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Rate stability and output rates in queueing networks
with shared resources

ABSTRACT
Motivated by a variety of applications in information and communication systems, we consider
queueing networks in which the service rate at each of the individual nodes depends on the
state of the entire system. The asymptotic behaviour of this type of networks is fundamentally
different from classical queueing networks, where the service rate at each node is usually
assumed to be independent of the state of the other nodes. We study the per-node rate stability
and output rates for a general class of feed-forward queueing networks with a general capacity
allocation function. More specifically, we derive necessary conditions of per-node rate stability,
and give bounds for the per-node output rate and asymptotic growth rates, under mild
assumptions on the allocation function. For a set of parallel nodes, we further prove the
convergence of the output rates and give a sharp characterization of the per-node rate stability.
The results provide new intuition and fundamental insight in the stability and throughput
behavior of queueing networks with shared resources.
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Rate Stability and Output Rates in QueueingNetworks with Shared Resoures
M. Jonkheere a, R.D. van der Mei a;b and �W. van der Weij aaCWI, Probability and Stohasti Networks, Amsterdam, The NetherlandsbVrije Universiteit, Faulty of Sienes, Amsterdam, The NetherlandsNovember 27, 2007

AbstratMotivated by a variety of appliations in information and ommuniation systems, we on-sider queueing networks in whih the servie rate at eah of the individual nodes depends onthe state of the entire system. The asymptoti behaviour of this type of networks is funda-mentally di�erent from lassial queueing networks, where the servie rate at eah node isusually assumed to be independent of the state of the other nodes. We study the per-noderate stability and output rates for a general lass of feed-forward queueing networks witha general apaity alloation funtion. More spei�ally, we derive neessary onditions ofper-node rate stability, and give bounds for the per-node output rate and asymptoti growthrates, under mild assumptions on the alloation funtion. For a set of parallel nodes, wefurther prove the onvergene of the output rates and give a sharp haraterization of theper-node rate stability. The results provide new intuition and fundamental insight in thestability and throughput behavior of queueing networks with shared resoures.
Key words:queueing networks, state-dependent alloation, rate stability, output rate, growth rate.AMS 2000 subjet lassi�ation:primary 60M20; 60K25, seondary 90B22.
1 IntrodutionThe analysis of queueing networks has been subjet to extensive researh for the past few deadesand has been suessfully applied in many appliation areas. In a vast majority of papers how-ever, it is assumed that the servie rate at eah of the nodes of the network is �xed. For example,in FCFS-based single- or multi-server nodes, non-idling servers are usually assumed to be au-tonomous entities that operate at a �xed rate, independent of the state of the other queues inthe network. For the lass of so-alled Jakson networks [21℄, many stability and performaneissues are well understood.�Corresponding author. CWI, Kruislaan 413, 1098SJ Amsterdam, Netherlands. E-mail: weij�wi.nl.
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In this paper, we study queueing networks in whih the servie rates at eah of the individ-ual nodes are not independent, but depend on the state of the entire system, aording tosome general apaity alloation funtion. For this type of models, exat strutural results arerare, and fundamental insight and intuition for seemingly simple questions about stability andthroughput are laking. This motivates an in-depth study of the per-node stability for queueingnetworks with a general lass of apaity alloation funtions.Another soure of motivation stems from appliations in modern omputer-ommuniation sys-tems, in whih many heterogeneous appliations share parts of the available infrastruture re-soures. In suh environments, di�erent appliations ompete for aess to shared resoures,both at the software level (e.g., mutex and database loks, thread pools) and at the hardwarelevel (e.g., bandwidth, proessing power, disk aess). For example, many Web-based serviesare based on multi-tiered system arhitetures onsisting of a lient tier to provide an end-userinterfae, a business logi tier to oordinate information retrieval and proessing, and a data tierwith legay systems to store and aess ustomer data. Eah end-user initiated Web transationtypially onsists of several sub-transations that have to be proessed in some �xed or proba-bilisti order. To this end, appliation servers usually implement a number of thread pools, eahof whih is dediated to performing a spei� sub-transation. A partiular feature of the Webserver performane model proposed in [12, 23℄ is that at any moment in time the ative (i.e.,non-idling) threads share a ommon Central Proessing Unit (CPU) hardware in a PS fashion.Other examples of performane models in whih software resoures ompete for aess to sharedhardware resoures are presented in [14, 24℄. Another interesting line of researh in whih theservie rates among di�erent network nodes are dependent is foused on bandwidth-sharingnetworks [17, 5℄, providing a natural modeling framework for desribing the dynami ow-levelinteration among elasti data transfers in ommuniation networks. Queueing models withshared resoures also our naturally in the modeling of the ow-level performane in wirelinedata networks where the apaity of di�erent links are shared among ompeting ows [4℄, or inwireless networks, where a limited amount of bandwidth is shared among di�erent users, andwhere ustomers an ommuniate via a asade of intermediate hops (f. [8℄).A onsiderable amount of work has been dediated to the stability of queueing networks [10, 9,19, 20, 22℄. Controlling overload situations is essential for the design of ommuniation networks.A well-engineered network should of ourse avoid to experiene overload. However, the traÆutuations over time might lead to temporary surges that a well-designed network should dealwith. A �ne understanding of the behaviour of the network in overloaded is hene stronglyneeded. In partiular, it is a fundamental issue to haraterize, for given traÆ onditions,whih queues are going to get instable and what are the asymptoti growth rates. In partiular,reent results inluding a sharp haraterization of per-node stability for parallel nodes with adereasing servie alloation have been obtained in [7℄. It learly emerges from these papersthat general results for per-node stability for multi-layered networks (or networks with band-width sharing) appear to be very hallenging. In partiular, if global stability is well knownfor work-onserving networks, detailed (per-node) stability remains a diÆult problem. Forgeneral servie alloations without monotoniity properties, it is to the best of our knowledgean open problem, even for exponentially distributed servies. Instead of fousing on stohastistability, an alternative approah to takle stability issues is to weaken the stability de�nitionand to investigate the so-alled rate stability of the network [13℄. Roughly speaking, it onsistsof haraterizing the growth rates as linear or sub-linear. However, beause in a great numberof pratial situations, an overload situation is haraterized by a linear asymptoti per node
2



