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The Sparse-Grid Combination Technique Applied to
Time-Dependent Advection Problems
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ABSTRACT

In the numerical technique considered in this paper, time-stepping is performed on a set of semi-coarsened

space grids. At given time levels the solutions on the different space grids are combined to obtain the asymp-

totic convergence of a single, fine uniform grid. We present error estimates for the two-dimensional spatially

constant-coefficient model problem and discuss numerical examples. A spatially variable-coefficient problem

(Molenkamp-Crowley test) is used to assess the practical merits of the technique. The combination technique

is shown to be more efficient than the single-grid approach, yet for the Molenkamp-Crowley test, standard

Richardson extrapolation is still more efficient than the combination technique. However, parallelization is

expected to significantly improve the combination technique’s performance.
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1. Introduction

The long-term aim of the present work is to make signi�cant progress in the numerical solution of

large-scale transport problems: systems of partial di�erential equations of the advection-di�usion-

reaction type, used in the modeling of pollution of the atmosphere, surface water and ground water.

The three-dimensional nature of these models and the necessity of modeling transport and chemical

exchange between di�erent components over long time spans, requires very e�cient algorithms. For

advanced three-dimensional modeling, computer capacity (computing time and memory) still is a

severe limiting factor (e.g., see [8]). This limitation is felt in particular in the area of global air

pollution modeling where the three-dimensional nature leads to huge numbers of grid points in each

of which many calculations must be carried out. The application of sparse-grid techniques might o�er

a promising way-out.

Sparse-grid techniques were introduced by Zenger [10] in 1990 to reduce the number of degrees of

freedom in �nite-element calculations. The combination technique, as introduced in 1992 by Griebel,

Schneider and Zenger [4], can be seen as a practical implementation of the sparse-grid technique. In

the combination technique, the �nal solution is a linear combination of solutions on semi-coarsened

grids, where the coe�cients of the combination are chosen such that there is a canceling in leading-

order error terms. As shown by Rüde in 1993 [7], the combination technique can be placed in a

broader framework of multivariate extrapolation techniques.

We show that for our two-dimensional hyperbolic problems the combination technique requires

∼ h−2 operations to reach an accuracy of O(hp log h−1) while the single grid requires ∼ h−3 operations

to solve up to an accuracy of O(hp). Thus the combination technique is, asymptotically, more e�cient

than a single-grid solver. Another appealing property of the combination technique is that it is

inherently parallel, i.e., it constructs the �nal solution from ∼ (log h−1)d−1 independent solutions (d
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is the dimension of the problem) which can be computed in parallel. Parallel implementations of the

combination technique were shown to be e�ective in [3] and [2].

Although we are ultimately interested in advection-di�usion-reaction equations, in the current work

we restrict the attention to pure advection and leave the difussion and reaction processes to future

research. In a number of articles the combination technique has already been analyzed both analyt-

ically and numerically, see for instance [1, 3, 4, 7]. However, in these references elliptic di�erential

equations are considered, not hyperbolic equations like the time-dependent advection equation we

are considering. In [5] the combination technique is shown to be promising for a constant coe�cient

advection equation. The current paper di�ers from [5] in that it focuses on error analysis while [5]

focuses on numerical results. Furthermore, in [5] only constant coe�cients are considered. Although

we do not present error analysis for spatially variable coe�cients, we do analyze this case numerically

with the Molenkamp-Crowley test. The time-dependent coe�cient case we analyze both numerically

and analytically. When the combination technique is used to solve a di�erential equation, then a

representation error and a combined discretization error are introduced. In [6] a detailed analysis is

given of the representation error. In the current paper we focus on the combined discretization error.

The organization of the current paper is as follows. In Sections 2, 3 and 4 we derive leading order

error expressions for the error that is introduced when we solve an advection equation, with spatially

independent coe�cients, with the combination technique. In the derivations we account for time-

dependent coe�cients and for intermediate combinations. In Section 5 we give some estimates for

the asymptotic e�ciency of the combination technique relative to the single-grid approach. In Sec-

tion 6 four numerical test cases are analyzed, one of these is the Molenkamp-Crowley problem. The

error estimates made in the earlier sections are veri�ed and the combination technique is compared

with the single-grid technique in terms of e�ciency. The conclusions are summarized in Section 7.

The main conclusion is that without parallelization - although marginally - the combination tech-

nique is already more e�cient than the single-grid approach for a generic advection problem, such

as the Molenkamp-Crowley test. Without parallelization, the combination technique still falls behind

standard Richardson extrapolation, something which has also been concluded by Rüde [7] for elliptic

problems.

2. Discretization error

In order to understand the combined discretization error we must �rst have a clear understanding of

the discretization error itself. This section is devoted to the analysis of the error in the numerical

solution that is due to spatial discretization. The temporal discretization errors are neglected. In

the notation of functions only the relevant variables are printed, e.g., the function f(x, y, t) can be

referred to as f(x, y, t), f(t), f(x, y) or simply as f , depending on context. The focus lies on the pure

initial value problem for the spatially-constant coe�cient, 2D advection equation

ct + a∂xc + b∂yc = 0. (2.1)

Equation (2.1) is integrated in time from t = 0 up to t = 1 with �nite di�erences on the spatial domain

[−1, 1]× [−1, 1]. We denote the discretization of the advection operator a∂x + b∂y by aDx + bDy. The

corresponding spatially discretized equation reads

d

dt
ω + aDxω + bDyω = 0. (2.2)

Here ω = ω(t) denotes a continuous time grid function de�ned on a certain space grid. We de�ne the

(global) discretization error d(t) according to

d(t) ≡ ω(t)− ch(t), (2.3)
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where ch(t) denotes the restriction of c(t) to the space grid. We introduce the truncation error operator

E according to

E ≡ aDx + bDy +
d

dt
. (2.4)

