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population of elastic flows. Motivated by extensive measurement studies, we assume that the
sizes of the elastic flows exhibit heavy-tailed characteristics. The elastic flows are TCP-
controlled, while the transmission rates of the streaming applications are governed by a so-
called TCP-friendly rate control protocol. TCP-friendly rate control protocols provide a promising
mechanism for avoiding severe fluctuations in the transmission rate, while ensuring fairness
with competing TCP-controlled flows. Adopting the Processor-Sharing (PS) discipline to model
the bandwidth sharing, we investigate the asymptotic tail distribution of the deficit in service
received by the streaming sessions compared to a nominal service target. The latter metric
provides an indication for the quality experienced by the streaming applications. The results
yield valuable qualitative insight into the occurrence of persistent quality disruption for the
streaming users. We also examine the delay performance of the elastic flows by exploiting a
useful relationship with a Processor-Sharing queue with permanent customers.
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Abstract

We consider a fixed number of streaming sessions which share a bottleneck link with
a dynamic population of elastic flows. Motivated by extensive measurement studies,
we assume that the sizes of the elastic flows exhibit heavy-tailed characteristics. The
elastic flows are TCP-controlled, while the transmission rates of the streaming appli-
cations are governed by a so-called TCP-friendly rate control protocol. TCP-friendly
rate control protocols provide a promising mechanism for avoiding severe fluctuations
in the transmission rate, while ensuring fairness with competing TCP-controlled flows.

Adopting the Processor-Sharing (PS) discipline to model the bandwidth sharing,
we investigate the asymptotic tail distribution of the deficit in service received by the
streaming sessions compared to a nominal service target. The latter metric provides
an indication for the quality experienced by the streaming applications. The results
yield valuable qualitative insight into the occurrence of persistent quality disruption
for the streaming users. We also examine the delay performance of the elastic flows
by exploiting a useful relationship with a Processor-Sharing queue with permanent
customers.

1 Introduction

Over the past decade, TCP has gained ubiquity as the predominant congestion control
mechanism in the Internet. While TCP is adequate for best-effort elastic traffic, such as
file transfers and Web browsing sessions, it is less suitable for supporting delay-sensitive
streaming applications. In particular, the inherent fluctuations in the window size ad-
versely impact the user-perceived quality of real-time streaming applications. As a poten-
tial alternative, UDP could be used to avoid the wild oscillations in the transmission rate.

*This work was financially supported by a grant from Philips Research and by the Dutch Ministry of
Economic Affairs (via its agency SENTER; project EQUANET)



Since UDP does not respond to congestion, it may cause severe packet losses however, and
give rise to unfairness in the competition for bandwidth with TCP-controlled flows.
Discriminatory packet scheduling mechanisms provide a further alternative to achieve
some form of prioritization of streaming applications. However, the implementation of
scheduling mechanisms is surrounded with substantial controversy, because it entails major
complexity and scalability issues. In addition, prioritization of streaming applications may
cause performance degradation and even starvation of TCP-controlled flows that back off
in response to congestion. Evidently, the latter issue gains importance as the amount of
streaming traffic in the Internet grows.

The above considerations have motivated an interest in T'CP-friendly or equation-based
rate control protocols for streaming applications [16, 25, 27]. The key goal is to eliminate
severe fluctuations in the window size and adjust the transmission rate in a smoother
manner. In order to ensure fairness with competing TCP-controlled flows, the specific
aim is to set the transmission rate to the ‘fair’ bandwidth share, i.e., the throughput that
a long-lived TCP flow would receive under similar conditions.

Various methods have been proposed for determining the fair bandwidth share in an
accurate and robust manner. Typical methods involve measuring the packet loss rate and
round-trip delay (e.g. by running a low-rate connection to probe the network conditions).
The corresponding throughput may then be estimated from well-established equations
that express the throughput of a TCP-controlled flow in terms of the packet loss rate and
round-trip delay, see for instance [21, 24]. Obviously, the adaptation mechanism faces the
usual trade-off between responsiveness and smoothness, which is exacerbated by the fact
that the estimation procedure relies on intrinsically noisy measurements.

In the present paper we explore the performance of streaming applications under such
TCP-friendly rate control protocols. We consider a fixed number of streaming sessions
which share a bottleneck link with a dynamic population of elastic flows. The assumption
of persistent streaming users is motivated by the separation of time scales between the
typical duration of streaming sessions (minutes to hours) and that of the majority of elastic
flows (seconds to minutes). We assume that the sizes of the elastic flows exhibit heavy-
tailed characteristics. The latter assumption is based on extensive measurement studies
which show that file sizes in the Internet, and hence the volumes of elastic transfers,
commonly have heavy-tailed features, see for instance [14].

As mentioned above, the design and implementation of TCP-friendly mechanisms is a
significant challenge. In the present paper we leave implementation issues aside though,
and investigate the performance under idealizing assumptions. Specifically, we assume
the rate control mechanism reacts instantly and perfectly accurately to changes in the
population of elastic flows, and maintains a constant rate otherwise. This results — at the
flow level — in a fair sharing of the link rate in a Processor-Sharing (PS) manner. The PS
discipline has emerged as a useful paradigm for modeling the bandwidth sharing among
dynamically competing TCP flows, see for instance [4, 20, 22]. Although the PS paradigm
may not be entirely justified for short flows, inspection of the proofs suggests that this
assumption is actually not that crucial for the asymptotic results to hold. The effect
of oscillations, inaccuracies and delays in the estimation procedure on the performance
remains as a subject for future research.

We consider the probability that a possible deficit in service received by the streaming
sessions compared to a nominal service target exceeds a certain threshold. The latter



probability provides a measure for the degree of disruption in the quality experienced
by the streaming users. We determine the asymptotic behavior of the service deficit (or
workload) probability for a large value of the threshold. The results yield useful qualitative
insight into the occurrence of persistent quality disruption for the streaming users. We
furthermore examine the delay performance of the elastic flows.

In [19], the authors consider a mixture of elastic transfers and streaming users sharing
the network bandwidth according to weighted a-fair rate algorithms. Weighted a-fair
allocations include various common fairness notions, such as max-min fairness and pro-
portional fairness, as special cases. They also provide a tractable theoretical abstraction of
the throughput allocations under decentralized feedback-based congestion control mech-
anisms such as TCP, and in particular cover TCP-friendly rate control protocols. In a
recent paper [7], the authors derive various performance bounds for a related model with
a combination of elastic flows and streaming traffic sharing the link bandwidth in a fair
manner. The latter papers however focus on different performance metrics.

The remainder of the paper is organized as follows. In Section 2 we present a detailed
model description. In Section 3 we analyze the delay and workload performance of the
elastic flows by exploiting a useful relationship with a M/G/1 PS model with permanent
customers. The main result is presented in Section 4, where we consider the workload
asymptotics of the streaming users for the case of constant-rate traffic. Besides a heuristic
interpretation of the result, we also give some preliminaries and an outline of the proof,
which involves lower and upper bounds that asymptotically coincide. The proofs of the
lower and upper bounds may be found in Sections 5 and 6, respectively. We extend
the results to the case of variable-rate streaming traffic in Section 7. In addition, we
consider the tail asymptotics of the simultaneous workload distribution of the K individual
streaming users. In Section 8 we make some concluding remarks.

2 Model description

We consider two traffic classes sharing a link of unit rate. Class 1 consists of a static
population of K > 1 statistically identical streaming sessions. These sessions stay in the
system indefinitely. Class 2 consists of a dynamic configuration of elastic flows. These
users arrive according to a renewal process with mean interarrival time 1/, and have
service requirements with distribution B(-) and mean 3 < oo.

The elastic flows are TCP-controlled, while the transmission rates of the streaming sessions
are adapted in a TCP-friendly fashion. Abstracting from packet-level details, we assume
that this results in a fair sharing of the link rate according to the PS discipline. Thus,
when there are N(u) elastic flows in the system at time u, the available service rate for
each of the users — either elastic or streaming —is 1/(K + N(u)). Denote by C1(u) :=
K/(K + N(u)) the total available service rate for the streaming traffic at time u. Define
Ci(s,t) = f;:s C1(u)du as the total amount of service available for the streaming sessions
during the time interval [s, ¢].

In the present paper, we will mainly be interested in the quantity Vi (¢) := sup{A4i(s,t) —

s<t

Ci(s,t)}, where Ai(s,t) denotes the amount of service which ideally should be available
for the streaming traffic during the interval [s,t]. For example, A;(s,t) may be taken as
the amount of streaming traffic that would nominally be generated during the interval



[s,t] if there were ample bandwidth. Thus, Vi(¢) may be interpreted as the shortfall in
service for the streaming traffic at time ¢t compared to what should have been available in
ideal circumstances. For conciseness, we will henceforth refer to Vi (t) as the workload of
the streaming traffic at time ¢t. Throughout the paper, we also often refer to A;(s,t) as
the amount of streaming traffic generated. It is worth emphasizing though that A;(s,t)
represents just the amount of traffic which ideally should have been served, and not the
amount of traffic that is actually generated, which is primarily governed by the fair service
rates as described above. Thus, Vi(t) provides just a virtual measure of a service deficit
compared to an ideal environment, and by no means corresponds to the backlog or buffer
content in an actual system.

In Sections 3-6 we will focus on the ‘constant-rate’ case Ai(s,t) = Kr(t — s), which
amounts to a fixed target service rate r per streaming session. We will extend the analysis
in Section 7 to the ‘variable-rate’ case where A;(s,t) is a general stochastic process with
stationary increments.

We will also consider the quantity Va(t) := sup{Aa(s,t) — Ca(s,t)}, where Aa(s,t) denotes

s<t

the amount of elastic traffic generated during the time interval [s, t], and Cs(s, t) represents
the amount of service available for the elastic flows during [s, ¢]. By definition, Ca(s,t) :=
j;f:s Ca(u)du, with Ca(u) denoting the total available service rate for the elastic traffic at
time w. Evidently, Ca(u) > 1 — C1(u), with equality in case the streaming sessions always
claim the full service rate available. For the elastic traffic, the latter case is equivalent
to a G/G/1 PS queue with K permanent customers, accounting for the presence of the
competing streaming sessions.

However, we allow for possible strict inequality in case the streaming sessions do not
always consume the full service rate available, and the unused surplus is granted to the
elastic class, i.e., Ca(s,t) =t — s — Bi(s,t), with B;(s,t) < Cji(s,t) denoting the actual
amount of service received by class i, ¢ = 1,2, during the interval [s,t]. For example,
when the ‘workload’ of the streaming sessions is zero, the actual service rate may be
set to the minimum of the aggregate input rate and the total service rate available. In
particular, in the ‘constant-rate’ case the actual service rate per streaming session at
time v is then only min{r,1/(K 4+ N(u))} when V;i(u) = 0. Note that the total service
rate is thus used at time u as long as Vj(u) 4+ Va(u) > 0, which implies that Vi (¢) 4+ Va(t) =
sup{Ai(s,t) + Aa(s,t) — (t — s)}. Hence, the case Ca(s,t) =t — s — Bj(s,t) will be termed
s<t

the work-conserving scenario, whereas the case Ca(u) = 1 — C1(u) = N(u)/(K + N(u))
will be referred to as the permanent-customer scenario. It may be checked that the work-
conserving and permanent-customer scenarios provide lower and upper bounds for the
general case with t — s — C1(s,t) < Ca(s,t) <t —s— Bi(s,t).

