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Applications of factorization embeddings for Lévy processes

A. B. Dieker
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and
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7500 AE Enschede, the Netherlands

Abstract
We give three applications of the first factorization identity for Lévy processes:

e Phase-type upward jumps: we find the joint distribution of the supremum and the
epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We
also find the characteristics of the ladder process.

e Perturbed risk models: we establish general properties, and obtain explicit fluctuation
identities in case the Lévy process is spectrally positive.

e Asymptotics for Lévy processes: we study the tail distribution of the supremum under
different assumptions on the tail of the Lévy measure.

Key words: first factorization identity, Lévy processes, perturbed risk model, phase-type
jumps, ruin probability.

1 Introduction

Fluctuation theory analyzes quantities related to the extrema of a stochastic process. Examples
include the distribution of the supremum or infimum, the last (or first) time that the process
attains its extremum, first passage times, overshoots, and undershoots. The study of these
distributions is often motivated by applications in queueing theory, mathematical finance, or
insurance mathematics.

Of particular interest are the fluctuations of a Lévy process Z. Such a process has stationary
and independent increments, and is defined on the probability space of cadlag functions with
the Borel o-field generated by the usual Skorokhod topology. The characteristic function of Z;
has necessarily the form Ee®#%t = ¢~ t¥z(8) 8 ¢ R, where

V4 (8) = %@,@2 +iczB +/R (1 +iB21(12l < 1)) T5(dz),

for some oz > 0, cz € R and a so-called Lévy measure IIz on R\{0} satisfying [(1 A
|z|$)TIz(dz) < co. In particular, Zyg = 0. Z is called a compound Poisson process if c; = o7 = 0
and I1z(R) < oo.
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Figure 1: A realization of the killed Lévy process Z = X +Y and the corresponding embedded
(piecewise-linear) process. Jumps of Y are dotted and jumps of X are dashed.

Factorization embeddings

It is the aim of this paper to show how embeddings can be used to study the fluctuations of a
Lévy process. For this, we consider the sum Z of an arbitrary one-dimensional Lévy process
X and a compound Poisson process Y with intensity A, independent of X. Note that any
discontinuous Lévy process Z can be written in this form; in this paper, we are not interested
in continuous Lévy processes (i.e., Brownian motions with drift), since their fluctuation theory
is well-established. The representation Z = X + Y need not be unique; for instance, there
is a continuum of such representations if the Lévy measure has a nonvanishing absolutely
continuous part.

Before explaining the idea behind the embedding that we study, we first introduce some
notation. Write Ty, T5, ... for the jump epochs of Y, and set Ty = 0. Define the quantities G;
and S; for ¢ > 1 as follows. Zz,_, + S; stands for the value of the supremum within [T;_;, T;),
and T;_1 + G; is the last epoch in this interval such that the value of Z at T;_; + G; or
(Ti-1 + @i)— is Zr,_, + Si. Although formally incorrect, we say in the remainder that the
supremum of Z over [T;_1,T;) is attained for T;—1 + G, with value Zr,_, + S;.

In the first plot of Figure 1, a realization of Z is given. The jumps of Y are dotted and
those of X are dashed. The process Z is killed at an exponentially distributed random time k
independent of Z, say with parameter ¢ > 0 (¢ = 0 corresponds to no killing). The second plot



in Figure 1 is obtained from the first by replacing the trajectory of Z between T; 1 and T; by a
piecewise straight line consisting of two pieces: one from (T;—1, Zr,_,) to (T;—1+Gi, Z1,_, +Si),
and one from the latter point to (7}, Zz,—). Obviously, by considering the embedded piecewise-
linear process, no information is lost on key fluctuation quantities like the global supremum of
Z and the epoch at which it is attained for the last time.

The piecewise-linear process, however, has several useful properties. Firstly, by the Markov
property, the ‘hats’ are mutually independent given their starting point. Moreover, obviously,
the jumps of Y are independent of the ‘hats’. More strikingly, the increasing and decreasing
pieces of each ‘hat’ are also independent; indeed, (T; — T;—1, Z7, — Z1,_,) = (G;, S;) + (T; —
T4 — G, Zr,— — Zr,_, — Si), where the two latter vectors are independent, cf. the Pecherskii-
Rogozin-Spitzer factorization for Lévy processes (e.g., Thm. VI.5 of Bertoin [6]). This explains
the name factorization embedding.

The second plot in Figure 1 can be generated without knowledge of the trajectory of Z.
Indeed, since {7; : i« > 1} is a Poisson point process with intensity A and killing at rate ¢,
it is equivalent (in law) to the first N points of a Poisson point process with intensity A + ¢,
where N is geometrically distributed on Z, with parameter A/(A+¢q) (independent of the point
process).

The idea to consider an embedded process for studying fluctuations for Lévy processes is
not new. For instance, a classical example with ¢ = 0 is the case that X is a negative drift ¢ < 0
and Y has only positive jumps, so that G; = 0 for every i and (G, S;) + (T — Ti—1 — Gi, Zr,— —
Zr, , — Si) is distributed as (ey, cey), where ey denotes an exponentially distributed random
variable with parameter \. In that case, a random walk can be studied in order to analyze
the fluctuations of Z. To the author’s knowledge, nontrivial factorization embeddings have
only been used to obtain results in the space domain. We mention the work of Kennedy [21],
who studies certain Markov additive processes, and the work of Mordecki [26], who studies
supremum of a Lévy process with phase-type upward jumps and general downward jumps.
Recently, a slightly different form of this embedding has been used by Doney [14] to derive
stochastic bounds on the Lévy processes Z. He defines X and Y such that the supports of I1x
and ITy are disjoint, and notices that {Zr,_, + S;} is a random walk with a random starting
point, so that it suffices to establish stochastic bounds on the starting point. Doney then uses
these to analyze the asymptotic behavior of Lévy processes that converge to +oo in probability.
As an aside, we remark that the factorization embedding is different from the embedding that
has been used in [4, 28], where jumps are absorbed by some random environment.

Outline and contribution of the paper; three applications

We now describe how this paper is organized, thereby introducing three problems that are
studied using factorization embeddings. All the results in this paper are new, with the only
exception of Proposition 1, Theorem 5 and the first claim in Theorem 7.

Section 2 is a preliminary section, in which background is given and the above idea is used
to express fluctuation quantities of Z in those of X.

Section 3 uses these results to study the case that Z only has phase-type upward jumps.
Then, the Laplace exponent of the bivariate ladder process kz can be given; a quantity that lies
at the heart of fluctuation theory for Lévy processes, see Ch. VI of Bertoin [6]. In particular,
we give the joint law of the supremum and the epoch at which it is ‘attained’, generalizing
Mordecki’s [26] results.

