
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Computer verification of the Ankeny-Artin-Chowla conjecture
for all primes less than 100 000 000 000

A.J. van der Poorten, H.J.J. te Riele, H.C. Williams

Modelling, Analysis and Simulation (MAS)

MAS-R9905 March 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report MAS-R9905
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Computer Verification of the Ankeny-Artin-Chowla Conjecture
for All Primes less than 100 000 000 000

A. J. van der Poorten

ceNTRe for Number Theory Research, Macquarie University

Sydney, NSW 2109, Australia

alf@math.mq.edu.au

H. J. J. te Riele

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Herman.te.Riele@cwi.nl

H. C. Williams

Dept. of Computer Science, University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

williams@cs.umanitoba.ca

ABSTRACT

Let p be a prime congruent to 1 modulo 4 and let t, u be rational integers such that (t + u
√
p)/2 is the

fundamental unit of the real quadratic field Q(
√
p). The Ankeny-Artin-Chowla Conjecture (AACC) asserts

that p will not divide u. This is equivalent to the assertion that p will not divide B(p−1)/2, where Bn
denotes the nth Bernoulli number. Although first published in 1952, this conjecture still remains unproved

today. Indeed, it appears to be most difficult to prove. Even testing the conjecture can be quite challenging

because of the size of the numbers t, u; for example, when p = 40 094 470 441, then both t and u exceed

10330000. In 1988 the AAC conjecture was verified by computer for all p < 109. In this paper we describe a

new technique for testing the AAC conjecture and we provide some results of a computer run of the method

for all primes p up to 1011.

1991 Mathematics Subject Classification: Primary 11A55. Secondary 11J70, 11Y40.

1991 Computing Reviews Classification System: F.2.1.

Keywords and Phrases: periodic continued fraction, function field.

Note: The first author’s research was supported in part by a grant from the Australian Research Council.

The second author’s research was carried out under project MAS2.2 “Computational number theory and data

security”. The third author’s research was supported by NSERC Canada grant #A7649.

1. Introduction

Let p denote a prime such that p ≡ 1 (mod 4) and let ε = (t + u
√
p)/2 (> 1) be the

fundamental unit in the real quadratic number field Q(
√
p). In 1952 Ankeny, Artin and

Chowla [2] conjectured that p 6
∣∣ u. This conjecture arose from expressions which they derived

for the value of hu/t modulo p, where h is the class number of Q(
√
p). One of these results

1. Introduction 2

is

hu/t ≡ B(p−1)/2 (mod p), (1.1)

where Bn here denotes the nth Bernoulli number. Mordell [15] notes that this was proved
only for p ≡ 5 (mod 8) in [2]; it was later established for all p ≡ 1 (mod 4) by Ankeny and
Chowla [4]. However, this result had been proved earlier (1948) by Kiselev [12]. Ankeny and
Chowla [3] also noted that h < p; hence, p

∣∣u if and only if p
∣∣B(p−1)/2, a fact also noted earlier

by Kiselev and Carlitz [7].
Ankeny, Artin and Chowla [1] also announced that

2hu/t ≡ (A+B)/p, (1.2)

where
A =

∏
0<r<p

r, B =
∏

0<n<p

n

and
(
r
p

)
= 1,

(
n
p

)
= −1. This was proved later by Carlitz [7]. Unfortunately, there does not

seem to be any fast method of verifying the Ankeny, Artin, Chowla conjecture (AACC) for
a given p by making use of either (1.1) or (1.2). The work of Fillebrown [9] suggests that
computing Bernoulli numbers is very expensive, and there is no method known currently for
computing A+B (mod p2). Indeed, AB = (p− 1)! and it has only recently been possible to
compute the values of the Wilson quotients wp = (p−1)!+1

p up to 5×108 (see Crandall, Dilcher
and Pomerance [8]). In fact, in all previous attempts to verify the AACC for all primes < L,
the value of u was computed modulo p. We summarize this work in Table 1.1.

L Investigator(s) Date Machine

2 000 Ankeny, Artin, Chowla [2] 1952 —

(for p ≡ 5 (mod 8) only)

100 000 Goldberg [16] 1954 SEAC

6 270 714 Beach, Williams, Zarnke [6] 1971 IBM 360-65

100 028 010 Soleng [20] 1986 Cyber 171

1 000 000 000 Stephens, Williams [21] 1988 Amdahl 5850

Table 1.1: Verification of AACC for all p < L.

The AACC is a most tempting conjecture to test, particularly if one subscribes to the familiar
“log log argument”. This reasoning is based on the seemingly reasonable assumptions that
the probability that p

∣∣u is 1/p and that trials for different p values are independent events. It
then follows that we might expect that the number of exceptions to the AACC in the interval
[x, y] is given by ∑

x≤p≤y
p≡1 (mod 4)

1
p
≈ 1

2 log (log y/ log x) = N(x, y).

2. Estimation of hR2 3

For x = 5, y = 109, we get N(x, y) = 1.28 and for x = 5, y = 1011, we get only a small increase
in N(x, y) to 1.37. Thus, it seems by this “argument” that there might be exceptions to the
AACC and one might occur within a range that modern computers would have the capability
to search.

The purpose of this paper is to present a new algorithm for verifying the AACC for a given
prime p. We will also describe the implementation and running of this algorithm on two fast
computers. Our computer runs allowed us to verify the AACC for all primes between 109

and 1011; hence, we now know that the AACC holds for all p < 1011.
The strategy employed in devising our algorithm is based on the following simple observa-

tion. If

εk = (X + Y
√
p) /2 = (Xk + Yk

√
p) /2 (X1 = t, Y1 = u)

and p 6
∣∣ k, then p

∣∣u if and only if p
∣∣Y . This is very easy to see on expanding the k th power

of (t+ u
√
p)/2 by the binomial theorem and noting that

2k−1Y ≡ ktk−1u (mod p).