Define p := A3 as the traffic intensity of class 2. Without proof, we claim that p < 1is a
necessary and sufficient condition for class 2 to be stable. While the former is obvious, the
latter may be concluded from the comparison with the G/G/1 PS queue with K permanent
customers mentioned above (see [5] for the case of Poisson arrivals). For class 1 to be stable
as well, we need to assume that p+ Kr < 1, with E{A(0,1)} = Kr. Here class 1 is said to
be stable if the ‘workload’ V;(t) converges to a finite random variable as t — co. Denote by
V; a random variable with the steady-state distribution of V;(t), i = 1,2. In Sections 4-7,
we additionally assume that (K + 1)r > 1 — p, which implies that the system is critically
loaded in the sense that one extra streaming session — or a ‘persistent’ elastic flow — would



cause instability. Combined, the above two assumptions give Kr <1 —p < (K + 1)r.
We finally introduce some additional notation. Let B be a random variable distributed
as the generic service requirement of an elastic user, and let B” be a random variable
distributed as the residual lifetime of B, i.e., B"(z) = P{B" < z} = %fox(l — B(y))dy.
We assume that the service requirement distribution is regularly varying of index —v
(denoted as B(-) € R_,), i.e., 1 — B(z) ~ L(z)z~",v > 1, with L(z) some slowly varying
function. Here, and throughout the paper, we use the notation f(z) ~ g(z) to indicate
that f(z)/g(x) — 1 asx — oo. (A function L(-) is called slowly varying if L(nz) ~ L(z) for
all p > 1.) It follows from Karamata’s Theorem [6, Theorem. 5.1.11] that zP{B > z} ~
(v —1)BP{B" > z}, so that B"(-) € Ri—,.

Remark 2.1. The analysis may be generalized to the case of Discriminatory Processor
Sharing (DPS), that is, when the rate share per streaming session is w/(wK + N(u))
rather than 1/(K + N(u)), for some positive weight factor w. In the ‘constant-rate’ case,
it is in fact easily verified that the workload for K streaming sessions each with weight w
and target rate r is equivalent to that in a model with K’ = wK streaming sessions each
with unit weight and target rate ' = r/w (with some abuse of terminology when wK is
not integer). For notational transparency, we henceforth focus on the case w = 1. o

3 Delay performance of the elastic flows

As mentioned earlier, our model shows strong resemblance with a G/G/1 PS queue with
K permanent customers [5]. The permanent customers play the role of the persistent
streaming users in our model, while the regular (non-permanent) customers correspond
to the elastic flows, inheriting the same arrival process and service requirement distribu-
tion B(-). It may be checked that the service rate available for the elastic class in our
model is always at least that in the model with K permanent customers. Hence, the num-
ber of elastic flows, their individual residual service requirements, their respective delays
(sojourn times), and the workload of the elastic class are stochastically dominated by the
corresponding quantities in the model with permanent customers. This may be formally
shown using similar arguments as in the proof of Lemma 4 in [8]. The stochastic ordering
between the two models is particularly useful, since it provides upper bounds for several
performance measures of interest in our model in terms of the model with permanent cus-
tomers. In order for the bounds to be analytically tractable, we assume in the remainder
of the section that the elastic flows arrive according to a Poisson process of rate .

Remark 3.1. As noted earlier, in the special case where the service rate of the elastic class
is always Cs(t) = #}\?(t) (which we named the permanent-customer scenario), the two
models are actually equivalent in terms of the number of elastic users and their respective
residual service requirements. In that case, the inequalities in Equations (2)-(6) below

hold with equality. o

The M/G/1 PS queue with permanent customers is a special case of the model studied
in [13], where each customer receives service at rate f(n), 0 < f(n) < oo, when there are
n customers. To obtain the model with K permanent customers, we take f(n) = ﬁ Let
N(k) be the number of regular customers in the model with K permanent customers and,

given Ng) = n, let Bl, .. .,Bn be their residual service requirements. Then, according



o [13]a

n

» » n n+ K r
P{N(K):n;Bl>x1;...;Bn>mn}:(1—p)K+1p ( )HIP’{B > T} (1)

(When w # 1 and wK is not integer, the above formula remains valid upon substituting
wK for K and replacing the factorial function in the binomial coefficients by the Gamma
function.) We thus obtain an upper bound for the probability that the service rate of the
streaming users is below a given desired rate s:

P{KiN <S} <P{Nu) > [1/s - K|} = Z( el +1>(1—p)jp“/5i+1—j. 2)

As mentioned above, the delay (sojourn time) of elastic users in our model (denoted by S3)
is stochastically dominated by the corresponding quantity in the model with permanent
customers. In the M/G/1 PS queue with m permanent customers, let S,,) be the delay
and S(m)(a:) be the conditional sojourn time given that the service requirement of the
customer is z. It is known that this random variable is the (m 4 1)-fold convolution of the
distribution of Sps(x), the conditional sojourn time in the standard M/G/1 PS queue [5]:

m+1
P{Sumy(x) <t} =P > Spg () <ty,

where Spgj, 7 =1,...,m+1, represent i.i.d. copies of Spg. (It is worth emphasizing that
the unconditional sojourn time does not allow for a similar decomposition.) In particular,
using that ESpg(z) = l%p, we obtain an upper bound for the conditional mean delay of
elastic users in our model (denoted as Sa(x)):

T

ES»(x) < BS) () = (K + 1)1, (3)

and, hence, the (unconditional) mean delay satisfies

g

ESy < (K + 1) T

(4)

We now turn to the tail asymptotics for the unconcitional sojourn time. The next propo-

sition shows that the exact asymptotics of S2 depend on the assumptions on Ca(s,t) in
case Bi(s,t) < Ci(s,t). As observed in Remark 3.1, in case Cs(t) = #}\tf)(t)’ the model
is equivalent to the M/G/1 PS queue with K permanent customers. Asymptotically, the
equivalence also continues to hold when the system is critically loaded, i.e., (K+1)r > 1—p,
which implies that class-1 users will be rarely non-backlogged over the course of a long
sojourn time. However, the sojourn time asymptotics change when the system is below
critical load, i.e., (K +1)r < 1 — p, and the elastic flows receive (part of) the capacity left

over by the streaming users, i.e., Ca(t) > %&)@



Proposition 3.1. If B(-) e R_, and (K +1)r > 1—p or Ca(t) = Kji](\t,)(t

y» or both, then

P{S >.’E}NP{5(K) >$} NP{B > %}

In contrast, if (K + 1)r <1 — p and Ca(s,t) =t — s — Bi(s,t), then
P{Sy >z} ~P{B>(1—p—Kr)z}.

Proof. The asymptotics for S(g) (and, thus, for Sz in the permanent-customer scenario)
follow from [17]. As noted above, the service rate of a customer is f(n) = Kin
are n non-permanent customers in the system. We can therefore apply [17, Theorem 3] to
obtain v/ = Il(;fl and the desired result follows.

For the remainder of the proof we only provide an intuitive sketch. (We refer to Appendix C
for a detailed proof.) In both cases, a large delay of an elastic flow is due to a large
service requirement of the flow itself, and the ratio between the two quantities is simply
the average service rate received by the large flow. Over the duration of the large flow,
the other elastic flows continue to produce traffic at an average rate p, and also receive
service at an average rate p. The remaining service capacity is shared among the large
elastic flow and the streaming users, each entitled to a fair share (1 —p)/(K + 1). In case
(K + 1)r > 1 — p, the fair share of the streaming users is below their average input rate .
Thus, the streaming users will be almost constantly backlogged, and the average service
rate for the large elastic flow is just (1 — p)/(K + 1). In case (K + 1)r < 1 — p, the fair
share of the streaming users exceeds their average ‘input rate’ r. Hence, the streaming
users will only claim an average service rate Kr, and the average service rate left for the

large elastic flow is 1 — p — K7 now. O

when there

In case the system is not critically loaded and t — s — C1(s,t) < Ca(s,t) <t —s— Bi(s,t)
for at least some s and t, we obtain the immediate bound

1_

P{Sy >z} <(1+4+0(1))P< B > (d=p , as & — 00. (5)
K+1

Remark 3.2. The result for the permanent customer scenario is formulated for regularly

varying service requirements, but it may readily be extended (following the proof of [23,

Theorem 4.1]) to the slightly larger class of intermediately regularly varying distributions.

o

Finally, we turn to the workload of the elastic class which is also stochastically dominated
by the corresponding quantity in the model with permanent customers. Again, we first
state a result for the M/G/1 PS queue with permanent customers.

Proposition 3.2. If B(:) € R-,, then V), the workload in the M/G/1 PS queue with
m permanent customers, satisfies

(m+1)

P{Vim) > @} ~ ENm) P{B" > 2} = - _ppIP’{B’" > x}.

Proof. From (1) we observe that, given N(,,,) = n, Bi,...,B, are ii.d. copies of B". Us-

ing [29] together with V(,,y = vaz(’l") B;, and the fact that P{N > n} decays geometrically
fast when n — oo, we obtain the desired equivalence. ]



As an immediate corollary, we derive

P{Va >z} < (1—}—0(1))%?{3’" >z}, as © — 00. (6)

4 Workload asymptotics of the streaming traffic

In this section we turn the attention to the workload distribution of class 1. For conve-
nience, we assume that each class-1 source generates traffic at a constant rate . The latter
assumption is however not essential for the asymptotic results to hold, and in Section 7
we extend the results to the case of variable-rate class-1 traffic. In the remainder of the
paper, we assume that p + Kr < 1 to ensure stability. In addition, we impose the condi-
tion that (K+1)r > 1—p, i.e., the system is critically loaded. Thus, Kr < 1—p < (K+1)r.

The next theorem provides the main result of the paper.

Theorem 4.1. If B(-) e R_, and Kr <1—p < (K + 1)r, then

d1-p
P{Vi>a}~ — P plp > TKIL__4 (7)
1=p-Kr K(r— 57

The proof of the above theorem involves asymptotic lower and upper bounds which will be
provided in Sections 5 and 6, respectively. In this section, we sketch a heuristic derivation
of the result, which will also serve as an outline for the construction of the lower bound in
Subsection 5.1. In addition, we give an intuitive interpretation, which provides the basis
for the lower bound in Subsection 5.2 and the upper bound in Section 6. First, however,
we give some basic relations between traffic processes, amounts of service and workloads,
and state a few preliminary results.

Preliminary results
The amounts of service satisfy the following simple inequality

Bi(s,t) + Ba(s,t) <t —s. (8)
For the workloads, the following obvious identity relation holds for ¢ = 1,2 and s < t,
Vi(t) = Vi(s) + Ai(s,1) — Bi(s,1). (9)

As mentioned in Section 2, in the work-conserving scenario, i.e., Ca(s,t) =t —s— Bj(s,t),
the system is equivalent in terms of the total workload to a single queue of unit rate fed
by the aggregate class-1 and class-2 traffic processes,

Vi(t) + Va(t) = sglt){Al(s, t) 4+ As(s,t) — (t—s)}. (10)

In particular, in the constant-rate case,
Vi(t)+ Va(t) = sup{Kr(t—s)+ Aa(s,t) — (t —s)}
s<t
= sup{As(s,t) — (1 — Kr)(t —s5)}
s<t

= V), (11)



with Vi(t) the workload at time ¢ in an isolated queue with service rate ¢ fed by class 2
only. For any p < ¢, let Vi be its steady-state version. The asymptotic tail distribution
of the latter quantity is given by the next theorem, which is originally due to Cohen [12],
and has been extended to subexponential distributions by Pakes [26].