growth rate, rate stability provides a preious benhmark information in ases where a moredetailed stability desription is almost hopeless. Using a similar line of thoughts, Egorova et al.[11℄ give a partial haraterization of the overload behavior, for the wide lass of so-alled �-fairbandwidth sharing strategies de�ned in [17℄,by examining the uid limit by suitable saling thenumber of ows in the system, and give a �xed-point equation for the orresponding asymptotigrowth rates.In this paper we onsider a queueing network with Poisson arrivals, exponential servie-timedistributions at all nodes, internal feed-forward routing and with a strutured work-onservingalloation funtion driving the servie in all nodes, that depend on the state of the entire system.For this general model, we (1) derive neessary onditions of the per-node rate stability, and (2)give bounds for the per-node output rate. We show how to use these onditions on a two-nodetandem network to get neessary and suÆient onditions of rate stability. For a set of parallelnodes with an homogeneous apaity alloation, we further prove the onvergene of the outputrates and give a sharp haraterization of the per-node rate stability. The results provide newintuition and fundamental insight in the stability and throughput behavior of queueing networkswith shared resoures.The ontribution of this paper is in that respet two-fold. First, from an appliation pointof view, intuition and understanding of the stability and throughput behavior is essential to de-sign e�etive overload-ontrol mehanisms. Seond, from a theoretial point of view, the analysisof of queueing networks in whih resoures are shared among the di�erent nodes raises manyhallenging questions regarding the stability and throughput behavior. These observations makethe relevane of this paper evident.The remainder of this paper is organized as follows. In Setion 2 the model is desribed and therelevant notation and de�nitions are introdued. In partiular, the di�erene between stohastiand rate stability is rigorously explained. In Setion 3, asymptoti values as output rates andgrowth rates are de�ned. Using the struture of the onsidered alloation funtions, importantproperties of these output rates are derived. In Setion 4, some traÆ inequalities are estab-lished leading to neessary onditions for the rate stability of eah node. We then illustrate theobtained results on two toy examples. In Setions 5 and 6, we onsider two speial ases (i.e.,the two-node tandem and the model with an arbitrary number of parallel nodes), and show thatthe neessary onditions derived in Setions 3 and 4 are also suÆient, under mild onditionson the apaity alloation funtion. Finally, in Setion 6 we address a number of hallengingtopis for further researh.
2 Model and stability de�nitions2.1 Network modelWe onsider an open queueing network with N nodes. A ustomer present at node i is said tobe of lass i (i = 1; : : : ; N). External ustomers arrive at node i aording to a Poisson proessof intensity �i � 0. Denote the vetor of external arrival rates by � := (�1 � � ��N )>. The servietimes at node i are exponentially distributed with mean �i = 1=�i. Let � := (�1; : : : �N ). Thestate of the system is desribed by a vetor x := (x1; : : : ; xN ), where xi represents the numberof ustomers of lass i. When the system is in state x, ustomer of lass i reeive a servie
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rate �i(x), where the funtion �(x) := (�1(x); : : : ; �N (x)) is referred to as the system apaityalloation funtion, for x 2 X := f0; 1; : : : ; gN . It is important to note that the various ustomerlasses are oupled sine their individual servie rates may depend on the state x of the entiresystem.Assumptions on the routing: After reeiving servie at node i, a ustomer is routed to nodej 2 I := f0; 1; : : : ; Ng with probability pij. Denote the routing matrix by P := (pij). We adoptthe onvention that when j = 0, the ustomer simply leaves the network. We assume that thereis no loop in the routing i.e., one a ustomer has been served at a given node, he never returnsto this node. This type of routing is often referred to as feed-forward routing. Consequently, wean order the nodes suh that: pij = 0; j < i. The routing matrix P is sub-stohasti, so thatR := (rij) := (I � P )�1 exists, where I is the N -by-N identity matrix. Moreover, let D = (dij)be the N -by-N diagonal matrix with diagonal entries, dii := 1�i (i = 1; : : : ; N). Using thesede�nitions, the load o�ered to node i is given by
�i := �>RDei = 1�i NXj=1 �jrji; (1)