We estimate a value of log2 ε
k for some k such that p 6

∣∣ k and use the infrastructure ideas of
Shanks [18] to determine a value of η ∈ Z such that p

∣∣Y if and only if p
∣∣η. To determine this

estimate we make use of the analytic class number formula

2hR =
√
pL (1, χp) , (1.3)

where R(= log ε) is the regulator of K = Q(
√
p) and L (1, χp) is the Dirichlet L-function for

K evaluated at s = 1. We also note that h <
√
p (see, for example, Slavutskii [19]).

Thus, our overall algorithm is made up of three components.

1. Find an estimate E of hR2, where R2 = log2 ε, by estimating L (1, χp) and using (1.3).

2. Use E to determine an integral multiple kR2 of R2 and check that kR2 < 8p. This
value of k will likely be h, but whether it is or not, our estimate is probably sufficiently
good that k is not very different from h (<

√
p). Thus, it is most likely that p 6

∣∣ k.
Since R2 = log2 ε ≥ log2

(√
p− 4 +

√
p
)
> 8 for the values of p in our search range, our

check that kR2 < 8p ensures that p 6
∣∣ k.

3. Compute η = η(kR) and verify that η 6= 0.

2. Estimation of hR2

It is well known that we can write L (1, χp) in its Euler product form as

L (1, χp) =
∏
q

(1− χp(q)/q)−1 ,

where the product is taken over all the primes q and the character χp(q) is the same as the
Kronecker symbol (p/q). Bach [5] has developed a technique for estimating logL (1, χp) which

2. Estimation of hR2 4

has been found to be very effective in practice (see §2 of Jacobson, Lukes and Williams [11]).
For some suitable T , we compute

C(T) =
T−1∑
i=0

(T + i) log(T + i)

and

aj = (T + j) log(T + j)/C(T) (j = 0, 1, 2, . . . , T − 1).

By Theorem 9.2 of [5], we have (under the Extended Riemann Hypothesis for L (s, χp))

∣∣∣logL (1, χp)−
T−1∑
i=0

ai logB(T + i)
∣∣∣ < A(T, p),

where

B(x) =
∏
q<x

(1− χp(q)/q)−1 ,

A(T, p) =
A log p+B√

T log T
,

and A,B here are constants which are explicitly given in Table 3 of [5]. The important item
to note here is that A(T, p) will be quite small for even modest values of T because log p will
not be large compared to

√
T .

Let

S(T, p) =
T−1∑
i=0

ai logB(T + i).

As pointed out in [11], we can write this as

S(T, p) =
∑

q<2T−1

w(q) log [q/(q − (p/q))] ,

where

w(q) =
{

1 when q < T∑T−1
j=q−T+1 aj when T ≤ q < 2T − 1.

Since we will need to evaluate S(T, p) for many values of p, it is convenient to precompute
and store in a large table the quadratic residues and non residues of p and the values of w(q)
log[q/(q + 1)], w(q) log[q/(q − 1)] for all the primes q < 2T − 1. It is then a simple matter
to compute S(T, p) by doing only table look-ups and additions. Our estimate E for hR2 is
then computed as

E =
√
p

log 4
exp(S(T, p)).

3. Continued fractions and ideals 5

T E E/R2

p = 9 999 999 241 100 374 191.1 0.9914
R2 = 377 424.5 200 377 174.2 0.9993

500 382 290.3 1.0129
1 000 377 796.8 1.0010
2 000 375 368.2 0.9946
5 000 377 872.1 1.0012

p = 9 999 999 253 100 152 887.6 3.0043
R2 = 50 890.1 200 155 708.1 3.0597

500 154 600.0 3.0379
1 000 154 297.7 3.0320
2 000 153 518.1 3.0167
5 000 152 657.5 2.9997

p = 9 999 994 117 100 268 436.8 26.8469
R2 = 9 998.8 200 268 043.1 26.8075

500 271 177.0 27.1210
1 000 271 498.3 27.1531
2 000 271 266.8 27.1299
5 000 270 060.7 27.0093

Table 2.1: Some experiments with Bach’s method to estimate hR2.

It should be emphasized here that this method for finding E usually provides a much better
result than what Bach’s estimate for the error suggests. Also, although on average the error
decreases with increasing T , in many cases the error for small T (say T = 100) is comparable
to the error for larger T (say T = 5000). We illustrate these remarks in Table 2.1.

We next need to know how to use E to find kR2. For this we will require some results
concerning continued fractions and their relationship to the ideals in the ring OK of algebraic
integers in K = Q(

√
p).

3. Continued fractions and ideals

In this section we will briefly review some well known results concerning the ideals of OK and
continued fractions. For proofs of these results we refer the reader to Stephens and Williams
[21], Mollin [14] or Williams and Wunderlich [22].

By 〈a0, a1, a2, . . . , an, . . . 〉 we denote the simple continued fraction

a0 +
1

a1 +
1

a2 +
1

.. .
an +

1
.. .

.

3. Continued fractions and ideals 6

The partial quotients ai ≥ 1 (i ≥ 0) and the convergents Cn = 〈a0, a1, a2, . . . , an〉 are given
by Cn = An/Bn, where A−2 = 0, B−2 = 1, A−1 = 1, B−1 = 0 and

Ai+1 = ai+1Ai +Ai−1

Bi+1 = ai+1Bi +Bi−1 (i = −1, 0, 1, . . .)

Note that B0 = 1, B1 = a1 and Bi ≥ 1 for i ≥ 0. Also

AnBn−1 −BnAn−1 = (−1)n+1. (3.1)

Let P,Q,D ∈ Z such that D > 0,
√
D 6∈ Q and Q

∣∣D − P 2. The continued fraction of
φ = φ0 = (P +

√
D)/Q is given by

φ = 〈a0, a1, a2, . . . , an−1, φn〉.

The partial quotients are determined by making use of the formulas:

Pi+1 = aiQi − Pi
Qi+1 = (D − P 2

i+1)/Qi = Qi−1 − ai (Pi+1 − Pi)
ai+1 = b(Pi+1 + d)/Qi+1c = b(Pi+1 +

√
D)/Qi+1c,

where d = b
√
Dc, P0 = P,Q0 = Q, a0 = bφ0c. Also,

φn = (Pn +
√
D)/Qn.