The discretization error d can be seen to satisfy

d

dt
d + Ech + aDxd + bDyd = 0,

with general solution

d(t) = e−
∫ t
0 (a(t′)Dx+b(t′)Dy)dt′d(0) +

(
e−
∫
t
0 E(t′)dt′ − I

)
ch(t). (2.5)

When a and b are independent of time then (2.5) reduces to

d(t) = e−t(aDx+bDy)d(0) +
(
e−tE − I

)
ch(t),

which we expand as

d(t) =
∞∑

i=0

(−tE)i

i!
e−t(a∂x+b∂y)d(0) +

∞∑
i=1

(−tE)i

i!
ch(t). (2.6)

2.1 Structure of the discretization error

In general, when the initial pro�le is error free a dimensionally split discretization of order p gives rise

to a discretization error given by

d(t) =
∞∑

i=1

ti

i!

 ∞∑
j=p

(
αjahj

x∂j+1
x + βjbh

j
y∂j+1

y

)i

ch(t), (2.7)

where the constants αj and βj are the error constants in the truncation error. Equation (2.7) can be

rewritten in the generic form

d(t) =
∞∑

i=p

(
hi

xAi(t) + hi
yBi(t)

)
+
∞∑

j=p

∞∑
k=p

hj
xhk

yγj,k(t), (2.8)

showing that the discretization error consists of terms proportional to hp
x, hp+1

x , · · · and hp
y, hp+1

y , · · ·
and hp

xhp
y, hp+1

x hp
y, hp

xhp+1
y , hp+1

x hp+1
y , · · · .

2.2 Third-order upwind discretization

To introduce spatial discretizations we make use of the shift operators

Shxf(x, y) ≡ f(x + hx, y) =
∞∑

i=0

(hx∂x)i

i!
f(x, y),

Shyf(x, y) ≡ f(x, y + hy) =
∞∑

i=0

(hy∂y)i

i!
f(x, y),

where we have supposed f to be a C∞ function. We focus on the third-order upwind biased scheme

which is given by

Dx =

{ 1
6 S−2hx−S−hx+ 1

2+ 1
3 Shx

hx
, a > 0,

−
1
6 S2hx−Shx+ 1

2+ 1
3 S−hx

hx
, a < 0,

Dy =


1
6 S−2hy−S−hy+ 1

2+ 1
3 Shy

hy
, b > 0.

−
1
6 S2hy−Shy+ 1

2+ 1
3 S−hy

hy
, b < 0.
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Figure 1: Grid of grids.

This yields the discretization error

d(t) =
∞∑

i=1

ti

i!

 ∞∑
j=3

(−2)j − 3(−1)j − 1
3(j + 1)!

(
sign(a)jahj

x∂j+1
x + sign(b)jbhj

y∂
j+1
y

)i

c(t), (2.9)

provided d(0) = 0. Neglecting O(h4
x) and O(h4

y) but including O(h3
xh3

y) for later reference, equation
(2.9) leads to the following leading order expression

d(t) = − t

12
(
|a|h3

x∂4
x + |b|h3

y∂4
y

)
c(t) +

t2

144
|ab|h3

xh3
y∂4

x∂4
yc(t) +O(h4

x) +O(h4
y). (2.10)

This leading-order result makes sense only when t, a, b and the derivatives of c(t) are moderate.

2.3 Time-dependent coe�cients

To handle time-dependent coe�cients we expand (2.5) as

d(t) =
∞∑

i=0

(−
∫ t

0
E(t′)dt′)i

i!
e−
∫
t
0 (a(t′)∂x+b(t′)∂y)dt′d(0) +

∞∑
i=1

(−
∫ t

0
E(t′)dt′)i

i!
c(t).

For d(0) = 0, the time-dependent equivalent to (2.10) then reads

d(t) = − 1
12

(∫ t

0 |a(t′)| dt′ h3
x∂4

x +
∫ t

0 |b(t
′)| dt′ h3

y∂4
y

)
c(t)

+ 1
144

(∫ t

0
|a(t′)| dt′

) (∫ t

0
|b(t′)| dt′

)
h3

xh3
y∂

4
x∂4

yc(t) +O(h4
x) +O(h4

y).
(2.11)

3. Combination technique

The two-dimensional combination technique is based on a grid of grids as shown in Figure 1. Grids

within the grid of grids are denoted by Ωl,m where upper indices label the level of re�nement relative

to the root grid Ω0,0. The mesh widths in x-and y-direction of Ωl,m are hx = 2−lH and hy = 2−mH,

where H is the mesh width of the uniform root grid Ω0,0. We denote the mesh width of the �nest

grid ΩN,N by h. Note that hx and hy are dependent on the position (l, m) in the grid of grids while

h is not.



4. Combined discretization error 5

In the time-dependent combination technique a given initial pro�le c(x, y, 0) is restricted, by injec-

tion, onto the grids ΩN,0, ΩN−1,1, · · ·, Ω0,N and onto ΩN−1,0, ΩN−2,1, · · ·, Ω0,N−1, see Figure 1. The

resulting coarse representations are then all evolved in time (exact time integration is assumed in the

current paper). Then, at a chosen point in time, the coarse approximations are prolongated with q-th
order interpolation onto the �nest grid ΩN,N , where they are combined according to (3.2) to obtain a

more accurate solution. The notation is summarized in Figure 1.

Considering the exact solution c, the combination technique, as introduced in [4], constructs a grid

function ĉN,N on the �nest grid ΩN,N in the following manner,

ĉN,N ≡
∑

l+m=N

PN,NRl,mc −
∑

l+m=N−1

PN,NRl,mc.