where ei is the i-th unit vetor.Let X(t) := (X1(t); : : : ;XN (t)), where Xi(t) denotes the number of ustomers at node i (i.e.,either waiting or being served) at time t � 0. Then the N -dimensional proess fX(t); t � 0g anbe desribed as a ontinuous-time Markov proess with state spae X . For a subset of indexesS, we denote xS the restrition of the vetor x to nodes S, i.e., xS = (xi)i2S .Assumptions on the servie rates: Throughout the paper, the system alloation funtion�(x) satis�es ertain assumptions that we desribe here.Assumption A1 (Work-onserving alloation)Whenever the system is not empty, all apaity is assigned to the nodes: For x 6= 0 = (0; : : : ; 0),NXi=1 �i(x)�i = 1; and �(0) := 0: (2)
Without loss of generality, the total apaity of the system is assumed to be equal to 1 in (2).Assumption A2 (Symmetri uniform limits)For all subset of indies U � f1; : : : ; Ng, there exists a funtion gU on f0; 1; : : : ; gN�jUj andsome stritly positive numbers li; i 2 U suh that:8i 2 U ; limxi!1;i2U �i(x)�i = ligU(xS): (3)In many appliations in omputer-ommuniation systems the alloation funtions have thefollowing struture whih is a speial ase of work onserving alloations with symmetri uniformlimits: �i(x)�i = fi(xi)PNj=1 fj(xj) ; x 2 X ; x 6= 0: (4)
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where fi(�) a non-negative funtion suh that fi(0) := 0 and limxi!1 fi(xi) =: li < 1 (i =1; : : : ; N). Note that in this ase, Assumption 2 implies that:
8U � f1; : : : ; Ng; gU(xS) =  Xi2U li +Xi=2S fi(xi)

!�1 :
In the sequel, we refer to these alloations as extended proessor sharing alloations. Hereare a few examples that have beame lassi in queuing theory and performane evaluation:1. The limited proessor sharing alloation de�ned by:fi(xi) = minfxi; lig;where li is a positive integer.2. The limited disriminatory proessor sharing alloation de�ned by:fi(xi) = wi minfxi; Cig;where Ci is a positive integer and wi > 0 is a weight given to lass i. In this ase li = wiCi.3. The oupled proessors alloation de�ned byfi(xi) = li1xi>0;where 0 < li < +1 is a weight assoiated with lass i. In the literature, this alloation issometimes referred to as the generalised proessor sharing (GPS) alloation.The assumptions A1 and A2 are not suÆient in general to get a sharp haraterization of therate stability set of the network. To get more preise results, we may assume one or both of thefollowing onditions:Assumption A3 (Asymptoti monotoniity)For all subset of indies U � f1; : : : ; Ng, there exists x > 0, suh that if xi > x, for all i 2 U ,then 8i =2 U �i(x)�i � ligU(xS): (5)For extended proessor sharing alloations, note that Assumption A3 is veri�ed in partiular if:fi(xi) � li for all xi � 0; i = 1; : : : ; N:
Assumption A4 (Homogeneity)The alloation is alled homogeneous if:8x 2 X ; 8 2 R+ ;�(x) = �(x): (6)
This assumption is veri�ed for the oupled proessors alloation and for alloation based onhomogeneous utility funtions. For more details on bandwidth sharing networks and utility-based alloations, we refer to [17℄. 5



2.2 Stability de�nitionsThe study of stability of stohasti proesses traditionally deals with the question of existeneof a measure that is invariant to the transition operator of the proess and to whih the pro-ess onverges in distribution or in total variation. We aim here at desribing some 'per-node'stability properties, i.e. properties of the proesses fXi(s); s � 0g, for i = 1; : : : ; N . Sine theproess fXi(s); s � 0g is not by itself a Markov proess, this is generally a muh more ambitiousquestion than desribing the global stability (stability of X(t)) whih is well known for work-onserving networks (see Theorem 1). To the best of our knowledge, the only per-node stohastistability results have been obtained for a set of parallel nodes with dereasing alloations andthere is no suh results available for the general type of networks we onsider here. Beause theusual de�nitions of stohasti stability did not lead so far (without striter assumptions on thealloation funtion and the topology) to tratable results, we turn our attention to a weaker def-inition of stability that allows to give pratial answers. We are hene primarily onerned withthe property of the onservation of rates through the network. Roughly speaking, it onsistsof haraterizing the asymptoti growing rates (rates at whih the queue assoiated to a nodebuilds up) as linear or sub-linear and to haraterize the set of input parameters suh that theinoming traÆ at a node is equal to the outoming traÆ. Interesting as a �rst order stabilityproperty, rate stability turns out to also give useful neessary onditions of stohasti instability.For later referene, we thus de�ne the following two notions of stability: rate stability and thestronger notion of stohasti stability.Sine we assume that the alloation funtion �(�) is bounded, the proess X is nonexplosive.Hene we may assume that X and all other stohasti proesses treated in the sequel have pathsin the spae D = D(R+;ZN+ ) of right-ontinuous funtions from R+ to ZN+ with �nite leftlimits. In the sequel, a stohasti proess with paths in D is viewed as a random element onthe measurable spae (D;D), where D denotes the Borel �-algebra generated by the standardSkorokhod topology [16℄.De�nition 1 (Rate stability)The proess fXi(t); t � 0g is said to be rate stable if
lim inft!1 Xi(t)t = 0 a:s:and the proess is alled rate unstable iflim inft!1 Xi(t)t > 0 a:s:

De�nition 2 (Stohasti stability)The proess fXi(t); t � 0g is said to be stohastially stable iflimr!1 supt!1Pr fXi(t) > rg = 0;and the proess is alled stohastially unstable iflimr!1 supt!1Pr fXi(t) > rg > 0:
6