Theorem 4.2. Assume that p < c. Then, B(-) € R_, iff P{VS < -} € R1_,, and then
P{Vs >z} ~ ﬁp{y >z}

The same relation holds when Vi represents the workload distribution at arrival epochs of
class 2.

Relation (11) plays a central role in the proof of Theorem 4.1. In the sequel we will consider
several extensions of the basic model, allowing the system to be non-work-conserving (e.g.,
the permanent-customer scenario) and having variable-rate streaming traffic (with mean
Kr). In those cases, (11) does not hold as a sample path identity, but (under some
assumptions) Vi + V4 and V21_KT are asymptotically equivalent in the following sense
(similar reduced-load type of equivalences may be found in, e.g., [1, 18, 30]):

P{Vi+ Vo> o}~ P{V; 75" > o} (12)

The main intuitive idea is that a large total workload is most likely due to the arrival of
a large class-2 user. Since the system is critically loaded, the class-1 workload builds up
in the presence of the large class-2 user, so that the full service capacity is used and the
system behaves as if it were work-conserving. The detailed proof of (12) is deferred to
Appendix A (Proposition A.1).

Heuristic arguments

In queueing systems with heavy-tailed characteristics, rare events tend to occur as a con-
sequence of a single most-probable cause. We will specifically show that in the present
context the most likely way for a large class-1 workload V; to occur arises from the arrival
of a class-2 user with a large service requirement Bi,g, while the system shows average
behavior otherwise. We will refer to the class-2 user as the “tagged” user.

Define Biag(s,t) as the amount of service received by the tagged user in (s, t]. In addition,
denote by Bj (s,t) the amount of service received by class-2 users in the time interval
(s,t], except for the tagged user. Then (8) may be rewritten as follows

Bi(s,t) + Biag(s,t) + By (s,t) <t —s. (13)

Suppose that the tagged user arrives at time —y — zg, with 2y = K(r+}<;+”l)’ Biag >
x4+ (1—p—Kr)(y+ 20), and y > 0. The amount of class-2 traffic generated during the
time interval [—y — 29, 0] is close to average, i.e., Aa(—y — 20,0) =~ p(y + 20). Since class 2
is stable, regardless of the presence of the tagged user, the amount of service received
roughly equals the amount of class-2 traffic generated during the time interval [—y — 2o, 0],
i.e., By (—y—20,0) =~ p(y + 20). The cumulative amount of service received by the tagged
user up to time 0 is either Bi(—y — 20,0)/K or By,g, depending on whether the user is

still present at time 0 or not.



Using the inequality (13), the amount of service received by class 1 is approximately
Bi(—y —20,0) < y+ 20— Brag(—y — 20,0) — By (—=y — 20,0)
~ (1-p)(y+ 20) — min{Biag, B1(—y — 20,0)/ K}

Thus,

Bi(-y—20,0) < max{(1 = p)y+ 20) ~ Buag, g (1= p)(y+ 20)}

< max{Kr(y+z0) - (1= p)(y + 20)}-

K
x
"K+1
Using the above inequality and the identity relation (9), the class-1 workload at time 0 is
Vi(0) > Ai(~y—20,0) — Bi(~y — 20,0)

> Kr(y+ 20) — max{Kr(y + 20) — =, KLJrl(1 —p)(y+20)}

1-— 1-—
= min{z, K(r — K—+pl)(y + 20)} > min{z, K(r —

P _
il )20} = x.
In the case of Poisson arrivals of class 2 we obtain (by integrating with respect to y and
neglecting the probability of two or more “large” users)

o0

P{Vi >w}2/

1—
/\P{Btag > —pzo +(1—-p— Kr)y} dy,
y=0

K+1

which agrees with the right-hand side of (7).

Of course, there are alternative scenarios that could potentially lead to a large class-1 work-
load. Theorem 4.1 thus indirectly indicates that these are extremely unlikely compared
to the one described above, as will be rigorously shown in Section 6.

A formal proof based on the above heuristics (in case of renewal arrivals of class 2) may
be found in Subsection 5.1. The arrival of a class-2 user with a large service requirement
in fact also results in a large total amount of work in the system after its arrival. We will
use this alternative interpretation of the dominant scenario in Subsection 5.2 to derive a
lower bound in case of renewal class-2 arrivals and in Section 6 to obtain an upper bound.
In particular, we will show that the event Vi(—t1) + Va(—t1) > z + (1 — p — Kr)t1, with

t1 = ﬁ, corresponds to the dominant scenario described above. Using Proposi-
TKF1

tion A.1 and Theorem 4.2, we then obtain that the probability of the latter event coincides
with the right-hand side of (7).

Finally, note that the dominant scenario crucially depends on the critical load, i.e., 1—p <
(K + 1)r. Section 8 briefly discusses the case of a non-critically loaded system.

5 Lower bound

In this section we derive asymptotic lower bounds for P{V; > z} using two different ap-
proaches. In Subsection 5.1, we explicitly use the arrival of a class-2 user with a large
service requirement (as described in the heuristics in Section 4) as the most likely way for
a large class-1 workload to occur. We believe that this approach is especially insightful, as

10



it brings out the typical cause of a large class-1 workload. In Subsection 5.2, we provide a
proof based on the alternative characterization of the dominant scenario in Section 4. This
approach is consistent with the derivation of the upper bound in Section 6. Moreover, it
allows for modifications to include variable-rate class-2 traffic.

5.1 Approach 1

To obtain a lower bound for P{V; > z}, we start by deriving a sufficient sample-path
condition for the event V1(0) > z to occur (Lemma 5.1). Next, we convert the sample-path
statement into a probabilistic lower bound which can be used to determine the asymptotic
tail behavior of P{V; > z} (Proposition 5.2).

Consider the following three events.

1. Jdy > 0 such that at time —tp, with ¢o := % + y, a tagged class-2 user
“®TT

arrives with service requirement

z(1+ Ke+ Ky)1—p+9

1—p+6
K(r— 382 K+1

Btagz —|—y(1—p+5—K7‘)+(6+’)’)$ (14)

2. For the amount of class-2 traffic arriving in the interval (—tg, 0] it holds that
Asx(—t0,0) > (p = 8)to — (K + 1)z (15)
3. The amount of class-2 work at time 0, except from the tagged user, satisfies

Vo (0) < (K 4+ 1)ex (16)

We first prove the next sample-path relation.

Lemma 5.1. If the events (14)-(16) occur simultaneously with 6 < (K + 1)r — (1 — p),
then V1(0) > x.

Proof. We distinguish between two cases: (i) the large tagged user is still present in the
system at time 0; and (ii) the tagged user already left before time 0.
First consider case (i) and denote by B; (s, t) the amount of service received by the class-1
users and the large tagged class-2 user together in the interval (s,t]. Then, using (8) and
(9),

B (—t9,0) to — Va(—to) — Aa(—to,0) + V5 (0)
to — Aa(—to,0) + V5 (0)

(1= p+8)to + (K +1)(e +7)a, (17)

VAN VANVA
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where we used (15) and (16) in the third inequality. Because of the PS discipline, we have
Bi(—t9,0) < KLBT( t0,0). Combining this with (17) and using (9) yields
> A=

Vi(0) t6,0) — Bi(—to, 0)
> Krto— ——[(1 = p+ 8)to + (K + 1) +7)a]

K+1
1—p+9
1-— ) 1+ Ke+ K
> K<r— Pt >x( + i:+67)—K(6+’y)x
K+1 K(r— 751)

= {L"
where we used § < (K + 1)r — (1 — p) in the fourth step.
Next, consider case (ii). From (8) and (9), we obtain
Bl(—to, 0) < tog— VQ(—to) — AQ(—to,O) + VQ_(O) — Btag
< to — Ax(—10,0) + V5 (0) — Bag
< (1= p+ 0o+ (K + (e +7)2 — Buag

where we used (15) and (16) in the final inequality. Applying similar arguments as in
case (i) yields

Vi(0) > Ai(—t0,0) — Bi(—to,0)
> (Kr—14p—208)to— (K +1)(e+7v)x + Biag
x(1+ Ke+ K
> (Kr—14p-9) ( i 57)+y —(K+1)(e+y)z
K(r — 12£120)
K+1
z(1+ Ke+ Ky)1—p+9
+y(l—p+d—Kr)+(e+7)z
1—p1d
K(r— 557°) K+1
= a’;,
where we used (14) in the third inequality. This completes the proof. ]

We now use the sample-path relation of Lemma 5.1 to prove the next asymptotic lower
bound for the class-1 workload distribution.

Proposition 5.2. (lower bound) Assume the class-2 arrivals follow a renewal process with
mean interarrival time o = 1/X = f/p. If B(:) € R_, and Kr <1 —p < (K + 1)r, then

P{V;
lim inf M) Y
T—r00 p mK_"rl
1—p—KrP{BT > K(r—;{;"l)}

Proof. Let —tg — T_,,, be the arrival epoch of the (m + 1)-th class-2 user before time —t
(counting backwards). In particular, 7y is the backward recurrence time of the class-2
arrival process at time —tg. The corresponding service requirements are denoted by B_,,,
m > 0.

In the following =, d, €, x and ( are all small, but positive real numbers. Denote

(1+Ke+Ky)l—p+56

1—p+46
K(r— 1368 K+1

g(7, 6,6, k) :== +(e4+v)+(1—p+6— Kr)s,

12



and rewrite (14) into B_,, > ¢(v,6,€6,0)x + (1 — p+ 6 — Kr)7_,, for some m > 0. To
bound the probability of (16), we apply the model with K +1 permanent customers, giving
V5 (0) < Vig41)(0). Now, using Lemma 5.1 yields
P{V1(0) > z}
> P{Ax(—t0,0) > (p— d)to — (K + 1)yz; Vy (0) < (K + 1)ex;
dm>0:B_; > g(7,0,6,0)0z+ (1 —p+ 6 — Kr)T_p;
VE>0:7_ <k(a+ )+ kz}
> P{3m >0:B_p >g9(v,6,6,6)z+(1—p+6—Kr)ym(a+{)}
XP{A>(~10,0) > (o~ 9)to — (K + Uya; Vigg 4 (0) < (K + e
Vk>0:7 4 <k(a+()+ k). (18)
We study each of the two probabilities separately. First note that

P{3Im >0:B_, > g(7,,6,c)z+ (1 —p+d — Krym(a+ ()}

> ZIP’{B_m >g(v,6,6,k)z+(1—p+6—Kr)m(a+ ()}

m=0

- Z Z P{B_m > g(v,0,,k)z+ (1 —p+ 6 — Kr)ym(a + (),

m=0n=m+1
B_,>g9(7,0,¢,k)z+(1—p+d—Kr)n(a+()}
B/(a+ () r
~ (1+ 0(1))1—,0——K7”+5P{B > g(7,6,€,K)x}, (19)

where we used similar arguments as in [10] in the final step. As for the second probability
n (18), observe that the 7_, A2(—to,0), and V(g 1)(0) are not independent. However,

we may write
]P){A2 —1p, ) (p — 5)t0 — (K + 1)’)/£U; ‘/(K+1)(0) < (K + 1)637
VE>0:7 4 <k(a+()+ka}
> P{As(~t0,0) = (p — O)to — (K + 1)ya} — P{V(x11)(0) > (K + 1)ex}
—P{3k>0:7 4 > k(a+ )+ ka}.

