakis [29] which characterizes the extension complexity of a
polytope in terms of the nonnegative rank of its slack matrix. Then in Section 2.2 we recall
results about perfect graphs and their stable set polytopes.

Throughout we use the following notation. We let conv(V ) denote the convex hull of
a set V ⊆ R

d. For an integer n ∈ N, we set [n] = {1, · · · , n}. Given a subset S ⊆ [n],
χS ∈ {0, 1}n denotes its characteristic vector. Given a graph G = (V,E) and a subset
S ⊆ V , G[S] denotes the subgraph of G induced by S, with vertex set S and edges all pairs
{u, v} ∈ E with u, v ∈ S.

2.1. Extended formulation, extension complexity and slack matrix. An extended
formulation of a polytope is a linear system describing this polytope possibly using ad-
ditional variables. The interest of extended formulations is due to the fact that one can
sometimes reduce the number of inequalities needed to define the polytope when additional
variables are allowed.

Definition 2.1 (Extended formulation). Let P ⊆ R
d be a polytope. The linear system

(1) Ex+ Ft = g, Êx+ F̂ t ≤ ĝ,

in the variables (x, t) ∈ R
d × R

q, is called an extended formulation of P if the following
equality holds:

P = {x ∈ R
d : ∃t ∈ R

q s.t. Ex+ Ft = g, Êx+ F̂ t ≤ ĝ}.

Here, the matrices E, Ê have d columns, the matrices F, F̂ have q columns, the additional
variable t is called the lifting variable, and the size of the extended formulation is defined
as the number of inequalities in the system (1) (i.e., the number of rows of the matrices

Ê, F̂ ). The extended formulation is said to be in slack form if the only inequalities are
nonnegativity conditions on the lifting variable t, i.e., if it is of the form:

(2) Ex+ Ft = g, t ≥ 0

and then its size is the dimension of the variable t.

Remark 1. The linear system (1) is an extended formulation of P if and only if for every
vertex v of P there exists a lifting variable tv such that the vector (v, tv) satisfies (1).
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Definition 2.2 (Extension complexity). Let P ⊆ R
d be a polytope. A polytope Q ⊆ R

k is
called an extension of P if there exists a linear mapping π : Rk → R

d such that P = π(Q).
The size of the extension Q, denoted by size(Q), is defined as the number of facets of Q.
Then the extension complexity of P is the parameter xc(P ) defined as

xc(P ) = min{size(Q) : Q is an extension of P}.

As we recall in Theorem 2.6 below, extended formulations and extensions are in fact
equivalent notions and the extension complexity of P can be computed via the nonnegative
rank of its slack matrix.

Definition 2.3 (Slack matrix). Let P ⊆ R
d be a polytope. Consider a linear system

Ax ≤ b describing P , i.e., P = {x ∈ R
d : Ax ≤ b} with A ∈ R

m×d and b ∈ R
m, and a set

V = {v1, . . . , vn} ⊆ P containing all the vertices of P , i.e., P = conv(V ). Then the m× n
matrix S = (Si,j) with entries

Si,j = bi −AT
i vj for i ∈ [m], j ∈ [n]

is called a slack matrix of P , said to be induced by V and the linear system Ax ≤ b.

Note that choosing different point sets and linear systems in Definition 2.3 will induce
different slack matrices. However, it will follow from Theorem 2.6 below that they all have
the same nonnegative rank. So we may speak of the slack matrix of P without referring
explicitly to the selected point set and linear system if there is no ambiguity.

Definition 2.4 (Nonnegative rank). The nonnegative rank of a nonnegative matrix S ∈
R
m×n
+ is defined as

rank+(S) = min{r : ∃ T ∈ R
m×r
+ ∃ U ∈ R

r×n
+ such that S = TU}.

In what follows, a decomposition of the form S = TU as above is called a nonnegative
decomposition with intermediate dimension r.

We refer, e.g., to [15] for an overview of applications of the nonnegative rank and for
further references. The following are easy well-known properties of the nonnegative rank,
which we will extensively use later.

Lemma 2.5. (i) For S ∈ R
m×n
+ , we have rank+(S) = rank+(S

T ) ≤ min{m,n}.

(ii) For S1 ∈ R
m×n1

+ , S2 ∈ R
m×n2

+ , we have rank+(S1 S2) ≤ rank+(S1) + rank+(S2).

We can now formulate the following result of Yannakakis [29], which establishes a fun-
damental link between extended formulations, the extension complexity of a polytope and
the nonnegative rank of its slack matrix. We also refer, e.g., to [17] for a detailed exposition
in the more general setting of conic factorizations.

Theorem 2.6. [29] Let P = {x ∈ R
d : Ax ≤ b} be a polytope whose dimension is at least

one, where A ∈ R
m×d and b ∈ R

m, let V = {v1, . . . , vn} be a subset of P containing the set
of vertices of P , and let S ∈ R

m×n be the induced slack matrix. Let r be a positive integer.
The following assertions are equivalent:
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(i) rank+(S) ≤ r;
(ii) P has an extension of size at most r;
(iii) P has an extended formulation in slack form of size at most r;
(iv) P has an extended formulation of size at most r.