Moreover, the N -dimensional proess fX(t); t � 0g is said to be globally stohastially stable (orstohastially stable) if fXi(t); t � 0g is stohastially stable for all i = 1; : : : ; N .The following result, haraterizing the stohasti stability of the proess fX(s); s � 0g, iswell known for work-onserving networks. The total number of ustomers an indeed be seen asthe number of ustomers of a single queue with unit servie rate and the global stability is thena onsequene of Loyne's Theorem (f., e.g, [3℄).Theorem 1 (Global stability)The network is globally stohastially stable ifX �i < 1:The network is globally stohastially unstable ifX �i > 1:
De�nition 3 (Rate stability subsets)Let S := fi : fXi(t); t � 0g is rate stableg, and U := fi : fXi(t); t � 0g is rate unstableg.Sine eah node is either rate stable or rate unstable, the index set f1; : : : ; Ng is partitionedinto the ouple P := (S;U), with S [ U = f1; : : : ; Ng, S \ U = ;. In ase of rate stability, thenumber of ustomers at node i grows asymptotially 'slower than t' when t ! 1, at least onsome trajetories. In ase of stohasti stability, the proess fXi(t); t � 0g remains in a �niteneighborhood with positive probability. Remark that if fXi(t); t � 0g is an irreduible Markovproess, then stohasti stability is equivalent to requiring fXi(t); t � 0g to be positive reurrent(see for example Theorem 12.25 in [16℄). Note also that stohasti stability implies rate stability,as it should, but that the onverse result is generally not true.The next result underlines the relation between rate instability and stohasti instability.Proposition 1For i = 1; : : : ; N , lim inft!1 Xi(t)t > 0; implies that Xi(t)!1 in probability.Proof: Suppose that Xi(t) does not onverge to in�nity in probability. Then there exists asubsequene ftn; n = 0; 1; : : :g suh that Xi(tn) ! Zi (in probability) for some honest (almostsurely �nite) random variable Zi. Moreover, there exists another subsequene ft0n; n = 0; 1; : : :gsuh that fXi(t0n)g ! Zi almost surely [16℄. Hene, Xi(t0n)�Zit0n ! 0 almost surely and sine Zi isalmost surely �nite, Zit0n ! 0 and Xi(t0n)t0n ! 0 almost surely, whih implies that lim inft!1 Xi(t)t =0, almost surely. 2Remark 1 Many authors (see for instane [1℄, [13℄, [18℄), de�ne rate stability di�erently, withslightly stronger assumptions. For the purpose of our analysis, we prefer the given de�nitionthat allows to link rate instability with a onvergene in probability to in�nity.
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3 Output rates and growth rates3.1 De�nitionThe following notation is useful in the sequel. For a given sample path fX(s); s > 0g, we de�nethe Cesaro mean servie rate at eah node of the network by:'i(t) = 1t Z t0 �i(X(s))ds; i = 1; : : : ; N; t > 0: (7)The growth rate of node i is de�ned byYi(t) := Xi(t)t ; i = 1; : : : ; N; t > 0: (8)Over a given sample path fX(s); s > 0g, we an further de�ne the limiting values of the meanservie rate: 'i := lim inft!1 'i(t); �'i := lim supt!1 'i(t); i = 1; : : : ; N;and the asymptoti growth rate of the nodes:Y i = lim inft!1 Yi(t); and �Yi = lim supt!1 Yi(t):From Assumption 2, the random variables �'i are bounded, and onsequently, we prove in thefollowing setion that the �Yi are almost surely bounded. We may therefore de�ne the meanvalues of vetors, for i = 1; : : : ; N ,Oi := E['i℄; �Oi := E[ �'i℄; Qi := E[Y i℄; �Qi := E[ �Yi℄; (9)and denote the orresponding vetors byO := (O1 � � �ON )>, �O := ( �O1 � � � �ON )>,Q := (Q1 � � �QN )>and �Q := ( �Q1 � � � �QN )>. Note that rate stability of node i implies that 'i = 0 (almost surely)and Qi = 0. Moreover, note that if node i is stohastially stable, then �Qi = Qi = 0 and�Oi = Oi.3.2 Properties of the asymptoti ratesWe derive here some properties of the rates of servie obtained when a node is rate unstable.These properties turn out to be ruial when haraterizing the rate stability of the network. Itis onvenient to de�ne, for i = 1; : : : ; N , �i := �ili:The next result gives a relation between the output rates and the fration of apaity assignedfor rate unstable nodes. For a given stability partitioning of the nodes P = (S;U), denote�ZP := E �lim supt!1 1t Z t0 gU(X(s))ds� :
Proposition 2 (Balaned output rates for rate-unstable nodes)Assume Assumption A1. If i; j 2 U , then�j �Oi = �i �Oj : (10)8



In partiular if li > 0 and lj > 0: �Oi�i = �Oj�j = �ZP : (11)Moreover, if (�j)j2U are positive numbers, then
E 24lim supt!1

0�Xj2U �j'j(t)
1A35 =Xj2U �j�j �Oj :