The corresponding so-called representation error rN,N is

rN,N ≡ ĉN,N −RN,Nc. (3.1)

Likewise, considering the semi-discrete solutions ωl,m, the combination technique constructs an ap-

proximate solution ω̂N,N on the �nest grid ΩN,N from the coarse-grid approximate solutions according

to

ω̂N,N =
∑

l+m=N

PN,Nωl,m −
∑

l+m=N−1

PN,Nωl,m. (3.2)

Let dl,m denote the discretization error on grid Ωl,m, i.e.,

dl,m ≡ ωl,m −Rl,mc. (3.3)

The total error eN,N = ω̂N,N −RN,Nc present in ω̂N,N is written as

eN,N = rN,N + d̂N,N ,

where the combined discretization error d̂N,N = ω̂N,N − ĉN,N is given by

d̂N,N =
∑

l+m=N

PN,Ndl,m −
∑

l+m=N−1

PN,Ndl,m. (3.4)

In [6] a detailed analysis is given of the representation error rN,N . In the current paper we focus on

the combined discretization error d̂N,N .

4. Combined discretization error

4.1 E�ect of the combination technique on a single error term

Inspection of (2.7) shows that the discretization error dl,m can be expanded as

dl,m(t) =
∞∑

i=0

∞∑
j=0

hi
xhj

yRl,mθi,j(t)c(x, y, t), (4.1)

where the powers of t and the spatial di�erential operators are hidden in θi,j(t), equation (4.1) allows

us to concentrate on powers of hx and hy. Since hx = 2−lH and hy = 2−mH we can rewrite (4.1) as

dl,m(t) =
∞∑

i=0

∞∑
j=0

Hi+jεl,m
i,j (t), (4.2)
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where

εl,m
i,j (t) ≡ 2−il−jmRl,mθi,j(t)c(x, y, t). (4.3)

Insertion of (4.2) into the expression for the combined discretization error (3.4) yields

d̂N,N =
∑
i,j

Hi+j ε̂N,N
i,j ,

where

ε̂N,N
i,j ≡

∑
l+m=N

PN,Nεl,m
i,j −

∑
l+m=N−1

PN,Nεl,m
i,j .

We now focus on the contribution that a single error term εl,m
i,j makes to the combined discretization

error, i.e., we analyze ε̂N,N
i,j . The error terms εl,m

i,j are prolongated onto the �nest grid ΩN,N with

interpolation of order q, yielding interpolation errors ζN,N
i,j and grid functions ξN,N

i,j that are free of

interpolation errors, i.e.,

PN,Nεl,m
i,j = ξN,N

i,j + ζN,N
i,j .

For ε̂N,N
i,j this leads to the splitting

ε̂N,N
i,j = ξ̂N,N

i,j + ζ̂N,N
i,j .

Error without interpolation e�ects. According to (4.3) we have

ξN,N
i,j ≡ 2−il−jmRN,Nθi,jc,

hence

ξ̂N,N
i,j =

( ∑
l+m=N

−
∑

l+m=N−1

)
2−il−jmRN,Nθi,jc,

which is equivalent to

ξ̂N,N
i,j =

(∑N
l=0 2−il−j(N−l) −

∑N−1
l=0 2−il−j(N−1−l)

)
RN,Nθi,jc

=
(
2−iN + 2−jN

[
1− 2j

]∑N−1
l=0 2l(j−i)

)
RN,Nθi,jc.

(4.4)

For i = j this yields

ξ̂N,N
i,i =

(
2−iN + 2−iN

[
1− 2i

]
N

)
RN,Nθi,jc, (4.5)

while for i 6= j

ξ̂N,N
i,j =

(
1

2j − 2i

[
2−jN

(
2i+j − 2i

)
+ 2−iN

(
2j − 2i+j

)])
RN,Nθi,jc. (4.6)

Equations (4.5) and (4.6) lead to the following order estimates

ξ̂N,N
i,j =


O

(
2−jN

)
if i = 0, j 6= 0.

O
(
2−iN

)
if j = 0, i 6= 0.

O
(
N2−iN

)
if i = j 6= 0.

O
(
2−min(i,j)N

)
if i 6= j, i 6= 0, j 6= 0.

(4.7)
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Additional error due to interpolation. In leading order the interpolation error is given by

ζN,N
i,j =

(
λlh

q
x∂q

x + λmhq
y∂q

y

)
ξN,N
i,j ,

or equivalently,

ζN,N
i,j = HqRN,N

(
2−(q+i)l−jmλl∂

q
x + 2−(q+j)m−ilλm∂q

y

)
θi,jc,

where the λl and λm are coe�cients dependent on l and m respectively and on the choice of interpo-

lation. For the combined interpolation error ζ̂N,N
i,j we have

ζ̂N,N
i,j = HqRN,N

( ∑
l+m=N

−
∑

l+m=N−1

)
2−(q+i)l−jmλl∂

q
xθi,jc

+HqRN,N

( ∑
l+m=N

−
∑

l+m=N−1

)
2−(q+j)m−ilλm∂q

yθi,jc.

For the �rst term,( ∑
l+m=N

−
∑

l+m=N−1

)
2−(q+i)l−jmλl∂

q
xθi,jc,

we obtain(
2−(q+i)NλN +

N−1∑
l=0

(
2−(q+i)l−j(N−l) − 2−(q+i)l−j(N−1−l)

)
λl

)
∂q

xθi,jc,

which, in absolute value, is bounded from above by

|λ|max

∣∣∣∣∣
(

2−(q+i)N +
N−1∑
l=0

(
2−(q+i)l−j(N−l) − 2−(q+i)l−j(N−1−l)

))
∂q

xθi,jc

∣∣∣∣∣ .

Likewise, the second term,( ∑
l+m=N

−
∑

l+m=N−1

)
2−(q+j)m−ilλm∂q

xθi,jc,

is in absolute value bounded from above by

|λ|max

∣∣∣∣∣
(

2−(q+j)N +
N−1∑
m=0

(
2−(q+j)m−i(N−m) − 2−(q+j)m−i(N−1−m)

))
∂q

yθi,jc

∣∣∣∣∣ .

