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A duopoly model with heterogeneous congestion-
sensitive customers

ABSTRACT

This paper analyzes a model with two firms (providers), and two classes of customers. These
customers classes are characterized by their attitude towards “congestion' (caused by other
customers using the same resources); a firm is selected on the basis of both the prices charged
by the firms, and the “congestion levels'. The model can be represented by a two-stage game:
in the first providers set their prices, whereas in the second the customers choose the provider
(or to not use any service at all) for given prices. We explicitly allow the providers to split their
resources, in order to serve more than just one market segment. This enables us to further
analyze the Paris metro pricing (PMP) proposal for service differentiation in the Internet. We
prove that the stage-2 game (the customers' behavior for given prices, and a given division of
the providers' resources) has a unique equilibrium. Insight is gained into the structural
properties of the equilibrium. We also show that the objective functions in the stage-1 game are
continuous (in the providers' decision variables), thus enabling an efficient search for its
equilibrium. We comment on the viability of the PMP proposal.
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1 Introduction

In various situations the utility experienced by a customer is strongly (negatively) affected by other
customers using the same resources. Consider for example a service as Internet access: there customers
select a provider not only on the basis of the prices charged, but also on the level of congestion. Also in
many production systems this type of ‘negative externalities’ play a crucial role. The fact that customers
react to differences in both prices and congestion leads to a complex interaction between suppliers (firms)
and customers. If one of the firms increases its price, it becomes less attractive to the customers, but as a
consequence also congestion will decrease. Particularly in situations with heterogeneous customers, i.e.,
customers with heterogeneous preferences with respect to price and congestion, this leads to challenging
economic questions.

Situations with heterogeneous customers arise naturally in practice. In the example of Internet users,
one could think of the difference between business customers and residential users (where business
customers are, in general, more ‘congestion averse’). Another obvious example relates to first class and
second class passengers on a train or plane.

To exploit this intrinsic heterogeneity in preferences, firms could consider the option of ‘splitting re-
sources’, in order to serve more than just one market segment. In the situation of Internet service,
it would mean that the provider splits his network into logically separated subnetworks, each of them
charging a different price. The subnetwork with the highest price will attract fewer customers (or, more
precisely: a lower congestion level), and is consequently less-congested. As a result, the congestion-
sensitive users choose the more expensive network, whereas the congestion-indifferent users opt for the
cheaper network. Hence, the ‘quality of service’ (QoS) the customers experience agrees with the specific
preferences of the users.

For Internet pricing, this concept was proposed by Odlyzko [14, 15], who also introduced the term Paris
metro pricing, or PMP. Notice that the network’s customers are not offered any absolute guarantee
of quality of service, but rather a ‘soft’ relative indication. The major advantage of PMP over tradi-
tional QoS-differentiating mechanisms (such as priority queues, see e.g. [10, 12, 13], or other advanced
scheduling policies) is its low complexity from a technological point of view. As in PMP the customers
join the subnetworks of their preference, the network elements (routers) can just do the service on a
first-come-first-serve basis, and as a consequence in these subnetworks no prioritization is required.
We note that often without any QoS-differentiating mechanism essentially just one segment of the
market is served — usually the congestion-indifferent users ‘push away’ the congestion-sensitive users, a
phenomenon referred to [6] as tragedy of the commons. There is a growing body of literature on QoS
differentiation and the related pricing issues — we mention [5, 8, 9, 16, 17], and various chapters of [11].

The recent book by Hassin and Haviv [7] presents a thorough survey on this issue.

System. Motivated by the above, the system considered in the present paper involves competition

between two providers. Each provider has the opportunity to split its resource: in the case of the



Internet provider, he can split his network into several smaller networks (subnetworks). These networks
may differ in capacity and price. Customers choose between networks (and hence implicitly also between
firms) based on their congestion levels and prices. If these congestion levels and/or prices are too high, a
customer may consider the option of not joining any network at all (‘balking’). Evidently, the choice of
a customer affects the choice of other customers through the network congestion he incurs. Hence, there
is also competition between the customers. This twofold competition (i.e., both among firms and among
customers) is modeled as a two-stage noncooperative game. In the first stage, providers set capacities
and prices for their networks, whereas in the second stage, customers choose which subnetwork to join,
if any (for fixed prices and capacities of the subnetworks). It is noted that in the stage-1 game the
firms know the way the customers react to their price and capacity decisions. In our paper we examine

equilibrium outcomes in the composite (i.e., two-stage) game.

Literature. The PMP proposal was further assessed by Gibbens, Mason, and Steinberg [4]. In their
paper the focus is on competition between two PMP-offering providers. In [4] it is shown that — under
specific modeling assumptions — neither provider sub-divides its resources. In fact both providers focus
on just one segment of the market, i.e., they offer a single service class. The other paper that is strongly
related to ours, is by Armony and Haviv [1]. They also consider heterogeneous customers in a duopoly
environment, but they do not incorporate the possibility of the providers splitting their resources. In [1]
congestion is phrased in terms of response times (i.e., queueing delays). Christ and Avi-Itzhak [3] also
study a duopoly model, namely a queueing situation in which two servers compete for arriving customers.
The servers compete in their service rates and there are no different customer types. Selecting a certain
service rate generates a cost. The authors show that if this cost is convex and increasing in the service
rate, then there exists a unique Nash equilibrium. We refer to [1] for more references on competition

models with congestion-sensitive services.

Modeling assumptions. As mentioned above, Gibbens, Mason, and Steinberg conclude in [4] that both
providers offer just a single service class. This result, however, was derived under a number of specific
assumptions. In their model providers are identical (their networks have the same capacity). Also, they
can only choose between offering either a single or two networks of equal capacity. It is noted that
[4] present numerical evidence that suggests that their main conclusion (i.e., PMP is not sustainable
under competition) carries over to the situation in which the providers can divide their capacity in not
necessarily equal parts. In their framework there is a continuum of customer types, but the perhaps
somewhat unrealistic requirement is imposed that these customers must select a network to join, and
cannot opt for leaving.

The modeling assumptions in Armony and Haviv [1] are rather different from those in [4]: just two
types of customers are identified, the providers are not necessarily identical, and customers have the
option of balking. The procedure followed in [1] to analyze this model, is reminiscent of the two-stage

game identified above. For the stage-2 game the authors prove existence and uniqueness of the Nash



equilibrium, whereas the stage-1 game is analyzed numerically.