Proof: For all i 2 U , Xi onverges in probability to in�nity. As � is bounded, it implies that�i(X(t))�i � ligU(xS)! 0 (in L1), whih gives thatE �1t Z t0 �i(X(s))�i � ligU(xS(s))ds�! 0:Using the dominated onvergene theorem, we obtain that:E � limt!1 1t Z t0 �i(X(s))�i � ligU(XS(s))ds� = limt!1E �1t Z t0 �i(X(t))�i � ligU(xS)ds� = 0:We onlude by observing that:E �lim supt!1 'i(t)�i ℄� = E hlimt!1 1t R t0 �i(X(s))�i � ligU(XS(s))dsi+ liE hlim supt!1 1t R t0 gU(XS(s))dsi : 2The next two Propositions ompare the outputs of rate stable and rate unstable nodes forasymptotially dereasing alloations.Proposition 3 (Unbalaned rates between rate stable and rate unstable nodes)Assume Assumption (A3). Then if i 2 S and j 2 U , it holds that�j �Oi � �i �Oj : (12)Proof: For i 2 S and j 2 U , following the same lines as in the proof of the previous Proposition,we have �Oi�i � liE �lim supt!1 1t Z t0 gU(X(s))� ds: 2The following Proposition uses further the struture of the extended proessor sharing alloation.Proposition 4 (Comparison of output rates for di�erent stability partitioning)Assume that the alloation is an extended proessor sharing alloation, i.e., for i = 1; : : : ; N ,
�i(x) = fi(xi)0� NXj=1 fj(xj)

1A�1 ;
with fi(xi) � li for all xi � 0; i = 1; : : : ; N , and onsider two rate stability partition setsP1 = (S1;U1) and P2 = (S2;U2) suh that U2 = U1 [ fig = f1; : : : ; Ng. Then it holds that fori = 1; : : : ; N , �j �OP1i � �i �OP2j : (13)
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Proof: Using again the lines of the proof of Proposition 2, we getOP1i�i = E "lim supt!1 Z t0 fi(Xi(s))fi(Xi(s)) +Pj 6=i lj # ; (14)
and OP2i�j = ljPNj=1 lj : (15)The proof then follows diretly from (14) and (15) by observing thatfi(Xi(s))fi(Xi(s)) +Pj 6=i lj � liPNj=1 lj : 2
4 Rate stability neessary onditions4.1 TraÆ inequalitiesIn the absene of stohasti stability assumptions, it is naturally not possible to de�ne the inputrate of the nodes as the solutions of the lassi traÆ equations as in [21℄ for instane. However,we an derive traÆ inequalities linking the input rates and the asymptoti output rates of thenetwork. These equations give a mathematial understanding on the ommon notions of meanoutput rates and input rates in the network.Theorem 2 (TraÆ inequalities)The asymptoti output rates O, �O and growth rates Q, �Q are �nite and satisfy the followinglinear inequalities: For i = 1; : : : ; N ,Qi + �Oi � �i +Xj pji �Oj ; (16)�Qi +Oi � �i +Xj pjiOj : (17)
The work onserving property brings the additional inequalities:NXi=1 �Oi�i � 1; and NXi=1 Oi�i � 1: (18)
In the speial ase of � > 1 and U = f1; : : : ; Ng, we have further:NXi=1 �Oi�i = 1: (19)
Proof: Beause of exponential servie times and Poisson arrivals, X(t) is a Markov proess.From Assumption 2 the alloation funtions �i(:), and hene the transition rates are bounded.
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This implies (the departure proess from a node being Di(t) = Ai(t) � Xi(t), with Ai(t) thearrival proess at node i) that the proess fMi(t); t > 0g, de�ned byMi(t) := Xi(t)�Xi(0)� Z t0 f�i +Xj pji�j(X(s))� �i(X(s))gds;
is a martingale that satis�es E[M2i (t)℄ < Kt for i = 1; : : :N , t > 0 and some K > 0. Thisimplies that the proess fMi(t)=t; t > 0g is a super-martingale bounded in L2 and onsequently,for i = 1; : : : ; N : Mi(t)t ! 0 (t!1); a.s. Assuming for simpliity that X(0) = 0, it is readilyseen from the de�nitions (8) and (7) that, for i = 1; : : : ; N , t > 0,1tMi(t) + �i +Xj pji'j(t)� Yi(t) = 'i(t);
This implies that lim supt!1 Xi(t)t < +1 as well as
lim supt!1 'i(t) = lim supt!1

0��i +Xj pji'j(t)� Yi(t)1A � �i +Xj pji lim supt!1 'j(t)� lim inft!1 Yi(t):
Using the dominated onvergene theorem, we get (16). (17) is obtained along the same lines.(18) follows from the dominated onvergene theorem as well as the equation:

1 = lim supt!1  NXi=1 'i(t)
! � NXi=1 lim supt!1 'i(t):

If � > 1, the total number of ustomers is transient, and hene for all t, almost surelyPNi=1 �i(X(t))�i =1 and PNi=1 'i(X(t))�i = 1. The last assertion thus follows from Proposition 2. 24.2 Neessary onditions of rate stability for onverging ratesIn this subsetion, we study the ase �O = O, whih serves as a benhmark for �nding rate sta-bility onditions in the general ase. We show in the last setion that we an atually prove theonvergene of the asymptoti growth rates for a set parallel nodes with homogeneous, asymp-totially monotone alloations.De�nition 4 (~O; ~Q)For a given stability partitioning P = (S;U) (U 6= ?), de�ne (~O; ~Q) as the solution (when itexists) of: oi + qi = �i +Xj pjioj ; (20)NXi=1 oi�i = 1; (21)oi�i = oj�j := ~ZP (i; j 2 U); (22)qi = 0 (i 2 S): (23)
11



