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Rate stability and output rates in queueing networks
with shared resources

ABSTRACT

Motivated by a variety of applications in information and communication systems, we consider
queueing networks in which the service rate at each of the individual nodes depends on the
state of the entire system. The asymptotic behaviour of this type of networks is fundamentally
different from classical queueing networks, where the service rate at each node is usually
assumed to be independent of the state of the other nodes. We study the per-node rate stability
and output rates for a general class of feed-forward queueing networks with a general capacity
allocation function. More specifically, we derive necessary conditions of per-node rate stability,
and give bounds for the per-node output rate and asymptotic growth rates, under mild
assumptions on the allocation function. For a set of parallel nodes, we further prove the
convergence of the output rates and give a sharp characterization of the per-node rate stability.
The results provide new intuition and fundamental insight in the stability and throughput
behavior of queueing networks with shared resources.

2000 Mathematics Subject Classification: primary 60M20; 60K25, secondary 90B22.
Keywords and Phrases: queueing networks; state-dependent allocation; rate stability; output rate; growth rate






Rate Stability and Output Rates in Queueing
Networks with Shared Resources

M. Jonckheere®, R.D. van der Mei®® and *W. van der Weij ¢

@ CWI, Probability and Stochastic Networks, Amsterdam, The Netherlands
bVrije Universiteit, Faculty of Sciences, Amsterdam, The Netherlands

November 27, 2007

Abstract

Motivated by a variety of applications in information and communication systems, we con-
sider queueing networks in which the service rate at each of the individual nodes depends on
the state of the entire system. The asymptotic behaviour of this type of networks is funda-
mentally different from classical queueing networks, where the service rate at each node is
usually assumed to be independent of the state of the other nodes. We study the per-node
rate stability and output rates for a general class of feed-forward queueing networks with
a general capacity allocation function. More specifically, we derive necessary conditions of
per-node rate stability, and give bounds for the per-node output rate and asymptotic growth
rates, under mild assumptions on the allocation function. For a set of parallel nodes, we
further prove the convergence of the output rates and give a sharp characterization of the
per-node rate stability. The results provide new intuition and fundamental insight in the
stability and throughput behavior of queueing networks with shared resources.
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1 Introduction

The analysis of queueing networks has been subject to extensive research for the past few decades
and has been successfully applied in many application areas. In a vast majority of papers how-
ever, it is assumed that the service rate at each of the nodes of the network is fixed. For example,
in FCFS-based single- or multi-server nodes, non-idling servers are usually assumed to be au-
tonomous entities that operate at a fixed rate, independent of the state of the other queues in
the network. For the class of so-called Jackson networks [21], many stability and performance
issues are well understood.

*Corresponding author. CWI, Kruislaan 413, 1098SJ Amsterdam, Netherlands. E-mail: weij@cwi.nl.



In this paper, we study queueing networks in which the service rates at each of the individ-
ual nodes are not independent, but depend on the state of the entire system, according to
some general capacity allocation function. For this type of models, exact structural results are
rare, and fundamental insight and intuition for seemingly simple questions about stability and
throughput are lacking. This motivates an in-depth study of the per-node stability for queueing
networks with a general class of capacity allocation functions.

Another source of motivation stems from applications in modern computer-communication sys-
tems, in which many heterogeneous applications share parts of the available infrastructure re-
sources. In such environments, different applications compete for access to shared resources,
both at the software level (e.g., mutex and database locks, thread pools) and at the hardware
level (e.g., bandwidth, processing power, disk access). For example, many Web-based services
are based on multi-tiered system architectures consisting of a client tier to provide an end-user
interface, a business logic tier to coordinate information retrieval and processing, and a data tier
with legacy systems to store and access customer data. Each end-user initiated Web transaction
typically consists of several sub-transactions that have to be processed in some fixed or proba-
bilistic order. To this end, application servers usually implement a number of thread pools, each
of which is dedicated to performing a specific sub-transaction. A particular feature of the Web
server performance model proposed in [12, 23] is that at any moment in time the active (i.e.,
non-idling) threads share a common Central Processing Unit (CPU) hardware in a PS fashion.
Other examples of performance models in which software resources compete for access to shared
hardware resources are presented in [14, 24]. Another interesting line of research in which the
service rates among different network nodes are dependent is focused on bandwidth-sharing
networks [17, 5], providing a natural modeling framework for describing the dynamic flow-level
interaction among elastic data transfers in communication networks. Queueing models with
shared resources also occur naturally in the modeling of the flow-level performance in wireline
data networks where the capacity of different links are shared among competing flows [4], or in
wireless networks, where a limited amount of bandwidth is shared among different users, and
where customers can communicate via a cascade of intermediate hops (cf. [8]).