Now, P{A2(—%0,0) > (p—0)to — (K + 1)yz} — 1 as ¢ — oo (and thus tg — oo0). More-
over, since V{ K+1)(O) has a proper distribution, we have

lim P{V{x;1)(0) > (K +1)ex} = 0,

T—00

and by the Strong Law of Large Numbers (the backward recurrence time at time —tg has
a proper distribution because the renewal process has finite mean),

lim P{3k >0:7 > k(a+ () + rx} =0.
T—>00
Observing that the system is in steady state and using (19), we have

P
lim inf (Vi >z} > 1.

oo Bt pIBr > g(y,0,,k)x}
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Finally, use the fact that B"(-) € Ri_, to obtain

P
lim inf {V1 > a} (20)
mi’—mP{Br > mﬁ%}
> liminf P{Vi > a} L P{B" > g(v,0,¢,5)a}
= e POt0 peBr s g(y,6,¢,m)2) TR {BT > 9(0,0,0,0)z}
%P{Br > g(fy’ d, €, H)-T}
> liminf pp $1, 6 e (L 0.
T—00 WP{BT > 9(0,0,0’0)1’}

O

5.2 Approach 2

As in Subsection 5.1, we start by deriving a sufficient sample-path condition for the event
Vi(0) > x to occur, but now based on the alternative characterization of the dominant
scenario in Section 4 (Lemma 5.3). Then, we translate the sample-path statement into a
probabilistic lower bound which can be used to determine the asymptotic tail behavior of
P{V1 > z} (Proposition 5.4).

We first introduce some additional notation and terminology. In the proof we frequently
use the notion of “small” users. A user is called “small” if its (initial) service requirement
does not exceed kz, for some x > 0 independent of z. Denote by N(“?I(#) the number

of class-2 users in the system at time ¢ that arrived during (u,v], and add the subscript

ety Mok) o fix
k)

1—p+4
K(Tf Kit )

< kx when only “small” class-2 users are considered. Define ty :=

K

Ly > lf# and My > max{Ly, p(litlfo)}. In the proof, users arriving before time —tg

are referred to as “old” users, while users arriving after time —ty are called “new”. Let
—ug, up = sup{0 < t < tp : N(*°°’*t°}(—t) < Lo}, be the first epoch after time —ty
that there are less than Ly “old” class-2 users. Similarly, let —sgp, sp := inf{0 <t < ¢y :
N(_to’_t](—t) < My}, be the last epoch before time 0 that there are less than My “new

<Kz
small” class-2 users in the system.

Now, for fixed ¢, €, k, Lo, My > 0, consider the following two events.

1. At time —tg, the total amount of work in the system satisfies

Vi(—to) + Va(—to) > (1 + v+ Mok) — (Kr+p—1—9)to (21)
2. For the amount of “small” class-2 traffic arriving in (—tg, —sp] it holds that

Az, <a(—to, —s0) = (p — 6)(to — s0) — vz (22)

We first prove the next sample-path relation.
Lemma 5.3. If the above events (21) and (22) occur simultaneously, then V1(0) > z.

Proof. We distinguish between two cases, depending on whether ug < sg or ug > sg. First,
we consider the ‘easy’ case ug < so (or alternatively —ug > —sg). Observe that during
the entire interval (—t¢, 0] there are at least Ly class-2 users in the system (either “old” or
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“new”). Thus, Ba(—to,0) > %Bl(—to,O), so that Bi(—tp,0) < %Loto. Using the above
in addition to (9), we obtain

K
K+ LO

Vl(O) Z Al(—to,O) — Bl(—to, 0) Z K?”t() — t()

1 z(1 4+ v+ Mok)

%) 1_p+d z,
K+ 5HEe’ g — K’fl)

> K(r-—

where we used the definition of ¢g and the fact that Ly > 11+_I;p in the third step.

Now consider the more difficult case ug > sp (or —ugp < —sp). Denote by Béu’v](s,t)
the amount of service received during (s,t] by class-2 users arriving in the interval (u,v]
(again, add the subscript < kz when only “small” class-2 users are considered). Using (9),
the amount of service received during (—tg, —sg| by the “new” class-2 users is bounded
from below by

Bé_to’o] (—to, —50)

—to,—s
Bé,g.‘oim 0}(_7507_80)

>
> AQ,SMC(_th _30) - ‘/2(,;2;:50](_30)
> (p—9)(to — so) — yx — Mok,

where V;?fjx (t) denotes the workload at time ¢ associated with “small” class-2 users ar-

riving in (u,v]. Note that the final step follows from (22) and the definition of sp. Since
My > p(%ﬁfo)’ we also have

_ M
B (—50,0) > —0 50> (p— 8)s0.
2 (—s0,0) > ?\fo+K+LOSO—(p §)so
Hence,
B —0,0) > (p — 6)ty — vz — Moka. (23)

Next, denote by n > 0 the number of “old” class-2 users present at time 0. We distinguish
between two cases: (i) n = 0; and (ii) n > 1.
First, consider case (i). Note that Béfoo’ftd(—tg, 0) = Va(—to) and rewrite (8) into

Bl(—to, 0) <ty— Bé_oo’_t[ﬂ(—to, 0) — Bé_to’o](—to, 0). (24)

Using (9), (21), (23), and (24), we deduce
V1(0) = Vi(—to) + A1(—to,0) — B1(—to,0)
Vi(—to) + Va(—to) + Krto — to + (p — )to — (v + Mor)x
z(1+v+ Mor) — (Kr+p—1-=108)tp
+KTt0 — (1 —p+ 5)t0 — (’)’ + M()H)ZU

v v

= z
Second, consider case (ii). Because of the PS discipline, it follows from (8)

K

wglo— By (10, 0)] (25)

Bl(_th 0) S
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Now, combining (9), (23), and (25) yields
Vi(0) > Ai(—to,0) — Bi(—to,0)
K
> Krtg— ——[(1 — p+)to + (v + Mok)z]

- K+1
K z(1 4+ v+ Mok) K
= [Kr———(1-p+9)] ToTs (v + Mor)z
K+1 K(r— Kf;) K+1
> oz,
where we used that v, x, My > 0. This completes the proof. []

We now exploit the sample-path relation in Lemma 5.3 to establish the next asymptotic
lower bound for the class-1 workload distribution.

Proposition 5.4. (lower bound) If B(-) € R_, and Kr <1 — p < (K + 1)r, then

P
lim inf L) S
r—r 00 p mﬁ
1—p—KTP{BT z K(r—é—ﬁ)}

Proof. First observe that the events (21) and (22) are not independent. However, Vi (—Tp)+
Va(—Tp) and A <xz(—to, —so) are independent, with —Tp representing the last arrival
epoch of class 2 before time —t3. Note that

Vi(—=to) + Va(—to) > Vi(=To) + Va(—To) — 70,

where 79 represents the backward recurrence time of the class-2 arrival process at time
—to (see also Subsection 5.1), which is independent of Vi (—Tp) + Va(—Tp) as well. Using
Lemma 5.3 and the above, we obtain

P{V1(0) > =}

> P{Vi(=To) + Va(=To) > (1 + v + Mor) — (Kr + p— 1 — §)to + 70;

A2,§mc(_t0a _50) > (p - 6)(t0 - 50) - Fyx}

P{Vl(—To) + VQ(—T()) > x(l + v+ Mok + 6) — (Kr +p—1-— 5)t0}
X [P{ sup {(p—0)(to — t) — Az, <xa(—to, —t)} < ’ym} —P{m > em}] .

0<t<tp

v

Now, first invoking Proposition A.l in Appendix A and then Theorem 4.2 yields
]P){Vl(—To) + Vg(—To) > 37(1 + v+ Mok + 6) — (K?" +p—-1-— 5)t0}
z(14 v + Mor) 20
P ]P’{Br> 1+7 0%) R +erp.

26)
—pto (
l1-p—Kr K(r—l”l)

Because 7y has a proper distribution, we have lim, o, P{79 > ex} = 0. Moreover, for
u > 0 sufficiently large so that supg<;{(p — )t — A2 <u(0,%)} has a proper distribution, we
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have

lim P{ sup {(p— 6)(to — 1) — As,cna(~to, ~)} < ’yw}

r—00 0<t<tg

> Jim P{ sup o= 9)(t0— 1) — Apa—to, 1)} < 70
r—r 00 OStStO -

> lim P{sup{(p 8t Apcu(0,5)) < vw} _1.
T—r 00 tZO -

Combining the above arguments and applying (26), we obtain

P
lim inf (Vi > 2}

T—>00 0 x(1+7+M0n)1P.p J
—+F—P<B" > L tex
“Kr— T pto
1-Kr—p { K(r Kf)i-l )

> 1.

The proof may then be readily completed along the lines of (20). O

6 Upper bound

In this section we derive an asymptotic upper bound for P{V; > z}. In the proof we
frequently use the notion of a “large” user. A user is called “large” if its (initial) service
requirement exceeds the value kx, for some fixed x > 0 independent of z. Also, let
N-p(s,t) be the number of class-2 users arriving during the time interval (s, ¢] whose
service requirement exceeds the value b. In particular, let N(s,t) := Nxo(s,t) be the total
number of class-2 users arriving in the interval (s, ].

To handle scenarios in which the system is not work-conserving, we introduce the epoch
s* := inf{t > 0 : Vi(—t) = 0}, which represents the last epoch before time 0 that the
class-1 workload was zero. Note that Vi(¢) > 0 for ¢t € (—s*,0], and the system thus uses
the full service capacity during the given interval. For epochs at which Vi (¢) = 0, we make
the following observation.

Observation 6.1. If Vi(t) = 0, then the available service rate for class 1 at time ¢ is

at least Kr, hence %N(t) > Kr. Rewriting the inequality gives that N(¢) < M, with

M:=[t-K. o
We are now ready to prove the upper bound for P{V; > z}.

Proposition 6.1. (upper bound) If B(-) € R_, and Kr <1 —p < (K + 1)r, then

P
lim sup {1 >} = <1
T—>00 p ” TR
lpKrP{B > K(T}(fl)}
Proof. Let t1 := % Then, for 6 > 0,0 <e < 1,
T RKt1
P{Vi(0) > =z}
< P{Vl(—tl) + VQ(—tl) > iL'(l — 6) — (K’l‘ +p+d6— 1)t1} (27)

+P{Vi(—t1) + Va(—t1) < z(l—€) — (Kr+p+ 3 — 1)t1; V1(0) > z}.
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First, we determine the asymptotic behavior of the first probability on the rhs of (27).
Then we show that the second probability on the rhs of (27) is negligible compared to the
first one as x — oo. This way, we prove that the scenario described in Section 4 is indeed
the dominant one.