Hence the extension complexity of P can be defined by any of the following formulas:

xc(P ) = min{r : P has an extension of size r}
= min{r : P has an extended formulation (in slack form) of size r}
= rank+(S) for any slack matrix of P.

In particular the extension complexity of a d-dimensional polytope is at least d+ 1.

2.2. Stable set polytopes and perfect graphs. Given a graph G = (V,E), a stable set
of G is a subset I ⊆ V where no two elements of I form an edge of G. The maximum
cardinality of a stable set in G is the stability number of G, denoted by α(G). The stable
set polytope STAB(G) of G is defined as the convex hull of the characteristic vectors of the
stable sets of G:

STAB(G) := conv{χI : I is stable in G} ⊆ R
|V |.

Computing the stability number α(G) is an NP-hard problem and accordingly the full
linear inequality description of the stable set polytope is not known in general. However, for
some classes of graphs, there exist efficient algorithms for computing α(G) and an explicit
linear inequality description of STAB(G) is known. This is the case in particular for the
class of perfect graphs, as we now recall.

The chromatic number χ(G) is the minimum number of colours that are needed to
properly color the vertices of G, in such a way that two adjacent nodes receive distinct
colors. The clique number of G is the largest cardinality of a clique in G, denoted by ω(G).
Clearly, χ(G) ≥ ω(G). Following Berge [2] a graph G is said to be perfect if χ(G′) = ω(G′)
for each induced subgraph G′ of G. A classical result of Lovász [22, 23] shows that G is
perfect if and only if its complement G is perfect.

Going back to the stable set polytope of G, it is clear that for any clique C of G, the
following linear inequality

∑

v∈C xv ≤ 1 (called a clique inequality) is valid for the stable
set polytope. An early result of Chvátal [7] shows that perfect graphs can be characterized
as those graphs for which the clique inequalities together with nonnegativity fully describe
the stable set polytope.

Theorem 2.7. [7] A graph G = (V,E) is perfect if and only if STAB(G) is characterized

by the following linear system, in the variables x ∈ R
|V |:

∑

v∈C
xv ≤ 1 ∀ C maximal clique of G,(3)

xv ≥ 0 ∀ v ∈ V.(4)

Hence, when G is a perfect graph, its stable set polytope STAB(G) can be characterized
by the nonnegativity constraints and the maximal clique constraints, as stated in Theo-
rem 2.7. However, the number of maximal cliques of G might be exponentially large, and
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thus this result does not lead directly to an efficient algorithm for solving the maximum
stable set problem in perfect graphs. As a matter of fact, as of today, the only known
efficient algorithm for this problem is based on using semidefinite programming, as shown
by Grötschel, Lovász and Schrijver [18]. It is not known whether an efficient linear pro-
gramming based algorithm exists for solving this problem. This motivates our work in this
paper to investigate the extension complexity of the stable set polytope of perfect graphs.

Throughout we use the following notation: for a graph G, IG denotes the set of stable
sets of G and CG denotes the set of maximal cliques of G. We will use the following slack
matrix for the stable set polytope of perfect graphs.

Definition 2.8. Given a graph G = (V,E), SG denotes the slack matrix of STAB(G),
whose rows are indexed by V ∪ CG (corresponding to the nonnegativity constraints (4) and
the maximal clique constraints (3)), and whose columns are indexed by IG, with entries

SG(v, I) = |{v} ∩ I|, SG(C, I) = 1− |I ∩ C| for v ∈ V, C ∈ CG, I ∈ IG.

From Theorem 2.6, we know that rank+(SG) = xc(STAB(G)) when G is perfect. Hence
to study the extension complexity of STAB(G) we need to gain insight on the nonnegative
rank of the slack matrix and for this we will use the structural decomposition result for
perfect graphs from [6, 4, 5], that we recall below.

Berge [2] observed that if a graph G is perfect then neither G nor G contains an induced
cycle of odd length at least 5, and he asked whether the converse is true. This was answered
in the affirmative recently by Chudnovsky et al. [6], a result known as the strong perfect
graph theorem. The proof of this result in [6] relies on a structural decomposition result
for perfect graphs. We need some definitions to be able to state this decomposition result.

First we introduce double-split graphs, which form an additional class of basic graphs
considered in [6], next to bipartite graphs, line graphs of bipartite graphs and their com-
plements.

Definition 2.9. [6] Consider integers p, q ≥ 2 and sets L1, . . . , Lp ⊆ [q]. A graph G =
(V,E) is a double-split graph, with parameters (p, q, L1, . . . , Lp), if V can be partitioned as
V = V1 ∪ V2, where V1 = {a1, b1, . . . , ap, bp}, V2 = {x1, y1, . . . , xq, yq} and

• G[V1] = (V1, E1) is a disjoint union of edges, G[V2] = (V2, E2) is the complement
of a disjoint union of edges, say

E1 = {{ai, bi} : i ∈ [p]}, E2 = {{xi, yj} : i 6= j ∈ [q]};

• The only edges between V1 and V2 are the pairs {ai, xj}, {bi, yj} for i ∈ [p], j ∈ Li,
and the pairs {ai, yj}, {bi, xj} for i ∈ [p], j ∈ [q] \ Li.

