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Rate stability and output rates in queueing networks
with shared resources

ABSTRACT
Motivated by a variety of applications in information and communication systems, we consider
queueing networks in which the service rate at each of the individual nodes depends on the
state of the entire system. The asymptotic behaviour of this type of networks is fundamentally
different from classical queueing networks, where the service rate at each node is usually
assumed to be independent of the state of the other nodes. We study the per-node rate stability
and output rates for a general class of feed-forward queueing networks with a general capacity
allocation function. More specifically, we derive necessary conditions of per-node rate stability,
and give bounds for the per-node output rate and asymptotic growth rates, under mild
assumptions on the allocation function. For a set of parallel nodes, we further prove the
convergence of the output rates and give a sharp characterization of the per-node rate stability.
The results provide new intuition and fundamental insight in the stability and throughput
behavior of queueing networks with shared resources.

2000 Mathematics Subject Classification:  primary 60M20; 60K25, secondary 90B22.
Keywords and Phrases: queueing networks; state-dependent allocation; rate stability; output rate; growth rate
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Abstra
tMotivated by a variety of appli
ations in information and 
ommuni
ation systems, we 
on-sider queueing networks in whi
h the servi
e rate at ea
h of the individual nodes depends onthe state of the entire system. The asymptoti
 behaviour of this type of networks is funda-mentally di�erent from 
lassi
al queueing networks, where the servi
e rate at ea
h node isusually assumed to be independent of the state of the other nodes. We study the per-noderate stability and output rates for a general 
lass of feed-forward queueing networks witha general 
apa
ity allo
ation fun
tion. More spe
i�
ally, we derive ne
essary 
onditions ofper-node rate stability, and give bounds for the per-node output rate and asymptoti
 growthrates, under mild assumptions on the allo
ation fun
tion. For a set of parallel nodes, wefurther prove the 
onvergen
e of the output rates and give a sharp 
hara
terization of theper-node rate stability. The results provide new intuition and fundamental insight in thestability and throughput behavior of queueing networks with shared resour
es.
Key words:queueing networks, state-dependent allo
ation, rate stability, output rate, growth rate.AMS 2000 subje
t 
lassi�
ation:primary 60M20; 60K25, se
ondary 90B22.
1 Introdu
tionThe analysis of queueing networks has been subje
t to extensive resear
h for the past few de
adesand has been su

essfully applied in many appli
ation areas. In a vast majority of papers how-ever, it is assumed that the servi
e rate at ea
h of the nodes of the network is �xed. For example,in FCFS-based single- or multi-server nodes, non-idling servers are usually assumed to be au-tonomous entities that operate at a �xed rate, independent of the state of the other queues inthe network. For the 
lass of so-
alled Ja
kson networks [21℄, many stability and performan
eissues are well understood.�Corresponding author. CWI, Kruislaan 413, 1098SJ Amsterdam, Netherlands. E-mail: weij�
wi.nl.
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In this paper, we study queueing networks in whi
h the servi
e rates at ea
h of the individ-ual nodes are not independent, but depend on the state of the entire system, a

ording tosome general 
apa
ity allo
ation fun
tion. For this type of models, exa
t stru
tural results arerare, and fundamental insight and intuition for seemingly simple questions about stability andthroughput are la
king. This motivates an in-depth study of the per-node stability for queueingnetworks with a general 
lass of 
apa
ity allo
ation fun
tions.Another sour
e of motivation stems from appli
ations in modern 
omputer-
ommuni
ation sys-tems, in whi
h many heterogeneous appli
ations share parts of the available infrastru
ture re-sour
es. In su
h environments, di�erent appli
ations 
ompete for a

ess to shared resour
es,both at the software level (e.g., mutex and database lo
ks, thread pools) and at the hardwarelevel (e.g., bandwidth, pro
essing power, disk a

ess). For example, many Web-based servi
esare based on multi-tiered system ar
hite
tures 
onsisting of a 
lient tier to provide an end-userinterfa
e, a business logi
 tier to 
oordinate information retrieval and pro
essing, and a data tierwith lega
y systems to store and a