Note that

φi+1 =
1

φi − ai
; (3.2)

hence, φi > 1 when i > 0. At some point in the computation of the continued fraction of φ,
we must find some φk such that1 φk < 0; furthermore, this value of k will be O(log |Q|/

√
D).

If we put θ1 = 1 and define

θ−1
k =

k−1∏
i=1

φi (k > 1),

then

θi = (−1)i−1 (Ai−2 − φBi−2) (3.3)

and

θiθi = (−1)i−1Qi−1/Q0. (3.4)

We also put Ψ1 = 1 and define

Ψk =
k−1∏
i=1

ψi (k > 1),

1Here, as is customary, we use α to denote the conjugate of α in K.

3. Continued fractions and ideals 7

where

ψi = |(φi)−1| =
∣∣∣∣∣
√
D + Pi
Qi−1

∣∣∣∣∣ ; (3.5)

hence,

Ψi = |θi| = |Ai−2 − φBi−2|. (3.6)

Since

φ =
φi−1Ai−2 +Ai−3

φi−1Bi−2 +Bi−3
(i ≥ 1),

we get

Ai−2 − φBi−2 =
Ai−2Bi−3 −Ai−3Bi−2

φi−1Bi−2 +Bi−3

;

thus, by (3.1) and (3.4) we get

Ψi = 1/|φi−1Bi−2 +Bi−3|. (3.7)

Let [α, β] denote the module {αx + βy : x, y ∈ Z}. If D is squarefree and if we put
ω = (1 +

√
D)/2 when D ≡ 1 (mod 4) or ω =

√
D otherwise, then the maximal order OK

(ring of algebraic integers of K) is given by OK = [1, ω]. Any ideal of OK can be written
as a = [L(a), β] where L(a) is the least positive rational integer in a, β = b + cω (b, c ∈ Z),
and c

∣∣b, c∣∣L(a), L(a)
∣∣ββ. If c = 1, we say that a is primitive. A primitive ideal is said to be

reduced if L(a) is a minimum in a; that is, there does not exist any nonzero α ∈ a such that
|α| < L(a) and |α| < L(a).

Theorem 3.1 An ideal a of OK is reduced if and only if there exists some β ∈ a such that
a = [L(a), β], where β > L(a) and −L(a) < β < 0.

If a = [L(a), β], we define a to be the ideal [L(a), β].

Theorem 3.2 If a is a reduced ideal of OK, then so is a.

Proof Let a = [L(a), β]. If a is not reduced, there must exist some α ∈ a such that
|α| < L(a) and |α| < L(a). But since α ∈ a and a is reduced, this is impossible. 2

By our previous observations it is easy to see that any primitive ideal a of OK can be put
in the form [Q/r, (P +

√
D)/r] where Q,P ∈ Z, r = 2 if D ≡ 1 (mod 4) or r = 1 otherwise.

Furthermore, Q
∣∣D − P 2. Hence we can expand (P +

√
D)/Q into a continued fraction and

produce a sequence of ideals

a1(= a), a2, a3, . . . , (3.8)

where
ai = [Qi−1/r, (Pi−1 +

√
D)/r].

4. Some results concerning ideals and continued fractions 8

All of these ideals lie in the same equivalence class. Indeed,

(Q0θi)ai = (Qi−1)a1.

Thus, by (3.6) and (3.4) we get

(Q0)ai = (Q0Ψi)a1. (3.9)

We are now able to mention some useful theorems.

Theorem 3.3 If ak is reduced, then L(ak) < 2
√
D/r.

Theorem 3.4 If L(ak) <
√
D/r, then ak is reduced.

Theorem 3.5 If φk < 0, then ak+1 is reduced.

If we begin the sequence (3.8) with an ideal a, such as OK itself, which is already reduced,
then the sequence is completely periodic and is made up exclusively of the reduced ideals
that are equivalent to a. If, moreover, l is the least positive integer such that a1 = al+1, then
it is readily shown that for any positive integer k

εk = Ψlk+1.

Furthermore, when a = a (a is an ambiguous ideal), there is a symmetry property, namely
al−i+1 = ai+1, by which we are able to compute ε by looking only halfway through the cycle
a1, a2, . . . , al.

Theorem 3.6 If a1 = a is reduced and ambiguous, there must exist a least positive integer s
such that either Ps = Ps+1 or Qs = Qs+1. If Ps = Ps+1, then l = 2s and

ε = Ψs+1/|Ψs+1| = Q0Ψ2
s+1/Qs.

If Qs = Qs+1, then l = 2s+ 1,

ε = Ψs+2/|Ψs+1| = Q0Ψs+1Ψs+2/Qs, (3.10)

and

R2 = log2 ε = log2(Q0ψs+1/Qs) + 2
s∑
i=1

log2 ψi. (3.11)

4. Some results concerning ideals and continued fractions

In order to develop our algorithms, we will need some further results concerning ideals and
continued fractions. We first require a simple lemma.

Lemma 4.1 If k > 1 and φk < 0, then 0 < Qk < 2
√
D, |Pk| <

√
D and Qk−1 > 0. If

−1 < φk < 0, then Pk > 0.

4. Some results concerning ideals and continued fractions 9

Proof Since φk > 1, we have φk − φk = 2
√
D/Qk > 1; hence, 0 < Qk < 2

√
D. Since

Pk+
√
D > Qk > 0 and Pk−

√
D < 0, we must also have |Pk| <

√
D. Since QkQk−1 = D−P 2

k ,
we get Qk−1 > 0. Finally, since 2Pk/Qk = φk + φk, we see that Pk > 0 when φk > −1. 2

Our next result and its converse provide us with a simple criterion for determining when
ak is reduced.

Theorem 4.2 If k ≥ 1, Qk−1 > 0 and ak is reduced, then −1 < φk < 0 and ψk > 1.

Proof We know that L(ak) = Qk−1/r, and by Theorem 3.3 we know that L(ak) < 2
√
D/r

when ak is reduced. Hence, 0 < Qk−1 < 2
√
D. Put

γ = L(ak)φ−1
k = (

√
D − Pk)/r = (−ak−1Qk−1 + Pk−1 +

√
D)/r ∈ ak.