Note that double-split graphs may have at the same time exponentially many maximal
cliques and exponentially many maximal independent sets (when choosing, e.g., p = q).

The decomposition result for perfect graphs needs two graph operations: 2-joins and
skew partitions.

Definition 2.10. [12] A 2-join of G = (V,E) is a partition of V into (V1, V2) together with
disjoint nonempty subsets Ak, Bk ⊆ Vk (for k = 1, 2) such that every vertex of A1 (resp.,
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B1) is adjacent to every vertex of A2 (resp., B2) and there are no other edges between V1

and V2.

Definition 2.11. [8, 6] A skew partition of G = (V,E) is a partition of V into four
nonempty sets (A1, B1, A2, B2) such that every vertex in A1 is adjacent to every vertex in
A2, and there are no edges between vertices in B1 and vertices in B2.

The following decomposition result for perfect graphs involves 2-joins and skew par-
titions with refined properties, namely proper 2-joins and balanced skew partitions. As
these additional properties will play no role in our treatment, we do not include the exact
definitions.

Theorem 2.12. [6, Statement 1.4] Let G be a perfect graph. Then, either G belongs to
one of the following five basic classes: bipartite graphs and their complements, line graphs
of bipartite graphs and their complements, double-split graphs; or one of G or Ḡ admits a
proper 2-join; or G admits a balanced skew partition.

In this paper we investigate how the extension complexity of the stable set polytope of
a perfect graph G can be upper bounded depending on the two decomposition operations
(2-joins and skew partitions) that are needed to build G from the basic graph classes.

3. Extension complexity for basic perfect graphs

In this section we show bounds for the extension complexity of the stable set polytope for
the basic classes of perfect graphs. Recall the definition of the slack matrix SG introduced
in Definition 2.8. From Theorem 2.6, we know that when G is perfect, the extension
complexity of its stable set polytope is given by the nonnegative rank of the matrix SG:

xc(STAB(G)) = rank+(SG).

So in order to upper bound xc(STAB(G)) it suffices to upper bound rank+(SG). The
following upper bound follows directly from Lemma 2.5(i) (since SG has |V (G)|+ |C| rows).

Lemma 3.1. [29] Let G = (V,E) be a perfect graph and let C denote its set of maximal
cliques. Then we have: xc(STAB(G)) ≤ |V |+ |C|.

As an example of application of Lemma 3.1, xc(STAB(G)) ≤ 2|V | when G is a chordal
graph (i.e., has no induced cycle of length at least 4, since then G has at most |V | maximal
cliques). Moreover, for the complete graph Kp, xc(STAB(Kp)) ≤ p + 1, since Kp has a
unique maximal clique. As STAB(Kp) has dimension p, the reverse inequality holds and

thus xc(STAB(Kp)) = p + 1. For the complement of Kp, xc(STAB(Kp)) ≤ 2p, since Kp

has p maximal cliques. In fact as STAB(Kp) = [0, 1]p we have xc(STAB(Kp)) = 2p [13].
Furthermore, using Lemma 2.5(ii), one can verify that when G is perfect the extension

complexity of the stable set polytope of G and its complement G are linearly related.

Lemma 3.2. [29] Let G = (V,E) be a perfect graph and let G be its complement. Then

xc(STAB(G)) ≤ xc(STAB(G)) + |V |.
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In what follows we first present a simple bounding technique for the extension com-
plexity which we then apply to double-split graphs. After that we consider the extension
complexity for the other four basic classes of perfect graphs.

3.1. A simple bounding technique and double-split graphs. We begin with a simple
bounding technique based on considering a partition V = V1 ∪ V2 of the vertex set of
G = (V,E).

Below and later in the paper we will use the following notation. For k = 1, 2 we let
Gk = G[Vk] denote the sugraph of G induced by Vk, Ck denotes the set of maximal cliques
of Gk and Ik denotes the set of independent sets of Gk. In addition C12 (resp., I12) denotes
the set of ‘mixed’ maximal cliques (resp., ‘mixed’ independent sets) of G, i.e., those that
meet both V1 and V2. Finally, we set Rk = Vk ∪ Ck, so that the rows of the slack matrix
SG of the stable polytope of G are indexed by the set R1 ∪R2 ∪ C12, while the columns of
SG are indexed by the set I1 ∪ I2 ∪ I12. With respect to these partitions of its row and
column index sets, the matrix SG has the following block form:

(5) SG =





I1 I2 I12
R1 S1,1 S1,2 S1,3

R2 S2,1 S2,2 S2,3

C12 S3,1 S3,2 S3,3





Lemma 3.3. Let G = (V,E) be a perfect graph and let V = V1 ∪ V2 be a partition of its
vertex set. Then we have

xc(STAB(G)) ≤ xc(STAB(G[V1])) + xc(STAB(G[V2])) + |C12|,

where C12 denotes the set of maximal cliques of G that meet both V1 and V2.