A considerable amount of work has been dedicated to the stability of queueing networks [10, 9,
19, 20, 22]. Controlling overload situations is essential for the design of communication networks.
A well-engineered network should of course avoid to experience overload. However, the traffic
fluctuations over time might lead to temporary surges that a well-designed network should deal
with. A fine understanding of the behaviour of the network in overloaded is hence strongly
needed. In particular, it is a fundamental issue to characterize, for given traffic conditions,
which queues are going to get instable and what are the asymptotic growth rates. In particular,
recent results including a sharp characterization of per-node stability for parallel nodes with a
decreasing service allocation have been obtained in [7]. It clearly emerges from these papers
that general results for per-node stability for multi-layered networks (or networks with band-
width sharing) appear to be very challenging. In particular, if global stability is well known
for work-conserving networks, detailed (per-node) stability remains a difficult problem. For
general service allocations without monotonicity properties, it is to the best of our knowledge
an open problem, even for exponentially distributed services. Instead of focusing on stochastic
stability, an alternative approach to tackle stability issues is to weaken the stability definition
and to investigate the so-called rate stability of the network [13]. Roughly speaking, it consists
of characterizing the growth rates as linear or sub-linear. However, because in a great number
of practical situations, an overload situation is characterized by a linear asymptotic per node



growth rate, rate stability provides a precious benchmark information in cases where a more
detailed stability description is almost hopeless. Using a similar line of thoughts, Egorova et al.
[11] give a partial characterization of the overload behavior, for the wide class of so-called a-fair
bandwidth sharing strategies defined in [17],by examining the fluid limit by suitable scaling the
number of flows in the system, and give a fixed-point equation for the corresponding asymptotic
growth rates.

In this paper we consider a queueing network with Poisson arrivals, exponential service-time
distributions at all nodes, internal feed-forward routing and with a structured work-conserving
allocation function driving the service in all nodes, that depend on the state of the entire system.
For this general model, we (1) derive necessary conditions of the per-node rate stability, and (2)
give bounds for the per-node output rate. We show how to use these conditions on a two-node
tandem network to get necessary and sufficient conditions of rate stability. For a set of parallel
nodes with an homogeneous capacity allocation, we further prove the convergence of the output
rates and give a sharp characterization of the per-node rate stability. The results provide new
intuition and fundamental insight in the stability and throughput behavior of queueing networks
with shared resources.

The contribution of this paper is in that respect two-fold. First, from an application point
of view, intuition and understanding of the stability and throughput behavior is essential to de-
sign effective overload-control mechanisms. Second, from a theoretical point of view, the analysis
of of queueing networks in which resources are shared among the different nodes raises many
challenging questions regarding the stability and throughput behavior. These observations make
the relevance of this paper evident.

The remainder of this paper is organized as follows. In Section 2 the model is described and the
relevant notation and definitions are introduced. In particular, the difference between stochastic
and rate stability is rigorously explained. In Section 3, asymptotic values as output rates and
growth rates are defined. Using the structure of the considered allocation functions, important
properties of these output rates are derived. In Section 4, some traffic inequalities are estab-
lished leading to necessary conditions for the rate stability of each node. We then illustrate the
obtained results on two toy examples. In Sections 5 and 6, we consider two special cases (i.e.,
the two-node tandem and the model with an arbitrary number of parallel nodes), and show that
the necessary conditions derived in Sections 3 and 4 are also sufficient, under mild conditions
on the capacity allocation function. Finally, in Section 6 we address a number of challenging
topics for further research.

2 odel and stability definitions

2.1 Network model

We consider an open queueing network with N nodes. A customer present at node i is said to
be of class i (i = 1,..., N). External customers arrive at node i according to a Poisson process
of intensity \; > 0. Denote the vector of external arrival rates by A := (A1 --- Ax)". The service
times at node ¢ are exponentially distributed with mean £; = 1/p;. Let p := (p1,...un). The
state of the system is described by a vector x := (z1,...,zyN), where z; represents the number
of customers of class 7. When the system is in state x, customer of class i receive a service



rate ¢;(x), where the function ¢(x) := (¢1(x),...,dn(x)) is referred to as the system capacity
allocation function, for x € X := {0,1,...,}". It is important to note that the various customer
classes are coupled since their individual service rates may depend on the state x of the entire
system.

Assumptions on the routing: After receiving service at node i, a customer is routed to node
j€ZI:={0,1,..., N} with probability p;;. Denote the routing matrix by P := (p;;). We adopt
the convention that when j = 0, the customer simply leaves the network. We assume that there
is no loop in the routing i.e., once a customer has been served at a given node, he never returns
to this node. This type of routing is often referred to as feed-forward routing. Consequently, we
can order the nodes such that: p;; = 0, j < i. The routing matrix P is sub-stochastic, so that
R := (r;;) == (I — P)! exists, where I is the N-by-N identity matrix. Moreover, let D = (d;;)
be the N-by-N diagonal matrix with diagonal entries, d;; := i (i =1,...,N). Using these
definitions, the load offered to node i is given by

N
1
pi == A RDe; = i Zkﬂji, (1)

where e; is the 7-th unit vector.
Let X(t) := (X1(t),...,Xn(t)), where X;(t) denotes the number of customers at node i (i.e.,
either waiting or being served) at time ¢ > 0. Then the N-dimensional process {X(t),¢ > 0} can

be described as a continuous-time Markov process with state space X'. For a subset of indexes
S, we denote xg the restriction of the vector x to nodes S, i.e., xs = (z;)ics.