ess 
ustomer data. Ea
h end-user initiated Web transa
tiontypi
ally 
onsists of several sub-transa
tions that have to be pro
essed in some �xed or proba-bilisti
 order. To this end, appli
ation servers usually implement a number of thread pools, ea
hof whi
h is dedi
ated to performing a spe
i�
 sub-transa
tion. A parti
ular feature of the Webserver performan
e model proposed in [12, 23℄ is that at any moment in time the a
tive (i.e.,non-idling) threads share a 
ommon Central Pro
essing Unit (CPU) hardware in a PS fashion.Other examples of performan
e models in whi
h software resour
es 
ompete for a

ess to sharedhardware resour
es are presented in [14, 24℄. Another interesting line of resear
h in whi
h theservi
e rates among di�erent network nodes are dependent is fo
used on bandwidth-sharingnetworks [17, 5℄, providing a natural modeling framework for des
ribing the dynami
 
ow-levelintera
tion among elasti
 data transfers in 
ommuni
ation networks. Queueing models withshared resour
es also o

ur naturally in the modeling of the 
ow-level performan
e in wirelinedata networks where the 
apa
ity of di�erent links are shared among 
ompeting 
ows [4℄, or inwireless networks, where a limited amount of bandwidth is shared among di�erent users, andwhere 
ustomers 
an 
ommuni
ate via a 
as
ade of intermediate hops (
f. [8℄).A 
onsiderable amount of work has been dedi
ated to the stability of queueing networks [10, 9,19, 20, 22℄. Controlling overload situations is essential for the design of 
ommuni
ation networks.A well-engineered network should of 
ourse avoid to experien
e overload. However, the traÆ

u
tuations over time might lead to temporary surges that a well-designed network should dealwith. A �ne understanding of the behaviour of the network in overloaded is hen
e stronglyneeded. In parti
ular, it is a fundamental issue to 
hara
terize, for given traÆ
 
onditions,whi
h queues are going to get instable and what are the asymptoti
 growth rates. In parti
ular,re
ent results in
luding a sharp 
hara
terization of per-node stability for parallel nodes with ade
reasing servi
e allo
ation have been obtained in [7℄. It 
learly emerges from these papersthat general results for per-node stability for multi-layered networks (or networks with band-width sharing) appear to be very 
hallenging. In parti
ular, if global stability is well knownfor work-
onserving networks, detailed (per-node) stability remains a diÆ
ult problem. Forgeneral servi
e allo
ations without monotoni
ity properties, it is to the best of our knowledgean open problem, even for exponentially distributed servi
es. Instead of fo
using on sto
hasti
stability, an alternative approa
h to ta
kle stability issues is to weaken the stability de�nitionand to investigate the so-
alled rate stability of the network [13℄. Roughly speaking, it 
onsistsof 
hara
terizing the growth rates as linear or sub-linear. However, be
ause in a great numberof pra
ti
al situations, an overload situation is 
hara
terized by a linear asymptoti
 per node
2