Proof. We use the form of the slack matrix SG in (5). By construction, for k = 1, 2, we
have Sk,k = SGk

, each column of Sk,3 is the copy of a column of Sk,k, and each column
of S1,2 (resp., S2,1) coincides with the column of S1,1 (resp., S2,2) indexed by the empty
set. Hence rank+(Sk,1 Sk,2 Sk,3) = rank+(SGk

) holds for k = 1, 2. Finally, we have
rank+(S3,1 S3,2 S3,3) ≤ |C12| since this matrix has |C12| rows. Combining these and applying
Lemma 2.5 to SG, we obtain the desired inequality. �

As an application, if G is the disjoint union of two graphs G1 and G2 then we have the
inequality: xc(STAB(G)) ≤ xc(STAB(G1)) + STAB(G2)). As another application, we can
upper bound the extension complexity for double-split graphs.

Lemma 3.4. If G = (V,E) is a double-split graph with parameters (p, q, L1, · · · , Lp) then

xc(STAB(G)) ≤ 5p+ 5q ≤ 5|V |/2 and xc(STAB(G)) ≤ 5p + 5q ≤ 5|V |/2.

Proof. The inequality 5p + 5q ≤ 5|V |/2 is clear since |V | = 2p + 2q. As G is perfect and
its complement is again a double-split graph (exchanging p and q), it suffices to show the
inequality rank+(SG) ≤ 5p+5q. For this we use Lemma 3.3, with the partition V = V1∪V2

in the definition of a double-split graph from Definition 2.9. As G1 = G[V1] is a disjoint
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union of p edges, G1 has p maximal cliques and 2p vertices, which implies rank+(SG1
) ≤ 3p

(by Lemma 3.1). As G2 = G[V2] is the complement of the disjoint union of q edges, we
obtain rank+(SG2

) ≤ 3q+2q = 5q (using Lemma 3.2). Finally there are 2p maximal cliques
in C12, given by the sets {ai} ∪ xLi

∪ yLi
, and {bi} ∪ xLi

∪ yLi
for i ∈ [p]. Hence, applying

Lemma 3.3 we obtain that xc(STAB(G)) ≤ xc(STAB(G1))+xc(STAB(G2))+ |C12| is upper
bounded by rank+(SG1

) + rank+(SG2
) + |C12| ≤ 3p+ 5q + 2p = 5p+ 5q. �

3.2. Bipartite graphs and their line graphs and complements. We just saw in
Lemma 3.4 that the extension complexity of the stable set polytope of double-split graphs
is linear in |V |. We now consider the other classes of basic perfect graphs.

The next bound for bipartite graphs and their complements is well known and follows
directly from Lemma 3.1 combined with Lemma 3.2.

Lemma 3.5. Let G = (V,E) be a bipartite graph. Then

xc(STAB(G)) ≤ |V |+ |E| and xc(STAB(G)) ≤ 2|V |+ |E|.

Recently Aprile et al. [1] showed the following alternative upper bound for bipartite
graphs: xc(STAB(G)) = O(|V |2/ log |V |), which is thus sharper than the bound |V |+ |E|
when the number of edges is quadratic in |V |. Moreover a class of bipartite graphs G is
constructed in [1] for which xc(STAB(G)) = Ω(|V | log |V |). Finding the exact regime of
the extension complexity for bipartite graphs is still open.

Next we see that for line graphs of bipartite graphs and their complements, the extension
complexity is linear in |V |.

Lemma 3.6. Let G = (V,E) be the line graph of a bipartite graph. Then

xc(STAB(G)) ≤ 2|V | and xc(STAB(G)) ≤ 3|V |.

Proof. Assume G is the line graph of a bipartite graph G′ = (V ′, E′). Then V (G) = E′

and STAB(G) is the matching polytope M(G′) of G′. For v ∈ V ′, let δ(v) denote the set
of edges in G′ incident to v, called the star of v, and let W be the set of vertices v ∈ V ′

for which δ(v) is maximal (i.e., not strictly contained in the star of another vertex of G′).
Then STAB(G) = M(G′) is defined by the nonnegativity constraints xe ≥ 0 (e ∈ E′)
and the star constraints

∑

e∈δ(v) xe ≤ 1 for v ∈ W . We show that in the description of

M(G′) we need to consider at most |E′| star constraints. Clearly we may assume that G′

is connected (else consider each connected component). If some node v ∈ W is adjacent to
a unique other node u ∈ V ′ then G′ consists only of the edge {u, v} and it is clear that one
star constraint suffices. Otherwise we may assume that each node v ∈ W has degree at
least 2, which implies |E′| ≥ |W | and thus the number of star constraints is at most |E′|.
Summarizing, the matching polytope of G′ is defined by at most 2|E′| linear constraints,
which shows that STAB(G) is defined by at most 2|E′| = 2|V | linear constraints. �

Finally we show an upper bound which is uniform for all basic perfect graphs, which we
will use in Section 5 to deal with general perfect graphs.