Assumptions on the service rates: Throughout the paper, the system allocation function
¢(x) satisfies certain assumptions that we describe here.

Assumption A; (Work-conserving allocation)
Whenever the system is not empty, all capacity is assigned to the nodes: Forx # 0 = (0,...,0),

N
i=1

Without loss of generality, the total capacity of the system is assumed to be equal to 1 in (2).

¢Z(X) = an =
=1 d $(0) := 0. (2)

Assumption A (Symmetric uniform limits)
For all subset of indices U C {1,...,N}, there exists a function g* on {0,1,..., }N*W| and
some strictly positive numbers l;,1 € U such that:

VieU, lim M:zig“(xs). (3)

T;—00,0€U U]

In many applications in computer-communication systems the allocation functions have the
following structure which is a special case of work conserving allocations with symmetric uniform

$i(x) _ fi(wi)
Hi Z;‘V:I fi(z5)

limits:

, XEX, x#0. (4)

4



where f;(-) a non-negative function such that f;(0) := 0 and lim;, oo fi(z;) =1 li < 00 (i =
1,...,N). Note that in this case, Assumption 2 implies that:

VUC{1,...,N}, dMxs)= Y L+ filx)

icu i¢S

In the sequel, we refer to these allocations as extended processor sharing allocations. Here
are a few examples that have became classic in queuing theory and performance evaluation:

1. The limited processor sharing allocation defined by:
fi(zi;) = min{z;,1;},
where [; is a positive integer.
2. The limited discriminatory processor sharing allocation defined by:
fi(z;) = w; min{x;, C;},
where C; is a positive integer and w; > 0 is a weight given to class 7. In this case I; = w;C;.

3. The coupled processors allocation defined by
fi(zi) = lilz, >0,

where 0 < [; < 400 is a weight associated with class 7. In the literature, this allocation is
sometimes referred to as the generalised processor sharing (GPS) allocation.

The assumptions A; and Ao are not sufficient in general to get a sharp characterization of the
rate stability set of the network. To get more precise results, we may assume one or both of the
following conditions:

Assumption Az (Asymptotic monotonicity)
For all subset of indices U C {1,..., N}, there exists x > 0, such that if x; > x, for alli € U,

then
VidU $ix) Lg% (xs). (5)

1

For extended processor sharing allocations, note that Assumption Ag is verified in particular if:

fi(z;) < I forallz; >0, i=1,...,N.

Assumption A, (Homogeneity)
The allocation is called homogeneous if:

Vz € X, Vy € RT ¢(vx) = ¢p(x). (6)

This assumption is verified for the coupled processors allocation and for allocation based on
homogeneous utility functions. For more details on bandwidth sharing networks and utility-
based allocations, we refer to [17].



2.2 Stability definitions

The study of stability of stochastic processes traditionally deals with the question of existence
of a measure that is invariant to the transition operator of the process and to which the pro-
cess converges in distribution or in total variation. We aim here at describing some ’per-node’
stability properties, i.e. properties of the processes {X;(s),s > 0}, for s = 1,..., N. Since the
process {X;(s),s > 0} is not by itself a Markov process, this is generally a much more ambitious
question than describing the global stability (stability of X(¢)) which is well known for work-
conserving networks (see Theorem 1). To the best of our knowledge, the only per-node stochastic
stability results have been obtained for a set of parallel nodes with decreasing allocations and
there is no such results available for the general type of networks we consider here. Because the
usual definitions of stochastic stability did not lead so far (without stricter assumptions on the
allocation function and the topology) to tractable results, we turn our attention to a weaker def-
inition of stability that allows to give practical answers. We are hence primarily concerned with
the property of the conservation of rates through the network. Roughly speaking, it consists
of characterizing the asymptotic growing rates (rates at which the queue associated to a node
builds up) as linear or sub-linear and to characterize the set of input parameters such that the
incoming traffic at a node is equal to the outcoming traffic. Interesting as a first order stability
property, rate stability turns out to also give useful necessary conditions of stochastic instability.
For later reference, we thus define the following two notions of stability: rate stability and the
stronger notion of stochastic stability.

Since we assume that the allocation function ¢(-) is bounded, the process X is nonexplosive.
Hence we may assume that X and all other stochastic processes treated in the sequel have paths
in the space D = D(R., ZY) of right-continuous functions from R, to Z with finite left
limits. In the sequel, a stochastic process with paths in D is viewed as a random element on
the measurable space (D, D), where D denotes the Borel o-algebra generated by the standard
Skorokhod topology [16].

Definition 1 (Rate stability)
The process {X;(t),t > 0} is said to be rate stable if

X;
lim inf ®) =0 a.s.
t—00 t
and the process is called rate unstable if
X;(t
lim inf & >0 a.s.
t—o0 t

Definition 2 (Stochastic stability)
The process {X;(t),t > 0} is said to be stochastically stable if

lim sup Pr{X;(t) >r} =0,

T—=0 ¢t _s00

and the process is called stochastically unstable if

lim sup Pr{X;(t) >r} > 0.

r—0t 300



Moreover, the N -dimensional process {X(t),t > 0} is said to be globally stochastically stable (or
stochastically stable) if {X;(t),t > 0} is stochastically stable for alli=1,...,N.

