MAGNETOHYDRODYNAMICS Vol. 45 (2009), No. 1, pp. 111-126

MAGNETOHYDRODYNAMICS
OF INSULATING SPHERES

J.W. Haverkort!, T.W.J. Peeters?

L Delft University of Technology, Applied Physics,
Lorentzweg 1, 2628 CJ Delft, The Netherlands
e-Mail: J.W.Haverkort@cwi.nl
2 Corus Research Development and Technology,
P.O. Box 10.000 1970 CA IJmuiden, The Netherlands

The effect of electric and magnetic fields on a conducting fluid surrounding an insulating

object plays a role in various industrial, biomedical and micro-fluidic applications. Com-
putational simulations of the magnetohydrodynamic flow around an insulating sphere,
with crossed magnetic and electric fields perpendicular to the main flow, are performed
for Rm < 1 in the ranges 0.1 < Re < 100, 1 < Ha < 20 and 1072 < N < 10%. Careful
examination of this fundamental three-dimensional flow reveals a rich physical structure
with surface charge on the sphere neighbouring volume charge of opposite sign. Hart-
mann layers, circulating current and asymmetric velocity and current profiles appear as
a result of the applied magnetic and electric field. A parametric study on the magnetic
field’s influence on the drag coefficient is performed computationally. The obtained re-
sults bridge a gap between various analytical solutions of limiting cases and show good
correspondence to earlier work. Correlations for the drag coefficient are proposed that
can be valuable for the description of insulating inclusions in various flow applications
with magnetic fields.

1. Introduction. Magnetic fields are frequently used in industrial appli-
cations to control the flow of conducting fluids. In the steel industry, for example,
large electromagnets are used to dampen unwanted fluid motion at free surfaces,
control the degree of turbulence, stir the liquid [1], and influence the solidification
process [2]. Due to the finite conductivity of biological fluids like blood, magne-
tohydrodynamics also plays a role in biomedical applications like Magnetic Drug
Targeting (MDT) and (immuno)magnetic cell separation [3]. In recent years, inter-
est has arisen in using magnetohydrodynamics in micro-fluidic devices to stir, cool
and pump fluids for, e.g., chromatography or the replication of DNA [4]. In many
of these applications the conducting fluid also contains insulating inclusions or
bubbles. Although insulating objects do not experience a magnetic force directly,
there are some effects associated with the fact that the liquid surrounding the
insulating object does. Best known is the electromagnetic Archimedes force, also
known as the electromagnetic buoyancy force or electromagnetophoretic force [5].
This force acts on an insulating object as a reaction to the magnetic force density
J x B on the surrounding conducting fluid, in a similar manner as its gravita-
tional counterpart. The electromagnetic Archimedes force is used in separation
techniques, for example, to purify liquid metals from less conductive inclusions
[6]. Another noteworthy effect is an observed increase in the drag force on in-
sulating objects in the presence of a magnetic field. The fundamental problem of
an insulating sphere in a flowing conducting medium has been investigated an-
alytically for Rm, Re, Ha < 1 for a magnetic field parallel to the flow [7] and
was later extended to include an arbitrary field orientation [8]. The results of this
magnetohydrodynamic analogue of the Stokes flow show a fractional increase in
the drag coefficient proportional to Ha. An increased drag was also found in the
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analytical solution of the magnetohydrodynamic potential flow around a sphere
[9]. In the limit Re > 1 and N <« 1 the increase in drag coefficient was found to
be proportional to N = Ha? /Re. Actual measurements performed in the 1960’s
[10, 11] indicated a dependence on VN, more or less in accordance with the theory
for Ha? > Re > 1 [12, 13]. These various regimes hint to a wealth of interesting
physics and show that the drag curve, intensively studied for ordinary flow around
spheres, in magnetohydrodynamics can no longer be described in terms of a single
dimensionless number. In the presence of a magnetic field with a specific orienta-
tion, the drag curve becomes a “drag surface” as a function of both Re and Ha or
N. Recently, numerical simulations have been added to these investigations. Refs.
[14, 15] deal with the axially symmetric case of a magnetic field aligned with the
flow. Although a magnetic field orientation perpendicular to the flow makes anal-
ysis more complex due to the inherent three-dimensionality, it is the more relevant
case from the application point of view. Magnetic fields perpendicular to the flow
can be used to brake the flow, generate electricity or work as an electromagnetic
pump. This work aims to add to our understanding and knowledge of this im-
portant basic flow configuration and give insight into the mechanisms behind the
magnetohydrodynamic flow around insulating objects.