Corollary 3.7. For every basic perfect graph G = (V,E), xc(STAB(G)) ≤ 2(|V | + |E|)
holds.
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Proof. The claim is obvious if G is bipartite or the line graph of a bipartite graph. Assume
now G = (V,E) is bipartite and G = (V,E) is not bipartite (thus n ≥ 3). It suffices to show

|E| ≤ 2|E|, which then implies xc(G) ≤ 2|V | + |E| ≤ 2(|V | + |E|). As |E| =
(|V |

2

)

− |E|,

|E| ≤ 2|E| is equivalent to |E| ≤ |V |(|V | − 1)/3, which follows from |E| ≤ |V |2/4.
Consider now the case when G is the line graph of a bipartite graph G′. By Lemma 3.6,

xc(STAB(G)) ≤ 3|V |. We show that xc(STAB(G)) ≤ 2(|V |+ |E|), which follows if we can
show |V | ≤ 2|E|. If G has no isolated vertex then |V | ≤ 2|E| indeed holds. Assume now
G has an isolated vertex. Then G has a vertex adjacent to all other vertices, which means
G′ has an edge incident to all other edges of G′. This implies that G is the union of two
cliques intersecting at a single vertex and thus G is a bipartite graph, so we are done as
this case was treated above.

Finally ifG is a double-split graph, then it has no isolated vertex and thus, by Lemma 3.4,
xc(STAB(G)) ≤ 5|V |/2 ≤ 2(|V |+ |E|). �

4. Graph operations

We now consider some graph operations that play an important role when dealing with
perfect graphs. The operation of “graph substitution” was first considered by Lovász [22]
as crucial tool for his perfect graph theorem, stating that the class of perfect graphs is closed
under taking graph complements. After that we consider the two graph operations: 2-joins
and skew partitions, that are used in the structural characterization of perfect graphs by
Chudnovsky et al. [6].

4.1. Graph substitution. In this section, we consider the behaviour of the extension
complexity of STAB(G) when G is obtained from two other graphs G1 and G2 via the
“graph substitution” operation. This operation preserves perfect graphs: if G1 and G2 are
perfect, then G is perfect [7].

Definition 4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex-disjoint graphs and
let u be a vertex of G1. Substituting G2 in G1 at u produces the graph G = S(G1, u,G2),
where G = (V,E) with

V = (V1\{u}) ∪ V2,

E = E(G1[V1\{u}]) ∪ E2 ∪
⋃

v∈V2

{

{v,w} : {u,w} ∈ E1

}

.

We show that the extension complexity of STAB(G) is bounded by the sum of the
extension complexities of STAB(G1) and STAB(G2). We will use the following lemma.

Lemma 4.2. Let P be a nonempty polytope. Consider an extended formulation of P :

(6) Ex+ Fs = g, s ≥ 0.

If the pair (x0, s0) satisfies Ex0 + Fs0 = 0 and s0 ≥ 0, then x0 = 0.

Proof. As P 6= ∅ there exists a feasible solution (x, s) of (6). For any λ ≥ 0, (x, s)+λ(x0, s0)
also satisfies (6), which implies x+ λx0 ∈ P and thus x0 = 0 since P is bounded. �
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Theorem 4.3. Let G1 = (V1, E1) and G2 = (V2, E2) be vertex-disjoint graphs and u ∈ V1.
If G = S(G1, u,G2) is the graph obtained by substituting G2 in G1 at u, then we have

xc(STAB(G)) ≤ xc(STAB(G1)) + xc(STAB(G2)).

Proof. We use the following notation: for x ∈ R
|V | and S ⊆ V , x(S) = (xv)v∈S denotes

the restriction of x to its entries indexed by S. For i = 1, 2, set ri = xc(STAB(Gi)) and
assume the linear system

(7) Eixi + Fisi = gi, si ≥ 0

is an extended formulation in slack form of STAB(Gi) of size ri (whose existence follows

from Theorem 2.6), with variables xi ∈ R
|Vi| and lifting variables si ∈ R

ri .

Consider now variables yi ∈ R
|Vi| and ti ∈ R

ri for i = 1, 2. For convenience set y1(ū) =
y1(V1 \ {u}), so that y1 = (y1(ū), y1(u)) and the vector (y1(ū), y2) is indexed by the vertex
set V of G. We claim that the linear system

(8)

{

E1y1 + F1t1 = g1, t1 ≥ 0,

E2y2 + F2t2 − g2 · y1(u) = 0, t2 ≥ 0

provides an extended formulation of STAB(G), with lifting variables (t1, t2, y1(u)). As its
size is equal to r1 + r2 this implies the desired inequality xc(STAB(G)) ≤ r1 + r2.