The following result, characterizing the stochastic stability of the process {X(s), s > 0}, is
well known for work-conserving networks. The total number of customers can indeed be seen as
the number of customers of a single queue with unit service rate and the global stability is then
a consequence of Loyne’s Theorem (cf., e.g, [3]).

Theorem 1 (Global stability)
The network is globally stochastically stable if

Zpi<1.

The network is globally stochastically unstable if

Zpi>1.

Definition 3 (Rate stability subsets)
Let S := {i: {Xi(t),t > 0} is rate stable}, and U := {i : {X;(t),t > 0} is rate unstable}.

Since each node is either rate stable or rate unstable, the index set {1,..., N} is partitioned
into the couple P := (S,U), with SUU = {1,...,N}, SNU = (. In case of rate stability, the
number of customers at node ¢ grows asymptotically ’slower than ¢’ when ¢ — oo, at least on
some trajectories. In case of stochastic stability, the process {X;(¢),t > 0} remains in a finite
neighborhood with positive probability. Remark that if {X;(¢),¢ > 0} is an irreducible Markov
process, then stochastic stability is equivalent to requiring {X;(¢),¢ > 0} to be positive recurrent
(see for example Theorem 12.25 in [16]). Note also that stochastic stability implies rate stability,
as it should, but that the converse result is generally not true.

The next result underlines the relation between rate instability and stochastic instability.

Proposition 1
Fori=1,...,N, liminf; X’T(t) > 0, implies that X;(t) — oo in probability.

Proof: Suppose that X;(¢) does not converge to infinity in probability. Then there exists a
subsequence {t,,n = 0,1,...} such that X;(¢,) — Z; (in probability) for some honest (almost
surely finite) random variable Z;. Moreover, there exists another subsequence {t,,,n =0,1,...}

such that {X;(¢,)} — Z; almost surely [16]. Hence, W — 0 almost surely and since Z; is
almost surely finite, tZT’ — 0 and % — 0 almost surely, which implies that liminf; Xit(t) =
0, almost surely. ' 0

Remark 1 Many authors (see for instance [1], [13], [18]), define rate stability differently, with
slightly stronger assumptions. For the purpose of our analysis, we prefer the given definition
that allows to link rate instability with a convergence in probability to infinity.



3 Output rates and growth rates

3.1 Definition

The following notation is useful in the sequel. For a given sample path {X(s),s > 0}, we define
the Cesaro mean service rate at each node of the network by:

oi(t) = % (X (s))ds, i1 Nt >0, (7)

The growth rate of node i is defined by

Yi(t) = 222 i=1,...,N,t>0. (8)

Over a given sample path {X(s),s > 0}, we can further define the limiting values of the mean
service rate:
@.:=liminf ¢;(t), @;:=limsupy;(t), ¢=1,...,N,

- t—oo0 t— 00

and the asymptotic growth rate of the nodes:

Y, =liminf Y;(t), and Y; =limsup Y;(¢).
t—o00 t—00
From Assumption 2, the random variables @; are bounded, and consequently, we prove in the
following section that the Y; are almost surely bounded. We may therefore define the mean
values of vectors, for i =1,..., N,

Oi:=Elp], Oi:=Elp], Qi:=E[Y)], Q;:=E[Y], (9)

and denote the corresponding vectors by O := (O1---On)",0:=(01---On)",Q := (Q1---Qn)"
and Q := (Q1---Qn)". Note that rate stability of node i implies that ¢, = 0 (almost surely)
and Q; = 0. Moreover, note that if node 7 is stochastically stable, then Q; = Q; = 0 and
0; = 0;.

3.2 Properties of the asymptotic rates

We derive here some properties of the rates of service obtained when a node is rate unstable.
These properties turn out to be crucial when characterizing the rate stability of the network. It
is convenient to define, for i =1,..., N,

i i= pils.
The next result gives a relation between the output rates and the fraction of capacity assigned

for rate unstable nodes. For a given stability partitioning of the nodes P = (S,U), denote

_ 1
Zp:=E |limsup-  g"(X(s))ds]| .

t—)ooto

Proposition 2 (Balanced output rates for rate-unstable nodes)
Assume Assumption Ai. Ifi,5 € U, then

1i0i = ni0;. (10)

oo



In particular if I; > 0 and l; > 0:

O, 0O; -

=== Zp. (11)
U Ui

Moreover, if (aj)jeu are positive numbers, then

{hm sup Z oo (t } = Z njat;O;

=00 JeU JeU
Proof: For all i € U, X; converges in probability to infinity. As ¢ is bounded, it implies that
W — ;" (xs) = 0 (in L'), which gives that
gt '4Xe)
t o i

Using the dominated convergence theorem, we obtain that:

- ligu(mg(s))ds] — 0.