2. Theoretical considerations. The dimensionless numbers in this
work are related to quantities pertaining to the sphere, in particular, the charac-
teristic length scale is taken to be the sphere diameter D. The Hartmann number,
Reynolds number and the interaction parameter (or Stuart number) are then de-
fined as Ha = ByD+/o/pv, Re = ugD/v and N = Ha?/Re = 0B;D/puo, with
By being the applied magnetic field, up = |ug| the magnitude of the main flow
(far-field) velocity and p, v and o the fluid mass density, kinematic viscosity and
electric conductivity, respectively. This paper deals with situations, in which the
the magnetic Reynolds number Rm = pgoupD < 1 so that the magnetic field
induced by the electric currents in the fluid can be neglected. The electric current
density J is assumed to be proportional to the electric field in a frame moving
with the fluid velocity u, as stated by the Ohm’s law for moving media:

J=c(E+uxB). (1)

In a confined domain, an electric field perpendicular to both the main flow velocity
uy and an applied magnetic field By naturally arises due to the accumulation of
charge at the domain boundaries. When the walls of the domain are electrically
insulating and the size of the domain is large compared to the thickness of the
Hartmann layers, these charges create an electric field E ~ —ug x By almost en-
tirely cancelling the formation of electric current. This situation is mathematically
identical to the situation, in which one moves relative to a still conducting fluid
in the presence of a constant magnetic field. Moving with a non-relativistic ve-
locity ug, the electromagnetic fields transform so that one observes an unmodified
magnetic field and an additional electric field E = —ug x Bg. In magnetohydrody-
namics, the fluid conductivity is assumed to be high so that under the influence of
electric forces alone the excess charge can only reside at the domain boundaries.
However, magnetic forces can keep a small net volume charge in place within the
fluid [1]. In steady state J is divergence-free so that from Eq. 1 inside the flow

divE = —B - rot u, (2)

where use is made of the mathematical identity div(u x B) =B -rotu—u-rotB
and the fact that for Rm < 1 the last term can be neglected. Introducing the
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fluid vorticity w = rot u and using the Gauss’s law divE = p./eg, with p. being
the volumetric charge density, Eq. 2 becomes

pe = —€ow - B. (3)

Whenever the vorticity is to some degree aligned with the magnetic field, volume
charges will thus be present. When a magnetic field is applied parallel to the flow
around a sphere, for not too high Reynolds numbers, the flow is axially symmetric
so that the vorticity is everywhere perpendicular to the magnetic field. For this
field orientation used in the simulations of Refs. [14, 15], the volume charge pe,
therefore, vanishes. The drag force on the sphere is found by integrating the
hydrodynamic stress-tensor T = pl + pv(grad u + (gradu)?) for an incompressible
Newtonian fluid over the surface of the sphere

Fp :/ dideV:/ pdSJr/ pv(gradu + (gradu)T) - dS.
v v %

The drag force changes in the presence of a magnetic field due to the modifica-
tions the magnetic force induces in the velocity and pressure. For low interaction
parameters N, the flow is influenced only slightly by the magnetic field. The ad-
ditional “electromagnetic drag force” Fpen, due to the magnetic field can then be
written in terms of Joule dissipation as an integral over the fluid volume V'

1 2
Foom = — / Lav.
Uo Jy O

The “electromagnetic drag coefficient” Cpem = Fbem/ %p(%wDQ)ug attributable
to this added electromagnetic drag in terms of the nondimensionalized quantities
J' = J/ougBy and V' = V/D?3 becomes