Since φk > 1, we get 0 < γ < L(ak) which means that 0 <
√
D − Pk < Qk−1 < 2

√
D;

consequently, Pk +
√
D > 0 and Qk > 0. Since ak is reduced, we must have |γ| > L(ak). It

follows that |φk| < 1. Also, since D − P 2
k = QkQk−1 > 0, we have |Pk| <

√
D and φk < 0. 2

Theorem 4.3 If −1 < φk < 0 (k ≥ 1), then Qk−1 > 0 and ak is reduced.

Proof By (3.2) we have

φk =
1

φk−1 − ak−1

;

hence, we must have φk−1 − ak−1 < −1. Thus

ak−1 − φk−1 = ak−1 +
√
D − Pk−1

Qk−1
> 1.

Now Qk−1 > 0 by Lemma 4.1 and ak = [Qk−1/r, (Pk−1−
√
D)/r] = [L(ak), β] where L(ak) =

Qk−1/r and β = ak−1Qk−1/r + (
√
D − Pk−1)/r > L(ak). Note further that

β = ak−1Qk−1/r − (
√
D + Pk−1)/r and ak−1 = b(Pk−1 +

√
D)/Qk−1 c;

hence −L(ak) < β < 0. By Theorem 3.2 we know that ak is reduced, and by Theorem 3.1
we know that ak is reduced. 2

We next suppose that
a = [Q/r, (P +

√
D)/r],

where Q > 0 and 0 < P < Q. Notice that any ideal of OK must have such a representation.

Theorem 4.4 If k (> 0) is the least integer such that φk < 0, then Ψi ≤ 1 for 1 ≤ i ≤ k.

Proof The theorem is certainly true if i = 1. If k ≥ i = 2, then Ψi = ψ1 = |P1 +
√
D|/Q0.

Since φ1 > 0, we cannot have a1 reduced by Theorem 4.2; hence, by Theorem 3.4 we must have
Q0 >

√
D, and therefore 0 ≤ a0 ≤ 1. If a0 > 0, then P1 = −P0 and ψ1 = |−P0 +

√
D|/Q0. In

this case 0 <
√
D/Q0 < 1 and −1 < −P0/Q0 < 0; hence, ψ1 < 1. If a0 = 1, then P1 = Q0−P0

and P1 +
√
D = Q0 − P0 +

√
D > 0. If P0 >

√
D, then 0 < (P1 +

√
D)/Q0 < 1; if P0 <

√
D,

then φ0 < 0, which by Theorem 3.5 means that a1 must be reduced, a contradiction. If
k ≥ i ≥ 3, then we have φi−1 > 0, Bi−2 > 1, Bi−3 ≥ 1; hence, by (3.7) we get Ψi < 1. 2

4. Some results concerning ideals and continued fractions 10

Corollary 4.5 If, in the sequence of ideals (3.8), ai is not reduced, then Ψi ≤ 1.

Proof Since ai is not reduced, we must have φi−1 > 0 by Theorem 3.5. Thus, k > i− 1 or
i ≤ k. 2

Corollary 4.6 If, in the sequence (3.8), ai is the first reduced ideal, then Ψi ≤ 1.

Proof Since ai is reduced, we must have i ≤ k + 1 by Theorem 3.5. If i ≤ k, the result
follows from the theorem. Suppose i = k+1. If φk < −1, then |ψk| < 1 and Ψi = |ψk|Ψk < 1;
if −1 < φk < 0, then ak is a reduced ideal by Theorem 4.3, contradicting the definition of ai.
2

In developing the algorithms that follow, it is essential to be able to perform baby-steps
(the process of moving through the sequence (3.8) one step at a time) and giant-steps (the
process of moving through the sequence (3.8) by taking several baby-steps at once). In what
follows we will describe a simple procedure for taking baby-steps, and in the next section we
will show how to take giant steps. We will assume that a1 is reduced.

We define ζj = ζ(aj) and ρj = ρ(aj) by

2ζj−1 < Ψj < 2ζj , ρj = 2ζj/Ψj .

We now have the following baby-step algorithm.

Algorithm 4.7 Given aj , ζj, ρj ; compute aj+1, ζj+1, ρj+1.

1. aj+1 = [Qj/r, (Pj +
√
D)/r], χj = (

√
D − Pj)/Qj .

2. Put ρ← ρjχj , ζ ← ζj.

3. while ρ < 1

ρ← 2ρ

ζ ← ζ + 1

end while

4. ρj+1 ← ρ, ζj+1 ← ζ.

Note that the process of determining Qj, Pj (aj+1) from Qj−1, Pj−1 (aj) is given in §3.
Proof (of correctness of Algorithm 4.7) We have ρ = 2kρjχj and ζ = ζj +k for some k ≥ 0.
If k = 0, then ρjχj ≥ 1. Note that χj = ψ−1

j ; hence, we get 2ζj/Ψj+1 ≥ 1. Since all of the
ideals in (3.8) are reduced, we must have −1 < φk < 0, ψj > 1 and 0 < χj < 1. It follows
that Ψj+1 > Ψj > 2ζj−1 and 2ζj−1 < Ψj+1 ≤ 2ζj ; therefore, ζj+1 = ζj and ρj+1 = ρjχj.

If k > 0, then
2ζj+k/Ψj+1 ≥ 1 and 2ζj+k−1/Ψj+1 < 1.

Thus, ζj+1 = ζj + k = ζ, ρj+1 = 2kρjχj = ρ. 2

In order to take giant steps, it will be useful to have the following definition.

5. The infrastructure and some algorithms 11

Definition 4.8 Let a be any reduced ideal and let x (≥ 0) be a real number. We define a(x)
to be that reduced ideal in the sequence (3.8) such that Ψj ≤ 2x and Ψj+1 > 2x. We also
define ρ(x) = 2x/Ψj .

Note that 1 ≤ ρ(x) < ψj < 2
√
D/r, and

1 ≤ L(a(x))ρ(x) < (Pj +
√
D)/r < 2

√
D/r ,

by Lemma 4.1 and (3.5).
We conclude this section with a minor, technical lemma.