growth rate, rate stability provides a pre
ious ben
hmark information in 
ases where a moredetailed stability des
ription is almost hopeless. Using a similar line of thoughts, Egorova et al.[11℄ give a partial 
hara
terization of the overload behavior, for the wide 
lass of so-
alled �-fairbandwidth sharing strategies de�ned in [17℄,by examining the 
uid limit by suitable s
aling thenumber of 
ows in the system, and give a �xed-point equation for the 
orresponding asymptoti
growth rates.In this paper we 
onsider a queueing network with Poisson arrivals, exponential servi
e-timedistributions at all nodes, internal feed-forward routing and with a stru
tured work-
onservingallo
ation fun
tion driving the servi
e in all nodes, that depend on the state of the entire system.For this general model, we (1) derive ne
essary 
onditions of the per-node rate stability, and (2)give bounds for the per-node output rate. We show how to use these 
onditions on a two-nodetandem network to get ne
essary and suÆ
ient 
onditions of rate stability. For a set of parallelnodes with an homogeneous 
apa
ity allo
ation, we further prove the 
onvergen
e of the outputrates and give a sharp 
hara
terization of the per-node rate stability. The results provide newintuition and fundamental insight in the stability and throughput behavior of queueing networkswith shared resour
es.The 
ontribution of this paper is in that respe
t two-fold. First, from an appli
ation pointof view, intuition and understanding of the stability and throughput behavior is essential to de-sign e�e
tive overload-
ontrol me
hanisms. Se
ond, from a theoreti
al point of view, the analysisof of queueing networks in whi
h resour
es are shared among the di�erent nodes raises many
hallenging questions regarding the stability and throughput behavior. These observations makethe relevan
e of this paper evident.The remainder of this paper is organized as follows. In Se
tion 2 the model is des
ribed and therelevant notation and de�nitions are introdu
ed. In parti
ular, the di�eren
e between sto
hasti
and rate stability is rigorously explained. In Se
tion 3, asymptoti
 values as output rates andgrowth rates are de�ned. Using the stru
ture of the 
onsidered allo
ation fun
tions, importantproperties of these output rates are derived. In Se
tion 4, some traÆ
 inequalities are estab-lished leading to ne
essary 
onditions for the rate stability of ea
h node. We then illustrate theobtained results on two toy examples. In Se
tions 5 and 6, we 
onsider two spe
ial 
ases (i.e.,the two-node tandem and the model with an arbitrary number of parallel nodes), and show thatthe ne
essary 
onditions derived in Se
tions 3 and 4 are also suÆ
ient, under mild 
onditionson the 
apa
ity allo
ation fun
tion. Finally, in Se
tion 6 we address a number of 
hallengingtopi
s for further resear
h.
2 Model and stability de�nitions2.1 Network modelWe 
onsider an open queueing network with N nodes. A 
ustomer present at node i is said tobe of 
lass i (i = 1; : : : ; N). External 
ustomers arrive at node i a

ording to a Poisson pro
essof intensity �i � 0. Denote the ve
tor of external arrival rates by � := (�1 � � ��N )>. The servi
etimes at node i are exponentially distributed with mean �i = 1=�i. Let � := (�1; : : : �N ). Thestate of the system is des
ribed by a ve
tor x := (x1; : : : ; xN ), where xi represents the numberof 
ustomers of 
lass i. When the system is in state x, 
ustomer of 
lass i re
eive a servi
e
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rate �i(x), where the fun
tion �(x) := (�1(x); : : : ; �N (x)) is referred to as the system 
apa
ityallo
ation fun
tion, for x 2 X := f0; 1; : : : ; gN . It is important to note that the various 
ustomer
lasses are 
oupled sin
e their individual servi
e rates may depend on the state x of the entiresystem.Assumptions on the routing: After re
eiving servi
e at node i, a 
ustomer is routed to nodej 2 I := f0; 1; : : : ; Ng with probability pij. Denote the routing matrix by P := (pij). We adoptthe 
onvention that when j = 0, the 
ustomer simply leaves the network. We assume that thereis no loop in the routing i.e., on
e a 
ustomer has been served at a given node, he never returnsto this node. This type of routing is often referred to as feed-forward routing. Consequently, we
an order the nodes su
h that: pij = 0; j < i. The routing matrix P is sub-sto
hasti
, so thatR := (rij) := (I � P )�1 exists, where I is the N -by-N identity matrix. Moreover, let D = (dij)be the N -by-N diagonal matrix with diagonal entries, dii := 1�i (i = 1; : : : ; N). Using thesede�nitions, the load o�ered to node i is given by
�i := �>RDei = 1�i NXj=1 �jrji; (1)