To prove that (8) is an extended formulation of STAB(G), we have to show that a
vector (y1(ū), y2) belongs to STAB(G) if and only if there exists a vector (t1, t2, y1(u)) in
R
r1+r2+1 for which the vector (y1, y2, t1, t2) satisfies the linear system (8), where we set

y1 = (y1(ū), y1(u)).
We first show the “only if” part. In view of Remark 1 we may assume that (y1(ū), y2)

is a vertex of STAB(G). Then (y1(ū), y2) is the characteristic vector χI of a stable set I
in G. Then the set I1 = I ∩ V1 is a stable set in G1, contained in V1 \ {u}, and the set
I2 = I ∩ V2 is stable in G2. We consider the following two cases depending on whether the
set I1 ∪ {u} is stable in G1.

(i) If I1 ∪ {u} is stable in G1, then there exists a nonnegative vector t1 ∈ R
r1 for which

the vector (y1, t1) = (χI1∪{u}, t1) satisfies the system E1y1 + F1t1 = g1. Similarly,
since I2 is stable in G2, there exists a nonnegative vector t2 ∈ R

r2 for which the
vector (y2, t2) = (χI2 , t2) satisfies the linear system E2y2+F2t2 = g2. As y1(u) = 1,
the vector (y1, y2, t1, t2) satisfies the linear system (8).

(ii) If I1 ∪ {u} is not stable in G1, then u is adjacent to one vertex in I1 and thus I2 = ∅.
As I1 is stable in G1, there exists a nonnegative vector t1 ∈ R

r1 such that (y1, t1) =
(χI1 , t1) satisfies the system E1y1 + F1t1 = g1. Note that y1(u) = 0 as u 6∈ I1.
Taking y2 = 0 and t2 = 0, we have that (y2, t2) satisfies E2y2+F2t2−g2 ·y1(u) = 0.
Thus (y1, y2, t1, t2) satisfies the linear system (8).

In both cases, we have constructed lifting variables (t1, t2, y1(u)) ∈ R
r1+r2+1 such that the

vector (y1, y2, t1, t2) ∈ R
|V1|+|V2|+r1+r2 satisfies the linear system (8).
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We now show the “if’ part”. Assume (y1, y2, t1, t2) ∈ R
|V1|+|V2|+r1+r2 satisfies the linear

system (8). Assume first y1(u) = 0. Then the conditions E2y2 + F2t2 = 0, t2 ≥ 0 imply
y2 = 0 (by Lemma 4.2 applied to STAB(G2)). Moreover the conditions E1y1 + F1t1 = g1,
t1 ≥ 0 imply that y1 ∈ STAB(G1). Hence y1 is a convex combination of characteristic
vectors of stable sets I1 ⊆ V1\{u}, which also gives a decomposition of the vector (y1(ū), y2)
as a convex combination of characteristic vectors of stable sets in G.

We may now assume y1(u) 6= 0. As (y1, y2, t1, t2) satisfies the system (8) we deduce that
y1 ∈ STAB(G1) and

1
y1(u)

y2 ∈ STAB(G2). Say

y1 =
∑

I∈I1
λIχ

I , y2/y1(u) =
∑

J∈I2
µJχ

J ,

where all sets in I1 (resp., I2) are stable sets in G1 (resp., G2),
∑

I λI =
∑

J µJ = 1 and
λI , µJ > 0. Then y1(u) =

∑

I∈I1:u∈I λI and we have the identity

∑

I∈I1:u 6∈I
λI

(

χI

0

)

+
∑

I∈I1:u∈I

∑

J∈I2
λIµJ

(

χI\{u}

χJ

)

=

(

y1(ū)
y2

)

.

All coefficients are nonnegative and their sum is
∑

I∈I1:u 6∈I λI +
∑

I∈I1:u∈I
∑

J∈I2 λIµJ =

1−y1(u)+y1(u) = 1. Moreover, if I is a stable set of G1 with u ∈ I and J is a stable set of
G2, then the set (I \ {u}) ∪ J is stable in G. So we have shown that the vector (y1(ū), y2)
belongs to the stable set polytope of G. �

Remark 2. One can show a slightly tighter upper bound for xc(STAB(G)) when G is
obtained by substituting at a vertex of G1 the graph G = Kp or K2. Indeed, one can
show that xc(STAB(G)) ≤ xc(STAB(G1)) + p when G2 = Kp, and xc(STAB(G)) ≤
xc(STAB(G1))+3 when G2 = K2, see [19] for details. This is a slight improvement over the
result from Theorem 4.3 which would, respectively, give the bounds xc(STAB(G1))+ p+1
and xc(STAB(G1))+4, using the fact that xc(STAB(Kp)) = p+1 and xc(STAB(K2)) = 4.

We conclude with some applications of this bounding technique for graph substitution.

Lemma 4.4. (i) If G is the complete bipartite graph Kp,q then xc(STAB(G)) ≤ 2p+2q+3.
(ii) If G is the complement of the disjoint union of p edges then xc(STAB(G)) ≤ 4p + 1.