FDem 8 /J2
Cbhem = = —dV
be sp(37D*)ud  wpD%uf Jy o
8 oB2D

8

= J?dV’' = —-N / J?av’
™ puo Jv T Jv

When this last integral is independent of N, the drag coefficient is proportional to

N. This is in accordance with the result of Ref. [9] for a magnetic field perpendic-

ular to the flow:

3
N N<1LRe> 1l (4)

In the asymptotic theory of Ref. [12], the size of the insulating object is assumed
to be of the same order of magnitude as the size of the duct, in which it is placed,
leading to a magnetic field perpendicular to the flow to [13]
8
Cbem = ——
‘ Vv Re
This expression is in reasonable correspondence with the experimental results,
which have been fitted by [10]

CDem =

VN N,Re>> 1. (5)

ODcm ~ 0.70[)0 \/N,

with Cpo being the drag coefficient in the absence of a magnetic field. For com-
pleteness, we cite the result for the Stokes flow in the presence of a magnetic field
perpendicular to the main flow [8], for which Cpg = 24/Re

9 27THa 27

Cpem = —CpoHa =

ki N  Re Ha< 1. 6
T 2 Re = 3 _Re\/_ e,Ha < (6)

113



J.W. Haverkort, T.W.J. Peeters

Y [ it =g
\\
Eo |¢\ N r
v v Fig. 1. A schematic overview of the coor-
\! 0 T dinates used and the directions of the main
>llo flow velocity up, the applied magnetic Bo

and electric Eq fields.

3. Methods. The performed simulations concerned the steady state flow
of an incompressible Newtonian fluid and have been performed by CFX 11 Com-
putational Fluid Dynamics software by Ansys, Inc. This linear solver solves the
Navier—Stokes equations extended by a magnetic force density J x B. The current
density J is assumed to satisfy Eq. 1 and in steady state is divergence-free, so that
with E = — grad ®

V2@ = div (u x B).

This Poisson equation for the electric potential @ is solved self-consistently with
the Navier—Stokes equation. The magnetohydrodynamic capabilities of the solver
have been validated by comparing with analytical expressions of Ref. [16]. The
main simulations used approximately 400,000 elements, in which care was taken to
include sufficient cells within boundary layers. The parametric drag studies were
performed on a coarser mesh of approximately 100,000 elements.The influence of
the sphere on the flow near the domain boundaries was found to become negligible
for a computational domain 10D x 15D x 45D in size, which was used for the
simulations. In all simulations the material properties used were approximately
those of liquid steel: p = 7-10% kgm™>, v = 1078 m2%s~! and o = 7-10° Q1. The
values used for the main flow velocity ug = O(10~4—10"! ms~!), magnetic field
By = O(107! T) and sphere diameter D = O(1072 m) are representative of those
of industrial applications.

4. Results. Computational simulations have been performed for the mag-
netohydrodynamic flow around an insulating sphere. A large rectangular compu-
tational domain with free-slip sidewalls was used with a constant inlet and outlet
velocity ug. A magnetic field By was applied perpendicular to the flow as shown
in Fig. 1. An electric field Eg = —ug x By was applied to prevent the formation of
electric currents far away from the sphere. As discussed in Section 2, this situation
corresponds to either a sphere with a slip-velocity ug in a large channel flow, or a
sphere moving with a velocity ug through a still fluid in the presence of a magnetic
field.

As a base case, in Section 4.1, the results are discussed for uy = 0.01 m/s,
D =1 mm and By = 0.2 T so that Re = 10, Ha = 2 and N = Ha?/Re = 0.4.
In this case, the influence of the magnetic force is significant, but many of the
phenomena from ordinary fluid mechanics dominate. In Section 4.2 several other
parameter ranges are investigated. Finally, in Section 4.3, a parametrization study
is performed for the electromagnetic drag on the sphere.