E [hm 1T 1oiX(s) ligu(Xg(s))ds] = lim E E Fa(X () —ligu(mg)ds] =0.
t 0

—oo t i t—o0 i

We conclude by observing that:

[hmsup (pl(t)}} =FE [hmt_mo t ft $i(X(s)) m M (Xs(s))ds }

t—oo 1%

+ LE [hmsupt_)oo 3 f s] :

O
The next two Propositions compare the outputs of rate stable and rate unstable nodes for
asymptotically decreasing allocations.

Proposition 3 (Unbalanced rates between rate stable and rate unstable nodes)
Assume Assumption (As). Then ifi € S and j € U, it holds that

77]-01- < 771-0]-. (12)

Proof: For 7 € S and j € U, following the same lines as in the proof of the previous Proposition,
we have
A t
Oi < LE |limsup E ¢ (X(s))| ds.
j2%3 tsoo 0
O
The following Proposition uses further the structure of the extended processor sharing allocation.

Proposition 4 (Comparison of output rates for different stability partitioning)

Assume that the allocation is an extended processor sharing allocation, i.e., fori=1,..., N

3 J

-1

¢i(x) = fi(zi) ij ;)

with fi(z;) <l for all z; > 0, i = 1,...,N, and consider two rate stability partition sets
79 = (51 Ur) and Py = (S2,Us) such that Uy = Uy U{i} = {1,...,N}. Then it holds that for
=1,...,N,

nOF" < miOP™. (13)



Proof: Using again the lines of the proof of Proposition 2, we get

on . fi(Xi(s))
! = F |limsup )
L tooo 0 Ji(Xi(8)) + 22,41
and
or
Ky Z;Vﬂ Lj .

The proof then follows directly from (14) and (15) by observing that

fi(Xi(s)) + 22520 — P Lj

i=1

4 ate stability necessary conditions

4.1 Traffic inequalities

(14)

(15)

In the absence of stochastic stability assumptions, it is naturally not possible to define the input
rate of the nodes as the solutions of the classic traffic equations as in [21] for instance. However,
we can derive traffic inequalities linking the input rates and the asymptotic output rates of the
network. These equations give a mathematical understanding on the common notions of mean

output rates and input rates in the network.

Theorem 2 (Traffic inequalities)

The asymptotic output rates O, O and growth rates Q, Q are finite and satisfy the following

linear inequalities: Fori=1,..., N,

Qi+ 0i <X+ p;i0;.
J

Qi+ 0; >\ + ijioj-
J
The work conserving property brings the additional inequalities:
N = N
Z — >1, and Z — <1.
i M i Hi

In the special case of p>1 andU = {1,..., N}, we have further:

(16)

(17)

(19)

Proof: Because of exponential service times and Poisson arrivals, X (¢) is a Markov process.
From Assumption 2 the allocation functions ¢;(.), and hence the transition rates are bounded.

10



This implies (the departure process from a node being D;(t) = A;(t) — X;(t), with A;(¢) the
arrival process at node i) that the process {M;(t),t > 0}, defined by

M;(t) == Xi(t) = Xi(0) — , {x + ijiqu(X(s)) — ¢i(X(s))}ds,

is a martingale that satisfies E[M?(t)] < Kt for i = 1,...N, t > 0 and some K > 0. This
implies that the process {M;(t)/t,t > 0} is a super-martingale bounded in L? and consequently,

fori=1,...,N: MlT(t) — 0 (t = o), a.s. Assuming for simplicity that X(0) = 0, it is readily
seen from the definitions (8) and (7) that, for i =1,...,N, ¢t > 0,

1
TMit) + A + > pjii(t) — Yi(t) = @i(t),
J
.. . . X;(t)
This implies that limsup;_,,, =5~ < +00 as well as

limsup p;(¢t) = limsup A; + Zpﬂgoj ~Yi(t) <N+ iji h?lsogp @;(t) — litrgg)lin(t).

t—o0 t—o0 ;
J J

Using the dominated convergence theorem, we get (16). (17) is obtained along the same lines.
(18) follows from the dominated convergence theorem as well as the equation:

N N
1 = lim sup < lim sup ; (t
t—o00 ; Qoz ; t—o0 Qoz( )
If p > 1, the total number of customers is transient, and hence for all ¢, almost surely ZN w
land YN, %77(”) = 1. The last assertion thus follows from Proposition 2.
O

4.2 Necessary conditions of rate stability for converging rates

In this subsection, we study the case O = O, which serves as a benchmark for finding rate sta-
bility conditions in the general case. We show in the last section that we can actually prove the
convergence of the asymptotic growth rates for a set parallel nodes with homogeneous, asymp-
totically monotone allocations.