where ei is the i-th unit ve
tor.Let X(t) := (X1(t); : : : ;XN (t)), where Xi(t) denotes the number of 
ustomers at node i (i.e.,either waiting or being served) at time t � 0. Then the N -dimensional pro
ess fX(t); t � 0g 
anbe des
ribed as a 
ontinuous-time Markov pro
ess with state spa
e X . For a subset of indexesS, we denote xS the restri
tion of the ve
tor x to nodes S, i.e., xS = (xi)i2S .Assumptions on the servi
e rates: Throughout the paper, the system allo
ation fun
tion�(x) satis�es 
ertain assumptions that we des
ribe here.Assumption A1 (Work-
onserving allo
ation)Whenever the system is not empty, all 
apa
ity is assigned to the nodes: For x 6= 0 = (0; : : : ; 0),NXi=1 �i(x)�i = 1; and �(0) := 0: (2)
Without loss of generality, the total 
apa
ity of the system is assumed to be equal to 1 in (2).Assumption A2 (Symmetri
 uniform limits)For all subset of indi
es U � f1; : : : ; Ng, there exists a fun
tion gU on f0; 1; : : : ; gN�jUj andsome stri
tly positive numbers li; i 2 U su
h that:8i 2 U ; limxi!1;i2U �i(x)�i = ligU(xS): (3)In many appli
ations in 
omputer-
ommuni
ation systems the allo
ation fun
tions have thefollowing stru
ture whi
h is a spe
ial 
ase of work 
onserving allo
ations with symmetri
 uniformlimits: �i(x)�i = fi(xi)PNj=1 fj(xj) ; x 2 X ; x 6= 0: (4)
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where fi(�) a non-negative fun
tion su
h that fi(0) := 0 and limxi!1 fi(xi) =: li < 1 (i =1; : : : ; N). Note that in this 
ase, Assumption 2 implies that:
8U � f1; : : : ; Ng; gU(xS) =  Xi2U li +Xi=2S fi(xi)

!�1 :
In the sequel, we refer to these allo
ations as extended pro
essor sharing allo
ations. Hereare a few examples that have be
ame 
lassi
 in queuing theory and performan
e evaluation:1. The limited pro
essor sharing allo
ation de�ned by:fi(xi) = minfxi; lig;where li is a positive integer.2. The limited dis
riminatory pro
essor sharing allo
ation de�ned by:fi(xi) = wi minfxi; Cig;where Ci is a positive integer and wi > 0 is a weight given to 
lass i. In this 
ase li = wiCi.3. The 
oupled pro
essors allo
ation de�ned byfi(xi) = li1xi>0;where 0 < li < +1 is a weight asso
iated with 
lass i. In the literature, this allo
ation issometimes referred to as the generalised pro
essor sharing (GPS) allo
ation.The assumptions A1 and A2 are not suÆ
ient in general to get a sharp 
hara
terization of therate stability set of the network. To get more pre
ise results, we may assume one or both of thefollowing 
onditions:Assumption A3 (Asymptoti
 monotoni
ity)For all subset of indi
es U � f1; : : : ; Ng, there exists x > 0, su
h that if xi > x, for all i 2 U ,then 8i =2 U �i(x)�i � ligU(xS): (5)For extended pro
essor sharing allo
ations, note that Assumption A3 is veri�ed in parti
ular if:fi(xi) � li for all xi � 0; i = 1; : : : ; N:
Assumption A4 (Homogeneity)The allo
ation is 
alled homogeneous if:8x 2 X ; 8
 2 R+ ;�(
x) = �(x): (6)
This assumption is veri�ed for the 
oupled pro
essors allo
ation and for allo
ation based onhomogeneous utility fun
tions. For more details on bandwidth sharing networks and utility-based allo
ations, we refer to [17℄. 5