We �rst prove the existene of a unique solution for ~O; ~Q. We then give onditions for thissolution to be positive. To simplify the notations, suppose without lost of generality that thenodes are ordered so that the stable ones are the �rst ones, i.e. there exists an index m suhthat S = [1;m℄ and U = [m+1; N ℄. De�ne GE1E2 as the trunation of the matrix G to the nodesin E1; E2 : GE1E2 = (G)i2E1;j2E2 and similarly the vetor vE = (vi)i2E . We then write the routingmatrix in the following form: P = � PSS PSUPUS PUU � :Reall that the vetor � is de�ned as � = (l1�1; : : : ; lN�N ) and let us introdue the vetor !S ,and the positive onstants �P and �P as: !S = �SHSS ;�P =Xi2S (�UPUSHSS)ei�i ; �P =Xi2U li:where HSS = (I �PSS)�1. Remark that the matrix HSS is not in general the restrition of thematrix R.Proposition 5Fix a partition P = (S;U) (U 6= ?). There exists a unique solution (~O; ~Q) of equations (20) to(23), haraterized by the following equations:~OS = (�S + ~ZP�UPUS)HSS ;~OU = ~ZP�U ;~ZP = 1�Pi2S !Si�i�P + �P :
Moreover, the solution ~O; ~Q is positive if and only if:Xi2S !Si�i � 1;

~ZP�U �IUU � PUU � PUSHSSPSU� � �U + �SHSSPSU :Proof: The system of equations (20) to (23)) an be rewritten as~OS = �S + ~OSPSS + ~ZP�UPUS ;~QU = �U + ~OSPSU + ~ZP�U (PUU � IUU );Xi2S ~OSi�i = 1� �P ~ZP :
The proposition follows from the fat that the matries IE � P E ; E = SS; UU are invertiblewith a positive inverse. Then, ~O � 0 and ~ZP � 0, if and only if:Xi2S !Si�i � 1:
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Moreover, ~Q � 0 if and only if:~ZP(IUU � PUU )�U � �U + ~OSPSU : 2It is remarkable that the onditions of positivity of the output rates are not suÆient to hara-terize the stability set. In the ase of parallel nodes for instane, where we will atually derivethat �O = O, we show that the additional onditions underlined in Setion 3 are indeed neededto sharply haraterize, for given input parameters, the rate stability set.4.3 Neessary onditions of rate stabilityTo derive neessary onditions for a given rate stability partitioning, we bound the outputrates, taking into aount the assumption of a feed-forward routing. The bounds are obtainedby omparing the maximum output rates with the outputs previously obtained in a (virtual)network where �Oi = Oi; 8i.Lemma 1For i = 1; : : : ; N , we have �Oi � !i;where the vetor ! = �R is the solution of the usual traÆ equations:! = �+ !P:Proof: Remark �rst that ! exists and is unique beause R = (I � P )�1 is a well de�nedpositive matrix sine I � P is substohasti. De�ne the degree of a node i in the following way.If 8j = 1; : : : ; N; pji = 0, then di = 0. Otherwise, di = maxj: pji>0fdjg. Beause of the abseneof loops in the network, there exists at least one node i0 of degree 0 (a soure). Using the traÆinequalities of the previous setion, we get for all nodes i0 of degree 0:�Oi0 � �i0 = !i0 :We further proeed by indution on the degree of nodes. Suppose the assertion true for alldegree less than m. Consider a node of degree m+1. It is reeiving traÆ from nodes of inferiordegree. Using the traÆ inequalities, the indution assumption and the de�nition of !, we get:�Oi � �i + Xj:d(j)�m pji �Oj � �i + NXj=1 pji!j = !i: 2We now derive the lemma leading to the main result of this setion.Lemma 2For eah partitioning P = (S;U) (U 6= ?), we have:�ZP � ~ZP :If moreover PUS = 0, then 8i 2 S; �Oi � ~Oi:
13



Note that this result holds without restrition on the routing poliy, and is not limited to feed-forward routing.Proof: Using Lemma 1 and the traÆ inequalities, we an write that�OS � !S + �ZP�SPUSHSS ; and1 � �P �ZP +Xi2S �Oi�i :Hene,
(�P + �P) �ZP +Xi2S !Si � �P �ZP +Xi2S �Oi�i � 1;

whih gives �ZP � ~ZP . If PUS = 0, the seond assertion follows from (5). 2We an now derive neessary onditions for the partitioning P = (S;U) to hold. We makeuse here of Lemma 1 and we therefore need the assumption of feed-forward routing.Theorem 3Suppose a given partitioning P = (S;U). Then for all i 2 U :!i�i > ~ZP :Proof: We write that the saled state of an unstable node is stritly positive 8i 2 U , Qi > 0,whih gives, using the traÆ inequalities:
8i 2 U ; NXj=1 pji �Oj + �i � �Oi � Qi > 0:

Using the two previous lemmas, it leads to
8i 2 U ; NXj=1 pji!j + �i � �i ~ZP � NXj=1 pji �Oj + �i � �Oi � Qi > 0:

whih gives !i�i > ~ZP : 2So far, only neessary onditions for a given rate stability partition of the nodes follow fromTheorem 3. We illustrate the obtained results on two examples, where the obtained neessaryonditions turn out to be suÆient in the �rst example and not suÆient in the seond.In the next two setions, where we derive neessary and suÆient onditions of rate stabil-ity under some of the Assumptions A1 to A4, for two important speial ases. In Setion 5 westudy a two-node tandem model, and in Setion 6 we onsider systems of parallel nodes, withshared resoures.
14
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Figure 1: Two nodes in tandem.
5 Two-node tandem modelConsider the system of two nodes in tandem, illustrated in Figure 1 with an asymptotiallydereasing extended proessor sharing alloation (see Setion 2). The routing matrix is givenby: P = � 0 p0 0 � : (24)Thus, a fration p of the output rate of the �rst node is sent as input rate to the seond node.The following traÆ equations and inequalities hold (Theorem 2):Q1 + �O1 = �1;Q2 + �O2 � p �O1;�O1 + �O2 � 1:For the orresponding virtual model verifying �O = O, the traÆ equations are:~OP1 = �1 � ~QP1 ;~OP2 = p ~OP1 � ~QP2 ;~OP1�1 + ~OP2�2 = 1;~OPi�i = ~ZP for i 2 U:By P we denote the partition of nodes aording to their rate stability. P an thus be (S;S),(U ;S), (S;U), and (U ;U). The solution of ~O and ~Q are given in Table 5 for eah stability subsetP. Aording to Theorem 3 the network is globally stohastially stable if and only if � < 1

P ~Q1 ~Q2 ~O1 ~O2(S;S) 0 0 �1 �1p(S;U) 0 p�1 � (1� �1�1 )�2 �1 (1� �1�1 )�2(U ;S) �1 � �1�2p�1+�2 0 �1�2p�1+�2 p�1�2p�1+�2(U ;U) �1 � l1�1l1+l2 pl1�1l1+l2 � l2�2l1+l2 l1�1l1+l2 l2�2l1+l2Table 1: Output rates for the stability subsets.
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whih writes �1 < �1�2p�1 + �2 :Note that in this ase �O = ~O = O and �Q = ~Q = Q.Neessary onditions for (U ;U): For the partition (U ;U), given that ~ZP = 1l1+l2 ! =(�1; p�1), the following onditions given by Theorem 3 are neessary for the partition (U ;U):p > l2�2l1�1 ;�1 > �1l1l1 + l2 :Using the last assertion in Theorem 2, we further obtain that �ZP = ~ZP .Neessary onditions for (S;U): For the partitions (U ;S) and (S;U), the neessary on-ditions raised by Theorem 3 lead to the already known ondition � > 1. Using Theorem 3( �ZP > ~ZP), the �rst traÆ equation and the additional inequalities given by 2 and Proposition3, we obtain: �1l1�1 = ~O(S;U)1�1 = �O(S;U)1�1 < �O(U ;U)1�1 = ~O(U ;U)1�1 = 1l1 + l2 ; (25)whih leads to the neessary equation �1 < �1l1l1+l2 .Neessary onditions for (U ;S):�1p�2(�1p+ �2)l2�2 = ~O(U ;S)2�2 � �O(U ;S)2�2 < �O(U ;U)2�2 = ~O(U ;U)2�2 = 1l1 + l2 ; (26)
and this leads to the neessary inequality that p < l2�2l1�1 .The obtained neessary onditions are easily seen to lead to a omplete partitioning of theparameter set, whih gives a sharp haraterization of the stability set. As a onsequene, theobtained onditions are both neessary and suÆient, exept on a boundary set of input param-eters.In Figure 2, the stability set is pitured for two di�erent sets of input parameters.
6 Parallel nodesIn this setion, we onsider parallel nodes and thus suppose that there is no internal routing,i.e., pij = 0, for all i; j. In that ase, we an derive a sharp haraterization of the per-node ratestability. To this end, we �rst show that in that ase, the traÆ inequalities are atually a set oftraÆ equations (Theorem 4). This allows to prove that the output rates and asymptoti growthrates are onverging. Using the results of Setions 3 and 4, we then derive a haraterization ofthe per-node stability (Theorem 5).
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Figure 2: Stability regions with (�1; l1; �2; l2) = (3; 1; 1; 1) for the left �gure, and (�1; l1; �2; l2) =(1; 1; 3; 1) for the right �gure.
6.1 Extended traÆ equationsIn this subsetion, we preise the traÆ inequalities obtained in the general ase by derivingtraÆ equations linking the input rates and the asymptoti output rates of the network.Theorem 4 (Extended traÆ equations)The asymptoti output rates O, �O and growth rates Q, �Q are �nite and satisfy the followinglinear equations: For i = 1; : : : ; N , Qj + �Oi = �i; (27)�Qj +Oi = �i: (28)Proof: We follow the same lines as in Theorem 2,Mi(t) := Xi(t)�Xi(0)� Z t0 f�i � �i(X(s))gds; (29)is a martingale that satis�es E[M2i (t)℄ < Kt for i = 1; : : :N , t > 0 and some K > 0. Thisimplies that lim supt!1 Xi(t)t < +1 and lim inft!1 Yi(t) = �i � lim supt!1 'i(t). Using thedominated onvergene theorem, we get equation (27) and (28). 26.2 Output rates onvergeneWe �x P a partition of nodes suh that nodes in S are rate stable while nodes in U are rateunstable. In the following proposition, we prove that the output rates of the di�erent nodesonverge whih further allows a omplete desription of the rate stability set.Proposition 6Consider a set of parallel nodes with a dereasing alloation verifying the assumptions A1; A2and A4. Then, Xi(t)t ! Qi; in probability; (30)'i(t)! Oi; in probability; (31)
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with ~Oi = �i (i 2 S); ~Oi = ~ZP�i (i 2 U);~Qi = 0 (i 2 S); ~Qi = �i � ~ZP�i (i 2 U):where ~ZP := 1�Pj2S �j�jPj2U lj = 1�Pj2S �j�P :
Proof: Let us �rst prove the onvergene of the rates. Note that an asymptotially monotonehomogeneous alloation is atually monotone. Using the homogeneity and the monotony of thealloation, we get that for t large and for i = 1; : : : ; N :�i(X(t)) = �i�X(t)t � � �i(�Q);whih implies 'i(t) � �i(�Q):This leads to: �Qi � �i � �i(�Q) i = 1; : : : ; N:Similarly, for i 2 U : Qi � �i � �i(Q); i = 1; : : : ; N:Summing these inequalities for i = 1; : : : ; N and using the property of a work onserving allo-ation, we obtain that: NXi=1 Qi�i � NXi=1 �i�i � 1 � NXi=1 �Qi�i :We hene dedue that �Qi = Qi and as a onsequene:i = 1; : : : ; N; �Oi = Oi = ~Oi:The onvergene in L1 of 'i(t) to a onstant imply the onvergene in probability of 'i(t) whihombined with the almost sure onvergene of the di�erene Yi(t)�'i(t) imply the onvergeneof Yi(t) in probability. The traÆ equations de�ned previously together with the system 4.2allow us to omplete the proof. 2Remark 2 It appears plausible to prove an almost sure onvergene for these proesses evenwithout the assumption of exponential servie times nor Poisson arrivals. This result is out ofthe sope of this paper but we refer to the method presented in [15℄ and further used for a set ofdisriminatory proessor sharing nodes (DPS) in [2℄ for suh a derivation. These tehniques,jointly used with the traÆ onservation used here would prove the stated onvergene in theontext of stationary marked point proesses.
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6.3 Charaterization of the per-node rate stabilityWe assume without loss of generality that the nodes are ranked in dereasing order of the loads�i := �ili�i , in the sense that �1 � � � � � �N : (32)The following result shows the relation between the ordering of the nodes and the per-node ratestability.Proposition 7If node-i is rate stable and j < i, then node j is also rate stable.Proof: Suppose j 2 U , i 2 S and j < i. From Proposition 3, we get: �Oi�i < �Oj�j . From Theorem3, it follows that �Oi = �i and from Theorem 3, �Oj � �j . We thus �nd that
�i = �Oi�i < Oj�j � �j�j : (33)