Section 4 studies perturbed risk models, a generalization of classical risk models that has
drawn much attention in the literature. We prove a general Pollaczek-Khinchine formula in this
framework, but explicit results can only be obtained under further assumptions. Therefore, we
impose spectral positivity of the Lévy process underlying the risk model, and extend the recent



results of Huzak et al. [18] in the following sense. While [18] focuses on quantities related to
so-called modified ladder heights, we obtain joint distributions related to both the modified
ladder epoch and the ladder height. In particular, we obtain the (transform of the) distribution
of the first modified ladder epoch.

Section 5 studies the tail of the supremum of Z under three different assumptions on the
Lévy measure. We reproduce known results in the Cramér case and the subexponential case,
but also give a local variant in the latter case, which is new. Our results for the intermediate
case are also new, and complement recent work of Kliippelberg et al. [22].

After finishing this paper, the work of Pistorius [28] became available, and there is some
overlap between his work and Section 3 in the special case K = 1. In [28], the Laplace exponent
kz of the ladder process is characterized in terms of the solutions of the equation ¥z (5) = q.
Using a matrix Wiener-Hopf factorization, kz(0, 3) is explicitly found in terms of a vector ag_,
and an algorithm is given to calculate the latter. Section 3 of the present paper, however, is
more general in the sense that xz(g,3) is explicitly found in terms of a vector a(_ll_, for which
an efficient algorithm is given.

2 On factorization identities

In this section, we consider the process Z = X +Y, where Y is a compound Poisson process and
X is a general Lévy process, independent of Y. After giving some background in Section 2.1,
we study the supremum and infimum of Z and the epoch at which they are attained for the
first (last) time in Section 2.2. We express their joint distribution in terms of the correspond-
ing distribution of X. Moreover, the characteristics of the bivariate ladder process of Z are
expressed in those of X.

2.1 Background

We start with some notation. Given a Lévy process X, we define

X, =sup{X;s:0<s<t} X, =inf{X;:0<s<t}
FtX =inf{s <t:X,=X; or X,_ = X4}, @f( =sup{s <t:X,=X; or X,_ = X;}
Ff=inf{s<t: X;=X,orXs =X,}, Gf=sup{s<t:X;=X,orX, =2X,}.

The following identity, referred to as the Pecherskii-Rogozin-Spitzer (PRS) identity in the
remainder, is key to the results in this paper. Here and throughout, e, denotes an exponentially
distributed random variable with parameter ¢, independent of X and Y. For an account of the
history of this identity, we refer to Bertoin [6].

Proposition 1 (Pecherskii-Rogozin-Spitzer) We have for « >0, 8 € R, and g > 0,

Eefaeq+i,3Xeq — Ee—aégﬁ'iﬁyeq&_aﬁgz'f‘iﬂgeq — ]Ee—afii‘l‘iﬂyeq Ee—agé"riﬁieq

The second equality follows from the first by considering the dual process X = —X. The
PRS identity is sometimes referred to as the first factorization identity. It can be viewed as a
representation of (eq, X¢,) as as sum of two independent vectors, since (Egi , X,,) is distributed

_X J—
as (eq — G, Xe, — Xe,)-
In order to relate the PRS factors of Z and X, we need an auxiliary random walk. We write
A € [0,00) for the intensity of Y, and £ for its generic jump. For fixed ¢ > 0, let {Si} be a



random walk with step size distribution £ + X, , where the two summands are independent.

For this random walk, we define the first strict ascending (descending) ladder epoch 7, as

e, =inf{n>1:82 >0}, 7 =inf{n>1:57 <0},

P
and 7.}, is defined similarly with a weak inequality. We write H , (HZ,) for the ladder height
Sra, (57

When integrating with respect to defective distributions, we only carry out the integration
over the set where the random variables are both finite and well-defined. For instance, we
write Fe™PHas pTng for E | e PHus pTng $Tay < oo] in the remainder of this paper, unless indicated

otherwise.

2.2 The PRS factorization and ladder characteristics

The main result of this section, which we now formulate, relates the PRS factors of Z and X.
When a specific structure is imposed on X and Y, both factors can be computed; see Section 3.
Intuitively, a PRS factor of Z is the product of a PRS factor of X and a random-walk PRS
factor. The main complication is that the random walk is made into a continuous-time process
by ‘stretching’ time, but this stretching is not done independently of the step size.

Theorem 1 For every a, B,q > 0, we have

-
A w+
L e 1oE()
Ee_aGeq_ﬂzeq = EeiaGqu*ﬂX‘qu A Fa
q+to
e PHLY (A )
1 —Ee "ot ( xpora
q
-
A s+
. e 1oE()
Re FeqFZea  — Ee_aFeA-Fq_BXe*‘*q A Ta
qg+a
_ R.—BHII® A Ts+
1—Ee by

VA . z .
and Eeiaﬂeqﬂ’BZeq, Ee “Ceqt1PLe, follow by duality.

Proof. We only prove the first equality; the argument is easily adapted to obtain the second.

The first factor is a direct consequence of the independence of the first straight line in the
second plot of Figure 1 and the other pieces; see the remarks accompanying Figure 1. Writing
fori > 1, w; = Ty_1 + G; — Gy and W; = ZTZ-_1+@ — 51, these arguments also yield that
{W; : 1 > 1} is a random walk with the same distribution as {Sp : n > 0}, except for the killing
in every step with probability A/(A + ¢). Therefore, if we define the first (weak) ascending

ladder epoch of this random walk

N =inf{i > 1: W; > 0},

P(N o T
<oo)=E(— :
( ) <>\+Q)

Observe that (Efq — G1,Z., — S1) has the same distribution as Z;il(wgv, W]]v)v where K is

geometrically distributed on Z; with parameter P(N < o0), and (wgv, W]]v) are independent
copies of (wy, Wy), also independent of K. Note that we consider the weak ladder epoch in

we have

the definition of N, since we are interested in Eezq (as opposed to Fezq) This shows that

q
A et
(G5 -Gn) 4iB(Zeq—51) _ 1-E <_A+q>

b

A N i
1—F ()\—-I-q> efawNJrzﬂWN



and it remains to study the denominator in more detail.
For this, we rely on Section 1.1.12 of Prabhu [29]. The key observation is that {(w;, W;)}
is a random walk in the half-plane R, x R, with step size distribution characterized by

Ee—awl +iBW1 — Ee*aek-kq +iBX5)\+q Eezﬁf .