Lemma 4.9 If a1 = OK = [1, ω], then ψ1 > 2 when D > 9.

Proof By (3.5), ψ1 = (P1 +
√
D)/Q0 = a0 + (

√
D − P0)/Q0 and a0 = bωc, P0 = r − 1,

Q0 = r. It follows that ψ1 ≥ b(
√
D + 1)/2c + (

√
D − 1)/2 > 2 when D > 9. 2

Corollary 4.10 If D > 9, a1 = OK and 0 ≤ y ≤ 1, then a(y) = a1.

Proof In this case, Ψ2 = ψ1 > 2; hence Ψ2 > 2y and a(y) = a1. 2

5. The infrastructure and some algorithms

Let b1 = OK = [1, ω] and consider the sequence of ideals bi, i = 1, 2, 3, . . . generated by
the associated continued fraction algorithm. By (3.9) we can write these ideals as bi = (Ψ

′
i),

where the Ψ
′
i values are strictly increasing with increasing i. We define the distance δi from

b1 to bi by δi = log2 Ψ
′
i. Now consider the product bibj of two ideals in the sequence. Both

bi and bj are reduced, but bibj need not be. We can write bibj = (u)a1 where a1 is primitive
and u ∈ Z, but a1 may need to be reduced by applying the continued fraction algorithm to
it until we find a reduced ideal ak = (Ψk)a1 = (ΨkΨ

′
iΨ
′
j/u). Since b1 is principal, we know

that bi, bj are principal and that therefore bibj is principal. Thus ak is a reduced principal
ideal, which means that ak = bm for some m. Furthermore,

δm = log2(ΨkΨ
′
iΨ
′
j/u) = δi + δj + δ,

where δ = log2(Ψk/u). It can be shown that δ = O(logD) and is, as a consequence, not very
large; thus we expect that

δm ≈ δi + δj.

From this we see that the reduced ideals in the principal class are organized by the continued
fraction algorithm into a very specific order. This organization was called the “infrastructure”
of the class by Shanks, the discoverer of this phenomenon. Thus, we can find a reduced
principal ideal of distance x from b1 = [1, ω] by performing about x/δs multiply-reduction
steps, using an ideal bs as a multiplier, instead of the roughly x/1.186569 (Lévy’s law, see
[14, pp. 243–244]) baby-steps that would be required. This is the process of taking giant
steps (of size δs). We will now show how this idea can be used in the development of some
algorithms.

Algorithm 5.1 Given b(x), b(y), ρ(x), ρ(y); compute b(x+ y), ρ(x+ y).

5. The infrastructure and some algorithms 12

1. Compute (u)a1 = b(x)b(y) (say by using the technique described in §3 of [21]). Put
ρ1 = uρ(x)ρ(y).

2. a1 := [Q0/r, (P0 +
√
D)/2], a0 = b(P0 + d)/Q0c, i← 1.

3. while ρi ≥ 1

Pi = ai−1Qi−1 − Pi−1

Qi = (D − P 2
i)/Qi−1

ai = b(Pi + d)/Qic
ρi+1 = ρi|(

√
D − Pi)/Qi|

i← i+ 1

end while

4. b(x+ y) = ai−1 = [Qi−2/r, (Pi−2 +
√
D)/r], ρ(x+ y) = ρi−1.

Proof (of correctness of Algorithm 5.1) We have bs = b(x), bt = b(y) for some s, t, and
ρi = ρ1/Ψi. Put j = i − 1 for the value of i produced after the execution of step 3. We
must have ρj+1 < 1 and aj = (ΨjΨ

′
sΨ
′
t/u). Let k be the least positive integer such that ak is

reduced.

Case 1 (j < k). Here j+1 ≤ k and aj is not reduced; hence, by Corollary 4.5 we have Ψj ≤ 1.
If aj+1 is reduced, then j+ 1 = k and Ψj+1 ≤ 1 by Corollary 4.6. If aj+1 is not reduced, then
we also have Ψj+1 ≤ 1. Thus, Ψj ≤ ρ1 and Ψj+1 ≤ ρ1, a contradiction.

Case 2 (j ≥ k). In this case aj is reduced and aj = bm, where Ψ
′
m = ΨjΨ

′
sΨ
′
t/u and Ψ

′
m+1 =

Ψj+1Ψ
′
sΨ
′
t/u. It follows that

Ψ
′
m ≤ 2x+y, Ψ

′
m+1 > 2x+y;

hence aj = bm = b(x+ y). Also, ρ(x+ y) = 2x+y/Ψ
′
m = ρ1/Ψj = ρj.

2

Algorithm 5.2 (D > 9) Given some real x ≥ 1, compute b(x), ρ(x).

1. Put j = dlog2 xe, y = x/2j .

2. Put b(y) = b1, ρ(y) = 2y.

3. for m = 1 to j

b(y)← b(2y)

ρ(y)← ρ(2y)

y ← 2y

end for

5. The infrastructure and some algorithms 13

4. b(x)← b(y), ρ(x)← ρ(y).

Proof (of correctness of Algorithm 5.2) Since 0 < y ≤ 1, we know by Corollary 4.10 that
b(y) = b1. Let v = x/2j . Since x = 2jv, we see that in step 4 we have b(y) = b(2jv) = b(x),
ρ(y) = ρ(2jv) = ρ(x). 2

We will now show how to incorporate Algorithms 4.7, 5.1, and 5.2 into an algorithm which
determines an integral multiple of R2. We first need the following definition.

Definition 5.3 If a1 is any principal ideal of OK and (Q0)ai = (Q0Ψi)a1 as in (3.9), we
define δ(ai, a1) = log2 Ψi. If a1 = OK, we write δ(ai) for δ(ai, a1).