Contribution. Our paper presents a two-stage analysis of the duopoly model with negative externalities
(due to congestion). Like in [1], and as opposed to [4], we consider two types of customers, that have
the option of balking; we also allow non-symmetric providers who have the opportunity of splitting their
network in two (not necessarily equal) parts. The structure followed resembles that of [1] — the major
differences are: (i) we allow the providers to split their resources, (ii) congestion is expressed in terms

of utilization of the resources, rather than queueing delay. In more detail, our contributions are:

e Existence and uniqueness of the equilibrium of the stage-2 game. This is done for general utility
curves (as opposed to [1] where the utility is linear in the mean delay). In addition, we derive
a detailed analysis of the equilibrium structure. We present a counterintuitive example that
illustrates the phenomenon that the number of customers of a single type may be increasing with

the network price; see for related results also [1, Section 4].

e For stage 1 it is shown that the profit of each provider is continuous in prices and capacities. This
profit function is piece-wise differentiable, and can consequently be computed numerically rela-
tively easily. Unfortunately the profit function need not be quasi-concave, and therefore existence

(and uniqueness) of an equilibrium cannot be established by standard machinery.

e Finally, with respect to PMP under competition, we conclude that the outcome of the model
critically depends on the assumptions of the model. In fact, we find, under our specific assumptions,
that it may pay off for both providers to split their resources, even if the providers can only choose
between offering either a single network or two networks of equal capacity. Remarkably enough,

this is in contrast with the findings of [4].

The remainder of our paper is organized as follows. In Section 2 we introduce our model and describe
the resulting 2-stage game. The second stage of this game is considered in Section 3, resulting in several
structural properties of the customer populations in the various networks. In Section 4 the existence of
a unique equilibrium for stage 2 (i.e., customer competition for fixed prices and capacities) is proven.
Stage 1 is considered in Section 5. Section 6 illustrates that, under our modeling assumptions, in Pmp

both providers may split their resources. Section 7 concludes.

2 Model

This section describes the duopoly model that we study in this paper. The agents are (i) two providers,
and (ii) two user groups (with their specific preferences with respect to price and congestion). First,
in stage 1, the providers set capacities and prices for their networks to maximize their profits. Then in
stage 2, the customers of both types decide whether or not to enjoy network services, and, if so, from

which network. Their goal is to maximize their utility.



Notice that the two stages can be solved sequentially: Given capacities and prices of the networks, the
customers decide in stage 2 upon which network services to consume, if any. Knowing these decisions
of the customers, in stage 1 the providers set their capacities and prices to maximize their profits. This
sequential decision-making is modeled as a two-stage noncooperative game. In the stage-1 game the

providers compete for profit, whereas in the stage-2 game the customers compete for network services.

The providers, I and II, are characterized by their respective capacities, C' and C'!. Provider I splits
his capacity into m! subnetworks, numbered from I,1 to I,m!, with capacities C"* > 0 such that
ZZL:II CF = C1. Each subnetwork charges a price p"* > 0 (selected by provider I). Provider II follows
an analogous strategy. We assume that there are no costs for providing network services. The goal of
each provider is to set his network capacities and prices such that his profit is maximized, given the
choices of the other provider.

There are two types of (potential) users of the network resources. The (gross) utility they get from using
a network depends on the level of congestion in the network. To be more precise: if they use a network
of capacity C' with n users, their utility U; (¢ = 1, 2) is a continuous function of the ‘network utilization
parameters’ n and C. This is a situation with negative externalities, i.e., for given C the utility is a
strictly decreasing function of the number of users n, while for given n the utility is a strictly increasing
function of the capacity C'. Customers value a network by the net utility, that is, gross utility minus
price: U; — p. A customer receives a net utility of zero units by rejecting all offered network services.
Each customer aims at maximizing his net utility.

The two types of users differ in their attitude towards congestion. The second type of users dislikes
congestion more than the first. We model this by assuming that U;(n,C) = « - Uz(n,C) for some
«a > 1. Further, an empty network provides a constant utility, irrespective of the value of C, i.e.,
U2(0,C) = 8 > 0, for all C. There are N; < oo (potential) customers of type i. The networks are

ordered by non-increasing prices. Let ng’k be the number of customers of type i (¢ = 1,2) in the kth
Lk
i

need not be integer numbers.

network of provider I; define n;”" analogously. We assume that the customers are infinitely divisible.

This implies that ng’k, n?’k
Now, if the utility curves Uy and U; = aUs, the numbers of customers Ni, N», and the capacities CT,
C™ are known, which capacities and prices will the providers set (and how many users of both types
will join the subnetworks)? As argued in the introduction, we have a special focus on the question of
whether the providers will offer multiple subnetworks, that is, will m! € {2,3,...} and m!'' € {2,3,...},
or not. In this paper, this question is analyzed by solving the 2-stage problem backwards, i.e., by solving

both games sequentially, starting with the stage-2 game.

3 Stage 2: network selection problem

The second stage of the 2-stage problem describes the network selection problem of the customers given

the capacities and prices as set by the providers. Suppose there are m! + m!!' = K networks available,



which we label, without loss of generality, such that the sequence of prices is non-increasing (regardless
of the provider’s identity) — this choice turns out to be convenient when deriving structural properties
of the equilibrium. Assume that the lowest of these prices is still positive, ensuring a positive profit for
the providers.

The customers of both types can choose to join one of these K networks, or they can opt for not using
any of these. The structural properties derived in this section are used in the next section, where we

study existence and uniqueness of the equilibrium.

Each customer joins the network that provides him with the highest nonnegative (net) utility. If all util-
ities are negative, the customer remains inactive (yielding utility 0). We denote the network population

of network j by customers of type i (for given prices and capacities) by
n(pC), i=12 j=1,...,K,
with

ﬁE(plap27"'7pK)7 65(01,02,...,01().

The population profile n(p, C) is an equilibrium if it does not pay for any number of customers of the
same type to switch to another network or to renege, while all the other customers stay where they are.
In other words: if customers of type 7 are present in network k and if they receive a nonnegative utility
from doing so, U;(n¥ +nk, C*) — p*¥ > 0, then deviating to network ¢ does not increase the utility of the

customers:
Ul(nlf +n’§,0k) —pF > U,(nf + ng + uf,CZ) —pt

for all types ¢ and 0 < uf < nf Remark that we have have tacitly imposed the assumption that
customers are infinitely divisible. Because of this assumption we write ‘equilibrium’ instead of ‘Nash
equilibrium’ since the latter concept refers to individual customers (instead of an arbitrary number of

customers) having no incentive to deviate. The following definition is equivalent.

Definition 3.1 The population profile n(p,C) is an equilibrium if
Ui(nf +n5,C*) — p* > Ui(n{ +nj, %) — p*

for all types i and networks k and £ with n¥ > 0 and U;(n¥ +nk, C*) — pF > 0.

From now on, let n(p,C) denote the equilibrium profile of network populations given the prices and
capacities (p, C). The remainder of this section is devoted to the analysis of the specific structure of such
an equilibrium profile (in the next section we prove that there exists a unique equilibrium). The first
lemma shows that customers use the cheapest networks. Its proof follows directly from the definition of

an equilibrium, and is therefore omitted.



Lemma 3.2 For any value of k € {1,..., K—1}, the following situations cannot occur in an equilibrium:
n¥ >0, and nf“ = n’?f_i = nlgfll =0,

fori=1,2.

The following lemma is based on the strict monotonic utility curves and the non-increasing prices.

Lemma 3.3 For any value of j € {1,..., K}, the following situations cannot occur in an equilibrium:
e n) >0, and nk >0 for some ke {j+1,...,K}.
. nJ1 >0, and n§ > 0 for some k € {1,...,5 —1}.