Definition 4 (O, Q) o
For a given stability partitioning P = (S,U) U # &), define (0,Q) as the solution (when it
exists) of:

0i +ai =X+ Y pjioj, (20)

N
Yy 2oy, (21)

i=1 'u_
0; 0] bt ..
—=—=:=Zp (1,7 €U), 22
M-t=Zp Ghjel) (22)
=0 (i€8). (23)



We first prove the existence of a unique solution for O, Q. We then give conditions for this
solution to be positive. To simplify the notations, suppose without lost of generality that the
nodes are ordered so that the stable ones are the first ones, i.e. there exists an index m such
that S = [1,m] and U = [m+ 1, N]. Define G*1? as the truncation of the matrix G to the nodes
in £1,& : GE& = (G)ies, jeg, and similarly the vector v& = (v;);ce. We then write the routing

matrix in the following form:
PSS PSL{
P = pus puu

Recall that the vector n is defined as n = (lyp1,...,Inun) and let us introduce the vector wS,

and the positive constants kp and yp as:
wS = ASHSS,

U pUS 17S8S
N P“° He®)e;
HPZE ( " )Z, szgli-
€S * icu

where HSS = (I — P95)~!. Remark that the matrix HSS is not in general the restriction of the
matrix R.

Proposition 5 o
Fiz a partition P = (S,U) (U # &). There exists a unique solution (O, Q) of equations (20) to
(23), characterized by the following equations:

05 = (AS+ Zpn PYS)HSS,
61/1 = anua
S
w;
Zp = Ziesu
Kp + XP

Moreover, the solution O, Q is positive if and only if:

ics M
anu (IZ/{U _ PUU _ PZ/{SHSSPSU) 2 AZ/{ 4 ASHSSPSM.

Proof: The system of equations (20) to (23)) can be rewritten as

65 — )\S + OSPSS + Z’/J’I’]MPUS,
QU — )\Z/l + OSPSM + ZP,’,’M(PUZ/[ _ qu),
OS .

ies M

The proposition follows from tbe fact that~the matrices I¢ — P, £ = 8S, UU are invertible
with a positive inverse. Then, O > 0 and Zp > 0, if and only if:



Moreover, Q > 0 if and only if:
Z’]D(qu _ PUH),’?Z/[ > AU + OSPSH.

O

It is remarkable that the conditions of positivity of the output rates are not sufficient to charac-
terize the stability set. In the case of parallel nodes for instance, where we will actually derive
that O = O, we show that the additional conditions underlined in Section 3 are indeed needed
to sharply characterize, for given input parameters, the rate stability set.

4.3 Necessary conditions of rate stability

To derive necessary conditions for a given rate stability partitioning, we bound the output
rates, taking into account the assumption of a feed-forward routing. The bounds are obtained
by comparing the maximum output rates with the outputs previously obtained in a (virtual)
network where O; = O;, Vi.

Lemma 1
Fori=1,...,N, we have
Oigw’ia

where the vector w = AR is the solution of the usual traffic equations:

w=\+wP.

Proof: Remark first that w exists and is unique because R = (I — P) ! is a well defined

positive matrix since I — P is substochastic. Define the degree of a node 7 in the following way.
IfVj=1,...,N,pji =0, then d; = 0. Otherwise, d; = max;. ,,,~0{d;}. Because of the absence
of loops in the network, there exists at least one node iy of degree 0 (a source). Using the traffic
inequalities of the previous section, we get for all nodes ig of degree 0:

Oiy < Xiy = Wiy

We further proceed by induction on the degree of nodes. Suppose the assertion true for all
degree less than m. Consider a node of degree m+ 1. It is receiving traffic from nodes of inferior
degree. Using the traffic inequalities, the induction assumption and the definition of w, we get:

N
O; <\ + Z pji0j < \i + ijiwj = wj.
jd(g) <m =1

We now derive the lemma leading to the main result of this section.

Lemma 2
For each partitioning P = (S,U) U # &), we have:

If moreover PYS = 0, then



Note that this result holds without restriction on the routing policy, and is not limited to feed-
forward routing.

Proof: Using Lemma 1 and the traffic inequalities, we can write that

0% < w‘s—i—anSPusH‘SS, and

) 0;
1 < xpZp+)» —.
ies M
Hence,
— S — OZ
(xp + Kp)Zp + Zwi > xpip+ Z —2>1,
i€S ies '
which gives Zp > Zp. If PYS = 0, the second assertion follows from (5). O
We can now derive necessary conditions for the partitioning P = (S,U) to hold. We make

use here of Lemma 1 and we therefore need the assumption of feed-forward routing.

Theorem 3
Suppose a given partitioning P = (S,U). Then for all i € U:

w; =
-~ > Zp.

i

Proof: We write that the scaled state of an unstable node is strictly positive Vi € U, Q; > 0,
which gives, using the traffic inequalities:

N
Vi elU, ijinJr)\,-—Oi >Q; > 0.
j=1

Using the two previous lemmas, it leads to

N N
Viel, ijiwj + XN —miZp > ijioj +Xi—0;>Q; >0.
j=1 J=1
which gives % > Zp. O
So far, only necessary conditions for a given rate stability partition of the nodes follow from
Theorem 3. We illustrate the obtained results on two examples, where the obtained necessary
conditions turn out to be sufficient in the first example and not sufficient in the second.

In the next two sections, where we derive necessary and sufficient conditions of rate stabil-
ity under some of the Assumptions A; to A4, for two important special cases. In Section 5 we
study a two-node tandem model, and in Section 6 we consider systems of parallel nodes, with
shared resources.