4.1. Base case. The electric current density J is governed by the balance
between E and u x Bg of Eq. 1:

J=0(E+uxBy)
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and is shown in Fig. 2 in the vicinity of the sphere. In the Hartmann layer at the
top and bottom of the sphere (positive and negative z, respectively), the electric
current is oriented in the y-direction of the electric field Eg. Further away from
the sphere, the fluid velocity increases slightly above the main flow velocity ug so
that the direction of the current is reversed. Consequently, very close to the top
and bottom of the sphere the Lorentz force J x B accelerates the fluid, while it
decelerates the fluid a little further away. On the sides of the sphere, the current
is in the y-direction up to a much larger distance from the sphere compared to
that near the top and bottom. The associated Lorentz force on the sides of the
sphere accelerates the fluid to a value above the main flow velocity ug = 0.01 m/s,

<

Fig. 2. Contours and vectors of the electric current density J in (a) the zy-plane
perpendicular to the magnetic field and in (b) the yz-plane perpendicular to the main
flow velocity. The area, over which the electric current is oriented in the y-direction
is much larger behind the sphere than in front of the sphere, reflecting the asymmetry
expected for Re = 10 (and Ha = 2).
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Fig. 3. The velocity wake in (a) an zy-plane perpendicular and (b) an zz-plane parallel
to the magnetic field. A distinct asymmetry, with a preference for a velocity spread
along the field lines, can be seen behind the sphere. A characteristic dent in the velocity
contours can be observed near the sides of the sphere. This is due to the electric field
the volume charges here add to Eg, which increases the electric current in the y-direction
and thereby increases the accelerating Lorentz force.

as can be clearly seen in Figs. 3a and 4a. Because the component of u x By in
the negative y-direction in this region exceeds the magnitude of E( in the positive
y-direction, an additional electric field must be responsible for the orientation of
the current in the positive y-direction. This additional electric field can indeed
be observed from Fig. 5, which shows the radial electric field component E,.. The
electric field in the y-direction near the sides of the sphere clearly exceeds the
applied electric field Ey = ugBp = 0.02 V/m. We then investigate the origin of
this electric field.

Because no current can enter the insulating sphere, the radial electric field
vanishes at the surface of the sphere as can indeed be observed from Fig. 5. From
the Gauss’s law divE = p/ep, the discontinuity in the electric field over the surface
of the sphere can be related to the presence of a surface charge oy

Er,out - Er,in = US/EO' (7)

This surface charge, negative for positive y and positive for negative y, is respon-
sible for the cancellation of the radial electric field on the surface of the sphere
by generating an electric field in the negative y-direction just outside the sphere.
This surface charges, therefore, cannot be responsible for the observed additional
electric field in the positive y-direction. At the sides of the sphere the vorticity
is aligned with the magnetic field so that from Eq. 3 a volume charge density
pe = —w - Bg will be present as well. For positive y, the vorticity is in the negative
z-direction, anti-parallel to the magnetic field, so that a positive volume charge
arises. For negative y, the vorticity is in the positive z-direction, parallel to the
magnetic field, so that a negative volume charge arises. The electric field generated
by these volume charges is, some distance from the sides of the sphere, oriented in
the positive y-direction and responsible for the observed additional electric field.
These volume charges, kept in place by the magnetic force, thus play a crucial role
in describing the electric current distribution and thereby the flow field around the
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Fig. 4. The velocity in the yz-plane at x = 0D, 2D, 5D and 30D behind the center of
the sphere of diameter D = 1 mm (Re = 10, Ha = 2).
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Fig. 5.  The radial component E. of the electric field in the zy-plane for Re = 10 and
Ha = 2. Note that E, vanishes at the boundary of the insulating sphere. The symmetry
in the yz-plane is broken by the advection of volume charge close to the sphere.
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sphere. The resulting volume charge density is shown in Fig. 6 and a schematic
overview of the location of the electric charges is given in Fig. 7. An overview of
the surface charge, volume charge and the electric field these charges generate is
given in Fig. 8. When close to the sphere, the surface charge creates an electric
field in the negative y-direction; further away from the sphere the volume charges
change the direction of the electric field to the positive y-direction.

pe [Cm™?]