Together these bounds lead to the following order estimates, in the same way as the estimates in the

previous section were obtained

ζ̂N,N
i,j =


O

(
Hq2−qN

)
if i = 0 or j = 0.

O
(
HqN2−jN

)
if q + i = j.

O
(
HqN2−iN

)
if q + j = i.

O
(
Hq2−min(i,j)N

)
if 0 6= j 6= q + i and 0 6= i 6= q + j.

(4.8)
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Table 1: Mapping of error terms from the semi-coarsened grids to the �nest grid.

Error term on {Ωl,m} E�ect on ΩN,N

hi
x or hi

y O(hi)
hi

xhj
y O(hmin(i,j))

hi
xhi

y O(hi log h−1)

4.2 Leading-order results

By combining the order estimates for a single error term (4.7) and equations (4.5) and (4.6) with the

structure of a dimensionally split discretization error (2.8), we see that in the discretization error the

following terms are of particular interest

d = t(αpahp
x∂p+1

x + βpbh
p
y∂

p+1
y )c

+t2αpβpabhp
xhp

y∂
p+1
x ∂p+1

y c +O
(
hp+1

x

)
+O

(
hp+1

y

)
.

(4.9)

We have omitted the upper indices N, N . Equation (4.9) leads to the following leading-order expression

for the combined discretization error

d̂ = t(αpahp∂p+1
x + βpbh

p∂p+1
y )c

+ t2αpβpabHphp(1 + (1− 2p) log2
H
h )∂p+1

x ∂p+1
y c +O

(
hp+1 log2

1
h

)
.

(4.10)

More speci�cally, for the third-order upwind scheme,

d̂ = − th3

12
(|a| ∂4

x + |b|∂4
y)c +

t2

144
|ab|H3h3(1− 7 log2)∂

4
x∂4

yc +O
(

h4 log2

1
h

)
. (4.11)

4.3 Mapping of error terms

We illustrate the e�ect of a single term of the discretization error on the error that is observed on

the �nest grid after applying the combination technique. We view the combination technique as a

mapping that maps terms from the discretization error onto a leading-order error term on the �nest

grid. We assume that the order of the prolongation q is greater than the order of the discretization p.
The order estimate (4.7) shows that, for i 6= j, i 6= 0, j 6= 0, we have a mapping according to Table

1. While the discretization error's leading-order terms, proportional to hp
x and hp

y yield error terms

of O (hp), the cross-derivative term proportional to hp
xhp

y surpasses these and yields the new formal

leading-order error term proportional to hp log h−1.

4.4 Additional error due to interpolation

From the order estimates (4.8) we �nd that:

• if q 6= p then the contribution of the interpolation error is

O (Hphq) , (4.12)

• if q = p then the contribution of the interpolation error is

O
(

Hphp log
H

h

)
. (4.13)

According to (4.12) the interpolation leaves the leading-order result (4.10) una�ected, provided the

order of interpolation q is greater than the order of discretization p. When q = p, according to (4.13),
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the e�ect of the interpolation is of the same order as the second term in the leading-order result

(4.10). For q < p the interpolation error is in fact larger than the leading-order result (4.10) itself.

Thus choosing q < p is not sensible since it leads to an order reduction in the error. Choosing q = p is

acceptable when the parameters of the combination technique are such that the second term in (4.10)

is dominated by the �rst term. When this is not the case, q must be chosen larger than p.

4.5 Intermediate combinations

When the combination technique is used in conjunction with a time-stepping technique, like we do,

then we can choose to make intermediate combinations. At an intermediate combination the solutions

on the semi-coarsened grids are combined onto the �nest grid and then the �ne-grid function is

projected back onto the semi-coarsened grids. We will now analyze the in�uence of intermediate

combinations on the error, speci�cally we consider M − 1 intermediate combinations made at times
t

M , 2t
M , · · · , (M−1)t

M . For a single semi-coarsened grid Ωl,m onto which an intermediate solution was

restricted at t
M , we have, according to (2.6),

dl,m(
2t

M
) =

∞∑
j=0

(− t
M E)j

j!
e−

t
M (a∂x+b∂y)Rl,md̂N,N(

t

M
) +

∞∑
i=1

(− t
M E)i

i!
Rl,mc(

2t

M
). (4.14)

Due to the leading order result (4.10) we have

e−
t
M (a∂x+b∂y)Rl,md̂N,N(

t

M
) =

t

M
(αpahp∂p+1

x + βpbh
p∂p+1

y )Rl,mc(
2t

M
)

+
t2

M2
αpβpabHphp(1 + (1− 2p) log2

H

h
)∂p+1

x ∂p+1
y Rl,mc(

2t

M
)

+O
(

hp+1 log2

1
h

)
.

Here we have used e−
t
M (a∂x+b∂y)c( t

M ) = c( 2t
M ). In the �rst summation in (4.14), terms with j > 0 will

only contribute in higher order because E is a power expansion in mesh widths hx and hy. Hence we

can neglect the j > 0 terms in (4.14) for a leading-order result, yielding

dl,m( 2t
M ) = t

M (αpahp∂p+1
x + βpbh

p∂p+1
y )Rl,mc( 2t

M )

+ t2

M2 αpβpabHphp(1 + (1− 2p) log2
H
h )∂p+1

x ∂p+1
y Rl,mc( 2t

M ) +O
(
hp+1 log2

1
h

)
+

∑∞
i=1

(− t
ME)i

i! Rl,mc( 2t
M ) +O

((
hp

x + hp
y + hp

xhp
y

) (
hp + hp log2

1
h

))
.