14



Figure 1: Two nodes in tandem.

5 Two-node tandem model

Consider the system of two nodes in tandem, illustrated in Figure 1 with an asymptotically
decreasing extended processor sharing allocation (see Section 2). The routing matrix is given
by:

0 p

P= . 24

00 (24)
Thus, a fraction p of the output rate of the first node is sent as input rate to the second node.
The following traffic equations and inequalities hold (Theorem 2):

Q1+01 = )i,
Q2+ 02 < pOy,
O1+02 > 1.

For the corresponding virtual model verifying O = O, the traffic equations are:

OZD - )\1 - QN,{Da

or oy
14 22 -,
M1 K2
OP .
L = Zp forieU.
i

By P we denote the partition of nodes according to their rate stability. P can thus be (S,S),
U,S), (S,U), and (U,U). The solution of O and @ are given in Table 5 for each stability subset
P. According to Theorem 3 the network is globally stochastically stable if and only if p < 1

P Ql Q2 Ol ONQ
(S, S) 0 0 Al Alp
(S, U) 0 pA1— (1 — ,%)uz A1 (1-— ,%)uz
pap i pp1p
U,S8) M- p;;11+fu : 0 . m;11+it2 Pl;ll‘FljZ
1M1 blipy 2042 1M1 2142
(U,U) AL — l1+12 i+l L+l li+l2 li+l2

Table 1: Output rates for the stability subsets.
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which writes
A M2

1 < .
pp1 + p2
Note that in this case O =0 = 0 and Q = Q = Q.

Necessary conditions for (U,U): For the partition (U,U), given that Zp = ﬁ w =
(A1,pA1), the following conditions given by Theorem 3 are necessary for the partition (U,U):

l
b > 2M2’
lip
p1l
A .
L i +1o

Using the last assertion in Theorem 2, we further obtain that Zp = Zp.

Necessary conditions for (S,U): For the partitions (/4,S) and (S,U), the necessary con-
ditions raised by Theorem 3 lead to the already known condition p > 1. Using Theorem 3
(Zp > Zp), the first traffic equation and the additional inequalities given by 2 and Proposition
3, we obtain:

M O(S,L{) B O(S,Z/{) Og/l,lzl) O~(Z/{,Z/{) 1

1 1 1
= = < = = , 25
lip m m m m lh+ 1 (25)
which leads to the necessary equation A1 < l’; ill;
Necessary conditions for (U, S):
~(U,S ~(U,S =(UU ~UU
pppa 0y _ 0} )<Oé Lo 1 (26)
(p1p + p2)lope n T M n2 2 o+
and this leads to the necessary inequality that p < %

The obtained necessary conditions are easily seen to lead to a complete partitioning of the
parameter set, which gives a sharp characterization of the stability set. As a consequence, the
obtained conditions are both mecessary and sufficient, except on a boundary set of input param-
eters.

In Figure 2, the stability set is pictured for two different sets of input parameters.

6 Parallel nodes

In this section, we consider parallel nodes and thus suppose that there is no internal routing,
i.e., pi; = 0, for all 4, j. In that case, we can derive a sharp characterization of the per-node rate
stability. To this end, we first show that in that case, the traffic inequalities are actually a set of
traffic equations (Theorem 4). This allows to prove that the output rates and asymptotic growth
rates are converging. Using the results of Sections 3 and 4, we then derive a characterization of
the per-node stability (Theorem 5).
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Figure 2: Stability regions with (u1, 01, pe,l2) = (3,1,1,1) for the left figure, and (u1, 11, po, l2) =
(1,1,3,1) for the right figure.

6.1 Extended traffic equations

In this subsection, we precise the traffic inequalities obtained in the general case by deriving
traffic equations linking the input rates and the asymptotic output rates of the network.

Theorem 4 (Extended traffic equations)
The asymptotic output rates O, O and growth rates Q, Q are finite and satisfy the following
linear equations: Fori=1,..., N,

Qj+ 0i = A, (27)

Proof: We follow the same lines as in Theorem 2,
t
M;(t) == Xi(t) — Xi(0) = {Ai — ¢i(X(s))}ds, (29)
0

is a martingale that satisfies E[M?(t)] < Kt for i = 1,...N, t > 0 and some K > 0. This
implies that limsup,_,, X’T(t) < 400 and liminf; .o Y;(t) = A; — limsup,_, . i(t). Using the

dominated convergence theorem, we get equation (27) and (28). 0

6.2 Output rates convergence

We fix P a partition of nodes such that nodes in S are rate stable while nodes in U are rate
unstable. In the following proposition, we prove that the output rates of the different nodes
converge which further allows a complete description of the rate stability set.