Proof. Consider the first claim — the second claim is verified analogously. Suppose the stated is not
true. Because the situation is an equilibrium, type 1 customers do not have an incentive to deviate to

network j:

U (nf +nk C*) —p* > U (nd +nd,C9) —p |
due to Definition 3.1. Similarly, type 2 customers do not switch to network k:

Ua(nk +n§, C*) — p* < Us(n] +nd, C7) — /.
This results in

a- Uz(n{ +ng,0j) —a-Uy(nk +nk CF) <pf —pF < U2(n{ + ng, C7) — Uy(n¥ + nk, C).
However, because of the assumption p/ — p* > 0, this would imply a < 1. Contradiction. U
From the above lemmas we can draw the following conclusions:

e From Lemma 3.2: If there are empty networks, then these must be the most expensive networks.

Let network j* be the first non-empty network.

e From Lemma 3.3: Suppose network 7 > j5* has type 1 customers. Then network 1 up to j — 1
have no type 2 customers. Suppose network j > j* has type 2 customers. Then network j + 1 up

to K have no type 1 customers. So there is at most one network with customers of both types.

These observations immediately lead to the following corollary describing the structure of the equilib-

rium.

Corollary 3.4 Define J :={(j,7*):j€{1,...,K},57* € {1l,...,5}}. An equilibrium has of one of the

following structures:



e it is a mixed equilibrium M (j, j*) if the two types of customers share a network: for some (j, 7*) €
J,
(1) n¥ =nk =0 forallk € {1,...,5* —1}.
(2) nk >0 for allk € {j*,...,5}, n§ =0 for all k € {5*,...,7— 1}, and
(8) n¥ =0 forallke {j+1,....,K}, nk >0 forallk € {j,...,K}.
e it is a separated equilibrium S(j,j*) if the two types of customers do not share a network: for
some (j,7%) € J,
(1) n¥ =nk =0 for allk € {1,...,5* —1}.
(2) n¥ >0, nk =0 for all k € {j*,...,5}, and
(8) n¥ =0,nk >0 forallke {j+1,...,K}.

e it is an empty equilibrium if no customers are present in the networks: n’f = n’2“ =0 for all k.

An equilibrium profile n(p,C) provides information on the utilities of the customers in the various

networks, as follows from the next lemmas.

Lemma 3.5 In an equilibrium,
o If 1 nk < N, then necessarily Ui(n% + nk,C*) — p* = 0 for all k with n¥ > 0.
o Also Uy(nk 4+ nk, CF) — pF = U;(nf + nf, CY) — p* if both n¥ and nf are positive.

Proof. For the first claim, suppose that the stated it is not true: there exists k with nf > 0 such that
Ui(n% 4+ nk C*) — p¥ > 0. The utility function being continuous and decreasing in n, there exists ¢ > 0
such that U;(n¥ 4+ nk + &, C%) — p¥ is still positive. We conclude that ¢ customers who were inactive,
have an incentive to join network k. Hence n(p,C) cannot be an equilibrium.

Also for the second claim, suppose that the stated is not true. Without loss of generality assume that
Ui(nk +nk CF) — p* > Ui(n{ + n§, C*) — p’. Using once again that the utility function is decreasing
in n, there exists ¢ > 0 such that U;(n¥ 4+ nk + ¢, C*¥) — pF > Ui(n{ + n§, C?) — p*. This means that
€ customers of network ¢ have an incentive to deviate and join network k. This is in contradiction to

n(p, C') being an equilibrium. O
Lemma 3.6 In an equilibrium M(j,j*) or S(4,5*), i:j* n¥ < Ny implies that ZkK:j nk =0.

Proof. For a mixed equilibrium M (j, 7*) this result is seen as follows. Assume that ZkK:j nlf > 0. From
i:j* n¥ < N1 and Lemma 3.5 it follows that necessarily Ul(n{ + ng, C7) = p’ > 0. Hence,

Us(n] +n},C7) —p = Us(n] +nd,C7) = Us(n] +nb, C7)

. o 1 . o
= (1 - a)Us(n] +nj,C7) = (a - 1) Ui(n] +nd,C7) <0.
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However, since we are in an equilibrium, also Uz(n¥ + nk, C*) — p* = Ug(n{ + n%,Cj) —pl > 0.
Contradiction.
In case of a separated equilibrium S(j, j*) it follows from ZkK:j nk > 0 that Uy(nd ™, C7H1) — pitl > 0.
Consequently,

U1(ng+1,0j+1) p]+1 _ OéU ( j+1 C]+1) pj+1 > 0.

Therefore there exists a positive number € of type 1 customers such that Uy (n} T e, ity —pitl 5 0.
These customers have an incentive to deviate because they can receive a positive utility (instead of zero

utility) by joining network j + 1. We again conclude that Zk n2 > (0 cannot hold. O

The above lemma implies that if Z i n¥ < Ny, then j = K. We also conclude that if some customers
of type 2 are present in the networks, ie., Zk:j n2 > 0, then also all customers of type 1 must be
present, Zi: i n’f = Nji. Hence, the customers of type 1 have some ‘dominance’ over those of type 2.

Another type of dominance is stated in the property below, cf. Balachandran and Schaefer [2].

Lemma 3.7 In an equilibrium, if Ny is large enough, then nk = 0 for all networks k.

Proof. Suppose that the system is in equilibrium and that nlg > (0 for some network k. Then the

customers of type 2 receive utility Uz(n¥ 4 nk, C*) —p* > 0. But then the utility for customers of type
1 is positive: Ul(n]f + nlg, Ck) —pk = aUQ(nIf + né, C*) — p* > 0. When increasing Ny, at first the new
customers of type 1 will be inactive since the system is in equilibrium. But these customers have an
incentive to join network k because it results in a positive utility which is larger than 0, the utility of

being inactive. Therefore this situation cannot be an equilibrium and consequently n = 0. (|

The following algorithm finds the equilibrium profile n(p, C), based on Corollary 3.4, and Lemmas 3.5
and 3.6.

Algorithm 3.8 ‘Mixed equilibria’. For (j,j*) € J, the equilibrium profile is of type M(j,7*) if
the following conditions hold. We set nf =0 fori=12andk=1,...,57*—1. Also n’2° = 0 for
k=j*....,j—landnf =0 fork=3+1,...,K.
In all cases K — j* + 2 equations in K — j* + 2 unknowns must be solved.
My : Solve under Zk _j* nl = Ny and Zk 1”2 = Ny

Ul(njl.*acj*) —Pj* == Ul(n{_lacj_l) _pj_l = Ul(n‘i —|—7’I,%,CJ) _p] >0, and

Us(n) + 1, C9) — pf = Us(nf"™, 07HY) — pP T = . = U, CF) — p& > 0.

: Solve under Zk L nk =N

Ui(nd  C7Y —p" = .. = U (nd L0 = p L = U (nd + 0, CT) —p? >0, and

Ua(n] + 04, C7) = p = Ua(nf ", O = p/ M = = U, CF) = p = 0.