Note that δ(b(x)) = x− log2 ρ(x). Also, it is easy to see that bjbj = (L(bj)); hence,

ΨjΨj = L(bj)θ,

where θ is some positive unit of K. It follows that

δ(bj) = −δ(bj) + tR2 + log2L(bj), (5.1)

where t ∈ Z. If, for reals a, b, c with c 6= 0, we say that a ≡ b (mod c) whenever (a−b)/c ∈ Z,
we can write (5.1) as

δ(bj) ≡ −δ(bj) + log2 L(bj) (mod R2). (5.2)

Furthermore, since δ(bi) is a strictly increasing function of i, we observe that if δ(bk) ≡
δ(bj) + u (mod R2) (k ≥ j) and 0 ≤ u ≤ δ(bt, bj), then bk ∈ {bj , bj+1, . . . , bt}.

Now let θ be any positive unit of K such that

| log2 θ −E| < K.

Then log2 θ = E − V with |V | < K and

E ≡ V (mod R2).

We are now able to present our algorithm for determining an integral multiple of R2.

Algorithm 5.4 Find an integral multiple of R2 from an estimate E.

1. Select (by trial) some parameter c with c > B = dlog2(2
√
D/r)e.

2. Compute a1 = b(E) and ρ(E) (Algorithm 5.2). Compute the set of ideals S = {a1, a2, . . . , at}
together with their associated ρ and ζ values (Algorithm 4.7) until ζi > c+B.

3. Compute the ideals b(c), b(2c), . . . and associated ρ(c), ρ(2c), . . . (Algorithms 4.7 and
5.1) until either b(ic) ∈ S or b(ic) ∈ S.

(a) If b(ic) ∈ S, then

kR = E − ic+ ζj + log2

(
ρ(ic)
ρjρ(E)

)
,

when b(ic) = aj .

5. The infrastructure and some algorithms 14

(b) If b(ic) ∈ S, then

kR = E + ic+ ζj − log2 (L(b(ic))ρ(ic)ρjρ(E)) ,

when b(ic) = aj .

Proof (of correctness of Algorithm 5.4) Put m = bK/cc + 2.

Case 1 (V − log2 ρ(E) +B > 0). In this case we put i = d(V − log2 ρ(E) +B)/ce. Then

V − log2 ρ(E) +B = ic− f (0 ≤ f < c)

and
ic = V − log2 ρ(E) +B + f < V +B + c < K + 2c.

It follows that i ≤ m. Now

δ(b(ic)) − δ(a1) = ic− log2 ρ(ic) −E + log2 ρ(E)
≡ ic− log2 ρ(ic) − V + log2 ρ(E)
= f +B − log2 ρ(ic) (mod R2).

Since log2 ρ(ic) < B, we have f + B − log2 ρ(ic) > 0 and f + B − log2 ρ(ic) < c +B. Thus,
we must have b(ic) ∈ S. If b(ic) = aj, then

δ(b(ic)) ≡ δ(a1, aj) + δ(b(E)) (mod R2).

From this we get

ic− log2 ρ(ic) ≡ E − log2(ρ(E)) + ζj − log2 ρj (mod R2).

Case 2 (V − log2 ρ(E) +B ≤ 0). If we put i =
⌊
|V − log2 ρ(E)|/c

⌋
, then

−V + log2 ρ(E) = ic+ f (0 ≤ f < c),

and since ic+ f < K +B, we see that i ≤ m− 1. Furthermore, by (5.2)

δ(b(ic)) − δ(a1) ≡ −ic+ log2(L(b(ic))ρ(ic)) −E + log2 ρ(E)
≡ f + log2(L(b(ic))ρ(ic)) (mod R2).

Since 0 < f + log2(L(b(ic))ρ(ic)) < c + B, we must have b(ic) ∈ S. If aj = b(ic), then by
(5.2)

δ(a1, aj) + δ(b(E)) ≡ −δ(b(ic)) + log2(L(b(ic)) (mod R2).

Thus,
kR2 = E + ic+ ζj − log2 (L(b(ic))ρ(ic)ρjρ(E)) .

2

6. The algorithm for determining η 15

6. The algorithm for determining η
There remains the problem of determining whether or not p

∣∣Y . Let b(x) = bj = (Ψ
′
j), where

Ψ
′
j = (Wj + Zj

√
D)/2

and Wj, Zj ∈ Z. If (Wj ,D) = 1, we define a pair (ξ(x), η(x)) by:

1. ξ(x), η(x) ∈ Z;

2. 0 ≤ ξ(x), η(x) < D;

3. ξ(x), η(x) not both zero;

4. Zjξ(x) ≡Wjη(x) (mod D).

Note that any particular pair (ξ(x), η(x)) for a given Ψ
′
j is not unique. For if (ξ, η) is any pair

satisfying properties (1)–(4) above, then so does (ξ1, η1), where ξ1 ≡ aξ, η1 ≡ aη (mod D)
and (a,D) = 1. Also, if D is a prime p (> 4), then (D,Wj) = (p,Wj) = 1. For if p

∣∣Wj,
we must have p

∣∣Q′j−1 by (3.6) and (3.4), which, since 0 < Q
′
j−1 < 2

√
p (Lemma 4.1), is

impossible for p > 4. Finally, if D is a prime p, then p
∣∣Z1 if and only if η(x) = 0. For if

η(x) = 0, then p
∣∣Z1ξ(x). Since p 6

∣∣ ξ(x) by property (3), we must have p
∣∣Z1. On the other

hand, if p
∣∣Z1, then p

∣∣Wjη(x) and we have already seen that p 6
∣∣Wj.

For b(x) above, we have b(2x) = Ψ
′
m, where

Ψ
′
m = Ψi(Ψ

′
j)

2/u

and ai = (Ψi) is reduced. Now by (3.6) we have Ψi = (G+
√
DB)/Q0, where

G = Gi−2 = Q0Ai−2 − P0Bi−2 = Pi−1Bi−2 +Qi−1Bi−3

(by (2.11) of [22]). Hence, we get

4Q0Ψ
′
m ≡ GW 2

j + (2GWjZj +BZ2
j)
√
D (mod D).

Putting ξ ≡ ξ(x)G (mod D), η ≡ 2η(x)G + ξ(x)B (mod D) we see that

GW 2
j η − (2GWjZj +BZ2

j)ξ ≡ 2G2Wj(η(x)Wj − ξ(x)Zj) ≡ 0 (mod D).