Let us start with the former and note that the system at time —¢; is in steady state. First,
use Proposition A.1 and then Theorem 4.2 to obtain that the first probability on the rhs
of (27) behaves as

P{Vl(—tl)-l-VQ(—tl) >:U(1—6 (KT+p-|—5—1)t1}

1—¢)lpd
~ P IP{B’“> —( )1[?; }
l1—p—Kr K(r— K+1)

Using the fact that B"(-) € R1_, (and letting d, € | 0), it easily follows that

Jim sup P{Vi(—t1) + Va(—t1) > (1 — fz,,_ (Kr+p+6—1)ti}

T—r00 Ty
P<{ Br _TK+1
{ g Km:m}

To prove that any alternative scenario is highly unlikely compared to the dominant one,
we show that, for 0 < d <1 —p— Krand 0 <e <1,

<1

P{Vi(=t1) + Va(—t1) Sz(l —¢) — (Kr+p+ 3 —1)t1;V1(0) > z}

lim su =0.
x%oop z =l
P{ Br > — KL
{ K(r= Il(fl)}

To do so, we split the second probability on the rhs of (27) by distinguishing between 0, 1,
and 2 or more large user arrivals during (—t1, 0], respectively. More specifically, write

P{Vi(—=t1) + Va(—t1) < z(1 —€) — (K7 + p + 6 — 1)t1;V1(0) > «}

= PVi(—t1) +Va(—t1) S z(l —¢) = (Kr+ p+ 6 — L)ty;

Nsyz(—t1,0) = 0; V1(0) > z}
+P{Vi(—t1) + Va(—t1) < 2(l —€) — (KT + p+ 8§ — 1)ty;

N< o (—t1,0) = 1; V1(0)
) —
)

> x}
+P{Vi(=t1) + Va(—t1) < z(L —€) — (K7 + p+ 6 — 1)ty;
Nora(—t1,0) > 2;V1(0) > z}
= T+4+II+1II (28)

In the remainder of the proof we show that each of the three terms is negligible compared
to the dominant scenario.

Term I

To bound term I, we consider the total workload at time 0. Recall that s* represents the
last epoch before time 0 that the class-1 workload was zero, and define s’ := min{s*, ¢},
so that Vi(¢) > 0 for t € (—s',0]. Then, using (9) and the fact that the system is work-
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conserving during (—s', 0], we have
V1(0) + V2(0) = Vi(—5") + Vo(=5') + Krs' + As(—s',0) — &
= Vi(—=8)+Vo(=s) - (1 - Kr —p—20)s' + As(—5',0) — (p+6)s’
max{Vj(—t1) + Va(—t1) — (1 — Kr — p — 0)t1, Va(—s")}
T sup {Ax(—5,0) = (p+8)s},

0<s<ty

IN

where we choose 0 < § < 1 — Kr — p. Moreover, take £ > 0 such that Mx < 1. Then,
combining the above and using Observation 6.1 yields

I < P{max{Vl(—tl) + Vg(—tl) — (1 —Kr—p-— 5)t1, Vg(—s*)}

+ sup {As(—s,0) — (p+9)s} > x; Nuwe(—11,0) = 0;
0<s<t;

Vi(—=t1) + Va(—t1) <z(1—€)— (Kr+p+6 — 1)t1}

< P{max{(l —€)x, Mz} + sup {A2(—s,0)— (p+9d)s} >z
0<s<t1

N>n:c(_t17 0) = 0}

< IP’{ sup {A2(—s,0) — (p+9)s} > &x | Noyo(—1t1,0) = 0} ,

0<s<t;

where ¢ := min{e, 1 — Mx}. Lemma B.4 in Appendix B implies that I = o(P{B" > z}),
as T — oo.

Term II
By conditioning on Vi(—t1) + Va(—t1), we obtain that term II equals

P{nz < Vi(—t1) + Va(—t1) <z(l —€) — (Kr 4+ p+ 8§ — 1)t1; No o (—11,0) = 1;V1(0) > =}
‘HP){Vl(—tl) + VQ(—tl) < n:v;N>m(—t1,0) = 1;V1(0) > JJ} . (29)

Again by Theorem 4.2 and Proposition A.1, in addition to Lemma B.3 with ¢; = yx, we
can control the first term of (29) as a “combination of two unlikely events”. Specifically,
the term is bounded by

P{Vi(~t1) + Va(—t1) > nac}]P’{I(B > k) + Nopo(—t1,0) > 1} = o(P{B" > z}).

as & — oo. Here I(-) is the indicator function, and N ., (—t1,0) has the same distribution
as Ns,z(—t1,0), but is independent of Vi (—t1) + Va(—t1).

For the second term, we use s’ = min{s*,¢;} (as in term I), so that V4 (¢) > 0 fort € (—5',0].
Also, we tag the user with service requirement larger than xz, and let V, (¢) be the class-2
workload at time ¢, excluding the tagged class-2 user. As in Section 4, denote by B, (s,t)
the amount of service received by class 2 in the interval (s, t], except for the tagged user.
Then, using (9) in the first step and Observation 6.1 in the second, we find

By (~5,0) = Vy (—') + Ay (=5, 0) = V(0) < (o + Ay (—,0),

where A, (—s,0) denotes the amount of class-2 traffic generated during (—s’, 0] excluding
the tagged user, and ¢ := max{n, Mx}. The large user together with the class-1 users
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receive the remaining amount of service: Bf (—s',0) > s’ — A5 (—s’,0) — (x. Because of
the PS discipline, Bi(—s',0) > KLHBT(—S', 0). Thus, using the above and applying (9),
V1(0) = Vi(=s")+ A1(=5',0) — B1(=5',0)
K(s' — A5 (—5¢',0) — Cz)
K+1
K(s— A, (-s,0) —(x) }

< max{Vi(—t1),Vi(—s")} + Krs' —

< (xr+ sup {Krs— K1

0<s<ty
Thus,

1 < P{Cw—i— sup {Krs—

Kot a0 =G},
0<s<ty

K+1
‘A@mﬂ—iho)zl}—%dP{Br>aﬁL

as ¢ — o0o. Choose 1,k such that max{n, M} < g—iée. Then, using r > Il(;ﬁ in the

th(r_l—_P—fS)

second inequality and substituting z = o yields
K(s— Ay (—s,0) —
P{Cw—i— sup {Krs— (s 2(=5,0) C:v)} > | Nowz(—t1,0) = 1}
0<s<t1 K+1

K(s— Ay (—s 0))} 3K +1 K
= P Krs — 2 ’ > z(l— +
{ﬁﬂ;{ " K+1 - 7O+ g1

‘ N>mc(_t170) = 1}

K(s— Ay (—s 0))} l—p—96 K
< P Krs — 217 —tH K(r — >
= tgi{7$ K+1 K- 7)) > 7

‘ N>mc(_t170) = 1}

< IP’{ sup {A3(=s,0)— (p+6)s} > (x

0<s<ty

< P{ sup {As(—5,0) — (p+8)s} > Ca

0<s<ty

N>nz(_t130) = 1}

N>I€x(_tla 0) — 0} )
which can be controlled using Lemma B.4. This completes the estimation of term II.

Term IIT
It follows directly from Lemma B.3 that 1] = o(P{B" > z}), as © — oo.

The proof is now completed by first letting x — oo, then n, x | 0, and finally d,¢ | 0. [l

7 Generalization to variable-rate streaming traffic

As mentioned earlier, the assumption that class 1 generates traffic at a constant rate Kr is
actually not crucial. In this section, we show that our results remain valid in case class 1
generates traffic according to a general stationary process, provided that deviations from
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the mean are sufficiently unlikely. In such a scenario, the variations in class-1 traffic do
not matter asymptotically, because they average out.

First, in Subsection 7.1 we consider the total workload of class 1 and extend Theorem 4.1
to the case of variable-rate streaming sources. Second, in Subsection 7.2 we consider the
tail asymptotics of the joint workload distribution of individual class-1 users. Note that
the individual class-1 workloads are not necessarily equal, since the traffic rates of the
individual streaming sources also vary.

7.1 Total workload

In this subsection, we show that our results remain valid in case class 1 generates traffic
according to a general stationary process with mean rate E[A;(¢,¢t + 1)] = Kr, provided
that significant deviations from the mean are sufficiently unlikely. More specifically, we
assume that the class-1 traffic satisfies the following assumption:

Assumption 7.1. For all ¢ > 0 and v > 0,

P{sup{Al(—t, 0) — K(r+¢)t} > ¢m} =o(P{B" > z}), as T — 00.
>0

Note that Assumption 7.1 holds for all ¢ > 0 whenever it holds for one such value.
Assumption 7.1 serves to ensure that the likelihood that rate variations in class-1 traffic
cause a large workload is asymptotically negligible compared to scenarios with a large
class-2 user described earlier. Also, observe that it may be equivalently expressed as

IP’{VIK(TJ”/)) > ngﬂc} =o(P{B" > z}), as T — 00, (30)

where V| denotes the steady-state workload in a system with service capacity c fed by
class 1 only. Assumption 7.1 is satisfied by a wide range of traffic processes, as illustrated
by the next two examples.

Example 7.1. (Instantaneous bursts) Let each class-1 user generate instantaneous bursts
according to a renewal process, and let the burst sizes have distribution Fj(-), with
mean o;. Let the interarrival times between bursts also be generally distributed with
mean o1/r. Assume that 1 — Fy(z) = o(P{B > z}) as z — oo. Then, it follows from [3,
Theorem 4.1] that Assumption 7.1 is satisfied.

Example 7.2. (On-Off source) Let each class-1 user generate traffic according to an
On-Off process, alternating between On- and Off-periods. The On-periods have general
distribution Fi(-) with mean o1, and the Off-periods also follow a general distribution with
mean 1/A;. A class-1 user produces traffic at a constant rate ro, while On, and generates
traffic at rate rog while Off, rog < r < roy (including the important special case in which
rof = 0), with (1 4+ A\1o1) = rof + ronA1071.-

Moreover, assume that 1 — Fi(z) = o(P{B > z}) as x — oco. Now, asymptotic results
for a fluid queue fed by multiple homogeneous On-Off sources (in particular [15], [30,
Corollary 3.1] with N* = 1), imply that Assumption 7.1 is satisfied.

In the remainder of the section, we show that our results remain valid under Assump-
tion 7.1. In particular, we prove that Theorem 4.1 still holds. We add the superscript
‘var’ to indicate quantities corresponding to the scenario with variable-rate streaming
sources.
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Theorem 7.1. Suppose that the process {A1(—t,0),t > 0} satisfies Assumption 7.1. If
B(-)eR_y and Kr <1—p < (K + 1)r, then

1-p
var p r :UK-I-l
P{vi** >z}t~ ———P<B"> ————— 3.
" } l1-p—Kr { K(r 1— )}

As before, the proof of Theorem 7.1 involves lower and upper bounds. In fact, the lower
bound largely follows the lines of the proof of Proposition 5.2 (in Section 5), and is hardly
affected by the variable rate of class 1. Informally speaking, the idea is to replace A;(s,t)
by K(r —¢)(t — s) — ¢x, and then use E[A;(t,t + 1)] = Kr to show that the correction
terms K (¢t — s) and ¢x can be asymptotically neglected. More specifically, because the
process {K(r — ¢)t — A1(—t,0),t > 0} has negative drift, for all ¢, > 0,

P{igg{K(r — )t — Ai(—t,0)} > ¢m} — 0, as & — 0o. (31)

Note that the above expression relates to long periods with less than average class-1 input,
as opposed to Assumption 7.1 where periods with more than average class-1 traffic are
considered.