(4.15)

The above expression immediately leads to the leading-order result for the combined discretization

error d̂N,N( 2t
M ) taking into account an intermediate combination at t

M . The �rst two terms and the

O
(
hp+1 log2

1
h

)
term carry over into d̂N,N( 2t

M ) without alterations since we neglect representation

errors. The summation yields the two terms in (4.10) as was argued in Sections 4.1 and 4.2. The last

O-term translates according to the rules stated in Section 4.1. Thus, (4.15) yields the following for

the combined discretization error d̂N,N( 2t
M ) taking into account an intermediate combination at t

M :

d̂N,N( 2t
M ) = 2

[
t

M (αpahp∂p+1
x + βpbh

p∂p+1
y )RN,Nc( 2t

M )

+ t2

M2 αpβpabHphp(1 + (1− 2p) log2
H
h )∂p+1

x ∂p+1
y RN,Nc( 2t

M ) +O
(
hp+1 log2

1
h

)]
+O

((
hp + hp + hp log2

1
h

) (
hp + hp log2

1
h

))
.

By induction this leads to the following result for the combined discretization error at t, taking into

account intermediate combinations at t
M , 2t

M , · · · , (M−1)t
M ,
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d̂N,N(t) = t(αpahp∂p+1
x + βpbh

p∂p+1
y )RN,Nc(t)

+ 1
M t2αpβpabHphp(1 + (1− 2p) log2

H
h )∂p+1

x ∂p+1
y RN,Nc(t) +O

(
hp+1 log2

1
h

)
,

(4.16)

i.e., the term proportional to hp log h−1 is attenuated by a factor 1
M . For the third-order upwind

discretization equation (4.16) yields

d̂ = − th3

12
(|a| ∂4

x + |b|∂4
y)c +

t2

144M
|ab|H3h3(1− 7 log2

H

h
)∂4

x∂4
yc +O

(
h4 log2

1
h

)
. (4.17)

4.6 Qualitative behavior of the error

Provided the e�ects of interpolation can be neglected the error in the combined solution is given by

(4.16). The competition between the two terms in (4.16) is determined by the time up to which we

integrate, the number of combinations M , the coe�cients a and b, the root mesh width H, the number

of grids (through log2
H
h ), the order of discretization p (through αp, βp and 2p) and by the derivatives

of the exact solution. Given this multitude of dependencies it seems likely that in general both terms

can be important in describing the error.

When a ≈ b (i.e. advection diagonal to the grid) or when the exact solution has a large cross

derivative ∂p+1
x ∂p+1

y c compared to the derivatives ∂p+1
x c and ∂p+1

y c, then the second term in (4.16) gains

importance. Since this term represents the additional error due to using the combination technique,

rather than a single grid, we see that the combination technique is less well suited to problems with

a ≈ b or with large cross derivatives. Both are features of a problem that is not grid-aligned, i.e., the

combination technique works better for grid-aligned problems.

We mention two mechanisms that will attenuate the second term in (4.16). First, the semi-coarsened

grids used in the combination technique need to be su�ciently �ne to describe the solution. This

requires H to be small and thus attenuates the second term in (4.16), which has Hp as a prefactor .

Second, it is a practical observation that a number of intermediate combinations (M − 1) is needed
to successfully apply the combination technique, causing a further reduction of the second term by a

factor 1/M .

4.7 Time-dependent coe�cients

Up to now the results in the current section are valid for coe�cients that are independent of time. We

now state the leading-order results for time-dependent coe�cients. The statements about the inter-

polation error still hold. The leading-order expression for the combined discretization error becomes

d̂ =
(∫ t

0
αp(t′)a(t′)dt′

)
hp∂p+1

x c +
(∫ t

0
βp(t′)b(t′)dt′

)
hp∂p+1

y c

+
(∫ t

0 αp(t′)a(t′)dt′
)(∫ t

0 βp(t′)b(t′)dt′
)

Hphp(1 + (1− 2p) log2
H
h )∂p+1

x ∂p+1
y c

+O
(
hp+1 log2

1
h

)
.

For third-order upwind discretization this yields

d̂ = −h3

12

(∫ t

0 |a(t′)| dt′ ∂4
x +

∫ t

0 |b(t′)| dt′ ∂4
y

)
c

+Hphp

144 (1 + (1− 2p) log2
H
h )

(∫ t

0 |a(t′)| dt′
)(∫ t

0 |b(t
′)| dt′

)
∂4

x∂4
yc +O

(
h4 log2

1
h

)
.

(4.18)

When M − 1 intermediate combinations are made the combined discretization error is given by
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d̂ =
(∫ t

0
αp(t′)a(t′)dt′

)
hp∂p+1

x c +
(∫ t

0
βp(t′)b(t′)dt′

)
hp∂p+1

y c

+
(∑M−1

n=0

(∫ n+1
M t
n
M t

αp(t′)a(t′)dt′
)(∫ n+1

M t
n
M t

βp(t′)b(t′)dt′
))

×Hphp(1 + (1− 2p) log2
H
h )∂p+1

x ∂p+1
y c +O

(
hp+1 log2

1
h

)
.

For third-order upwind discretization this yields

d̂ = − h3

12

(∫ t

0
|a(t′)| dt′ ∂4

x +
∫ t

0
|b(t′)| dt′ ∂4

y

)
c

+Hphp

144 (1 + (1− 2p) log2
H
h )

∑M−1
n=0

(∫ n+1
M t
n
M t |a(t′)| dt′

)(∫ n+1
M t
n
M t |b(t′)| dt′

)
∂4

x∂4
yc

+O
(
hp+1 log2

1
h

)
.

(4.19)

5. Asymptotic efficiency

When making e�ciency comparisons the number of cell updates C is used as a measure of required

computational work. On a single grid this is simply de�ned as the product of the number of cells and

the number of time steps required. Within the combination technique it is the sum of products of

cells and time steps required on all grids within the grid of grids.