For each of these solutions, check if all nf >0, Zi{:l nf < N;, and
(1) U1(0,C" 1) — pi* =1 < Uy(n] +nd, C9) — p7,
(2) Uy (g™, CI+1) — pi+l < Uy(nd +nd, 09) — p/, and
(3) Us(nf*,C71) = pi=! < Us(n} + ), C9) — pi.

‘Separated’ equilibria. For (j,j*) € J, the equilibrium profile is of type S(j,7*) if the following
conditions hold. We setni-e =0fori=1,2andk=1,...,57*—1,nk =0 fork =35 ...,5 and n¥ =0
fork=3+1,...,K.

In all cases K — j* + 1 equations in K — j* + 1 unknowns must be solved.

; K
S1: Solve under ch:j* n]f = N and Zk:j+1 ”]2C =N

K

U] 7)) =9 = =Th(n],C%) =9 20, and
Ua(ng ™, C7H) —p/*t = = Ua(nff, CT) = p > 0.

So : Solve under Zi:j* nk = Ny

sk

Ul(n{*,Cj*) —-p == Ul(n{,Cj) —p? >0, and
Up(ndth, 07 — Pt = .. = Uy (nf, CF) — p& =00

S : Solve under Zf:j* n¥ < Ni (j =K and nk =0 for all k)

=3

Ui(n} .C7) —p'" = - = h(nf,C%) =" 2 0.
For each of these solutions, check if all nf >0, Zf:l nf < N;, and
(1) T1(0,C9" 1) = p" 1 < Uy (nf, C9) — p,
(2) Ur(n§*,CI%1) = p*! < Us(n}, C9) —p/, and
(3) Us(n},C) —pi < Up(nd™, Cit1y — pitt,

‘Empty’ equilibrium. For this equilibrium n¥ =0 fori=1,2 and k = 1,..., K. Check if U;(0,C*) —
pF<0fori=1,2andk=1,... K.

A simple counting procedure yields that there are %K (K + 1) possibilities for a mixed equilibrium
Mj, the same number for M, S; and S, K possibilities for an S equilibrium, and just 1 for an empty
equilibrium. This gives a total number of (2K +1)(K +1) possibilities for the structure of an equilibrium
profile.
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4 Stage-2 equilibrium

In this section we prove existence and uniqueness of the equilibrium of the stage-2 game, by using the

structural results of the previous section.
Theorem 4.1 There exists a unique equilibrium n(p,C).

The proof of Theorem 4.1 is divided into two parts: the first part shows the existence and the second

part shows the uniqueness of an equilibrium n(p, C).

Proof of Theorem 4.1: existence. An equivalent definition of an equilibrium in our context can
be derived using an iterative procedure. If, at time ¢t € N, ng’t customers of type 2 are present in
the networks j = 1,..., K, then the type 1 customers respond to this by placing n1 ;41 = Ri(n2t)
(a vector of size K); the function R; is the ‘best response’ function of the customers of type 1 and it
will be specified in the algorithm below. Obviously, n;; € D; = {z € RX |z > 0, Zle zF < N;} for
1 = 1,2. More precisely, the following algorithm determines how many customers of type 1 join networks
1,..., K.

Algorithm 4.2

1. Determine for all networks j the net utility of network j, Ul(ngvt,Cj ) — p’, as if there are ng,t

customers of type 2 and yet no customers of type 1.

2. Sort the networks from highest net utility (network j;) to lowest net utility (network jg). If
the net utility of network j; is nonpositive then all networks have a nonpositive net utility and
customers of type 1 do not join these networks: n¥ = 0 for all networks k. Go to step 5. Otherwise,
let network jp be the last network in the ordered list of networks with a positive net utility. Hence,
the net utility of network ji for k > b is nonpositive. Assign nJl’c =0fork=0b+1,...,K and go
to step 3.

3. For m from 1 to b — 1 apply the following procedure. Assign customers of type 1 to the networks

j1 to jm such that the net utilities of these networks are equal:
Ul(n]1 275,C’Jl)— :...:Ul( Qt,(ﬁm) pim.

Do so until either we run out of customers, i.e., Y ,-; n}* = Ni, or the net utility level of network

Jm-+1 is reached:
Ul(n{ 2tvCJm) pm = Ul(nz t+1 CImi1) — pimit,

If we ran out of customers, then set njl’C =0for k=m+41,...,b and go to step 5. Otherwise,

increase m by 1. If m < b, then repeat step 3, whereas if m = b, then go to step 4.
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4. If m = b then add customers of type 1 to the networks j; to jp such that the net utilities of these

networks are equal:
Ur(nl' +ndy, C1) —p/ = ... = Ul(nf™ + nd;, O9m) — /.
Do so until either we run out of customers, i.e., > ", n{’“ = Nj, or the net utility drops to zero:

Ul(n{m + ng”’;,ij) —p'm =0.

Go to step 5.
5. Re-order the resulting vector (n?!,...,n?%), so that we get (nl,...,nf). Finally, set Ri(ngyt) =
— (] K
nig41 = (ng,..., N7 ).

The steps 1 and 2 of the algorithm are based on the fact that a customer does not join a network
if this gives him a nonpositive utility. Step 3 corresponds to the second statement in Lemma 3.5: if
customers of type i are present in several networks, then they should receive the same net utility from
these networks. Further, if we run out of customers in step 3, then the customers who are assigned to
the networks j1 to j,, have no incentive to change networks (since they are assigned to the networks with
the highest net utilities, see also Definition 3.1). Finally, step 4 uses the first statement in Lemma 3.5,
which says that if some customers of type ¢ decided not to join any network, then the net utility for all

those of type ¢ who did join a network should be zero.

The customers of type 2 use an analogous algorithm to respond to ni; by placing Rg(nl’t) = nay
customers in the various networks. The iterative procedure has initial value nag = (0,...,0) and is
further defined by nj:+1 = Ri(ng:) and ng; = Ra(ni1:). Combining these responses leads to the
functions n1 441 = R1(R2(n1,¢)) and ng 41 = Ra(R1(n2,.)), or equivalently,

N1 = Pi(niyg),
where Py = R1(R2) and P, = Ra(R;). The iterative procedure has reached an equilibrium if
nit = Pi(nis);

then no further changes are made. Consequently, equilibria correspond to fixed points of P;. According
to Brouwer’s fixed point theorem P; has a fixed point if P; : D; — D;, P; is continuous and D; is a
nonempty, compact, and convex set. It is easily checked that D; is indeed nonempty, compact, and
convex. To prove existence, this leaves us with the question whether P; is continuous.

Continuity of P; is verified by observing (from steps 1 to 5 in Algorithm 4.2) that a small change in no
leads to a small change in R;(ng;). Hence, R; is a continuous function. Similarly, also R» is continuous,

and hence P; as well (being composed from R; and Rp). O

We now concentrate on the uniqueness claim. In the proof, the following property is useful.
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Lemma 4.3 Suppose there are two equilibria n'(p,C) and n"(p,C), and let k' < k" < K. Suppose that

in the first equilibrium the type 2 customers are present in the networks k' till K, i.e., Zf:k, (nlg)’ = N,

whereas in the second equilibrium they are in the networks k" till K, i.e., Zszk,, (n5)" = Ny. Then

Uz((n)" + (n5)",C*) < Ua((nf)' + (n5)', C*)

fork=kK"' ..., K.