Theorem 27 of [29], which is a Wiener-Hopf factorization for random walks on the half-plane,
shows that we may write for |z|] <1 and a > 0, 8 € R,

)

1 — 2Beer+atiBXes  eife — [1 — EZNe—awN+iﬂWN] [1 - EzNe_awN+i5WN]

where the bars refer to (strict) descending ladder variables. The actual definitions of these
quantities are of minor importance to us; the crucial point is that this factorization is unique.
Indeed, an alternative characterization is obtained by conditioning on the value of ey

(A+9)z

1 — 2Re @er+atiBXey  eifl — 1 _
Ad+g+a

EeingE)\+q+a Eelﬂg,

and the Wiener-Hopf factorization for random walks shows that this can be written as

gt+a q+a
Tot b Tw— o ata
1-F <M> GJBHIE 1 R <_(/\ +4a)2 ) GBHLE | (1)
Atgta Atgta

This decomposition is again unique, so that the claim follows upon substituting z = A\/(A + q).
O

_z 7
If @« = 0, we must have Ee ®Ceq FZeq — EefaFeqf’BZeq, but the formulas in Theorem 1
differ in the sense of weak and strict ladder variables. This is not a contradiction, as Spitzer’s
identity shows that the fractions are equal for both 7, and 7.

Let us now verify that the formulas of Theorem 1 are in accordance with the PRS factor-
ization of Proposition 1. Indeed, with the Wiener-Hopf factorization for random walks (1) and

Z .
Theorem 1 (the transform Ee~*Fea™Zeq ig obtained by duality), we have

by
-z . = z . . 11—
EeiaGeq +iBZeq Ee_aEe‘l +Zﬁleq — e~ “€r+q +iBXe, ., . );rq )
1 — s Ee X ertara Beibt

By conditioning on the value of ey, in the first factor, it is readily seen that this equals

q _ q ' _ Eefaeq+i,BZeq‘
Mate  Z\Reifé A+ g+ a+ Ux(B) — AEei

Ee'?Xertqta

Given Theorem 1, one can easily deduce the characteristics of the ladder height process
of Z in terms of those of X; as the notions are standard, we refer to p. 157 of Bertoin [6]
for definitions. Further evidence for the importance of this two-dimensional subordinator has
recently been given by Doney and Kyprianou [15].

The dual processes of Z and X are defined by Z=-Zand X = -X respectively.

Corollary 1 For o, 3 > 0, we have

/iZ(a?/B) = ’iX(A—i_a’B) <1 _IEeiﬁHiL (ﬁ) s+> )

6



and

fz(nB) = kix(h+a,B8) (1_E65H3- (Ai())
a+ Vy(—if)

=k =T
kx(\ +a, —f) [1 _ EeBHE (ﬁ) S+]

where k is some meaningless constant.

Proof. It suffices to note that kz(a, —if)kz(a,i8) = k(o + ¥z(B)) by the Wiener-Hopf
factorization for random walks, and to continue Kz analytically. O

3 Fluctuation theory with phase-type upward jumps

In this section, we use the results of the previous section to study Lévy processes with phase-
. . . —Z =
type upward jumps, and general downward jumps. According to these results, (Geq, Z.,) can be

written as the sum of (Giiﬂ,yeA +,) and an (independent) random walk term. In this section,
we choose X and Y appropriately, so that the transforms of both vectors can be computed
explicitly.

For this, we let X be an arbitrary spectrally negative Lévy process, and Y is a compound
Poisson process (not necessarily a subordinator), independent of X, for which the upward
jumps have a phase-type distribution. The exact form of the Lévy measure of Y is specified
by (2) below.

Apart from their computational convenience, the most important property of phase-type
distributions is that they are dense, in the sense of weak convergence, in the class of probability
measures (although many phases may be needed to approximate a stable distribution, for
instance). A phase-type distribution is the absorption time of a Markov process on a finite
state space E. Its intensity matrix matrix is determined by the |E| x |E|-matrix T', and its
initial distribution is denoted by a. For more details on phase-type distributions, we refer to
Asmussen [3]. We write t = —T'1, where 1 is the vector with ones.

Fluctuation theory for Lévy processes with phase-type jumps has recently been studied by
Asmussen et al. [4] and Mordecki [26]; see also Kou and Wang [24]. Just like the phase-type
distributions are dense in the class of probability measures, this class of Lévy processes is dense
in the Skorokhod topology on D(R;) (see, e.g., [20, Ch. VI]) in the class of arbitrary Lévy
processes. In both [4] and [26], the authors obtain expressions for the Laplace transform of Z,
if Y is a compound Poisson process with only positive (phase-type) jumps.

While the class of processes that we analyze here is slightly more general, the main difference
is that we calculate the Laplace transform of the joint distribution (@i,feq); see Section 3.
Hence, if one assumes phase-type upward jumps, one can compute the epoch at which the
supremum is attained; the latter is perhaps more surprising than that one can calculate the
distribution of 764. This illustrates why Theorem 1 is interesting.

To the author’s knowledge, the results in this section cover any Lévy process for which this
joint distribution is known. The only case for which results are available but not covered here
is when Z is a certain stable Lévy process; see Doney [13]. Then, only the distribution of the
(marginal) law of Z, is known in a semi-explicit form.

The PRS factorization

We begin with a detailed description of the process Y. Given K € N, suppose that we have
nonnegative random variables {A4; : j =1,...,K} and {B; : j = 1,..., K}, where the distri-

7



bution Pp; of Bj; is phase-type with representation (Ej, aj, Tj). The distribution P_4; of —A;
is general; the only restriction we impose is that P_4, * Pg,({0}) = 0 for all j, i.e., A; and B;
are not both degenerate at zero. We assume that the process Y is a compound Poisson process

with Lévy measure given by
K

HY:)\ZWjPB]—*P—Aja (2)
j=1

where A € (0,00), 0 < m; <1 with ) 7; = 1, and * denotes convolution. In queueing theory
[3, 12], processes of this form arise naturally since the B can be interpreted as the service times
and the A as interarrival times. Notice that Y is a subordinator if and only if IIy can be
written as (2) with K =1 and A; =0.

Without loss of generality, we may assume that E; and T; do not depend on j. Indeed, if
E; has m; elements, one can construct an E with Z;il m; elements and T" can then be chosen
as a block diagonal matrix with the matrices T, ..., Tk on its diagonal. The vectors a; are
then padded with zeros, so that they consist of K parts of lengths mq,..., mg, and only the
J-th part is nonzero.