Due to the CFL restriction the time step ∆t must satisfy ∆t = αmin(hx,hy) for some constant

value of α. The cost estimates presented in this section are based on α = 1/10, as are the numerical

results in Section 6. Note that the time steps on the di�erent grids within the combination technique

are not equal, i.e., larger steps are taken on coarser grids. We identify a combination technique with

a root mesh width H = 2 · 2−LR , where LR is the root level, and a �nest mesh width h = 2 · 2−LR−N ,

where N is the sparseness level. The number of grids within a combination technique is given by

2N + 1 = 2 log2 (H/h) + 1.

5.1 Computational work

For a single grid with h = 2 · 2−L the number of cell updates required is given by

C1 = 5 · 23L.

For the combination technique the number of cell updates is given by

CCT =
{

5 · 23LR
(
5 · 22N − 4 · 23N/2

)
, for N even.

5 · 23LR
(
5 · 22N − 11

4 · 2(3N+1)/2
)
, for N odd.

For �xed LR the combination technique has asymptotic complexity

CCT ∼ 22N ∼ h−2 (5.1)

while the single grid has asymptotic complexity

C1 ∼ 23L ∼ h−3. (5.2)

5.2 E�ciency comparison

For �xed LR the combination technique has, according to (4.10), the following asymptotic error

d̂ ∼ hp log2(h
−1) ∼ 2−pNN
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while a single grid of mesh width h = 2 · 2−L has the following asymptotic error

d ∼ hp ∼ 2−pL.

If we require a single grid to yield the same error as the combination technique for a given N , i.e., we

put

N2−pN ∼ 2−pL

then we obtain

L = N − log2 N

p
.

According to (5.2) this yields, for the complexity of the single grid,

C1 ∼ 23N

(
1
N

)3/p

∼ h−3
CT

(
log2(h

−1
CT )

)−3/p
,

while according to (5.1) , the complexity of the combination technique is given by

CCT ∼ 22N ∼ h−2
CT

showing that, asymptotically, the combination technique reduces the three-dimensional single-grid

complexity to a two-dimensional complexity, while obtaining the same level of accuracy.

6. Numerical results

6.1 Numerical setup

All the numerical results presented in this paper were obtained with fourth-order explicit Runge-

Kutta time integration with time step ∆t = 0.1 min(hx, hy) which satis�es the CFL condition for all

considered test cases. Furthermore, the time-discretization error is always negligible compared to the

spatial discretization error. For spatial discretization we have used third-order upwind discretization

as described in Section 2.2, the prolongations are done with fourth-order interpolation. All analytical

error predictions for the combination technique refer solely to the combined discretization error. The

interpolation and representation errors due to the combination technique are neglected.

6.2 Test cases

We consider the following four test cases :

1. Horizontal advection, characterized by a = 1/2, b = 0.

2. Diagonal advection with a = b = 1/2.

3. Time-dependent advection with

(a, b) =


(0, 2), 0 ≤ t < 1/4.
(2, 0), 1/4 ≤ t < 1/2.
(0,−2), 1/2 ≤ t < 3/4.
(−2, 0), 3/4 ≤ t < 1.

4. The Molenkamp-Crowley test case with a = 2πy, b = −2πx.
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Test cases 1-3 have as initial pro�le

c(x, y, 0) = 0.014((x+0.25)2+(y+0.25)2), (6.1)

which is depicted in Figure 2(a), while test case 4 has as initial pro�le

c(x, y, 0) = 0.014((x+0.5)2+y2), (6.2)

which is depicted in Figure 2(d). All test cases are integrated up to t = 1 and have −1 ≤ x, y ≤ 1.
In [9] solutions for the Molenkamp-Crowley test case obtained with various numerical methods are

presented, given the initial condition (6.2).

Besides initial pro�les, Figure 2 displays a number of typical error pro�les observed in the numerical

solutions of the test cases. The single-grid technique's (SG) results in Figure 2 were obtained on a

513 × 513 grid corresponding to L = 9 and the combination technique (CT) used a grid of 9 grids

given by Lr = 5 and N = 4, i.e, the combination technique also produced its solutions on a 513× 513
grid. The results for the combination technique with intermediate combinations (ICT) were obtained

by making 8 combinations.

Figure 3 illustrates the performance of the single-grid and the combination technique on the test

cases. The number of cell updates is plotted along the horizontal axis, which is a direct measure of the

required CPU time, see Section 5.1. Any additional CPU time required to make the 7 intermediate

combinations to obtain the ICT results was neglected, which is fully justi�ed for the limited number

of combinations considered here. The error is shown in the L∞ norm, the results for the L1 norm are

similar. In obtaining Figure 3 the combination technique had Lr = 5 �xed and N = 2, 3, 4, 5. The
single-grid results were obtained using L = 7, 8, 9.
In Figure 4 the e�ect of the number of combinations is shown on the L∞ error due to a combination

technique characterized by Lr = 5 and N = 4. In Figure 4 only test cases 2,3 and 4 are considered

because for test case 1 the error is independent of the number of combinations.

Except for numerically observed results Figures 3 and 4 also contain analytical predictions. For

test cases 1 and 2 these were obtained from (2.10) for the single grid, from (4.11) for the combination

technique and from (4.17) for the combination technique with intermediate combinations. For test case

3 the error predictions were obtained from (2.11) for the single grid, from (4.18) for the combination

technique and from (4.19) for the combination technique with intermediate combinations. Note that

test case 4 is not time-dependent but spatially dependent. The error predictions that we have derived

are not valid for spatially dependent coe�cients.