This ontradits �j � �i. 2Denote ~Z(m) = ~Zf1:::;mg = (1�Pi�m �i)Pi>m li The following result shows that the partitioning P =(S;U) has a simple struture.Theorem 5 (Struture of stability partitioning)Consider a set of parallel nodes with a dereasing alloation verifying the assumptions A1; A2and A4. The stability partitioning P = (S;U) is haraterized as follows:P = (S;U) with S = f1 : : : ;mg and U = fm+ 1; : : :Ng if and only if�m � ~Z(m) < �m+1: (34)Proof: Using Proposition 7, there exists k suh that S = f1 : : : ; kg and U = fk + 1; : : :Ng.Theorem 3 ombined with Proposition 6 gives that ~Z(k) = �Z(k) < �(k+1). Proposition 7 gives:�Ok�k � �Ok+1�k+1 ;whih ombined with the traÆ equations leads to�k � ~Z(k):As ~Z(�) is a dereasing funtion, we onlude that m = k. 2We emphasize that Theorem 5 gives a omplete haraterization of the rate stability parti-tioning for model instanes that satisfy Assumptions A1, A2 and A4 and are monotone. Typialexamples of suh alloations are the oupled proessors alloation (de�ned in Setion 2.1), andfor some utility-based alloation on some tree topology (see [6℄).
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7 Conluding remarks and hallenges for further researhThe results presented in this paper provide new intuition and fundamental insight in the stabil-ity and throughput behavior of queueing models in whih resoures are shared among di�erentqueues. These results should be viewed as a �rst step in understanding the behavior of this typeof queueing networks, and open up a wealth of hallenging open researh questions. Some ofthese questions will be briey touhed upon below.In the ontext of stability and throughput harateristis, several interesting questions remainto be answered. First, when X is a ontinuous-time Markov hain, it atually remains an openand ruial question to know for whih input parameters, rate instability of node i oinides tothe onvergene of Xi to in�nity (either in probability or in law). In [7℄, per-node stohastistability is established for parallel nodes with monotone alloation funtions. It is remarkablethat, exept possibly on the boundary of the stability sets, the onditions of rate instability (andthus stohasti instability) that we have derived here oinide with the sharp haraterization ofthe stohasti instability set given in [7℄. This enouraging observation alls for a generalizationof this result to more omplex topologies. Seond, the derivation of neessary onditions for ratestability for models that are not overed by the ones disussed in Setions 5 and 6 is an openarea. For example, onsider a seemingly simple three-node network where all ustomers arriveat node 1, and then either move to node 2 (with probability p1) or to node 3 (with probabilityp2) before departing from the system, with 0 � p1 + p2 < 1. Then it an be shown that theneessary onditions obtained in this paper do not lead to a full partitioning of the parameterset. This observation shows that extension of the neessary onditions presented in Setions 3and 4 to a broader lass of models is far from trivial, and addresses an open area for furtherresearh. In addition to onsidering stability and throughput, one may also be interested otherperformane metris suh as steady-state sojourn-time distributions of ustomers at the di�erentnodes, the optimal stati or dynami assignment of servers to the nodes, depending on the stateof the system. Derivation of suh results is another interesting topi for further researh.
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