Before describing the modifications of Subsection 5.2 required to handle variable-rate
class-1 traffic, we note that a slightly more substantial modification is needed, to obtain
an equivalence between V2" + V52" and V' ~%7. Moreover, in the lower bound we encounter
the difficulty that V" (—ty) + V5" (—tp) and A;(—t9p,0) may no longer be independent.
These issues are addressed in the proof of Proposition D.1 in Appendix D, where we extend
relation (12) to the case of variable-rate class-1 traffic. Proposition D.1 may also be of
independent interest. In addition, we show in the proposition that relation (12) remains
valid for a non-critically loaded work-conserving system.

For the upper bound, we provide a proof based on a comparison with a leaky-bucket
system and use results of Section 4 (in particular Theorem 4.1).

We now give the proofs of the lower and upper bounds, together yielding Theorem 7.1.

Proposition 7.2. (lower bound) If B(-) € R_, and Kr <1 — p < (K + 1)r, then

P{V}™ > o} -

zizp -
1—p—Kr[FD{Br > K(TET;P) }

+1

lim inf
Tr—r00

Proof. In view of the similarities with Subsection 5.2, we only give an outline of the proof.
As in Subsection 5.2, consider the following three events:

o At time —tg, with fo := ZMorte)

Ko ) the total amount of work in the system
- K+1

satisfies
Vi®(—to) + V3™ (—to) Z @(L+ v+ Mok + ¢) — (K(r =) + p— 1 —0)to (32)
e The event (22), which we repeat for convenience,

AQ,Smc(_tm _80) > (p - 5)(t0 - 50) —-x
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e For the amount of class-1 traffic arriving in the interval (—to, 0] it holds that

Ai(—t0,0) > K(r —p)to — ¢z (33)

Some calculations similar to the proof of Lemma 5.3 show that, if the events (32), (22),
and (33) occur simultaneously, then V}¥*(0) > z. As in Subsection 5.2, let —Tf be the last
class-2 arrival epoch before time —ty. We may write

P{V™(0) > z}

> P{V\"*(=To) + Vo™ (—=To) > z(1+ v+ Mok + ¢+ ¢€) — (K(r — o) + p— 1 —0)Top;
A1(=T,0) > K(r — )Ty — ¢m;
Az <pa(—To, —50) > (p — 0)(To — s0) — yw;70 < €x}

> P{VYT(—Ty) 4+ Vvaf( T) > (147 + Mok + ¢+ €) — (K(r — )+ p— 1 — 8)T;
ﬁK(T —To) < ¢z}

X

IP’{ sup {(p—0)(To —t) — Az, <xa(—Tp,—t)} < 'ya:} —P{r > ex}] ,
0<t<Tp

where ﬁ —To) = supg<;<gy1c(To—t) — A1(—Tp, —t)}. The second and third probabilities
can be treated as in Subsection 5.2. For the first probability, apply (44) (see the proof of
Proposition D.1 in the Appendix) and then Theorem 4.2, to obtain

]P) Vval'
lim inf V™ > z} rE— > 1.
z—00 —"’—IP{B" _ #LhrMontd) L ex}

1-p—Kr K(r—yp—14%)

Proposition 7.2 then follows from the fact that B"(-) € R1—, (let v,6,¢,k,¢,¢ L 0). O

For the proof of the upper bound we compare the class-1 workload in the scenario with
variable-rate streaming traffic to that in a scenario with constant-rate streaming traffic.
Suppose we feed the variable-rate streaming traffic into a system (the leaky bucket) that
drains at constant rate K (r+1)) into a second resource that is shared with the elastic class
according to Ca(t) = N(x(t)/(N(k)(t) + K) (see Section 3). Because the drain rate of the
first resource never exceeds K (r + 1), the second resource is closely related to the class-1
workload in the case of constant-rate traffic (in fact, the permanent-customer scenario
provides an upper bound). The total class-1 workload at the first and second resources
at time ¢ is an upper bound for V}"*'(¢) (see Equation (34) below). The proof is then
established by using Theorem 4.1.

Proposition 7.3. (upper bound) Suppose that the process {Ai1(—t,0),t > 0} satisfies
Assumption 7.1. If B(-) e R—, and Kr <1 —p < (K + 1)r, then

]P) V var
lim sup { = :v}l ” <1
T—00 p K+1
1PKTP{BT > K(r,tﬁ)}
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Proof. Let 1p > 0. Using the definition of Vi(¢) in Section 2, we obtain the following
representation

Vo (£) = sup{A1(s,£) — Ci (s, £)} = sup{As (s, 1) / — Nvar e mEOS

s<t s<t

where the integral represents the amount of service available for class 1. Then,

WD) = sp{Ais )~ KO+ 6)(t =) + KO+ 0t —0) = [ )
< sup{i(st) — Kr+ 0)(t - )

+ K(r+)(t— / d .
Sslgt){ (r+4)(t =) ra Nvar ¥
Let VICStW(t) = sup, {K(r + ¢)(t — s) — fs mdu} be the class-1 workload in a

scenario with constant rate r + ¢ per streaming user and Ca(t) = N )(t)/(N(x)(t) + K)
(independent of the class-1 workload; this corresponds to the permanent-customer scenario
discussed in Section 3). Similar to the constant-rate model, N**'(t) < N()(t). Thus,

/ L
u7
K+Nvar K+N(K)( )
so that
Ve () < VEOTO () 4 vt ). (34)

For any ¢ > 0, this sample-path relation implies
]P){Vvar > x} < ]P){V (r+v) > £$} +P{V1cst’¢ > (1 §)$},

where VlK(TW) and VfSt’d’ have the limiting distributions of VlK(T_Hp) (t) and VfSt’w (t) for
t — oo. The first term can be controlled by (30). For the second term, apply Theorem 4.1,
use the fact that B"(-) € Ri_,, and let &, | 0. This gives the desired result. O

7.2 Individual workloads

In this subsection we consider the asymptotics of the simultaneous workload distribution
of the individual streaming users. In Subsection 7.1, we showed that a large service deficit
for the K class-1 users together is most likely due to the arrival of a large class-2 user.
Using similar arguments, we now also argue that the service deficits of the individual
class-1 users are approximately equal after the arrival of a large class-2 user.

Denote by Ay x(s,t), k=1,..., K, the total traffic of streaming user k£ during the interval
[s,t] with mean rate E[A; ;(¢,t+1)] = r. We make a similar assumption for the individual
class-1 traffic processes as for the total traffic process in Subsection 7.1 (Assumption 7.1):

Assumption 7.2. Forall¢p >0 andyy >0, k=1,... K,

P{iglo){ALk(—t, 0) — (r+ )t} > gbac} = o(P{B" > z}), as T — 00.
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Assumption 7.2 serves to ensure that the likelihood that rate variations in traffic of individ-
ual class-1 users cause a large workload is asymptotically negligible compared to scenarios
with a large class-2 user as described earlier.

Similar to Vi(t), define V3" (t) := sup,<; {A1,k(s,t) — C1k(s,t)}, where Cy x(s,t) denotes
the total available service rate for streaming user k during the time interval [s, ¢]. Again,
we added the superscript ‘var’ to indicate that the quantity corresponds to the scenario
with variable-rate streaming sources. Note that C y(s,t) > fst 1/(K + N(u))du and also
Zszl C1x(s,t) = Ci(s,t). The first relation holds with equality in case the streaming users
always claim the full service rate available. However, we may allow for strict inequality in
case several class-1 users do not always consume the service rate available and the unused
surplus is redistributed among the other class-1 and class-2 users. Observe that the exact
definition of Cj x(s,t) is not crucial in case Kr < 1 — p < (K + 1)r, because the workload
of each class-1 user builds up in the presence of the large class-2 user, and each class-1
user will thus use its full service capacity.

Finally, denote the vectors V;*" = (V'{", - -, V1), with V}'{" the steady-state version
of Vl‘:zr(t), and a = (aq, -+ ,ag). Moreover, let a* := max ag. Then, we may derive a
similar upper bound as in Propositions 6.1 and 7.3.

Proposition 7.4. (upper bound) Suppose that the processes {A;(—t,0),t > 0}, k =
1,..., K, satisfy Assumption 7.2. If B(-) € R_, and Kr <1 —p < (K + 1)r, then

]P) VV&I‘ IED VVaI‘
lim sup { V;r > af} = lim sup ™ > az} oy S 1.
—00 ]P){V]_ > Ka .',C} r—00 p P{BT > Ka*mﬁ }

1-p—Kr K(T_}{;-q-pl)

Proof. Let k* := arg max oy, and note that
P{V™ > az} <P{VH > oz} .

Using a similar construction for streaming user k* as in the proof of Proposition 7.3 (i.e.,
the leaky bucket), we obtain the following sample path relation

‘ 1
Vie(t) < SliIt){Al,k*(sat)_ / mdu}
t 1
< iéE{ALk*(S,t)—(r—i-?ﬁ)(t—s)}+ilélz{(7"+¢)(t_3)_/S K1 o)

< sup{Aipe (s,1) = (r +9)(E = 9)} + V™YK,
s<t
where we used the permanent-customer scenario as an upper bound in the final step.
Combining the arguments above, the proof may be finished along similar lines as the
proof of Proposition 7.3. U

For the lower bound, modifications to one of the proofs in Section 5 would imply that we
have to keep track of all individual workloads and received amounts of services. In view
of the exceedingly large amount of details and notational complexity, we present the next
result as a conjecture:
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Conjecture 7.5. Suppose that the processes {A; (—t,0),t > 0}, k = 1,..., K, satisfy
Assumption 7.2. If B(-) e R_, and Kr <1 —p < (K + 1)r, then

P{Vy* > az} ~ P{V}™ > Ka'z}

1—
LP BT>:EK7—+?17 .
==& "7 K- A

Conjecture 7.5 implies that the asymptotic tail probability of the K-dimensional random
vector V;*" can be reduced to the tail probability of a 1-dimensional random variable B".
In other words, we conclude that the workloads of the K individual class-1 users can only

simultaneously grow large, requiring the presence of a large class-2 user.

8 Concluding remarks

We considered a bottleneck link shared by heavy-tailed TCP-controlled elastic flows and
streaming sessions regulated by a TCP-friendly rate control protocol. We determined the
asymptotic tail distribution of a possible shortfall in service received by the streaming
users compared to a nominal service target. We showed that the distribution inherits the
heavy-tailed behavior of the residual service requirement of an elastic flow.