6.3 Results

Horizontal test case. We do not show any error pro�les for the horizontal test case. For this test case

the single-grid error and the errors due to the combination technique with and without intermediate

combinations are all practically equal and are almost perfectly described by the analytical prediction

(2.10). The combination technique does not introduce any additional error relative to the single grid

because the second term in (4.11) vanishes due to b = 0. The combination technique works very

well for this fully grid-aligned test case, as can be seen in Figure 3(a). Figure 3(a) also shows that

intermediate combinations do not improve the e�ciency for the horizontal test case. In fact, the ICT

results coincide with the CT results.

Diagonal test case. For the diagonal test case, error pro�les are shown for the combination technique

and the single grid in Figures 2(b) and 2(c) respectively. We see that for this test case the error due

to the combination technique is somewhat larger than the single grid error and has a di�erent shape.

This �gure also shows that the combination technique can be made more e�cient by applying 8

combinations. Figure 4(a) shows how the error due to the combination technique decreases as the
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number of combinations is increased. The ICT error converges to the single-grid error as the number

of combinations is increased. The �rst couple of combinations strongly decrease the error, a further

increase in the number of combinations does not decrease the error much further.

Time-dependent test case. For the time-dependent test case the error pro�les for the CT and the

ICT are plotted in Figures 2(e) and 2(f), respectively. We see that making intermediate combinations

in�uences both the shape and size of the error. Note that Figures 3(b) and 3(c) are similar, i.e., just

like the diagonal test case the time-dependent test case is solved more e�ciently with intermediate

combinations (ICT) than without (CT). However, the reason for the e�ciency of the ICT is somewhat

more complex for the time-dependent test case than for the diagonal test case. As we can see from

Figure 4(b) the ICT error does not decrease monotonically with the number of combinations and this

is correctly predicted by our theory. We can see that when a multiple of four combinations is made

the ICT error becomes equal to the single grid error. This follows from (4.19) due to the fact that

the product of integrals in the summation in the second term is always zero when a multiple of four

combinations is made. When a multiple of four combinations is made the time-dependent test case

is e�ectively split into two horizontal and two vertical advection problems and these are solved very

well by the combination technique, as we know from the �rst test case.

For the time-dependent test case the agreement between predicted and observed error is very good

for the single grid and the ICT. For the combination technique without intermediate combinations

the agreement is a little weaker. This can be understood as follows. The combination technique

tends to amplify cross-derivative terms in the single-grid error and of these ampli�ed terms only one

is included in our analytical predictions, viz. the second term in (4.11). The discrepancy between the

predicted and observed CT errors is to be ascribed to the ampli�ed cross-derivative terms that are

not included in our analytical predictions. These terms are proportional to a second or higher power

of t and are therefore, according to Section 4.5, inversely proportional to a �rst or higher power of M
if M combinations are made . Hence, the terms that cause the discrepancy are signi�cantly smaller

for the ICT than for the CT, especially for higher numbers of combinations.

Molenkamp-Crowley test case. Error pro�les for the Molenkamp-Crowley test case are shown in

Figures 2(g), 2(h) and 2(i) for the SG, CT and ICT, respectively. We see that the CT error is larger

than the SG error, but intermediate combinations help considerably, i.e., the ICT error lies much

closer to the SG error than to the CT error. Figure 3(d) shows that the Molenkamp-Crowley test

case is a tough case to solve e�ciently with the combination technique. Figure 3(d) shows that CT is

less e�cient than the single-grid technique, whereas ICT is more e�cient in solving the Molenkamp-

Crowley test case. For completeness, Figure 4(c) shows how the ICT error decreases with increasing

number of combinations.

6.4 Implementational issues

Boundary complications. The L∞ errors for the Molenkamp-Crowley test case were determined

after the solutions were restricted to the 33× 33 root grid. We were forced to do this because at high

accuracies the fourth-order interpolation produced wiggles near the boundaries that dominate the

combined discretization error. These wiggles do not appear in the nodes of the root grid, because for

those nodes no interpolation is necessary. However, at very high resolution wiggles near the boundaries

appear in the nodes of the root grid as well. In particular for LR ≥ 6 the wiggles are of equal or

greater magnitude than the combined discretization error itself. The cause for these wiggles lies in

the fact that the discretization near the boundaries is of lower order which obstructs the cancellation

of errors required by the combination technique to function properly. An illustration of wiggles near

the boundary is shown in Figure 5(b). Above di�culties were not observed for the other test cases

because there the solutions stayed away from the boundaries. We also ran the Molenkamp-Crowley

test case for the initial pro�le (6.1) shown in Figure 2(a) which stays away from the boundaries. This

removed the problems near the boundaries but introduced a similar wiggle in the origin. We believe
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Figure 2: Initial pro�les and numerically observed errors for the single-grid technique (SG), the

combination technique (CT) and the combination technique with intermediate combinations (ICT),

applied to the diagonal, time-dependent and Molenkamp-Crowley test cases.
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(c) time−dependent test case
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(d) Molenkamp−Crowley test case
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Figure 3: Numerically observed (obs) and analytically predicted (pred) performance of the single-grid

technique (SG), combination technique (CT) and combination technique with intermediate combina-

tions (ICT) applied to the test cases.
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Figure 4: L∞ error versus number of combinations for three test cases.



6. Numerical results 17

10
9

10
10

10
−5

10
−4

4

5

6 7

9 

10

# cell updates

L ∞
 e

rr
or

SG obs 
ICT obs

(a) Performance of the combination

technique with 8 combinations (ICT)

for root levels 4,5,6 and 7.

−1

0

1

−1
−0.5

0
0.5

1
−3

−2

−1

0

1

2

3

x 10
−6

(b) Error pro�le due to a combination

technique with root level 5, sparseness

level 6 and 8 combinations.

Figure 5: Implementational issues; Molenkamp-Crowley test case.

that this wiggle is also due to an order reduction caused by the switching of the upwind discretization

stencil in horizontal and vertical directions due to the sign change of the coe�cients in the origin.