Fix some ¢q > 0; our first aim is to study the random walk {S7} introduced in Section 2.1,
with generic step size distribution (by the PRS factorization)

Pstlzzpye *PXEA-HI*PE,

At+q
where P; = IIy /X. We suppose that either ITy(Ry) > 0 or X is not a (negative) subordinator,
so that Ps‘f assigns strictly positive probability to R;. Throughout this section, we write 'rqu
for 7.2 . This notation is motivated by the assumption Iy (R;) > 0, since then 7, =77, .
Since X, e
as ) m;j PB;, (@) *PAg(q)a where B;- (¢) has again a phase-type distribution, say with representation

is either degenerate or exponentially distributed, the law of S7 can be written

(Eq, e’(q), T,). It is not hard to express this triple in terms of the original triple (E, a;, T'):
(Eq @j(q), Ty) = (E,a;,T) if X is a negative subordinator, and otherwise E; can be chosen
such that |Ey| = [E| + 1, and the dynamics of the underlying Markov chain are unchanged,
except for the fact that an additional state is visited before absorption. We set t; = —Tél.
Motivated by Theorem 1, the following lemma calculates the transform of the ladder vari-
ables (H{,7l); recall that the random variables are only integrated over the subset {7{ < oo}

of the probability space.
Lemma 1 Let p € (0,1) and 8 > 0. Then there exists some vector o7 such that
E[pte P | = of9(8I - T) 't

Proof. The proof is similar to the proofs of Lemma VIIL.5.1 and Proposition VIII.5.11 of
Asmussen [3]; the details are left to the reader. O

The above lemma shows that it is of interest to be able to calculate aﬁ_’q. Therefore,

we generalize Theorem VIIL.5.12 in [3] to the present setting. We omit a proof, as similar
arguments apply; the only difference is that we allow for K > 1 and that the random walk can
be killed in every step with probability p.

Proposition 2 a? satisfies o7 = £(a??), where

K o
Ee) = pdomel(a) [ T A g )
i=1

It can be computed as lim,_,o0 af9(n), where af9(0) = 0 and af?(n) = £(a?(n — 1)) for
n > 1.



The main result of this section follows by combining Theorem 1 with Lemma 1 and using

standard fluctuation identities, see for instance [6, Thm. VII.4]. For notational convenience,

) A
we write af_ for ai/( +a)a,

Theorem 2 Suppose that Z is not a subordinator. Then we have for a, 3 > 0,

A ®x(A+4)[1 - afl]
[©x(A+a+0a)+ 8] [1 - al (BT - Ty, o)t

and
a[®x(A+q+a) = 8] [1+ L™ (BT + Tp.0) Mt

Eeiaffq+ﬁgeq = -
[g+a+Pz(—iB)] &x(A +4q) [1 — al1]

While Theorem 2 is an immediate consequence of Theorem 1, we now formulate the corre-
sponding analog of Corollary 1. Note that the expression for xz(0, ) is already visible in the
work of Mordecki [26]; here, we obtain a full description of k.

Corollary 2 For a, 3 > 0, we have
kz(a,B) = [Bx (A +a) + 6] [1 - ad (B — Tp) 't,]

and

o+ Wz(—if)
[@x(A+a)— Bl [1+a%(BI+T,) 't,]’

where k is a meaningless constant.

/%Z(aaﬂ) =k

4 Perturbed risk models

Let X be an arbitrary Lévy process and Y be a compound Poisson process with intensity A and
generic positive jump £. In this section, we suppose that Z = X + Y drifts to —oo. Classical
risk theory studies the supremum of Z in case X is a negative drift, i.e., X; = —ct for some
¢ > AEE. Then, its distribution is given by the Pollaczek-Khinchine formula. In this analysis,
a key role is played by ladder epochs and heights, i.e., quantities related to the event that Z
reaches a new record.

In this section, we replace the negative drift X by an arbitrary Lévy process; in the lit-
erature, this is known as a perturbed risk model; see [17, 18, 30] and references therein. To
analyze this model, the classical ladder epochs and heights are replaced by so-called modified
ladder epochs and heights; these are related to the event that Z reaches a new record as a
result of a jump of Y.

In Huzak et al. [18], Y is allowed to be a general subordinator, not necessarily of the com-
pound Poisson type. Therefore, the perturbed risk models studied here are slightly less general.
However, since any subordinator can be approximated by compound Poisson subordinators,
one is led to believe that our results also hold in the general case. Since the approximation
argument required for proving this is not in the spirit of this paper, we do not address this issue
here. Instead, we shall content ourselves with writing the main results (Proposition 3, Theo-
rem 3, and Theorem 4) in a form that does not rely on Y being compound Poisson, although
this assumption is essential for the proofs.

In Section 4.1, we derive a Pollaczek-Khinchine formula for perturbed risk models. Unfortu-
nately, the formula is not so explicit. Therefore, we impose further assumptions in Section 4.2,
where we study spectrally positive Z.



As mentioned already, a central role in perturbed risk models is played by the first time
a new supremum is reached by a jump of Y, i.e.,

x=inf{t >0:AY; > Z; —Z; }.

In Figure 1, we have x = T5. On the event {x = oo}, we define (@f_,?x,) as (Efo, Zo)-

4.1 Generalities

In this subsection, we study the structure of a general perturbed risk model, i.e., we consider
a general Lévy perturbation X. The results that we obtain are new in this general framework.
The following proposition is crucial for the analysis in this section.

Proposition 3 We have
1. (

2. (

Ql

>37,796_) is independent of {x < oo};

x—> Zx-) is distributed as (6020,700) given {x = oo},

D

8 (Zy—Zy—y Zy— — Zy—y X — @f,) 1s conditionally independent of (6577796—) given {x <

Proof. We need some definitions related to the piecewise linear (jump) process of Figure 1,
in particular to its excursions. Let P denote the law of the piecewise linear process that
is constructed by discarding the first (increasing) piece, and let E denote the corresponding
expectation. Under ﬁ, there are two possibilities for the process to (strictly) cross the axis: it
either crosses continuously or it jumps over it. The event that the first happens is denoted by
X, as it is caused by fluctuations in X. We write ) for the second event. The probability of

no crossing (i.e., no new record) is then given by 1 — P(X) — P()). Moreover, by the strong
Markov property, we have

P()
(x <o) =1~ P (3)
On X and Y, we also define the ‘excursion lengths’ L, and ‘excursion heights’ H.. Moreover,
we also define the undershoot U, on Y; see Figure 2. The dotted line is the piece that is
discarded under P.