Proof. We establish the claim for ¥’ = k” — 1. Then for ¥ < k" the stated follows by iteration. Let
1 < k" < K and define ¢ := k" for ease of notation (i.e., ¥’ = ¢ — 1). The proof is done in three steps.

e First notice that

Z(néc)l < Na,

K
k=¢

(4.1)

because we assumed (ngfl)’ > 0. The population profiles n'(p, C) and n"(p,C) are equilibrium

profiles and therefore, by Lemma 3.5,

Uz((n5)', C%) = p° = Up((n})', C*) — p" and

Uz((nf)" + (n3)", C%) — p* = Ua((n})", C*) - p",
for k=/¢+1,...,K. This implies in particular

Uz((n1)" + (n3)", C*) = Ua((ng)", C%) = p = p™ = Us((n3)', C) = Ua((n3")', C*)
and, for k=/¢+1,...,K — 1,

Uz((n})", C*) = Us((ng)",C%) = p* — p™ = Us((nf)', C*) — Ua((n5)', C*).
Rearranging these last equalities gives

Uz((n3)',C*) = Ua((nf)", C*) = Ua((ng')', C*) = Ua((n5')", C¥)

fork=4¢+1,...,K — 1.

e Now suppose that

Uz((n3)', C*) < Ua((n3)",C").

13
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Then, by Equation (4.5), Us((nk)',C*) < Ux((nk)",C*); this implies (nk) > (nk)", for k =
£+1,...,K — 1, using that the utility functions are decreasing in n. Using this, and also (4.1),

we conclude

K K
(n3)" =Na— Y (n5)">No— ) (n)' > No— (N2 — (n3)') = (nj)"
k=¢+1 k=¢+1

This implies that Us((n%)"” + (n)", C%) < Ua((nb)", C*) < Us((nf)’, C*). Combining this with (4.6)
and (4.3) leads to a contradiction to (4.2):

Us((ng),C%) =p% < Ua((nd)",C%) —p" = Ua((n)" + (nh)", C*) —p*
< UQ((ng)lacg) _pz-

e The contradiction yields that (4.6) must be invalid, so that Uz((n&)’, CK) > Us((n&)"”, CK). Then
by (4.5), we have that Us((nk)’, C*) > Uay((nk)",C*) for all k = £+ 1,..., K. Finally, this implies,
in conjunction with (4.4), that Us((nb)’, C%) > Ua((nf)" + (n§)", C*). This completes the proof. O

Proof of Theorem 4.1: uniqueness. Suppose one of the (2K + 1)(K + 1) equilibrium structures of
Algorithm 3.8 is valid. Then it can be shown that a second equilibrium cannot occur. As the procedure
is relatively straightforward, we treat just one example, namely M;(1,1).

Assume that there is an M;(1, 1) equilibrium denoted by (71,72). Recall that for this equilibrium
K
fi = Nj and ) 5 = Ny;
k=1

all customers of type 1 are in network 1, while the customers of type 2 are distributed over the K

networks. Also,
Ur(fig +73,C") —p' >0,
and
Us(fy +7d,CY) —p' = Uy(2,C%) —p* = ... = Up(RX,CK) — p® > 0; (4.7)

observe that all customers have a nonnegative utility. We show that under these conditions there cannot

exist a second equilibrium.

M;(j,1): First, is it possible to have an M;(2,1) equilibrium (n1,n2) as a second equilibrium? If such an

equilibrium would exist, then

Ur(n},C") — p* = Ur(n} +n3,C?) — p,

14



Ml(ja j*):

MZ(ja j*):

i.e., the customers of type 1 receive the same utility from the networks 1 and 2. Rearranging this

equality and substituting U; = aU, gives

a(Uz(ny,CY) — Us(n? +n3,C?) =p' —p> > 0.
From (4.7), we also have p' — p* = U (il + 73, Ct) — Ua(723, C?), and therefore (use o > 1)

0 < Us(ng, Ch) — Us(n? +n3,C?) < Us(R] + 03, Ct) — Ua (73, C?). (4.8)
From

n <Ny =nl <l +nl (4.9)
it follows that Us(nl, C1) > Us(Al + 73, C1). But then

Us(n? 4+ n3, C?) > Uy(n3, C?), (4.10)

because otherwise (4.8) does not hold. Lemma 4.3 shows that Us(n? +n3, C?) < Us(73, C?). This
contradicts (4.10). Conclude that M;(1,1) and M;(2,1) cannot occur both.

Along the same lines one can show that there also cannot be an M (j, 1) equilibrium, j € {3,4,...}.

Now we check if it is possible to have another Mj(j,j*) equilibrium, j* € {2,3,...}. Notice that
j7* > 1 implies that network 1 is empty. According to Lemma 4.3,

Uz(n] +n}, C7) — p < Uy(i, C7) — p? = Un(ii} + a3, C*) — p* < Un(#a, C*) — p’

where the equality follows from (4.7). If there would be 7} customers of type 2 in network 1,
then they would receive a higher utility than the customers in network j. Hence, there are ﬁ%
customers of type 2 that have an incentive to deviate to network 1. Conclude that M; (3, j*) cannot

be equilibrium, for j* € {2,3,...}.

Now consider an Ms(j,1) equilibrium. Here not all the customers of type 2 are present in the K
networks, > f: j nlg < Ny, and those who did join a network receive a net utility of zero. Notice first
that 7 = 1 can be ruled out, because it is impossible that a decrease in the number of customers
of type 2, compared to the M;(1, 1) equilibrium, results in a decrease of utility. For j € {2,3,...},
notice that there are ¢ = min{Ny — ZkK:j nk 7l + A3 — nl} customers of type 2 that have an

incentive to join network 1 since
UQ(TL% +¢, Cl) _pl > U2(77L% + ﬁ%a Cl) _pl > Oa

where the first inequality is due to (4.9). Consequently, Ma(j, 1) cannot be equilibrium.

Along similar lines it can be shown that Ma(j, j*) cannot be equilibrium.
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S1(4,7%): Now concentrate on an S1(7,j*) equilibrium. If there are customers of type 2 who enjoy network

services, 7 < K, then
Us(g,C') = p' > Ua(fig + iy, C1) = p' = Un (7", C*) = p > Un(ng", C*) — p™;

where the equality is due to (4.7), and the last inequality follows from Lemma 4.3. The above
series of inequalities shows that 74 customers of type 2 have an incentive to move to network 1.
If j = K, then the customers of type 1 are present in the networks j* until K. The customers of

type 2 increase their net utility by joining the empty network 1.
S1(J,7%): There will be no Sa(j, 5*) equilibrium for the same reasons as for Ma(j, j*).

S(K,j*): Further, there cannot be an S equilibrium because in such a situation customers of type 2 have
an incentive to join network 1. To conclude, it will be clear that the empty network, in which no

customers are present, cannot be an equilibrium if there is already an M;(1, 1) equilibrium.