In the case that the elastic flows arrive according to a Poisson process, we further derived
bounds for performance measures for both classes of traffic by exploiting a relationship
with the M/G/1 PS queue with permanent customers. In particular, we obtained bounds
for the probability that the rate of the streaming applications falls below a given target
rate, as well as for the delay and workload distributions of the elastic flows.

Besides the bounds provided by the M/G/1 PS queue with permanent customers, we also
determined the exact delay asymptotics of the elastic flows, suggesting a certain dichotomy
in the tail asymptotics, depending on whether the system is critically loaded or not.

The service deficit distribution of the streaming users was derived for critical load, i.e., an
additional ‘persistent’ elastic flow would cause instability of the streaming class. In general,
the most likely scenario for the class-1 workload to grow large involves the simultaneous

presence of [ > 1 large class-2 users, where [ := min {a eN: ﬁ < r} is the number of

‘persistent’ elastic flows required to cause instability of the streaming class (class 1). This
gives rise to the following conjecture:

Conjecture 8.1. If B(:) € R—, and p+ Kr < 1, then
P{Vi >z} = O(P{B" > z}}), as & — oco.

Guillemin et al. [17] obtained similar asymptotics for the distribution of the available
amount of service during an interval of length x in PS queues. However, obtaining exact
asymptotics is a difficult task in this case as witnessed by [30].

Several other interesting issues remain for further research, e.g., transient performance
measures, scenarios with finite buffers and/or dynamic populations of streaming sessions,
and the performance impact of oscillations, inaccuracies, and delays in the estimation of
the fair bandwidth share.
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A Proof of (12) for constant-rate streaming traffic

As mentioned previously, the asymptotic relation (12) plays a key role in our proofs, and is
valid for several model extensions. To keep the presentation transparent, we first prove this
relation in the next proposition for the case of constant-rate streaming traffic (assuming
critical load). Appendix D extends this result to variable-rate streaming traffic (as well as
work-conserving, but possibly non-critically loaded, scenarios).

Proposition A.1. If B(-) € R, and Kr <1—p < (K + 1)r, then,
P{Vi + Vs >z} ~ P{V;—K’“ > x}
This asymptotic relation also holds when Vi + Vo and VQI_KT represent the workloads

embedded at class-2 arrival epochs rather than at arbitrary instants.

Proof. First observe that

P{V1(0) + V2(0) > =} > P{igg{Al(—t,O) + As(—t,0) —t} > :1:}

It remains to be shown that
P
lim sup {Vi + Vo > 2}
T—00 IP){‘/;_KT > £L'}

<1 (35)

As defined in Section 6, s* := inf{t > 0: Vi(—t) = 0} is the last epoch before time 0 that
the class-1 workload was zero. Hence, Vi (t) > 0 for ¢ € (—s*,0], implying that the system
operates at the full service rate during that interval. Now, as described in Section 4, the
idea of the proof is that a large total workload is most likely caused by the arrival of a
large class-2 user. In particular, the class-1 workload starts to build in the presence of a
persistent class-2 user, and it may be shown that time s* is close to the arrival epoch of
the large user.

More formally, we split the class-2 workload at time ¢ into workloads contributed by users
with initial service requirements smaller than (or equal to) ex (V2 < (t)), and those with
initial service requirements larger than ez (V2,>¢:(t)). Moreover, let Vi, (t), V5., (t) be
the workloads in an isolated queue fed by class-2 traffic of users with service requirements
smaller than, larger than ez, respectively. Then, use (9), apply Observation 6.1 to bound
Va,<ex(—s*) and Lemma B.1 (stated below) to bound Va s (—5*):

Vi(0) +V2(0) = Vi(=5") + Vacaa(=5") + Vasea(—57)
+A1(_8*a 0) + AQ,Sem(_S*a 0) + A2,>ez(_8*7 0) —s"

< 04 Mex + Az,gem(—s*, 0) — (p + 5)3*
+V2{;§T_p_5(_3*) + Agsez(—5",0) — (1 — Kr —p—0)s*
< Mex+ VE (0) + VoS5 777°(0).

27



Converting this sample-path relation into a probabilistic upper bound gives (take e < 1/M)

2,>ex

< P{VEEL(0) > €01 - Moz}

+P{ViZKr00) > (1-€)(1 - Me)a}.

The first term can be made sufficiently small for any fixed J, €, £, using similar arguments
as in [9]. For the second term, we first apply Lemma B.2 (given below) and Theorem 4.2,
and then use the fact that B"(-) € R1_,, and let 4, &, € | 0.

Note that the above proof applies regardless of whether 0 is an arbitrary instant or a
class-2 arrival epoch. O

P{Vi+Vy >z} < {V;’:fm( )+ VA Kr=r=d(0) > (1—Me)a:}

B Technical lemmas
Lemma B.1. For1—p< (K +1)r,e>0, and 6 > 0,

* r 1-Kr—p—§ *
V2,>6$(_8 ) < V2,>em( ) < V2 ,>€ex - ( S )

Proof. Denote by u* :=inf{u > s* : V3 5z(—u) = 0} the last epoch before time —s* that
no large class-2 user was present. Hence, N, (t) > 1 for t € (—u*, —s*]. Observe that

the amount of service received by the large users during (—u*, —s*] then satisfies

—s* —s*

By sex(—u*, —s%) > Nsez(t)er(t)dt > / ci(t)dt > r(u* — s"),

—u* —u*

where c;(t) is the service rate of an individual streaming user at time ¢. Here, the final
step follows from the fact that Vi(—s*) = 0 and the service received during (—u*, —s*]
exceeds the amount of traffic generated. Using the above in the second step and (9) in

the first and final one, gives

V2,>Em(_3*) = V2,>ez( (% ) + A2 >ez( U*a _S*) - B2,>Em(_U*a _S*)
< A2 >ez( u* T )_T(U’*_S*)
< Visa(—u") + Az sa(—u, —5%) —r(u” —57)
< V2T>eac(_s*)‘
Finally, V3., (—s*) < V3 J57777° (—s*) follows from § > 0 and 1 — p < (K + 1)r. O
Lemma B.2. For all c,e > 0,
P{Viser >z} < (1+ 0(1))£IP’{B’ >z}~ IP’{VQCJ“O > 3:} , as T — 0o.
' c

Proof. Fix L, 0 < L < 0o, and consider an isolated system of capacity ¢, where only class-2
users with service requirements larger than L are admitted. The system load then equals
pr = AP{B > L} E[B|B > L]. Moreover, using Theorem 4.2 (take L large enough, such
that pr, < ¢), yields

]P){VQ SL > .’E}

Lp >z}
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For = > L, the probability on the right-hand side may be rewritten as follows
1 o0
_ P{B B> L}d
E[B|B>L]/m {B>ylB>L}dy
1 / * P{B >y} d
EB|B>1]), P{B>L}"
P{B" >z} EB p
= = —P{B" > z}.
P{B>LIEBB>L p B>
Combining the above gives

p
C—pL

P{B., >z}

P{Vy.p >z}~ P{B" > x}. (36)

Now, observe that for z > L/e, we have V. . (t) < V5. [(t), so that the first part of the
result may be obtained from (36), letting L — oo, and observing that p;, — 0 as L — oco.
The second part follows from Theorem 4.2. O

Lemma B.3. For allk € N, k > 0 (fized), and v > 0,
P{Nswe(—7z,0) > k} = O(P{B" > z}*), as T — 00.

Proof. Consider the time interval (—¢,0) and denote by 7% ,.(n) the interarrival time
between the (n — 1)-th and n-th user arrival after time —¢ with service requirement larger
than kx (with the natural amendment that the O-th arrival represents the last arrival
before time —t with service requirement larger than xz). Also, let T2, (n) denote its
residual interarrival time and let 7 be an arbitrary class-2 arrival epoch. We first prove
the lemma for k = 1. Note that

P{Nowz(—t,0) > 1} < E[Nsnz(—t,0)] = E[N(=t,0)|P{B > kz} = AtP{B > kz} .

In the final step we use that —¢ is an arbitrary time instant, so that N(—t,0) is a stationary
renewal process [2]. The statement of the lemma now follows for £ = 1 by taking t = vz
and using the fact that B(-) is regularly varying.

To extend this result to k& > 2, note that, for all n,

P{TSkz(n) <t} =P{Nsuz(7,7+t) > 1} < E[Nsye(7,7+t)] = E[N(7,7+t)|P{B > kx}.

By the Elementary Renewal Theorem [2], 2E[N (7,7 +t)] — X as t — 00, so that for any
d > 0 there exists a ¢ such that E[N (7,7 +t)] < (A4 0)t for all ¢t > ¢.

Note that the following two events are equivalent for £ > 1 (where we define the empty
sum equal to 0 in case k = 1).

k
{Nona(=,0) > k} = {TZ,,(1) + D Tora(n) < t}.
n=2
Thus, for £ > 2 and t > ¢,

k—1
P{N>x2(—-1,0) 2 k} < P {Tﬁm(l) + ) Tora(n) < t} PAT ra (k) < 1}
n=2

P{Nops(—t,0) >k — 1} (A + 6)tP{B > ka}.

IN
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By induction on k we obtain, for k > 2 and t > ¢,
P{Nsrz(—t,0) > k} < (A + 0)tP{B > xa})".

Again, by taking t = vz (for large enough z) and using the fact that B(:) is regularly
varying, the lemma follows. ]

In case the class-2 users arrive according to a Poisson process, Lemma B.3 can also be
shown more directly. The crucial observation is that the number of class-2 arrivals with a
service requirement larger than kx also follows a Poisson process, however with parameter
AP{B > kz}. Using the Poisson distribution function and taking the sum of a geometric
series then completes the proof.

Lemma B.4. There exists a &* > 0 such that for all k € (0, k*],

IP’{0<s:1<p z{A2(_S’0) —(p+0)s} > ex | Nopz(—72,0) = 0} =o(P{B" > z}).

Proof. Denote the interarrival time between the (n — 1)-th and n-th user by T),, and the
service requirement of the n-th user by B,,. Let S, := X1+...+X,, be a random walk with
step sizes X, := Bm — (p + 0)Th, with § > 0. Since p = EB,,, /ET,,, we have EX,,, <0,
i.e., the random walk has negative drift. Observe that by the saw-tooth nature of the
process {Aa(—s,0) — (p+d)s}, the process attains a local maximum at epochs right after
a jump, thus,

sup {Az(—5,0) = (p+d)s} <Bi+  sup Sy
0<s<yz 1<n<N(—72,0)

Then, conditioning on the total number of class-2 arrivals in (—vz,0) yields

]P){ sup {AQ(—S,O) - (p+ 6)8} > €x N>Iiw(_’7x70) = 0}
0<s<~zx

0<s<~z

= ZP{ sup {Aa(—s,0) — (p+9)s} > ex
n=0

‘ Nsyo(—yz,0) = 0; N(—vz,0) = n} x P{N(—vyz,0) =n}

M-’L‘ m
< ZIP’ By + sup Xip>ex | Xs<kxyi=1,...,npP{N(—~vz,0) =n}
n=0 Osmsn =
oo
+ Z P{N(—vz,0) =n}
n=Mz+1
< max IP’{ sup Sm > (e — K)x Xi</<wc,z'=1,...,n}+P{N(—fy:c,0)>J\7Ix}
0<n<Mz 0<m<n
< IP{ sup Sy > (e —K)z Xi</@:c,izl,...,n}+IP’{N(—fyx,0)>Mﬂc}, (37)

0<m<Mz
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where the third inequality follows from the fact that B; < ex. The second term of (37)
decays exponentially fast in  when M > Ay. The first term may be rewritten as follows:

P sup Sy > (e — K)z
0<m<Mz

Mz
< ZP{Sm > (e — K)x
m=0

This can be made sufficiently small by employing a powerful lemma of Resnick & Samorod-
nitsky [28]. According to this lemma, there exists a k* > 0 and a function ¢(-) € R_,,
with a > v, such that for all x € (0, k*] the first term of (37) can be bounded by Mz(z).
Take ¢(z) = 2 1 SP{B" > 2}, with ( = a — v, and note that Mz¢(z) = o(P{B" > z})
to complete the proof. O

Xi<mv,z':1,...,n}

Xi<mc,i:1,...,n}.