2.2 Stability de�nitionsThe study of stability of sto
hasti
 pro
esses traditionally deals with the question of existen
eof a measure that is invariant to the transition operator of the pro
ess and to whi
h the pro-
ess 
onverges in distribution or in total variation. We aim here at des
ribing some 'per-node'stability properties, i.e. properties of the pro
esses fXi(s); s � 0g, for i = 1; : : : ; N . Sin
e thepro
ess fXi(s); s � 0g is not by itself a Markov pro
ess, this is generally a mu
h more ambitiousquestion than des
ribing the global stability (stability of X(t)) whi
h is well known for work-
onserving networks (see Theorem 1). To the best of our knowledge, the only per-node sto
hasti
stability results have been obtained for a set of parallel nodes with de
reasing allo
ations andthere is no su
h results available for the general type of networks we 
onsider here. Be
ause theusual de�nitions of sto
hasti
 stability did not lead so far (without stri
ter assumptions on theallo
ation fun
tion and the topology) to tra
table results, we turn our attention to a weaker def-inition of stability that allows to give pra
ti
al answers. We are hen
e primarily 
on
erned withthe property of the 
onservation of rates through the network. Roughly speaking, it 
onsistsof 
hara
terizing the asymptoti
 growing rates (rates at whi
h the queue asso
iated to a nodebuilds up) as linear or sub-linear and to 
hara
terize the set of input parameters su
h that thein
oming traÆ
 at a node is equal to the out
oming traÆ
. Interesting as a �rst order stabilityproperty, rate stability turns out to also give useful ne
essary 
onditions of sto
hasti
 instability.For later referen
e, we thus de�ne the following two notions of stability: rate stability and thestronger notion of sto
hasti
 stability.Sin
e we assume that the allo
ation fun
tion �(�) is bounded, the pro
ess X is nonexplosive.Hen
e we may assume that X and all other sto
hasti
 pro
esses treated in the sequel have pathsin the spa
e D = D(R+;ZN+ ) of right-
ontinuous fun
tions from R+ to ZN+ with �nite leftlimits. In the sequel, a sto
hasti
 pro
ess with paths in D is viewed as a random element onthe measurable spa
e (D;D), where D denotes the Borel �-algebra generated by the standardSkorokhod topology [16℄.De�nition 1 (Rate stability)The pro
ess fXi(t); t � 0g is said to be rate stable if
lim inft!1 Xi(t)t = 0 a:s:and the pro
ess is 
alled rate unstable iflim inft!1 Xi(t)t > 0 a:s:

De�nition 2 (Sto
hasti
 stability)The pro
ess fXi(t); t � 0g is said to be sto
hasti
ally stable iflimr!1 supt!1Pr fXi(t) > rg = 0;and the pro
ess is 
alled sto
hasti
ally unstable iflimr!1 supt!1Pr fXi(t) > rg > 0:
6