Conclude that an Mj(1,1) equilibrium is unique. In a similar fashion the uniqueness of other equilibrium

types can be shown. O

Using the utility function Us(n,C) = (C — n)/C, as elaborated on in Appendix A, it can be shown
that the equilibrium number of customers in a network behaves nicely since it is continuous in the
network prices and capacities. This simple utility function captures the desired utility degradation
due to congestion, cf. the curves used in [4], and it allows for the assumption of a strictly decreasing
sequence of prices (see Appendix A). At the same time, it enables (relatively) explicit computation of

the equilibrium profile, as illustrated below in Example 4.6.

Theorem 4.4 Under the utility function Uz(n,C) = (C — n)/C, the total number of customers in
network k, i.e., n*(p, C) := n¥(p, C)+nk(p, C), is a continuous function in the prices  and the capacities
C of the networks.

The proof of this theorem can be found in Appendix B. It indicates that the price range can be cut
into segments, where each of these segments has its own specific type of equilibrium. The same holds
for the range of capacities. Further, within such a segment, the equilibrium number of customers of a

single type depends linearly on the network prices.

Lemma 4.5 Under Ux(n,C) = (C —n)/C, the number of customers of type i in network k, nk(p, C),

s a piecewise linear but not necessarily continuous function of the network prices.

Proof. In Corollary 3.4 it is shown that any equilibrium has one of three possible structures, namely

it is an equilibrium of type M, type S or an ‘empty’ equilibrium. In the latter case there is a fixed
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Figure 4.1: This graph shows the number of customers of type 1 in network 2 as a function of the
network price. Surprisingly, for 2/5 < p? < 7/10 the number of type 1 customers in network 2 increases

with the price of this network.

number of customers present in the networks, namely none at all. From Appendix A one can see that

any equilibrium of type M or type S is a piecewise linear function of the network prices. U

These piecewise linear functions nf (p, C) are not necessarily decreasing or monotone. For certain ranges
of prices the number of type i customers in a network may be increasing with the network price (cf. [1]).

The example below demonstrates this phenomenon.

Example 4.6 Two providers offer four networks in total. Provider I owns the networks 1 and 2, and
provider IT owns 3 and 4. The capacities of the networks are C = (55, 25,60, 10) and the prices equal
p = (7/10,p?,2/5,1/5). There are N; = 25 customers of type 1 and Ny = 200 customers of type 2. The
gross utility function of type-2 customers is Us(n,C) = (C' —n)/C, whereas type-1 customers experience
gross utility Uy (n,C) = aUsz(n, C), with a = 6/5. Using the results of Appendix A, the number of type
1 customers in network 2 is described by the following piecewise linear function of the network price p:

,
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Figure 4.2: This graph shows the number of customers of both types in network 2, as well as their sum.
They are given as function of the network price. The solid line represents n? = n? 4+ n32, the dotted lines

show the n? and n2, cf. Figure 4.1. The sum is continuous and decreasing in p.

As one can also see in Figure 4.1, the number of type 1 customers in network 2 jumps up at p?> = 2/5
and increases with the price for 2/5 < ps < 7/10.

e The jump can be explained as follows. When p? is just below or above 2/5, the equilibrium n(p, C)
is such that the N customers of type 1 are located in the two most expensive networks. Hence,
for p? < 2/5 = p3 the type 1 customers join the networks 1 and 3, while for p? > 2/5 = p? they
join the networks 1 and 2. Hence, at p?> = 2/5 the customers of type 1 move all at once from

network 3 to network 2.

e To explain the increase of n? notice that if p?> € [2/5,7/10], then the equilibria n(p, C) are of the
type M2(2,1) (see Algorithm 3.8), which means that all N; customers of type 1 are present in the
networks 1 and 2 and some customers of type 2, less than Ny, are present in the networks 2, 3
and 4. Therefore, the utility of the customers of type 2 who did join a network equals zero (use
the first statement in Lemma 3.5). Furthermore, all type 1 customers consume network services
and therefore, by the second statement of Lemma 3.5, they experience the same positive utility

from the networks 1 and 2.

If p? increases, then the net utility of type-2 customers drops below zero. This implies that they
have an incentive to ‘balk’, yielding a (larger) net utility of zero. Therefore, some type-2 customers
leave network 2 until the utility of this network equals zero again. The customers of type 1 in
network 2 are faced with a larger network price, that decreases utility, as well as with fewer agents

in the network, which increases utility. It turns out that here the positive effect exceeds the
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negative effect: the utility of type-1 customers in network 2 increases, and it becomes larger than
the utility from network 1. This causes some type-1 customers in network 1 to move to network
2 until both networks have the same utility again. This effect causes n% to increase with p?, for
p? €1[2/5,7/10].

It can be shown that in the same price range the number of type 2 customers in network 2 is decreasing
faster than the type 1 customers can join. Hence, the total number of customers in network 2, n? + n3,

is decreasing in p?. In fact, n? + n3 is decreasing for all p? as can be seen from Figure 4.2.

5 Stage 1: price and capacity selection problem

In the previous section we have seen how the customers choose their network services when the prices

and capacities (p, C') are given. The providers know how the customers react to prices and capacities,
i.e., they know the population profiles n(p, C). This knowledge is used by the providers in stage 1, with
the objective to maximize their profits: provider I maximizes its profit, given the choices (i.e., prices,
and number of subnetworks with their capacities) of provider II, and vice versa.

The maximal profit (or revenue, since we abstracted from costs) that provider I can achieve from creating

subnetworks equals

mI
max > p (a0, L0 + st @5 TY) (5.1)
k=1

1Al
m!,pl,C

with 7 CT* = C1, and

I —1 1
pI = (le,‘ N ’pl,m )’ C = (CI’I, N .,CI’m )

Similar definitions hold for p'' and ", Let R! (", 611) be the set of pairs (7', 61) in which the maximum
of (5.1) is achieved. These are the best replies of provider I against the choices (7', 611) of his competitor.
Similarly, provider IT has an optimization problem that leads to his best replies R (7', 51). A pair (p,C)
is called a price-capacity equilibrium if (ﬁI,UI) € R! (]_911,611) and (}_QH,UH) € Rll(ﬁl,él).

In all the examples that we studied, we found equilibria (p, C'). This has led to the following conjecture.

Conjecture 5.1 There exists a price-capacity equilibrium (p,C).

We have not been able to prove this conjecture. This is due to the fact that the profit function of
a provider is a non-smooth function that is not necessarily quasi-concave and, as a result, the best
response function of a provider need not be continuous. Therefore, standard game-theoretic tools for
showing the existence of an equilibrium do not apply.

But, as already mentioned before, the price and capacity ranges can be divided into segments such
that each segment has its own type of equilbrium. Consequently, the profit function is differentiable
within such a segment, and consequently local maxima can be determined easily. These local maxima

determine the globally best response of the provider.
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6 PwMP under competition

As argued in the introduction, an interesting application of our model is Paris metro pricing (PmP).
Under their specific assumptions, [4] showed that, in a duopoly, the providers do not have an incentive
to split their networks. The example below, where providers have similar restrictions as in [4], shows

that in our model identical providers may offer multiple networks under competition.