Proposition 6
Consider a set of parallel nodes with a decreasing allocation verifying the assumptions A1, As
and Ay. Then,

X;(t . .
t( ) — Q;, in probability, (30)
vi(t) — O, in probability, (31)
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with ) } )
Oi:)\i (iGS), Oi:me (iGU),

Qi=0 (i€S), Qi=\—Zpn (i€lU).

where N
= 1- Zjes ﬁ 1- Z]’es Pj
Z'p = == .
djeu b XP

Proof: Let us first prove the convergence of the rates. Note that an asymptotically monotone
homogeneous allocation is actually monotone. Using the homogeneity and the monotony of the
allocation, we get that for ¢ large and for 2 =1,..., N:

which implies

This leads to:

Qi<Xi—¢(Q) i=1,...,N.
Similarly, for i € U:

Qi>XNi—¢i(Q), i=1,...,N.

Summing these inequalities for ¢ = 1,..., N and using the property of a work conserving allo-
cation, we obtain that:

DI SRR oy}
i Hi D M =1 M

We hence deduce that Q; = Q; and as a consequence:
i=1,...,N, O0; =0, =0,;.

The convergence in L! of ;(t) to a constant imply the convergence in probability of ¢;(¢) which
combined with the almost sure convergence of the difference Y;(t) — ¢;(¢) imply the convergence
of Y;(t) in probability. The traffic equations defined previously together with the system 4.2
allow us to complete the proof. O

Remark 2 It appears plausible to prove an almost sure convergence for these processes even
without the assumption of exponential service times nor Poisson arrivals. This result is out of
the scope of this paper but we refer to the method presented in [15] and further used for a set of
discriminatory processor sharing nodes (DPS) in [2] for such a derivation. These techniques,
jointly used with the traffic conservation used here would prove the stated convergence in the
context of stationary marked point processes.
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6.3 Characterization of the per-node rate stability

We assume without loss of generality that the nodes are ranked in decreasing order of the loads
(; := 7L, in the sense that

G << (N (32)
The following result shows the relation between the ordering of the nodes and the per-node rate

stability.

Proposition 7
If node-i is rate stable and j < i, then node j is also rate stable.

Proof: Suppose j € U, i € S and j < i. From Proposition 3, we get: O’ < 9% From Theorem
, it follows that O; = \; and from Theorem 3, O < Aj. We thus find that

O; O; X
Gi=—<—2L< (33)
Ui nj nj
This contradicts ¢; < (. O
Denote Z(m) = Z{l...,m} = (12217“;&) The following result shows that the partitioning P =
i>m

(S,U) has a simple structure.

Theorem 5 (Structure of stability partitioning)
Consider a set of parallel nodes with a decreasing allocation verifying the assumptions A, As
and Ay. The stability partitioning P = (S,U) is characterized as follows:

P=(SU) withS={1...,m} andUd ={m+1,... N} if and only if
Gm < Z(m) < Gmy1. (34)

Proof: Using Proposition 7, there exists k such that S = {1...,k} and Y = {k+1,...N}.
Theorem 3 combined with Proposition 6 gives that Z(k) = Z(k) < ¢(k+1). Proposition 7 gives:

Oy, Ok+1

M — Mkt
which combined with the traffic equations leads to

Gk < Z(K).

As Z(-) is a decreasing function, we conclude that m = k. O

We emphasize that Theorem 5 gives a complete characterization of the rate stability parti-
tioning for model instances that satisfy Assumptions A;, A3 and A4 and are monotone. Typical
examples of such allocations are the coupled processors allocation (defined in Section 2.1), and
for some utility-based allocation on some tree topology (see [6]).
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7 Concluding remarks and challenges for further research

The results presented in this paper provide new intuition and fundamental insight in the stabil-
ity and throughput behavior of queueing models in which resources are shared among different
queues. These results should be viewed as a first step in understanding the behavior of this type
of queueing networks, and open up a wealth of challenging open research questions. Some of
these questions will be briefly touched upon below.

In the context of stability and throughput characteristics, several interesting questions remain
to be answered. First, when X is a continuous-time Markov chain, it actually remains an open
and crucial question to know for which input parameters, rate instability of node 7 coincides to
the convergence of X; to infinity (either in probability or in law). In [7], per-node stochastic
stability is established for parallel nodes with monotone allocation functions. It is remarkable
that, except possibly on the boundary of the stability sets, the conditions of rate instability (and
thus stochastic instability) that we have derived here coincide with the sharp characterization of
the stochastic instability set given in [7]. This encouraging observation calls for a generalization
of this result to more complex topologies. Second, the derivation of necessary conditions for rate
stability for models that are not covered by the ones discussed in Sections 5 and 6 is an open
area. For example, consider a seemingly simple three-node network where all customers arrive
at node 1, and then either move to node 2 (with probability p;) or to node 3 (with probability
p2) before departing from the system, with 0 < p; + p2 < 1. Then it can be shown that the
necessary conditions obtained in this paper do not lead to a full partitioning of the parameter
set. This observation shows that extension of the necessary conditions presented in Sections 3
and 4 to a broader class of models is far from trivial, and addresses an open area for further
research. In addition to considering stability and throughput, one may also be interested other
performance metrics such as steady-state sojourn-time distributions of customers at the different
nodes, the optimal static or dynamic assignment of servers to the nodes, depending on the state
of the system. Derivation of such results is another interesting topic for further research.
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