For a, 8 > 0, by the strong Markov property,
E [e‘aéi*_’é)?x*;x < oo]
= I[*:e_OEfA_’BYeA ]5(3)) +E [e_aLe_ﬂHe; X] E [e_aéi*_’BZX*;X < oo] )
from which we obtain

PQ)
1 —E[e—ale=BHe: x|’

—Z — —X —

Along the same lines, one can deduce that

L—P(x) - P(Y)

1 — [ [e-ole=BHe; X]

. -
E [efaGfo oo,y = Oo} _ Re—oCo,—AXe,

so that
E [e‘aéf*_ﬁixf;x < oo]

P(x < 00)

=E [e_O‘GX—_[iZX*;X < oo] +E [e_O‘GW_BZ‘x’;X = oo] ,

10
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Figure 2: The excursion quantities in the proof of Proposition 3.

_Z —
which is Ee~®Cx-"8%x- this is the first claim. These calculations also show that

E [e‘aéozo_ﬁz"’;x = oo]
P(x =)

=E [e_aéf*_ﬁZX*;X < oo] +E [e_aéi_ﬂz"’; X = oo] ,

which is the second claim.
For the third claim, it suffices to notice that a variant of the above argument yields for

a7/8777575207

X<oo]

— _ — — =Z
E [e—aGf_—ﬂZXeﬂy[ZXZX_]eé[ZX_ZX_]e—E [x—fo]

1-P(X) E [em7HedUeeele; )]

Eefaaj; —BXe, ¢
1 — E[e~ale=BHe; X P(Y)

O

The formula in the following theorem can be viewed as a generalized Pollaczek-Khinchine
formula for perturbed risk models. It is a consequence of the preceding proposition and the
observation that by the strong Markov property

_Z —
E {e‘aGoo_ﬂZ“’;X = oo]

Ee—aaozo—ﬁjoo — — .
1—-F [efaéf,fﬁix_ iy < OO] E |:e_0‘ [X_fo]_ﬂ[ZX_ZX*] ‘ x < OO:|
Theorem 3 For o, > 0, we have

—aGZ_ 7,
Ee*aaozo*EEoo _ P(x = oco)Ee *"x- hZx

__ __ —Z - ‘
1-P(x < oo)IEe_“fo_ﬁzX*E [ea [XfGX_}B[ZX*ZX_] ‘ x < oo]

4.2 Spectrally positive Z

In this subsection, we analyze the case that Z has only positive jumps. It turns out that the
transforms in the previous section can then be computed. As indicated below, this generalizes

11



the results of Huzak et al. [18] (modulo the remarks at the beginning of this section). For
instance, we obtain the transform of the distribution of (x, Z,). We remark that perturbed
risk models with positive jumps are related to M/G/1 queueing systems with a second service;
see [11].

Throughout, we exclude the case that X is a (negative) subordinator, i.e., that X is a
negative drift; the analysis is then classical. By doing so, the standard fluctuation identities
can be used for both X and Z, see Theorem VII.4 of Bertoin [6]. In this subsection, we use
these identities without further reference.

Our analysis is based on Wiener-Hopf theory for Markov additive processes. Indeed, the
Lévy process can be embedded in a Markov additive process in discrete time (e.g., [3, Ch. XI}).
To see this, fix some a > 0, and note that (VI.1) of Bertoin [6] implies that for ¢ > 0 and
B eR,

Fo—0Ceq+iBXey _ g,—0G., Ee#Xeqta,

and similarly for the joint distribution of (Egi , X eq). In other words, since « is fixed, the
joint distribution can be interpreted as a (defective) marginal distribution. Hence, a ‘killing
mechanism’ has been introduced.

Define a Markov additive process in discrete time {(Jp,Sn)} as the Markov process with
state space {1,2,3} x R, characterized by the transform matrix

L
0 Fe “CaEeXerta 0

F(a,B) = 0 0 Eeiaﬂg Eeiﬁieﬂa
Ee'Pé 0 0

That is, Sop = 0, and J,, is deterministic given Jp: in every time slot, it jumps from ¢ to i + 1,
unless ¢ = 3; then it jumps back to 1. If J,_1 = 1, the process is killed with probability

X
1-— EeiaGeA, and otherwise we set S, = S,—1 + Mp—1, where 7,_1 is independent of S,,_; and
distributed as Xe, . The cases J,-1 = 2 and J,,—1 = 3 are similar, except for the absence of
killing in the latter case. We also write

7y =inf{n >0:S5, >0}, 77— =inf{n >0:5, <0}

Expressions of the type Py(Jr, = 2) should be understood as P(J,, = 2,74 < oo|Jp = 2), and
similarly for Es.

In Wiener-Hopf theory for Markov-additive processes, an important role is played by the
time-reversed process. To define it, we introduce the Markov chain J , for which the transitions
are deterministic: it jumps from 3 to 2, from 2 to 1, and from 1 to 3. Hence, it jumps into
the opposite direction of J. We set 50 = 0, and define the transition structure of the time-
reversed Markov additive process (j , 5’) as follows. If J, ;| = 2, the process is killed with

probability 1 — Ee_aGCA, and otherwise we set S’n = An,l ~+ Nn—1, where 79,1 is independent

of S,,_1 and distributed as X . Similarly, if J,—1 = 3, the process is killed with probability
—aFX -

1 — Ee aEeA’ and otherwise the increment is distributed as X et If J,_1 = 1, the increment

is distributed as £ > 0. The quantities 74 and 7_ are defined as for {(Jp, Sn)}. We write b,
for the conditional distribution given Jg = 2.
Recalling that the dependence on « is ‘absorbed’ in the killing mechanism, we define

Exta

GS{‘HZ) (aa ﬁ) =y [eiBST+; JT+ = E]

and

G’gc’z)(a,ﬁ) =" |:€i55+_;j727 :j} .

12



Note that G(f’Q) —E [e*o‘L‘f“ﬂHﬁ; X] in the notation of the proof of Proposition 3, and similarly

for Gf’l); then X is replaced by Y.

The Wiener-Hopf factorization for Markov additive processes (refer to, e.g., Asmussen [3,
Thm. XI.2.12] or Prabhu [29, Thm. 5.2]) states that I — F(c,3) (where I denotes the identity
matrix) equals

1 0 0 1 _Ee—aafx-&-iﬁfq 0
A(1,2 (2,2 A(3,2

CatlS BTl I R R e G N K
0 0 1 —EetBé 0 1

where the arguments o and 3 of G4 and G_ are suppressed for notational convenience.