10—10

_10710

Fig. 6. The volume charge density p. in (a) the zy-plane, (b) the zz-plane touching
the side of the sphere and (c) the yz-plane for Re = 10 and Ha = 2.
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Fig. 7. Schematic drawing of the location and sign of the volume and surface charge
arising in the configuration studied.

Note that the total charge involved is very small, typically of the order of
a single electron charge. This shows the nature of the charge density as a come
and go of electrons. In the resulting steady state distribution the positive nuclei
are almost, but not completely, cancelled by free electrons subject to electric and
magnetic forces. More quantitatively we can look at a case when Ha? <« Re < 1
so that N <« 1 and magnetohydrodynamic effects are negligible. In this case, the
fluid velocity is given by the Stokes flow solution [17]. In spherical coordinates,
with 6 being the azimuthal angle with the x-axis and ¢ the polar angle from the
y-axis, as shown in Fig. 1, the vorticity is in the ¢-direction and in magnitude given
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Fig. 8. Contours of the surface charge density os and volume charge density pe for
Re = 10 and Ha = 2. The vectors show the electric field produced by these charges, i.e.,
the total electric field minus the applied electric field Eq. Close to the sphere the normal
component of this induced electric field is equal and opposite to that of the applied
electric field, owing to the presence of surface charge. At some distance from the sphere,

however, the volume charge of opposite sign changes the direction of the induced electric
field.
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by w = —3ugasinf/2r?. Eq. 3 with a magnetic field By in the z-direction yields a
volumetric charge density p. = 3Egasinf cos ¢/2r = 3Eyay/2r? with Ey = ugBo.
Neglecting this volume charge, the electric potential is given by

E, —rcos(¥)/2 r<a
20 = gy i) 15 o

with 1 being the angle with the y-axis as shown in Fig. 1. The electric potential
of Eq. 8 satisfies the Laplace equation V2® = 0 together with the appropriate
boundary conditions F,.(r = a,®) = 0 and E(r — 00,9) = Eg. From Eq. 7 the
surface charge can be evaluated as o4(¢)) = —3€gFEy cos1)/2 = —3eqEgy/2r. Note
that this expression closely resembles the expression for the volumetric charge
density, apart from the characteristic sign difference. In general, however, the
volume charge will have a significant impact on the potential distribution. Note
that from the expression obtained for p. there is actually an infinite amount of
charge on either side of the zz-plane. This is due to the fact that with the 1/r
behaviour of the velocity and the resulting 1/r? behaviour of the vorticity, the
volumetric charge density p. decays quite slow with a distance r from the sphere.
For Re > 1, the velocity decays faster with distance from the sphere so that a
finite amount of charge is located in a thin layer of thickness O(D/+/Re) from the
sphere. In this case, the potential distribution of Eq. 8 is totally altered by the
presence of volume charge, as can be seen in Fig. 9.

4.2. Other regimes. In this section we will investigate three parameter
ranges differing from the case Re = 10, Ha = 2 discussed previously. The relative
magnitude of the velocity and electric current density are displayed in Fig. 10. Ob-
serve, in particular, the various degrees of asymmetry introduced by the magnetic
field mainly dictated by N, the thickness of the Hartmann layer mainly dictated
by Ha, but evidently also by Re, and the degree of electric current downstream
the sphere mainly determined by Re.
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Fig. 9.  The electric potential ® along the y-axis caused by the surface charge and
volume charge density pe near the sphere, i.e., the total potential minus the potential
— Eoy of the applied electric field. A sphere diameter of D = 1 mm, a main flow velocity
of up = 0.1 ms™ ! and a magnetic field of By = 0.2 T were used so that Re = 100 and
Ha = 2. The data is compared to the analytical electrostatic solution for p. = 0 (Eq.
8). The presence of volume charge, however, which is confined to a boundary layer of
the order D/\/R_ = D/10 as can be seen from the figure, totally alters the potential
distribution. Only just outside the sphere is the simulated electric field equal to that of
the analytical solution as required by the electrostatic boundary condition.
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Re=0.1, Ha=2 Re=10, Ha=10 Re =100, Ha=2