Since Q0 = (Q
′
j−1)2/(ru), we see that (Q0,D) = 1 when D = p. Also, if D = p and ξ ≡ η ≡ 0

(mod p), then p
∣∣ξ(x)G. If p

∣∣G, then p
∣∣Qi−1Q0 by (3.6) and (3.4). Since p 6

∣∣ Q0, we must have
p
∣∣Qi−1. But since ai is reduced, we must have 0 < Qi−2 < 2

√
p which means that p 6

∣∣ G. If
p
∣∣ξ(x), then p

∣∣η implies that p
∣∣η(x), which contradicts property (3). From these observations,

we see that we may put

ξ(2x) ≡ ξ(x)G (mod p)
η(2x) ≡ 2η(x)G +Bξ(x) (mod p)

when D = p.

7. Implementation and computational results 16

Algorithm 6.1 Given D = p > 9 and x = kR2, compute b(x), ξ(x), η(x).

1. Put j = dlog2 xe, y = x/2j (0 ≤ y < 1).

2. Put b(y) = b1, ρ(y) = 2y, ξ(y) = 1, η(y) = 0.

3. for m = 1 to j

Compute (u)a1 = b2(y), ρ1 = uρ(y)2.

Put a1 = [Q0/r, (P0 +
√
p)/r], B−1 = 0, B−2 = 1, i = 1,

a0 = b(P0 +
√
p)/Q0c.

while ρi ≥ 1

Pi = ai−1Qi−1 − Pi−1, Qi = (p− P 2
i)/Qi−1

ai = b(Pi +
√
p)/Qic

Bi−1 = ai−1Bi−2 +Bi−3

ρi+1 = ρi|(
√
p− Pi)/Qi|

i← i+ 1

end while

b(2y) = ai−1

ρ(2y) = ρi−1

G ≡ Pi−2Bi−3 +Qi−2Bi−4 (mod p)

ξ(2y) ≡ ξ(y)G (mod p)

η(2y) ≡ 2η(y)G +Bi−3ξ(y) (mod p)

y ← 2y

end for

4. b(x)← b(y), ξ(x)← ξ(y), η(x)← η(y)

Note that if x = kR2 where k ∈ Z>0, then b(x) = OK and L(b(x)) = 1.

7. Implementation and computational results

The complete algorithm for testing the AACC was implemented in Fortran 77 and tested
and run on an SGI O2 workstation and on one processor of an SGI Origin 2000 computer
system at CWI in Amsterdam. Both of these machines support 64-bit arithmetic, which is
particularly helpful in the third step of the overall algorithm (Algorithm 6.1). The program
executes about four times more quickly on the Origin 2000 than it does on the O2. A basic
step in the computations is the continued fraction evaluation:

Pi+1 = aiQi − Pi,
Qi+1 = (p− P 2

i+1)/Qi,
ai+1 = b(Pi +

√
p)/Qic,

7. Implementation and computational results 17

where it is known that Qi
∣∣(p − P 2

i+1). Special precautions were taken to guarantee the
correctness of this routine, taking into consideration that p can be as large as 1011, and using
the relation Qi+1 = Qi−1 − ai(Pi+1 − Pi). Furthermore, we made use of a computing trick
of Head [10] to deal with integers that become as large as p2 ≈ 1022 (> 264). This was very
useful in the third phase of the procedure.

In view of the result of Lenstra [13] that computation of R can be done in about p1/5

elementary operations, we put c = p1/5 in Algorithm 5.4. Since baby-steps are much cheaper
to compute than giant steps, it was important to do some experimentation to find the best
value for t in the set S of Algorithm 5.4. To this end, we introduced a parameter f and
computed S until ζi > fp1/5. Since p1/5 > 0.5 log2 p for p > 109, we have ζi > c + B when
f ≥ 2. Usually we used f = 3, but as p became larger, we occasionally used f = 10 and
f = 20. We also experimented with the value for T . We found that for values of p up to
about 6× 1010, a value of T = 2000 worked reasonably well, but beyond that point we used
T = 5000. Thus our T, f pairs were usually (2000, 3) or (5000, 3), but when we failed to
find a value for kR2 for a modest value of i such that b(ic) or b(ic) ∈ S, we used a different
parameter set. We usually bounded i in our program by 60. When this failed to produce
a value for kR2, we tried T = 1000, f = 10, i-bound = 200 or T = 2000, f = 20, i-bound
= 500.

Of course, in running such a complex algorithm, it is essential to perform some checks to
ensure that the program is performing properly. We have already mentioned the simple check
that our value for kR2 be less than 8p, but we also always checked that b(kR2) = b1 = [1, ω]
whenever we ran Algorithm 6.1. This was a very useful confirmation that our value for kR2

is correct. It was also a very cheap check.
We less frequently carried out a more expensive check. From the continued fraction ex-

pansion of (1 +
√
p)/2, we computed t, u modulo p and the value of R2 by using (3.10) and

(3.11). (When D = p ≡ 1 (mod 4), we must always find some s such that Qs = Qs+1. See,
for example, Perron [17, pp. 106–108]. The actual values of t and u can become enormous;
for example, if p = 40/, 094/, 470/, 441, then both t and u exceed 10330000). We next divided
this value of R2 into our computed value of kR2 to check that this is very close to an integer
k. We then computed Xk and Yk modulo p by putting X0 = 2, Y0 = 0, X1 ≡ t, Y1 ≡ u
(mod p) and using

Xn+1 = X1Xn +Xn−1 (mod p)
Xn+1 = X1Yn + Yn−1 (mod p).

We checked that the computed values for ξ(kR2) and η(kR2) satisfied

ξ(kR2)Yk ≡ η(kR2)Xk (mod p).

As this check is very costly, we carried it out only for a small subset of the values p on which
we ran our main program. This check was carried out successfully for every 100, 000-th prime
for which we verified the AACC.