Choosing an optimal root mesh-width. All numerical results for the combination technique were

obtained with a root mesh width H = 1/16 corresponding to a root level LR = 5. This choice was

made to optimize the performance of the combination technique when applied to the Molenkamp-

Crowley test case. This is illustrated in Figure 5(a). In this �gure the performance of the combination

technique with 8 combinations which has LR + N = 10 �xed (ICT) is compared with the single-

grid performance (SG). We see that for LR = 5 the performance of the ICT is optimal, although

performance for LR = 6 is comparable. The optimal choice for LR is only weakly dependent on the

sparseness level N , therefore we could safely use LR = 5 throughout for optimal performance. To see

that the optimal LR varies slowly with N consider the following argument. We found that, to solve

the Molenkamp-Crowley test e�ciently, the additional error due to the combination technique had

to be of comparable magnitude as the single-grid error. According to our error analysis for constant

coe�cients (4.11) this implies

h3 ∼ H3h3 log2

H

h

which leads to

H ∼
(

1
N

)1/3

,

showing that H needs to decrease only slightly when the sparseness level, and thus the number of

grids in the combination technique, increases.

6.5 Richardson extrapolation

In [7] Rüde points out that simple Richardson extrapolation is in fact more e�cient than the combi-

nation technique for the solution of a smooth Poisson problem. To see how Richardson extrapolation

would perform for the Molenkamp-Crowley test case, we considered the following Richardson extrap-

olant

ωN,N
R ≡ 8

7
ωN,N − 1

7
PN,NωN−1,N−1,



6. Numerical results 18

it cancels so the leading third-order term in the error expansion (2.9). The new leading-order terms

are proportional to h4∂5
xc and h4∂5

yc and are thus of a dispersive nature which is shown in the N = 9
error pro�le for Richardson extrapolation in Figure 6. The Richardson extrapolant has an asymptotic

error

dRE ∼ h4
RE

while it has the same asymptotic complexity as a single grid,

CRE ∼ h−3
RE .

If we consider a combination technique and a Richardson extrapolation of equal complexity, i.e., we

put

CRE ∼ CCT

then we obtain

hRE ∼ h
2/3
CT

which leads to

dRE ∼ h
8/3
CT . (6.3)

According to (4.11) the combination technique has

d̂ ∼ h3
CT log h−1

CT . (6.4)

Comparison of (6.3) with (6.4) shows that in the limit h → 0 the combination technique is more

e�cient than Richardson extrapolation.

In Figure 3(d)the numerically observed performance of Richardson extrapolation (RE) is compared

with that of the single grid (SG) and the combination technique with intermediate combinations (ICT)

when applied to the Molenkamp-Crowley test case. Figure 3(d) clearly shows that Richardson extrap-

olation is very e�cient for the Molenkamp-Crowley test case, much more so than the combination

technique, even though we expect the combination technique to be superior to Richardson extrapo-

lation in the asymptotic limit h → 0. For the Molenkamp-Crowley test case, without parallelization

and on grids of practically relevant mesh width, the combination technique can not compete with

Richardson extrapolation. Note that Richardson extrapolation and the combination technique strive

for higher e�ciency in di�erent ways. Richardson extrapolation generates a higher-order solution

for a marginally larger complexity, while the combination technique requires lower complexity for a

marginally larger error.
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Figure 6: Error pro�le present in an N = 9 Richardson extrapolant.

7. Conclusions

We have derived leading-order expressions for the error that is introduced when a spatially constant

coe�cient advection equation is solved with the combination technique. In our derivations we have

accounted for time-dependent coe�cients and for intermediate combinations. When a constant coef-

�cient advection equation

ct + acx + bcy = 0 (7.1)

is solved on a grid of mesh width h, this will introduce an error d into the numerical solution which

is in leading order given by

d = tφhp(|a| ∂p+1
x + |b|∂p+1

y )c +O
(
hp+1

)
, (7.2)

where c is the exact solution, p is the order of discretization and φ is an error constant. We have

shown that when we solve (7.1) with the combination technique, we obtain an error d̂ which is in

leading order given by

d̂ = tφhp(|a| ∂p+1
x + |b| ∂p+1

y )c

+ 1
M t2φ2 |ab|Hphp(1 + (1− 2p) log2

H
h )∂p+1

x ∂p+1
y c +O

(
hp+1 log2

1
h

)
,

(7.3)

where H is the mesh width of the coarsest grid in the combination technique and M is the number

of combinations. We see that the leading-order term from the single grid error (7.2) reappears in

the combination technique error (7.3) and is accompanied by a new term which is formally of order

hp log h−1. Focusing only on the order in terms of h, this new term has to be identi�ed as the

leading-order term in (7.3). The numerical experiments suggest, however, that the term proportional

to hp in (7.3), which is also present in the single-grid error, is of equal importance as the new term

proportional to hp log h−1. The additional error due to the combination technique, corresponding to

the second term in (7.3), is proportional to 1/M . This suggests that the error due to the combination

technique can be strongly reduced by making a couple of intermediate combinations. The numerical

results con�rm this. For our test case that has time-dependent coe�cients it turns out that the

number of combinations has to be chosen such that the problem is split up in problems which have

a constant direction of advection. This agrees with our error analysis. Finally, the combination

technique proved more e�cient for grid-aligned problems than for non-grid-aligned problems, which

follows from numerical observations and from analysis.

For the Molenkamp-Crowley test simple Richardson extrapolation proved more e�cient than the

combination technique, even though the combination technique is expected to be more e�cient in the

asymptotic limit h→ 0. Rüde made the same observation for a smooth Poisson problem in [7].
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When going to three spatial dimensions (or even higher dimensional problems), the combination

technique will perform signi�cantly better. Furthermore, very signi�cant gains in performance can be

obtained when the combination technique is parallelized.
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