Moreover, the N -dimensional pro
ess fX(t); t � 0g is said to be globally sto
hasti
ally stable (orsto
hasti
ally stable) if fXi(t); t � 0g is sto
hasti
ally stable for all i = 1; : : : ; N .The following result, 
hara
terizing the sto
hasti
 stability of the pro
ess fX(s); s � 0g, iswell known for work-
onserving networks. The total number of 
ustomers 
an indeed be seen asthe number of 
ustomers of a single queue with unit servi
e rate and the global stability is thena 
onsequen
e of Loyne's Theorem (
f., e.g, [3℄).Theorem 1 (Global stability)The network is globally sto
hasti
ally stable ifX �i < 1:The network is globally sto
hasti
ally unstable ifX �i > 1:
De�nition 3 (Rate stability subsets)Let S := fi : fXi(t); t � 0g is rate stableg, and U := fi : fXi(t); t � 0g is rate unstableg.Sin
e ea
h node is either rate stable or rate unstable, the index set f1; : : : ; Ng is partitionedinto the 
ouple P := (S;U), with S [ U = f1; : : : ; Ng, S \ U = ;. In 
ase of rate stability, thenumber of 
ustomers at node i grows asymptoti
ally 'slower than t' when t ! 1, at least onsome traje
tories. In 
ase of sto
hasti
 stability, the pro
ess fXi(t); t � 0g remains in a �niteneighborhood with positive probability. Remark that if fXi(t); t � 0g is an irredu
ible Markovpro
ess, then sto
hasti
 stability is equivalent to requiring fXi(t); t � 0g to be positive re
urrent(see for example Theorem 12.25 in [16℄). Note also that sto
hasti
 stability implies rate stability,as it should, but that the 
onverse result is generally not true.The next result underlines the relation between rate instability and sto
hasti
 instability.Proposition 1For i = 1; : : : ; N , lim inft!1 Xi(t)t > 0; implies that Xi(t)!1 in probability.Proof: Suppose that Xi(t) does not 
onverge to in�nity in probability. Then there exists asubsequen
e ftn; n = 0; 1; : : :g su
h that Xi(tn) ! Zi (in probability) for some honest (almostsurely �nite) random variable Zi. Moreover, there exists another subsequen
e ft0n; n = 0; 1; : : :gsu
h that fXi(t0n)g ! Zi almost surely [16℄. Hen
e, Xi(t0n)�Zit0n ! 0 almost surely and sin
e Zi isalmost surely �nite, Zit0n ! 0 and Xi(t0n)t0n ! 0 almost surely, whi
h implies that lim inft!1 Xi(t)t =0, almost surely. 2Remark 1 Many authors (see for instan
e [1℄, [13℄, [18℄), de�ne rate stability di�erently, withslightly stronger assumptions. For the purpose of our analysis, we prefer the given de�nitionthat allows to link rate instability with a 
onvergen
e in probability to in�nity.
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3 Output rates and growth rates3.1 De�nitionThe following notation is useful in the sequel. For a given sample path fX(s); s > 0g, we de�nethe Cesaro mean servi
e rate at ea
h node of the network by:'i(t) = 1t Z t0 �i(X(s))ds; i = 1; : : : ; N; t > 0: (7)The growth rate of node i is de�ned byYi(t) := Xi(t)t ; i = 1; : : : ; N; t > 0: (8)Over a given sample path fX(s); s > 0g, we 
an further de�ne the limiting values of the meanservi
e rate: 'i := lim inft!1 'i(t); �'i := lim supt!1 'i(t); i = 1; : : : ; N;and the asymptoti
 growth rate of the nodes:Y i = lim inft!1 Yi(t); and �Yi = lim supt!1 Yi(t):From Assumption 2, the random variables �'i are bounded, and 
onsequently, we prove in thefollowing se
tion that the �Yi are almost surely bounded. We may therefore de�ne the meanvalues of ve
tors, for i = 1; : : : ; N ,Oi := E['i℄; �Oi := E[ �'i℄; Qi := E[Y i℄; �Qi := E[ �Yi℄; (9)and denote the 
orresponding ve
tors byO := (O1 � � �ON )>, �O := ( �O1 � � � �ON )>,Q := (Q1 � � �QN )>and �Q := ( �Q1 � � � �QN )>. Note that rate stability of node i implies that 'i = 0 (almost surely)and Qi = 0. Moreover, note that if node i is sto
hasti
ally stable, then �Qi = Qi = 0 and�Oi = Oi.3.2 Properties of the asymptoti
 ratesWe derive here some properties of the rates of servi
e obtained when a node is rate unstable.These properties turn out to be 
ru
ial when 
hara
terizing the rate stability of the network. Itis 
onvenient to de�ne, for i = 1; : : : ; N , �i := �ili:The next result gives a relation between the output rates and the fra
tion of 
apa
ity assignedfor rate unstable nodes. For a given stability partitioning of the nodes P = (S;U), denote�ZP := E �lim supt!1 1t Z t0 gU(X(s))ds� :
Proposition 2 (Balan
ed output rates for rate-unstable nodes)Assume Assumption A1. If i; j 2 U , then�j �Oi = �i �Oj : (10)8



In parti
ular if li > 0 and lj > 0: �Oi�i = �Oj�j = �ZP : (11)Moreover, if (�j)j2U are positive numbers, then
E 24lim supt!1

0�Xj2U �j'j(t)
1A35 =Xj2U �j�j �Oj :