Fig. 10. Contours (top) of the relative magnitude of the velocity and (bottom) of the
electric current density.
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1. Re = 0.1 and Ha = 2 so that N = 40. The first case can be compared with
the hydrodynamic Stokes flow around a sphere, in which inertial effects are negli-
gible so that there is a symmetry between the region upstream and downstream of
the sphere. This symmetry can approximately be seen from Fig. 10. Comparing
with the long-range 1/r behaviour of viscous Stokes flow, it is not surprising that
the currents extend to quite some distance from the sphere. A volume charge
present, further increases the electric currents near the sides of the sphere. This
electric current accelerates the flow, yielding a distinctly asymmetric flow profile,
in contrast with the axisymmetric hydrodynamic Stokes flow.

2. Re = 10 and Ha = 10 so that N = 10. The second case approximately
satisfies the requirements Ha? > Re > 1 set by the theory of Ref.[12], albeit
that this specific analytical result assumes that the channel walls are close to the
sphere. In this limiting case, Ref. [12] shows that the fluid velocity drops to zero
in a column parallel to the magnetic field from the sphere to the walls, This region
is patched by a shear layer to the plane potential flow away from the sphere. The
beginning of the formation of a region of still liquid, above and below the sphere,
can be seen in Fig. 10. The prediction of a Hartmann current layer varying in
thickness as the cosine of the angle between the surface normal and the magnetic
field can roughly be seen from the figure. Due to a slight numerical instability
in this demanding flow regime, the profiles are not entirely symmetric along the
y-coordinate.

3. Re = 100 and Ha = 2 so that N = 0.04. The third case has a very small
interaction parameter such that the magnetic effects far away from the sphere are
negligible. Indeed, a very little difference can be seen between a view parallel
and a view perpendicular to the magnetic field. The shape of the current profile
closely mimics the velocity profile. Due to the large influence of inertial effects,
the current profiles show the largest extent in the streamwise direction of all three
cases.

4.3. Electromagnetic drag. Various simulations have been performed to
calculate the increase in drag force on the sphere upon application of the magnetic
field. In all calculations an electric field Eg = —ug X Bg has been applied to prevent
the formation of electric currents far away from the sphere and to thereby exclude

g i L
Q
@ 1.9 NO-76 O Re=0.1
0.66 NO-91 O Re=1 i
A Re=10
O Re=100 i
— — 0.3N
...... 8v10N
T T T T T T
102 1 N 102 10%

Fig. 11. The results of the simulations for the electromagnetic drag coefficient Cpem
together with the theoretical limits Cpem = 3N/10 for N « 1 <« Re [9] and Cpem =
8vN/v/Re for N,Re > 1 [13], here displayed for Re = 0.1.
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Table 1. The drag coefficients Cpo resulting from simulations without an applied mag-
netic field are compared with the the correlations given by Ref. [18].

Re CD() (sim.) CD() [18]

0.1 272 244
2 15.4 14.8
10 4.43 4.26
100 1.20 1.09

the effect of the electromagnetic Archimedes force [5]. A somewhat coarser mesh,
compare to the one used for the simulations discussed previously, was used to
make the computational time tractable. Simulations without an applied magnetic
field have been compared with various correlations from Ref. [18] in Table 1. The
results show an overestimation of the simulated drag force up to approximately
10%. A similar accuracy was found by extrapolating the mesh dependence of the
drag force and was considered satisfactory for present purposes. The simulations
were performed in the range 0.1 < Re < 100 and 1 < Ha < 20 covering the
interaction parameters ranging from 1072 to 4 - 103. An overview of the results
is shown in Fig. 11. The wide range of interaction parameters makes comparison
with earlier results possible:

e For interaction parameters N > 10 the results agree to within thirty percent
with the analytical result Cpem = 8VN / VvRe of Eq. 5. This approximate corre-
spondence is slightly surprising because the requirements set by the corresponding
theory of Ref. [12] include a high Reynolds number and the sphere diameter be-
ing of the same order of magnitude as the channel height. In our simulations we
have some correspondence for fairly low Reynolds numbers and no walls near the
sphere.

e At the bottom left of Fig. 11, the drag coefficient approaches the theoretical
potential theory limit Cpem = 5N [9] valid for Re > 1 and N < 1.