In all our runs, we did not find a single counter-example of the AACC; thus, we have
confirmed the truth of the AACC for all primes between 109 and 1011. Computing times on
the O2 and Origin 2000 were about 250 and 700 CPU hours respectively. We used the O2 to
search the range 109 − 9× 109 and the Origin to search the range 9× 109 − 1011.

8. A detailed example 18

8. A detailed example

We will now illustrate how our algorithm works by using a non-trivial numerical example
with p = 97 843 343 893. We put T = 1000 and obtain S(T, p) = 1.475146, E = 986 410.691.
We next put c = p1/5 = 157.7997, f = 10, and i-bound = 200. We find

a1 = b(E) = [Q0/2, (P0 +
√
p)/2]

with
P0 = 295 721, Q0 = 46 766, ρ(E) = 11.23627.

Furthermore, we compute ai for i = 2, 3, . . . , 941 (ζ941 is the first ζi > fc = 1 577.9973):

i Pi−1 Qi−1 ζi ρi

2 312 237 7 514 4 1.19714
3 311 425 114 162 11 1.84453

...
926 312 243 13 426 1 551 1.35561

...
939 81 187 23,294 1 576 1.30055
940 152 107 320 226 1 577 1.30525
941 168 119 217 282 1 578 1.73824

Next, we find b(c) = [92 354/2, (286 825 +
√
p)/2] and compute at most 199 more ideals

b(2c), b(3c), . . . , b(200c) until b(ic) or b(ic) is one of the previously determined ai. We find

i P
′
i−1 Q

′
i−1 ρ(ic)

1 286 825 92 354 2.24634
2 282 267 97 594 4.45638

...
12 305 353 13 426 32.65983

and b(12c) = a926. That is Qi−1 = Q
′
j−1 and Pi−1 ≡ −P

′
j−1 (mod Qi−1) (i = 926, j = 12).

We find, then, that

kR2 = E + ic+ ζj − log2 (L(b(ic))ρ(ic)ρjρ(E)) = 989 833.617.

Next, we compute b(kR2), starting with b(y) = b1, where y = kR2/220 = 0.9439789 and
computing b(2y), b(4y), . . . , b(220y). We find that b(kR2) = [1, (312 799 +

√
p)/2] = [1, ω].

Together with computing b(2iy) we also compute ξ(2iy) and η(2iy), finding

ξ(kR2) ≡ 73 973 607 135 (mod p)
η(kR2) ≡ 6 870 136 643 (mod p).

8. A detailed example 19

Since η(kR2) 6≡ 0 (mod p), we have confirmed the AACC for p = 97 843 343 893.
To run our expensive check we compute the continued fraction expansion of ω = (1+

√
p)/2

until two consecutive Q values are equal. We find that Qs = Qs+1 for s = 96 929. We also
find R2 = 329 944.539, and on dividing this into kR2 obtain k = 3.000 000 000. Furthermore,
we get t ≡ 84 779 576 991, u ≡ 38 999 918 048 (mod p). We then compute X3 ≡ 13 063 766 902
(mod p), Y3 ≡ 78 686 933 642 (mod p) and finally verify that

ξ(kR2)Y3 ≡ η(kR2)X3 (mod p).

20

References

1. N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Proc.
Nat. Acad. Sci. USA 37 (1951), 524–525.

2. N. C. Ankeny, E. Artin and S. Chowla, The class number of real quadratic fields, Annals
of Math. 56 (1952), 479–493.

3. N. C. Ankeny and S. Chowla, A note on the class number of real quadratic fields, Acta
Arith. 6 (1960), 145–147.

4. N. C. Ankeny and S. Chowla, A further note on the class number of real quadratic fields,
Acta Arith. 7 (1962), 271–272.

5. E. Bach, Improved approximations for Euler products, Number Theory, CMS Conference
Proceedings, Vol. 15, AMS, 1995, 13–28.

6. B. D. Beach, H. C. Williams and C. R. Zarnke, Some computer results on units in
quadratic and cubic fields, Proc. 25th Summer Meeting Can. Math. Congress, Lakehead
University, 1971, 609–648.

7. L. Carlitz, Note on the class number of real quadratic fields, Proc. Amer. Math. Soc. 4
(1953), 535–537.

8. R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes,
Math. Comp. 66 (1997), 433–449.

9. S. Fillebrown, Faster computation of Bernoulli numbers, J. of Algorithms 13(1992), 431–
445.

10. A. K. Head, Multiplication modulo n, BIT 20 (1980), 115–116.

11. M. J. Jacobson, R.F. Lukes and H.C. Williams, An investigation of the bounds for the
regulator of quadratic fields, Experimental Math. 4 (1995), 211–225.

12. A. A. Kiselev, An expression for the number of classes of ideals of real quadratic fields
by means of Bernoulli numbers, Doklady Akad. Nauk SSSR (N.S.) 61 (1948), 777–779.
(Russian)

References 21

13. H. W. Lenstra, Jr., On the calculation of regulators and class numbers of quadratic fields,
London Math. Soc. Lecture Note Series 56 (1982), 123–150.

14. R. A. Mollin, Quadratics, CRC Press, Boca Raton, 1996.

15. L. J. Mordell, On a Pellian equation conjecture, Acta Arith. 6 (1960), 137–144.

16. L. J. Mordell, On a Pellian equation conjecture (II), J. London Math. Soc. 36 (1961),
282–288.

17. O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Chelsea, New York, undated.

18. D. Shanks, The infrastructure of real quadratic number fields and its applications, Proc.
1972 Number Theory Conf., Boulder Colorado, 1973, 217–224.

19. I. S. Slavutskii, Upper bounds and numerical calculation of the number of ideal classes
of real quadratic fields, Amer. Math. Soc. Transl. (2) 82 (1969), 67–71.

20. R. Soleng, A computer investigation of units in quadratic number fields, Unpublished
ms., 1986.

21. A. J. Stephens and H. C. Williams, Some computational results on a problem concerning
powerful numbers, Math. Comp. 50 (1988), 619–632.

22. H. C. Williams and M. C. Wunderlich, On the parallel generation of the residues for the
continued fraction algorithm, Math. Comp. 48 (1987), 405–423.