We start by computing the first matrix. Note that G(3 2)( ,B) = EefaEeAHﬁieA, so that
two terms remain. Recall that ®_x is the inverse of the function 5 — _x(8) = =¥ _x(—if),
and similarly for ®_.

Proposition 4 For g € R, we have

GO (g, g) = Rtz =XV

and
N <I),X(/\—|—a)—<I>,Z(a)

G2 (a,p) = & x(A+a)+iB

Proof. We start with (;'(72’2). By ‘gluing together’ the transitions 2 — 1 and 1 — 3, we see that
the killing probability for going from 2 to itself now equals A\/(A+ «), and the distribution of a
jump from 2 to itself can be written as f—l—YeHa — €&_ (A +a)s Where all three components are
independent. Therefore, by standard results on random walks (e.g., Lemma 1.4 of Prabhu [29)]),

we have
~(2,2) _ T A ™ iBS:_ _ B A - d_x(A+a)
(e,8) = E, ()\—i-a) ‘ 2 </\+a D_x(A+a)+ip’

and it remains to calculate the expectation, which we write as 7,. For this, we repeat the
argument that led to Theorem 1, but now for the minimum and in terms of 7,. We see that
EefZa« equals

®_z(a) ®_x(A+a) 1—1q _ (1=n)®x(A+ )

®_z(a)+iB P_x(A\+a)+iB1 _%% (1 =na)®_x(A+a)+iB’

sothat 1 =1 =@ _z(a)/P_x(A+ ).

Now we study 69’2). A descending ladder epoch occurs either at the first time that J visits
)

2, or in subsequent visits. The contribution to 69’2 of the first term is

o) [em@;g < 0] — Ee™ —exE[ BEXnra) e 4 Xy, < 0]
_ / o_x(\)e (B-x(Fa)+ib)rg [eiﬂf;g < t] dt
0

— TEeiB /'E @_X(A)e_((b*X()‘+a)+iB)tdt
0

D_x(A

(

x(A) =% x (o),
A+ a)+1ip8

o x

13



To compute the contribution to GQ’Q) of paths for which Sy is positive, we apply results of

Arjas and Speed [1] on random walks with a random initial point. Although we use their
notation and arguments, we do not repeat them; the details are left to the reader.

In the notation of [1], using the previously computed (A?(f’m, (again, the transform depends
on « through the killing mechanism), we have

) 1 d_x(A+a)— _z(a)
wZ*(IB) = ) = ]- + B .
_x(Aa)—®_z(a) d_

12X tes z(a) +1if

Therefore, using the projection operator P as defined by (2.4) of [1], the second contribution
to G2 equals by Theorem 1(b) of [1],

1 B .
P [Be AR [P )i 4 Xy, > 0] 3. (8)] (4)
w,— ()
A similar reasoning as before shows that
o) [eiﬁﬁz; 8> 0] - EeELE [eiﬁ (“Kem);g +X, . > o]

— 3 / e (0 X OO [ € 5 o) dy
0

EeiBé — Fe—2-x (A+a)é
P_x(A+a)+if

= 2_x(A)

As this is the transform of a positive random variable, the first observation in the proof of
Corollary 1 in [1] shows that

P_x(At+a)—2_z(a)n [ 8%, & _ P x(A+a) =2 2(0) [ o 4(a)8. &
P PR [e ,52>0] = s Bl ,52>0].

Therefore, (4) equals

<I>,X(>\+a)—<1>,z(a)

q) ()\) Ee_q)fZ(a)E — Ee—cb—x (A+a)£ <D_Z(a)+zﬁ
-X
D _x(A - o ¢ x(Ata)=® z(a)
x(Ata)=2oz(a) 14 S

— ®_x(V) —®_z(a)¢ _ me—®-x (A ta)¢
= BT x0ta)tif [Ee Ee ]

The claim follows by summing the two contributions. O
With the preceding proposition at our disposal, the Wiener-Hopf factorization yields that

EeiBé — Fe— -z ()¢
o_z(a)+if 7

P, 8) =@ x(\)

and
ko
d_x(\+ ) +iB — &_x(\)Ee 2z(@)EFe—aGeyTi8Xey

(2,2) _
1 - G%(a,8) = d_,(a) 10 ’

and Ee_aGf/\'Hﬂ Xex ig explicitly known in terms of ®_x.

From these expressions, upon choosing a = 8 = 0, one obtains that P (X)=1+ %()‘)EX 1
and P(Y) = & x(\E¢. In particular, 1 — P(X) — P(Y) = —2=xX gz, |

Our next goal is to characterize distributions related to modified ladder epochs and heights,
leading to the main result of this subsection.

14



Theorem 4 Let X be spectrally positive, but not a negative drift.
1. For a,B >0,

Fe—Cr-—BZx- _ T [efaaf_ —BZx

which should be interpreted as —EX; /v" ,(B) for B = ®_z(a).

In particular, Zx— has the same distribution as X o.
2. For a,B > 0,

1 P y(B) Yy (P z(a))
X<°°]_EY1 > ,()-58

g [ o-alx-Ci]-6l2-2 ] ‘

which should be interpreted as —y' y(B)/EY1 for B = @_z().
In particular, for y,z > 0,

— — 1 o0
P(ZX_ZX>x’ZX_ZX>y|X<OO):E/+ P(¢ > u)du.
zty

3. For a,B >0,

Yy (B) — Y-y (P_z(a))
a—Y_x(B) =Yy (P_z(a))’

which should be interpreted as —y' - (8)/Y"_,(B) for B = ®_z(a).
In particular, P(x < 00) =1 —EX,/EZ;.

E [e_ax_ﬁzx; x < oo] =

Proof. To compute the transform of the joint distribution of (65,,7,(_), we use elements of
the proof of Proposition 3:

E [e*aaff —BZx—| _— _){EE)? Ee_aé; —BXey }?2(3;)( :
1-GY7 (o, B

_ mx AL [@ gle) +if)
P_x(Ato)+iB @_X(A)Ee_qLZ(a)f’

—x —
&7QGEA7BX6A

from which the first claim follows.
The second claim is a consequence of the observation that the transform equals Gf’l) (o, B)/P(Y).
The second statement follows upon choosing @ = 0, and noting that

P(Zy_— Zy— >w‘ZX—7X, =y,x <o) =P({>z+yl{>y).
The third claim is obtained from the identity
_Z p—
X < oo] E [e"‘ G- -hl2x 2] ‘ X < oo] ;

E [e*o‘X*BZX X < oo} =E [e*aaf**ﬁzx—

and from (3). O
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Let us now calculate the transform of (GZ, Z,) with Theorem 3: for a, 8 > 0:
EZ

_ z(a)—

Fo @G %6700 _ L=y x( v
1 — ¥ v (B)—y- Y(<I>

a—P_x(B)—¥-v(

2@)  —EZi[® z(a)

- _ — 0]
(Z()oz)) a—Y_x(B) —y_v(B)’

B
(@
3

in accordance with standard fluctuation identities.