Proof. (i) The complete bipartite graph G = Kp,q can be obtained by considering an edge

{u, v} for G1 and successively substituting Kp at u and Kq at v. Applying Theorem 4.3 we

obtain xc(STAB(G)) ≤ xc(STAB(Kp)) + xc(STAB(Kq)) + xc(STAB(K2)) = 2p+ 2q + 3.
(ii) If G is the complement of the union of p edges then G can be obtained by successively
substituting K2 at each vertex of the complete graph Kp. By Remark 2 we obtain that
xc(STAB(G)) ≤ xc(STAB(Kp)) + 3p = p+ 1 + 3p = 4p+ 1. �

Using Lemma 4.4(ii) one can sharpen the bound of Lemma 3.4 when G is a double-split
graph with parameters (p, q, L1, · · · , Lp) and show xc(G) ≤ 5p+ 4q + 3 (≤ 5p+ 5q + 2).

As Kp,q has pq edges, the bound from Lemma 3.5 is quadratic in the number of vertices
while by Lemma 4.4(i) the extension complexity of STAB(Kp,q) is linear in the number of
vertices.
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4.2. 2-Join decompositions. Here we consider how the extension complexity of the sta-
ble set polytope behaves under 2-join decompositions.

Theorem 4.5. Let G be a perfect graph and let (V1, V2) be a partition of V providing a
2-join decomposition of G as in Definition 2.10. Then we have

xc(STAB(G)) ≤ 3 · xc(STAB(G[V1])) + 3 · xc(STAB(G[V2])).

Proof. As G is perfect we need to show rank+(SG) ≤ 3 · rank+(SG1
) + 3 · rank+(SG2

). For
this we examine the block structure of the slack matrix SG from (5). As we have no control
on the size of the set C12 of maximal mixed cliques, we examine in more detail how the
mixed cliques and independent sets arise. For k = 1, 2, let Ak, Bk be the subsets of Vk as
in Definition 2.10 and set Dk = Vk \ (Ak ∪Bk).

Any mixed maximal clique is of the form C = C1∪C2 where, either C1 ⊆ A1 and C2 ⊆ A2

(call CA the set of such maximal cliques), or C1 ⊆ B1 and C2 ⊆ B2 (call CB the set of such
maximal cliques), so that C12 = CA∪CB. One can verify that I12 = I3∪I4∪I5∪I6, where
I3 (resp., I4, I5, I6) contains the independent sets of the form I ∪ J with I ⊆ D1 and
J ⊆ V2 (resp., with I ⊆ D1 ∪A1 and J ⊆ D2 ∪B2, I ⊆ D1 ∪B1 and J ⊆ D2 ∪A2, I ⊆ V1

and J ⊆ D2). Recall that Rk = Vk ∪ Ck for k = 1, 2. With respect to these partitions of
its row and column index sets the matrix SG has the block form:

SG =









I1 I2 I3 I4 I5 I6
R1 S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

R2 S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

CA S3,1 S3,2 S3,3 S3,4 S3,5 S3,6

CB S4,1 S4,2 S4,3 S4,4 S4,5 S4,6









To conclude the proof it suffices to make the following observations. For k = 1, 2, we
have Sk,k = SGk

, each column of Sk,3, Sk,4, Sk,5, Sk,6 is copy of a column of Sk,k, and each
column of S1,2 (resp., S2,1) coincides with the column of S1,1 (resp., S2,2) indexed by the
empty set. Moreover, for k = 3, 4, Sk,1 is a submatrix of SG1

, Sk,2 is a submatrix of SG2
,

and each column of Sk,3, Sk,4, Sk,5, Sk,6 is copy of a column of Sk,1 or Sk,2. Combining these
observations with Lemma 2.5 gives the desired inequality. �

4.3. Skew partitions. We examine now the behaviour of the extension complexity under
skew partitions.

Theorem 4.6. Let G = (V,E) be a perfect graph and let (A1, B1, A2, B2) be a partition of
V providing a skew partition decomposition of G as in Definition 2.11. Then we have

xc(STAB(G)) ≤ 2 · xc(STAB(G[A1 ∪B1])) + 2 · xc(STAB(G[A2 ∪B2]))

+ xc(STAB(G[A1 ∪B2])) + xc(STAB(G[A2 ∪B1])).

Proof. It suffices to show that rank+(SG) is at most

2 rank+(SG[A1∪B1]) + 2 rank+(SG[A2∪B2]) + rank+(SG[A1∪B2]) + rank+(SG[A2∪B1]).

For this we exploit the block structure of SG in (5), using the partition V = V1 ∪ V2 with
Vk = Ak ∪Bk for k = 1, 2. The mixed maximal cliques of G are of the form C1 ∪C2, either
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with C1 ⊆ A1 ∪ B1 and C2 ⊆ A2 (call their set C3), or with C1 ⊆ A1 and C2 ⊆ A2 ∪ B2

(call their set C4). The mixed independent sets of G are of the form I1 ∪ I2, either with
I1 ⊆ A1 ∪B1 and I2 ⊆ B2 (call their set I3), or with I1 ⊆ B1 and I2 ⊆ A2 ∪B2 (call their
set I4). With respect to these partitions of its row and column index sets, the slack matrix
SG has the block form:

SG =









I1 I2 I3 I4
R1 S1,1 S1,2 S1,3 S1,4

R2 S2,1 S2,2 S2,3 S2,4

C3 S3,1 S3,2 S3,3 S3,4

C4 S4,1 S4,2 S4,3 S4,4









As in earlier proofs, we have rank+(Sk,1 Sk,2 Sk,3 Sk,4) ≤ rank+(SG[Ak∪Bk]) for k = 1, 2.
Moreover, by looking at the shape of the mixed cliques and independent sets one can make
the following observations: rank+(S3,1 S3,3) ≤ rank+(SG[A1∪B1]) since S3,1 = S3,3 is a
submatrix of SG[A1∪B1], rank+(S3,2 S3,4) ≤ rank+(SG[A2∪B1]) since each column of S3,2 is
copy of a column of S3,4 which in turn is a submatrix of SG[A2∪B1], rank+(S4,2 S4,4) ≤
rank+(SG[A2∪B2]) since S4,2 = S4,4 is a submatrix of SG[A2∪B2], and rank+(S4,1 S4,3) ≤
rank+(SG[A1∪B2]) since each column of S4,1 is a copy of a column of S4,3 which in turn is
a submatrix of SG[A1∪B2]. �

5. Application to perfect graphs

We now use the above results to upper bound the extension complexity of the stable set
polytope of a perfect graph G by decomposing G into basic perfect graphs using 2-join and
skew partition decompositions. Recall that basic perfect graphs are bipartite graphs or
their complements, line graphs of bipartite graphs or their complements, and double-split
graphs for which we know that xc(STAB(G)) ≤ 2(|V |+ |E|) (by Corollary 3.7).

Theorem 5.1. Let G = (V,E) be a perfect graph. Let d be the depth of a decomposition
tree representing a decomposition of G into basic perfect graphs by means of 2-join and
skew partition decompositions. Then we have

xc(STAB(G)) ≤ 4d(2|V |+ 2|E|).

Proof. We use induction on the depth d ≥ 0 of the decomposition tree. If d = 0 then G
is a basic perfect graph and the result holds by Corollary 3.7. Assume now d ≥ 1, i.e., G
admits a 2-join or skew partition decomposition. We first consider the case when G admits
a 2-join decomposition (V1, V2). Then, by Theorem 4.5, we have

xc(STAB(G)) ≤ 3 · xc(STAB(G[V1])) + 3 · xc(STAB(G[V2])).

By the induction assumption, we have xc(STAB(G[Vk])) ≤ 4d−1(2|Vk| + 2|Ek|) for each
k = 1, 2. As |V | = |V1| + |V2| and |E1| + |E2| ≤ |E|, we obtain the desired bound:
xc(STAB(G)) ≤ 3 · 4d−1(2|V1|+ 2|E1|+ 2|V2|+ 2|E2|) ≤ 4d(2|V |+ 2|E|).
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Consider now the case whenG admits a skew partition (A1, B1, A2, B2). We use Theorem
4.6 which implies that

xc(STAB(G)) ≤ 2 · (xc(Ĝ1) + xc(Ĝ2) + xc(Ĝ3) + xc(Ĝ3)),

where Ĝ1, Ĝ2, Ĝ3, Ĝ4 are induced subgraphs of G such that
∑4

k=1 |V (Ĝk)| = 2|V | and
∑4

k=1 |E(Ĝk)| ≤ 2|E|. By the induction assumption, for each k = 1, 2, 3, 4 we have:

xc(STAB(Ĝk)) ≤ 4d−1(2|V (Ĝk)| + 2|E(Ĝk)|) . Combining with the above relations we
obtain the desired inequality:

xc(STAB(G)) ≤ 2 · 4d−1
4

∑

k=1

(2|V (Ĝk)|+ 2|E(Ĝk)|) ≤ 4d(2|V |+ 2|E|).

�

As 2|V | + 2|E| ≤ 2|V |2, we derive the bound xc(STAB(G)) ≤ 2 · 4d|V |2 when G has a
decomposition tree of depth d. In particular, for the class of perfect graphs G admitting a
decomposition tree whose depth d is logarithmic in |V |, say d ≤ c log |V | for some constant
c > 0, the extension complexity of the stable set polytope is polynomial in V :

xc(STAB(G)) ≤ 2|V |c+2.

To conclude let us remark that other graph operations are known that preserve perfect
graphs and can be used to give structural characterizations for subclasses of perfect graphs.
This is the case in particular for the “graph amalgam” operation considered in [3]. The
behaviour of the amalgam operation is studied in [10] (see also [19]): if G is the amalgam
of two perfect graphs G1 and G2 then xc(STAB(G)) ≤ xc(STAB(G1)) + xc(STAB(G2)).
Burlet and Fonlupt [3] introduce a notion of basic Meyniel graph and show that any Meyniel
graph can be decomposed into basic Meyniel graphs using graph amalgams. It follows from
results in Conforti et al. [10] that the extension complexity of the stable set polytope is
polynomial in the number of vertices for Meyniel graphs. The question of deciding wether
the extension complexity of the stable set polytope is polynomial for all perfect graphs
remains wide open.

Acknowledgments. We thank Ronald de Wolf for useful discussions and comments
about the topic of this paper.
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