Example 6.1 Consider two providers, I and II. Both have a total capacity of CT = C™' = 55. There
are 25 customers of type 1 and 200 of type 2. The ‘utility constant’ a equals 6/5. With respect to the
optimization over the capacities, we impose the same constraint as in [4]: each provider is only allowed
to either offer just a single network, or to divide his capacity equally over two networks.

If both providers divide their capacities equally over two networks, i.e., C = (27.5,27.5,27.5,27.5), then
provider I chooses prices p' = (0.56,0.46), and provider 2 chooses p'! = (0.57,0.46); all these prices are
rounded off to two decimal places and are obtained via ‘simulation’ of Algorithm 4.2. The profits of
these providers are approximately 13.86 for each of them.

Now suppose one provider decides to offer just a single network, while the other supports two networks.
Then this single-network provider sets a price of 0.50, whereas the other provider chooses (0.56,0.56).
The single-network provider earns 13.75, against 13.86 for the two-network provider.

Finally, if both providers decide to offer a single network, then the network of provider I gets a price
of 0.50, whereas the price of the network of provider II equals 0.56, or vice versa — notice that we get
asymmetric outcomes although the firms are symmetric. The profits are 13.75 for provider I and 13.86
for provider II, or vice versa.

The profits are summarized in the table below; the upper number in a cell refers to provider I and the
lower one to provider II. For the case of both providers splitting, we have displayed the solution in which
provider II receives the higher profit; it is noticed, however, that the other situation will lead to the

same conclusion regarding the viability of Pmp.

provider II | provider II
splits does not split

provider 1 13.86 13.86
splits 13.86 13.75
provider 1 13.75 13.75
does not split 13.86 13.86

One readily sees that provider I prefers to split and offer two networks, as this leads to a profit of 13.86
instead of 13.75, irrespective of the choice of provider II. Provider II also prefers to split.
We conclude that, given the restriction on the capacities, both providers maximize their profits by

dividing their networks into two subnetworks.

The above shows us that in our model there exist situations in which both providers maximize their

profit by subdividing their resources. In other words: the equilibrium outcome of competition may
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be such that ‘PMP works’, i.e., the providers offer differentiated services, which is in contrast to the
conclusion of [4]. Apparantely, conclusions on the viability of PMP critically depend on the precise

assumptions of the underlying model.

7 Concluding remarks and discussion

In this paper we studied competition between two providers of network services. The providers set
prices and capacities of their subnetworks, with the objective of maximizing their own profits. As a
result, the number of customers in their networks depends on these prices and capacities. We proved
that a unique equilibrium population profile exists, for given prices and capacities. Using a simple linear
utility function, we have derived the continuity of the resulting profit function in the network prices
and capacities. It is noted that the network populations need not behave monotone (cf. [1]) and the
profit functions of the providers need not be quasi-concave, and consequently standard arguments do

not apply to prove the existence of a price-capacity equilibrium for the providers.

Discussion on the choice of the utility functions. The linear utility functions that we used in the previous
sections (and the appendices) are similar to those chosen in in Gibbens et al. [4], in that (i) they are
a function of the ‘load’ n/C, and (ii) they are ‘uniformly ordered’: for fixed prices and capacities, the
utility type-1 customers receive from an arbitrary network majorizes the utility of type-2 customers.
The differences are (i) we consider two types of consumers while there is an infinite number of types
of consumers in [4], (ii) consumers may opt for leaving while in [4] they must choose a network, and
(iii) different types of consumers derive different utilities from an empty subnetwork while in [4] all
consumer types derive the same utility from an empty network. These differences have their impact
on the consumers’ strategies, and result in different optimal strategies for the networks (i.e., different
from the strategies found in [4]). Armony and Haviv [1] express congestion in terms of the (mean)
queueing delay, rather than load, but also assume uniformly ordered utility curves — their (gross) utility
for customers of type i reads R — C; ED, where R is a constant (independent of the customers type),

ED is the mean delay, and the C; denotes the delay cost parameter of class ¢, for ¢ = 1, 2.

‘Intersecting’ utility curves. Regarding (ii), considering the case of communication networks, it would
perhaps be more realistic to assume that the curves intersect: for low values of the congestion level,
type-1 users have the higher utility (think of users of delay-critical applications, for instance real-time
services), whereas for relatively high congestion, type-2 users have the higher utility (think of users of
delay-tolerant applications, such as certain data retrieval services). This situation of intersecting utility
curves was considered in [10], in the context of a priority queueing model.

With these considerations in mind, one could think of other utility functions. Assume that a type 1

customer dislikes congestion and is willing to pay a high price:
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whereas a type 2 customer is willing to join a ‘busy’ network for a low price:
Us(n?, 07, p7) = (C? —n?)/CT — ap?,

where o > 1. Hence, both types of customers differ in their valuation of network congestion and price.
Using these new utility functions our model becomes harder to analyze. This is due to the fact that
type-1 customers no longer ‘dominate’ type-2 customers (cf. Lemma 3.7). Also, the number of potential
equilibrium structures increases: the equilibrium profiles are again mixed or separated (or empty, of
course), but now there are also equilibria M3 and S3 (where Y5, n¥ < Ny and S5 nk = Ny), and
My and Sy (where Zle n¥ < N and Zle nk < Ny).

For these alternative utility curves existence of an equilibrium population profile n(p, C) can still be
shown. If it is of type My or of type Si(j,5*) with p* = (1 +a)~! for k = j or k = j + 1, then there

¥ = n¥ + nk is constant for all

exist multiple equilibria with the property that among these equilibria n
networks k. For all the other types the equilibrium profile is unique.

Finally, with respect to PMP, in first numerical experiments we have found situations where firms are
indifferent between dividing their network or not: both options yield the same profit. Notice that this
behavior is ‘weaker’ than the findings of Example 6.1, where both firms prefer to split. Nevertheless,

this is again in contrast to the conclusions of [4] where firms ‘strictly’ prefer not to split their networks.

Appendix A

In this appendix we choose a specific form of the utility curves. We take

an =1- %, and Ul(’rl, C) =Q- UZ(na C)a with o > 1.

First, we show that we may assume now that, without loss of generality, the sequence of prices is strictly

Us(n,C) =

decreasing. Suppose customers of type 1 are in two networks j and k of equal prices. Then necessarily
Uy(nd +nd,C7) = Uy(nk +nk,C*) =p/ —p* =0.
Using the specific form of the utility curve, it is seen that

ny + nj :n’f+n’§

Ci ck

which is, consequently, also equal to

nd +nd +nf +nh
Ci+C*

Hence, the customers consider the networks j and k as a single network of capacity C? + C*. Therefore,
without loss of generality, the network prices are strictly decreasing.