Note that Theorem 4.7 of [18] is recovered upon combining the ‘in particular’-statements
of this theorem with Proposition 3, at least if Y is compound Poisson. There is also another
way to see that P(Z,_ < z|x < 00) = P(Xo < z). Indeed, one can ‘cut away’ certain pieces
of the path of Z to see that X is distributed as Z,, given the event {x < co}. Schmidli [30]
makes this argument precise by time reversal of Z. However, this argument cannot be used to
find the distribution of G._

We end this subsection by remarking that similar formulas can be derived if £ is not nec-
essarily positive. However, the system of Wiener-Hopf relations then becomes larger and no
explicit results can be obtained, unless some structure is imposed; for instance, that £ have
downward phase-type jumps.

5 Asymptotics of the maximum

In this section, we study the probability P(Z. > x) as z — oo for a Lévy process Z that
drifts to —oo, under several conditions on the tail of the Lévy measure. The motivation for
studying this problem stems from risk theory; the probability P(Zs > z) is often called the
ruin probability.

It is our aim to show that the embedding approach is a natural yet powerful method for
studying tail asymptotics. Relying on random walk results (see Korshunov [23] for an overview),
we study these asymptotics in the Cramér case, the intermediate case, and the subexponential
case. To our knowledge, this method has not been applied to this problem before, yet the
asymptotics in the Cramér and subexponential case have been obtained elsewhere. Our results
for the intermediate case, however, are new; see Section 5.2.

More results (and references) on tail asymptotics for Lévy processes can be found in [15, 22].

In order to apply the embedding approach, we write Z as a sum of two independent processes
X and Y; one with small jumps (ITx((1,00)) = 0), and a compound Poisson subordinator
Y with jumps exceeding 1. This decomposition has recently been used by Doney [14] and
Pakes [27] in the context of asymptotics. We write A = I1z([1,00)) € [0,00), and £ denotes a
generic jump of Y. If A = 0, we set £ = 0. The random walk {S7} introduced in Section 2.1
plays an important role for ¢ = 0. For notational convenience, we write S, for SO, i.e., S is a
random walk with step size distribution § + X,

The process X has a useful property: for any n > 0, we have Ee"Xex, Ee"ex < 0o. As a
result, both P(X., > z) and P(X,, > x) decay faster than any exponential (by Chernoff’s
inequality). To see that the moment generating functions are finite, first observe that for
RB = 0, by the Wiener-Hopf factorization,

EefXex = FefXeaefXer,

This identity can be extended to RS > 0 by analytic continuation, since on this domain

A

EeﬂXeA - < ,
M+ Ux(—if) =

where the finiteness follows from the fact that IIx is supported on (—oo,1]. It is trivial that
EePXex is analytic for 5 > 0, hence the claim is obtained.
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5.1 The Cramér case

First we deal with the Cramér case, i.e., when there exists some w € (0, co) for which Eew?1 = 1.

Given w, one can define an associate probability measure P“, such that Z is a Lévy process
under P“ with Lévy exponent ¥z (u — iw). This measure plays an important role in the
following result, which is due to Bertoin and Doney [7]. The case that Z has a discrete ladder
structure is excluded, as random walk identities then directly apply.

Theorem 5 Let Z be a Lévy process for which 0 is reqular for (0,00). Moreover, suppose that
there is some w € (0,00) such that Ee¥%t =1, and that EZ1e%%' < oco.
Then, as x — oo, we have

4 CUJ —wx

P(Zoo > IE) ~ WG s

where -
log Ciy = _/ 11— ) [P(Z > 0) + P*(Z, < 0)] dt. (5)

0

Moreover, for any T > 0, we have as x — 00,
_ C, o
P(Zoo c (ZU,JJ—FT])NW(l—C w )6 wx.

Proof. As the reader readily verifies, the second claim follows immediately from the first.

Let us study the random walk S, under the present assumptions. First note that Ee“%! =
1 is equivalent with Ee“X<xEe“¢ = 1, so that by Lemma 1 of Iglehart [19] (the step size
distribution is nonlattice),

=] 1 wS 1
P(supS, > x| ~e Tz alP(Sn>0+E[emSa<0l} _ ~ _ o—we,
(n>li " ) wES; ewS1

Since X, has a finite moment generating function, we have by Lemma 2.1 of Pakes [27] that
X
= _ (= 3 LIP(8,>0)+E[evSn;5,<0)} EeCT N,
P(Zu > 2) _p(xeﬁigsn >x) e T [ F e e
The rest of the proof consists of translating ‘random walk language’ into ‘Lévy language’. For
this, we suppose that the ladder process of X is normalized such that for a > 0,8 € R,
a+ ¥x(B) = rx(a, —iB)kx (o, if),

and similarly for Z.
The quantity 1 — Ee®#51 = ¥4 (8)/(\ + ¥x(B)) has both a ‘random walk’ Wiener-Hopf
decomposition and a ‘Lévy’ Wiener-Hopf decomposition, and their uniqueness leads to the

identity
1 , kz(0, —i

n=1

Similarly, since 1 — Ee@ )51 = U ,(3 — iw) /[N + ¥ x (B — iw)], we have

1 ~ k(0,16 + w)
_ _E (w+iB)Sn. S, <0 - Z’—
exp( nzln [6 = ] Rx (A if +w)
Using the fact that Ee*Xex = kx(X,0)/kx (A, —w) (cf. (VI.1) of Bertoin [6]), and that
RS, 51 — EZye” IEZle“’Zl' _ IEZlei’Zl ,
A\Eew¢ A+ Ux(—iw) kx(A —w)ix(A,w)

the claim is obtained with C,, = kz(0,0)Rkz(0,w). Corollary VI.10 of Bertoin [6] shows that
log C,, is given by (5). O
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5.2 The intermediate case

This subsection studies the tail asymptotics of Z, under the condition
§ =sup{f > 0: Ee??' < o0} >0, (6)

but we now suppose that we are in the intermediate case, i.e., that § < oo and Ee’?t < 1.
These assumptions imply that A € (0, 00).
If D =1 — D is a probability distribution on R, we write D € S(a), a > 0, if

1. limg 0o D(z +y)/D(x) = e ¥ for all y € R,

2. [ eVD(dy) <
3. limy o0 {D(2)( )/D } =2 [*_ e D(dy),

where D) = D x D is the convolution of D with itself. Note that the first requirement
excludes the case that D is concentrated on a lattice. More generally, if u is a measure with
u([1,00)) < o0, we write 1 € S(a) if u([1,])/p([1, 00)) € S(a).