From the results in Fig. 11 it follows that Cpem can locally be quite well
parameterized by a power function of the interaction parameter N:

Chem = f(Re) - N. (9)
10 A 5 . .
1 A L
AR -
O O g A
o t":\j -
CDem 0.1 D A L
Cpo : & Ha=1 o O
[J Ha=2 <& o 0
. A\ Ha=4 O
10774 e Ha=6 O O r
e Ha=10 oo
Ha =20 U
1072 T T T
107t 1 10 102 103

Re

Fig. 12. The relative electromagnetic drag Cpem/Cpo becomes independent of Re for
low values of Re consistent with the analytical solution for magnetohydrodynamic Stokes
flow [8].
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Chem 0.24 4 0.015 Ha?
Cpo

0 - T
1072 107t 1 10 102

Ha

Fig. 13. The analytical result for the relative electromagnetic drag Cpem/Cpo for Ha,
Re <« 1 [8] is extended with simulations to 1 < Ha < 20.

In accordance with the theoretical result of [13], the coefficient f is a function of
Re. It must, however, be noted that because Cpen, is proportional to N for N <« 1
(Eq. 4) and proportional to VN for N > 1 (Eq. 5), the exponent p has to be a
function of N as well. The parameterization of Eq. 9 is thus strictly valid only as
a limiting description for either N > 1 or N <« 1. For N > 1, for which we have
the most significant change in the drag coefficient, fortunately there is agreement
between the two existing analytical limits for Re < 1 and Re > 1 about the
functional form of the drag. Both the result of Eq. 6 for Re < 1 and the result
of Eq. 5 for Re > 1 have the same v'N/vRe = Ha/Re dependence and are of
similar magnitude. For the log-log plot of Fig. 11 the parameterization of Eq. 9
yields log Cpem = log f(Re) + plogN so that for N > 1 (N > Re for low Re, the
curves for constant Re will tend to a slope p = 1/2 and will have a vertical shift
proportionally to log1/v/Re = —(log Re)/2. For N < 1 the high Re curves all will
collapse at some point onto the gray dashed line 0.3N at the bottom left.

From Fig. 12 it can be seen that for Re < 1 the ratio Cpem/Cpo becomes
more or less independent of Re, in agreement with Eq. 6, which was derived as a
polynomial in Ha [8] and only holds for Ha < 1. As an extension of this analytical
solution to 1 < Ha < 20, our results can be fitted as a power series in Ha, as
depicted in Fig. 13:

Cpem = (0.24Ha + 0.015Ha®) Cpy 1 < Ha < 20,Re < 1.

5. Conclusions. A rich physical structure has been revealed for the mag-
netohydrodynamic flow around an insulating sphere with crossed electric and mag-
netic fields perpendicular to the main flow. The interplay between the flow and
the electromagnetic fields dictates the formation of oppositely charged volume and
surface charges on the sides of the sphere. The presence of these volume charges
was found to play a role in the dynamics of the electric current density and was
thereby found to significantly influence the velocity profiles. The results from our
simulations on the electromagnetic drag approach various theoretical limits and
show that the electromagnetic drag coefficient can locally effectively be param-
eterized as a power of the interaction parameter with coefficient and exponent
decreasing and increasing with the Reynolds number, respectively. The obtained
results apply to spherical objects in a conducting fluid, moving perpendicular to a
magnetic field as well as to duct flows in the presence of a magnetic field perpen-
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dicular to the main flow, making them useful for various magnetohydrodynamic
applications with insulating inclusions.
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