Further, equilibrium quantities are calculated. The hardest case, M1, we treat in detail; the others are
left to the reader.
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In case M, all customers are present in one of the networks. Network j is shared by both types. It is

P =" . .
(T 7k:j*7"'7.]_1;

ck .
ng—né(cK—i—Ck( pk>,k:j+1,...,K.

easy to check that

We get the following four equations with four unknowns:

j—1 k j* k
(i G v (B2)) +ot =
k=j*

e/ Il . C .
e +Cj<p%>:n{+n2—né(cl(+0]( -p).

This yields:

Ml(ja j*):

)

& <N1 + N2 — Z:j* Cé(pk _pé)/ ZZ J+1 ( —-D +pk/a p7/a)>
Zé:]*

k:j*v"'aj_]-;

<N1+N2— 1 CUpF = ph) )= T H Cp —pt +pbfa - pf/a>>_

j—1
_ Z ck
k=j*

>y CF
K (NN =0 CHpF —p +p7 fa—pf/a) = 0 CLF - )
= N2 - Z C K ") )
k=j+1 Zf:j* C
ok (Nt N - 1 CHPF —p7 + Pl o = ptfa) = 34, CHPF — pY)
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Appendix B

In this appendix, we prove Theorem 4.4. In this proof some properties of the utility functions, defined
in Appendix A, are needed. Let UF denote the net utility that customers of type i receive from network

k, ie., Uz-k = U;(n*,C*) — p* where n* = n’f + 71]2c The first lemma shows relations between the net

utilities of the customers of types 1 and 2.

Lemma B.1 The following implications hold for the net-utilities of successive networks:
Uk <UM = UF < UMY and UF > UF = UF > UL
Further, UF > U} for all k.

The second lemma shows for each type of customers how the net-utilities of the networks are ordered,

depending on the type of equilibrium.

Lemma B.2 In case of a mixed equilibrium M(7, j*), £ = 1,2, the utilities of type 1 customers satisfy
Ul<...<U <l =uitt = =i >UiM > .. > UK
and for type 2
Uj<...<U ' <uf <l <.. . <Uuj=Ui"=.. . =UF
For a separated equilibrium Sy(j,5*), £ = 1,2:
Ul<...<Ul' ' <vul =ui = =vui>ui™ > . > Uf
and
Ul<...<UJ 7' <Uf <uf ™ <. <UuiT=uit?=.. = UK.

(The only difference between M and S is that for a separated equilibrium Ug < Ug“, whereas for a

mixed equilibrium UJ = UJ "))

Proof. The results follow from the second statement in Lemma 3.5 and from the definition of the utility
functions in Appendix A. Furthermore, by U7 ~' < U?" and Lemma B.1 we obtain U ' < UJ". O

This lemma is helpful in tracking the changes in the structure of an equilibrium due to changes in net
utility. For example, if in a separated equilibrium S(j, j*), £ = 1,2, the utility of type 1 customers in
the networks 7* to j decreases sufficiently then it either reaches the value of Uf*_l, of U{ *or perhaps
even 0. In the first case, customers of type 1 will also join network j*—1 and so the equilibrium structure
is changed to S¢(j,j* — 1), and so on.

The two lemmas are used in the proof below.
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Proof of Theorem 4.4. Consider prices and capacities (p, C') as set by the providers. According to

Theorem 4.1 there is a unique equilibrium n(p, C') in the network selection problem of the customers. As
already mentioned in Algorithm 3.8, this equilibrium is one of the following types: Mi(j, j*), Ma(j,5*),
S1(3,5%), S2(4,5*), S(K, j*) or an empty equilibrium.

First, we consider continuity in the prices. Suppose that the price of a network increases. If this
increment is relatively small, then the equilibrium remains the same type. Appendix A shows that for

k

these price changes the numbers n” are continuous (even linear) in the network prices.

If the price p* of an empty network k increases, k € {1,...,j* — 1}, then Uik will decrease, ¢ = 1,2. This

k remains 0 and the values

network will remain empty because the net utility is still too low. Hence, n
of the other n™ stay the same.

Next, we consider price increases of nonempty networks. First, suppose that the prices and capacities
(p, C) give rise to an equilibrium n(p, C) that is of the mixed type M;(j,5*). If p/" increases sufficiently,

then (see also Appendix A)

° n{* decreases towards its lower bound n{* = 0if j* < j (if j* = j then n{* = Nj remains constant),
e n¥ increases, k = j* +1,...,7,

e ny decreases towards 0 if j < K (if j = K then né = Ny remains constant),
e n% increases, k=j+1,..., K,
and the various net utilities change as follows:

. Uf* =...= Uf decreases towards its lower bound U{*_l (see Lemma B.2) if j* > 1 (notice that
Ui *1 and 0 cannot be lower bounds, because as long as UJ = U3 *1'> 0 Lemma B.1 implies that

Uit > Uit > 0),

° Ué“ decreases, k = j*,...,j — 1 (this has no influence on the equilibrium type since nlg was and
remains 0),

e UF decreases, k = j +1,..., K (again no influence),

. Ug = ... = UL decreases towards lower bound 0 (notice that Ugfl cannot be a lower bound,

because as long as Uf = Uf_l Lemma B.1 implies that Ug > Ug_l).

The price increase of network j* implies that several variables decrease towards their lower bounds. One
of these will be the first to actually reach its lower bound if p/" increases sufficiently.

Suppose that n{* is the first to reach its lower bound 0 if p/" = pf:. Then the equilibrium of type
M;(j,5*) will change to one of type M;(j,7* 4+ 1) as network j* will be out of use. Hence, if p/" 1 pZL*
then we have an M;(j, j*) equilibrium in which n{* 10. And if p?" | p{f then we are dealing with an
My (j, 7% + 1) equilibrium in which U7 1 U7 !,
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Therefore, in the limit, if p?" = p{l*, the equilibrium n(p,C) is one of type Mi(j,5*) with n{* =0,

satisfying the following equalities:

vl =...=U,
Ul =... = UK,
S ok i i (B.1)
Ny = Zk:j* ny = Zk:j*H ni (because ny =0),
K
N2 = Zk:] nlg,
and at the same time n(p, C) is an equilibrium of type M (j, j* + 1) with Uf* = Uf*"‘l;
Uf-*+1 =...= U{ and U{* _ U{*+1’
Ul =... = UK,
: P (B.2)
Ny = Zk:j*-i—l ny,
K
N2 = Zk:j 'I’ll2C

The sets of equations (B.1) and (B.2) are identical. Let B, be the vector of prices § in which p/" is
replaced by pﬁ;*. It will now be clear that if p/™ 1 p{: then n*(p,C) converges to the value of n* as
determined by (B.1) because the equilibrium type remains M;j(j, 7*). But this is equal to the value of
n*(p,,C) as determined by (B.2). We conclude that if p?™ 1 p,]; then n*(p, C) — n*(p,,C) for all k.

In the remaining three cases the continuity of n* can be shown among similar lines. In the left panel of
Table B.1 we show all effects that a price increase may have on an equilibrium type. In each of these
cases we can show in a similar way as before that the n* are continuous.

By using similar arguments, one can verify that the numbers of customers in a network are continuous
in the capacities. The right panel of Table B.1 gives an overview of possible changes of the equilibrium

type under capacity changes. O
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