C Proof of Proposition 3.1

Proposition 3.1 If B(-) € R, and either (K + 1)r > 1 —p or Cy(t) = NG or both,

then K+N(t)
IP’{SQ>x}~P{B>%}. (38)
In contrast, if (K + 1)r <1 — p and Cy(s,t) =t — s — Bi(s,t), then
P{Sy >z} ~P{B>(1—p— Kr)z}. (39)
Proof. First, the case Ca(t) = #ﬁ(t) follows directly from [17]. This result also directly

provides the desired upper bound in case the system is critically loaded, i.e., (K + 1)r >
1 — p. The lower bound for (38) and the proof of (39) are somewhat similar to proofs of
delay asymptotics in [8, 11, 17].

Let Bg be the service requirement of a class-2 user arriving at time 0 and denote by Sy
its sojourn time. Also, let By(0,t) be the amount of service received during (0, ¢] if it had
an infinite service requirement. Now, observe that an actual user arriving at time 0 would
receive the same amount of service By(0,¢) if it is still present at time ¢. Thus, assume
that at time 0 a persistent class-2 user arrives. Then,

P{So >t}=P{Bo>Bo(0,t)}. (40)
For conciseness, we now first give the proof of (39) and then provide the lower bound for
(38).
Proof of (39). We apply the framework developed in [11, 17]. In particular, we show that
Assumptions (A-2) and (A-3) in [17] are satisfied. For Assumption (A-2), use (8) and (9):
B()(O,t) =t+ Vl(t) + Vg(t) — Krt — Ag(o,t) — V1(0) — VQ(O)

Because the system is stable, both (Vi(t) 4+ Va(t))/t — 0 and (V1(0) + V2(0))/t — 0 when
t — oco. Moreover, since A3(0,t)/t — p for t — oo, we have

t—o00 t

=1—p—Kr,
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giving Assumption (A-2). For Assumption (A-3), observe that By(0,t) > fg 1/(K+1+
N(k41)(u))du. Thus, from the proof of [17, Theorem 3] (take f(n) = m), it follows
that there exists a finite constant D > 0, such that

P{Bo(0,) < Dt} < IP’{/O o ]lv(KH)(u)du < Dt} — o(P{B > z}).

Since Assumptions (A-1)-(A-3) are satisfied, we may apply [17, Theorem 1] to obtain (39).

Lower bound for (38). Let By ,,(s,t) (B - .(s,t)) be the amount of service received by
class-2 users with initial service requirements smaller than (larger than) «t, excluding the
persistent class-2 user. Also, let s; := sup{0 < u < t:Vi(u) = 0} be the last epoch before
time ¢ that the class-1 workload was zero. Recall that Vi (¢) = supg< <, {A2(s,t)—c(t—s)}.
Using (8) and (9) in addition to Observation 6.1, we deduce o

BO(St7 t) + Bl(8t7 t) + B£>Ht(st7 t)
= t— St — B;,Snt(st’t)

> t— s — Ap <pt(St,t) — ‘é?gnt(st)
> (A=p—e)(t—si)+ (p+e)(t —s) — Ax(se,t) = Vo <4(51)
> (1= p—t—s) = VI () — Mt

where Ag <.t(s,t) is the amount of “small” class-2 traffic generated during (s,t] (see also
Subsection 5.2), and V, _,(s) is the workload at time s associated with “small” class-
2 users, excluding the p,grsistent user. Because class 1 uses the total available capacity
during (s¢,t], we have Bj(st,t) = KBo(st,t). Also, Vi(s;) = 0 implies By(0,s¢) > Krs;.
Combining the above, and taking e > 0 sufficiently small, yields

K e
B1(0,t) + B, - ,4(0,t) > Krst—}—K—_H[(l—p—e)(t—st)—V;+ (t) — Mkt]
K

> o l—p— 9t = VE(E) - Mt (41)

Now, applying (8) and (9), we obtain

By(0,t) < t—DBi(0,t) — By ,4(0,t) — By -,,,(0,%)
K +
< (I-p+et- K—-i-l[(l —p—e)t = V& (t) — Mrt]
V5 () + (P — €)t — A2, <t(0, ).
Moreover, observe that V2T<nt(t) < Vik+1)(t). Using these sample-path arguments and
(40) yields -
1—p+ (2K +1)e K ote

¢ £) + Mkt
K+1 tx Ve (O + Mxd]

+Vs <t(t) + (p— €)t — Az, <t(0,2) < Gt}

]P’{So > t} > P{Bo >

1—p+ (4K +2)e+ KMk
> P B t 42
> { 0> 2 } (42)
K e 2K +1
XP{K—H FT) + Vi) (t) + (p — €t — Az,<i(0,2) < K+16t}'
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Note that V§"(t), Vix11)(t), and As <,(0,t) are not independent. However, the second
probability in (42) can be bounded from below by

P{Aocui(0,8) > (p— )t} — P{VET > et} ~ P{Visen)(t) > et} (43)

The first probability of (43) may be treated along similar lines as in Subsection 5.2, which
gives P{As <.+(0,t) > (p —€)t} — 1, as t — oo. For the second term, we note that
| %4 *€ has a non-defective distribution. Moreover, we use the fact that a system with
K + 1 permanent customers also has a proper limiting distribution to handle the third
probability in (43) (see also Subsection 5.1).

Now, use the fact that B(-) € R_, and let €,k | 0 to obtain the lower bound for (39),
which completes the proof. O

D Proof of (12) for variable-rate streaming traffic

We now extend Proposition A.1 (relation (12)) to variable-rate streaming traffic. In fact, a
slightly stronger result is needed in the proof of the lower bound of Theorem 7.1. However,

P{Vy2 + V2 > o} > (14 0(1))IP’{V217K" > w} is a direct consequence of the proof, and
the following proposition may be of independent interest. It also shows that the asymptotic
equivalence holds under non-critical load if the system is work-conserving.

Proposition D.1. Suppose that the process {A1(—t,0),t > 0} satisfies Assumption 7.1
and p+ Kr < 1. If B(-) € R_, and one of the two following conditions is satisfied

(i) the system is critically loaded, i.e., 1 —p < (K + 1)r;
(ii) the system is work-conserving, i.e., Ca(s,t) =t —s — By(s,t);
then

P{VY™ 4 V3% > g} P{V;J{r > x} _

This asymptotic relation also holds when Vi + Vo and VzlfK" represent the workloads
embedded at class-2 arrival epochs rather than at arbitrary instants.

Proof. The proofs again involve lower and upper bounds which asymptotically coincide.
The lower bound is the same for both cases (i) and (ii).

(Lower bound) In fact, we will prove a slightly stronger result. Define ﬁ‘f(O) 1= sup;>o{ct—
Aq1(—t,0)} and recall that ﬁf(O) = sup;>oict — A1(0,t)}. We show that

P{Vir(0) + V3 (0) > 5 U Y (0) < g}

> 1. (44)

lim inf

T—00 ]P;{VlfKr > CB}
2
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Using the work-conserving scenario as a lower bound in addition to (10), we have for any
£>0,

LV (0) + V3 (0) > ;U1 (0) < g}
> P{igg{Al(—t, 0) — K(r — )t + As(—t,0) — (1 — K(r — 1))t} > z;
71{ ) < ¢x}

p{vy K0 - TEC90) > o ﬁ 0) < ¢}
> P{TC0)> (1+¢) } [T < sx;ﬁf () < g}

v

Note that
P{F{qr* ) < &x; 71{ ) < ¢ac}
> P{ﬁf =y (o)ggas} {ﬁK >¢w}

Because both random variables ?{{(rﬂp) (0) and ﬁ{((rﬂp) (0) have a proper distribution,
it holds that P{ﬁ{(“_w) (0) < {w} — 1 and P{ﬁf(T_¢) (0) > (;Sw} — 0 as z — oo (see

also (31)). Hence, we have

P{V"(0) + V3 (0) > 2 T4 (0) < ) < go}

> 1.

lim inf

a0 P{V;*K(H/’) > (1 +§)x}

Finally, let £,1, ¢ | 0 and use Theorem 4.2 and the fact that B"(-) € Ri_, to obtain (44).
The lower bound is a direct consequence.

(Upper bound for part (i)) We now show that for a critically loaded system

IP) var var
lim sup {Vl + V2 > CE}
Y

<1. (45)

To do so, we apply the leaky-bucket idea of Section 7. Recall that in the reference system,
class 1 generates traffic at constant rate K(r + v¢), and class 2 receives service at rate
N(xy(t)/(K + N(x)(t)), independently of class 1. Note that V3" (t) < V(g (t) = VQCSt’¢(t),
with V{ K)( ) the workload at time ¢ in an isolated queue fed by class 2 with K permanent

customers, and VCSt’w( t) the class-2 workload at time ¢ in the reference system. Thus,

combining the above with (34) yields
var var K(r+¢) cst, P cst, i
V() + V™ () < W, (1) + VIR () + V7 ().
Converting this sample-path relation into a probabilistic upper bound gives

P{Vlvar Vvar > :13} < P{VIK(r+1/’) > 5;13} + P{Vlcst,'l/) + ‘/2Cst,¢ > (]_ _ f)CE} .
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Again, the first term can be controlled by Assumption 7.1. For the second term, apply
Proposition A.1 and Theorem 4.2, use the fact that B"(-) € R1_,, and then let ¢,£ | 0.

(Upper bound for part (ii)) It remains to be shown that (45) holds if the system is work-
conserving. Using sample-path arguments, we have that Vi (¢) + V52 (t) < VlK(Hw)(t) +
VzlfK(Hw)(t), so that, for any ¢ € (0, 1),

P + 13 > 2} < PLVCH) s gob 1 p {70 S (1 g)al
It follows from Assumption 7.1, Theorem 4.2, and the fact that B"(-) € R;_, that

P{VC™) > gat = o {1, K > (1 gz},
as £ — o0o. Thus,

]:P Vvar VVar
lim sup ;{ 11( + V5™ > 2} <1.
z—00 P{V2 —K(r+y) > (1— d))fﬂ}

Finally, let v, ¢ | 0 and use Theorem 4.2 and the fact that B"(-) € R1_, to obtain (45).
Note that the above proof applies regardless of whether 0 is an arbitrary instant or a
class-2 arrival epoch. O
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