We remark that if (6) holds and II; € S(«), then « necessarily equals §, as the reader
easily verifies.

The following theorem builds on results of Bertoin and Doney [8]. It is closely related to
Theorem 4.1 of Kliippelberg et al. [22], where the tail asymptotics are expressed in terms of

characteristics of the ladder process. Here, it is found directly in terms of the Lévy measure of
Z.

Theorem 6 Let Z be a Lévy process that drifts to —oo, for which § € (0,00) and Eef%1 < 1.

If Tz € S(6), then Eed?= < 0o and P(Zs < -) € S(8); in fact, as © — 0o, we have
_Ee—521 log FeZ P(Z1 > a:)

Moreover, under these assumptions, we have as x — oo, for any T > 0,

EedZ o EedZ e
log EedZ1 Mz (2,2 +T1) ~  FedZ1 log RedZ

P(Zs € (x,x +T]) ~ — P(Zy € (z,z+T)).

Proof. It suffices to prove the first asymptotic equivalences; for the relationship between the
tail of the Lévy measures and the tail of the marginal distribution, we refer to Theorem 3.1 of
Pakes [27].

With the embedding in our mind, we first note that by Lemma 2.1 of [27], we have P({ +
X., > x) ~ Ee®Xex P(¢ > ). Since Ee?t < 1 implies Fe?S' < 1 (and vice versa), we can apply
Theorem 1 of Bertoin and Doney [8], which states (using Spitzer’s identity) that

Ee(sXe)‘
PlsupS,>z) ~ Eexp [ dsup S, | P(£ > z).
<n>Il) > 1— Ee‘ste‘;XeA P ( nZIi ) (é )

It is easy to see that

EefXex 1 X A
1 — EeféRedXen %(—15) _ et Wz(—id)  logEedZ1’
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Using the fact that the moment generating function of YQ is finite, we can again apply
Lemma 2.1 of [27] to see that

5¢ A 5%,
P <XeA + ithn > x) ~ —WEe rEexp (5?;1;5”) P(¢ > x)
AEe’Z o
= ———P

10gE€621 (£>'/E)7

as claimed.

The second assertion is a consequence of the first claim and the observations P(Zs >
4+ T)~e "TP(Zy >z) and Iz((z + T, 00)) ~ e 1TIz((z, 00)). O

It is readily checked that the statements of this theorem are equivalent to

- §EedZe oo
P(Zoo > .CC) ~ _W/x Hz((y, OO))dy

In this expression, one can formally let § — 0, so that the pre-integral factor tends to 1/EZ;.
This naturally leads to the subexponential case.

5.3 The subexponential case

A distribution function D on R, is called subexponential, abbreviated as D € S, if, in the
notation of the previous subsection, D) (z) ~ 2D(z). An important subclass of subexponential
distributions have finite mean and satisfy [’ D(y)D(z — y)dy ~ 2 [;° D(y)dyD(z); we then
write D € §*. More generally, for a measure p, we write p € S (or §*) if u([1,00)) < oo and
p(lL, )/ (1, 0)) € S (S7).

In this subsection, we suppose that the integrated tail of the Lévy measure

M((@.00) = [ Mz((yso))dy

is subexponential, i.e., II; € S. This property is known to be implied by II € S*. Addition-
ally, we suppose that Z; is integrable. The first assertion in the following result is due to
Asmussen [2, Cor. 2.5]; see also Maulik and Zwart [25], Chan [10], and Braverman et al. [9]. As
opposed to the Cramér and intermediate case, a local version of this theorem does not follow
from the global version, and that part of the theorem is new.

Theorem 7 Let Z be a Lévy process that drifts to —oo, for which Ty € S. Then P(Zy < -) €
S; in fact, as x — oo, we have

— [y ((y,00)dy [ P(Zy > y)dy
P(Zo >x) ~ — £Z, ~— 57 .

Moreover, if Il; € 8* and 11z is (ultimately) nonlattice, then we have as x — oo, for any
T >0,
z+T z+T
[ Og((y,00)dy [ P(Z1 > y)dy
EZ; EZ; ’

Proof. We have Iz ((z,00)) ~ P(Z1 > x) (see, e.g., [27]); hence, it suffices to prove only the
first equivalences.

Since II; € &, it is in particular long-tailed, so that for z € R, f;o P > y+2)dy ~
fmoo P(¢ > y)dy. Fix some n > 0. The latter observation implies that the function z —

P(Zw € (zyx+T)) ~ —
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" flo\jlogm P(¢ > y)dy is locally bounded and regularly varying at infinity with index 7, so that
by the Uniform Convergence Theorem, for large x,

o)

[ Pesu-aa<are) [ pes v

uniformly for 2 € [0, z]. Since X,, < X., and EenXexn < 00, this implies that fmoo P({+ Xe, >
y)dy = O ( f;o P> y)dy) This shows that one can apply dominated convergence after
Veraverbeke’s theorem to see that

1 o0
P<sup5’n>:v> ~ —m/m P(X., +¢& > y)dy

n>1
1 )
_E[Xe)\‘*'é.]/z P(£>y)dy

By definition of £, the right hand side is easily seen to be equivalent to f;o Iz ((y,o00))dy/|EZy|.
Since this is the tail of a subexponential random variable, the first claim follows from the fact
that fq has a lighter tail.

The second assertion is proven similarly, but with Veraverbeke’s theorem replaced by its
local counterpart, see Equation (18) in Asmussen et al. [5]. The rest of the argument is simpler
than for the ‘global’ version, since P(X., + & > z) ~ P({ > z) as Il € $* C S. A lattice
version can also be given. O

A different proof for the first claim can be given based on recent results of Foss and Zachary
[16]. Indeed, as noted in Section 4, a Markov modulated random walk is embedded in the second
plot of Figure 1. In order to verify the assumptions of [16] we suppose that Z is not spectrally
positive, so that there exist M_ < 0 and My > 0 such that AL = IIz(R\(M_, M,)) < co and
fR\(M, M) 2I1z(dz) < 0. One can write Z as a sum of X and Y, where Y is now a compound
Poisson process with Lévy measure II restricted to R\(M_, M, ). Further details are left to
the reader.
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