Proof: For all i 2 U , Xi 
onverges in probability to in�nity. As � is bounded, it implies that�i(X(t))�i � ligU(xS)! 0 (in L1), whi
h gives thatE �1t Z t0 �i(X(s))�i � ligU(xS(s))ds�! 0:Using the dominated 
onvergen
e theorem, we obtain that:E � limt!1 1t Z t0 �i(X(s))�i � ligU(XS(s))ds� = limt!1E �1t Z t0 �i(X(t))�i � ligU(xS)ds� = 0:We 
on
lude by observing that:E �lim supt!1 'i(t)�i ℄� = E hlimt!1 1t R t0 �i(X(s))�i � ligU(XS(s))dsi+ liE hlim supt!1 1t R t0 gU(XS(s))dsi : 2The next two Propositions 
ompare the outputs of rate stable and rate unstable nodes forasymptoti
ally de
reasing allo
ations.Proposition 3 (Unbalan
ed rates between rate stable and rate unstable nodes)Assume Assumption (A3). Then if i 2 S and j 2 U , it holds that�j �Oi � �i �Oj : (12)Proof: For i 2 S and j 2 U , following the same lines as in the proof of the previous Proposition,we have �Oi�i � liE �lim supt!1 1t Z t0 gU(X(s))� ds: 2The following Proposition uses further the stru
ture of the extended pro
essor sharing allo
ation.Proposition 4 (Comparison of output rates for di�erent stability partitioning)Assume that the allo
ation is an extended pro
essor sharing allo
ation, i.e., for i = 1; : : : ; N ,
�i(x) = fi(xi)0� NXj=1 fj(xj)

1A�1 ;
with fi(xi) � li for all xi � 0; i = 1; : : : ; N , and 
onsider two rate stability partition setsP1 = (S1;U1) and P2 = (S2;U2) su
h that U2 = U1 [ fig = f1; : : : ; Ng. Then it holds that fori = 1; : : : ; N , �j �OP1i � �i �OP2j : (13)

9



Proof: Using again the lines of the proof of Proposition 2, we getOP1i�i = E "lim supt!1 Z t0 fi(Xi(s))fi(Xi(s)) +Pj 6=i lj # ; (14)
and OP2i�j = ljPNj=1 lj : (15)The proof then follows dire
tly from (14) and (15) by observing thatfi(Xi(s))fi(Xi(s)) +Pj 6=i lj � liPNj=1 lj : 2
4 Rate stability ne
essary 
onditions4.1 TraÆ
 inequalitiesIn the absen
e of sto
hasti
 stability assumptions, it is naturally not possible to de�ne the inputrate of the nodes as the solutions of the 
lassi
 traÆ
 equations as in [21℄ for instan
e. However,we 
an derive traÆ
 inequalities linking the input rates and the asymptoti
 output rates of thenetwork. These equations give a mathemati
al understanding on the 
ommon notions of meanoutput rates and input rates in the network.Theorem 2 (TraÆ
 inequalities)The asymptoti
 output rates O, �O and growth rates Q, �Q are �nite and satisfy the followinglinear inequalities: For i = 1; : : : ; N ,Qi + �Oi � �i +Xj pji �Oj ; (16)�Qi +Oi � �i +Xj pjiOj : (17)
The work 
onserving property brings the additional inequalities:NXi=1 �Oi�i � 1; and NXi=1 Oi�i � 1: (18)
In the spe
ial 
ase of � > 1 and U = f1; : : : ; Ng, we have further:NXi=1 �Oi�i = 1: (19)
Proof: Be
ause of exponential servi
e times and Poisson arrivals, X(t) is a Markov pro
ess.From Assumption 2 the allo
ation fun
tions �i(:), and hen
e the transition rates are bounded.

10



This implies (the departure pro
ess from a node being Di(t) = Ai(t) � Xi(t), with Ai(t) thearrival pro
ess at node i) that the pro
ess fMi(t); t > 0g, de�ned byMi(t) := Xi(t)�Xi(0)� Z t0 f�i +Xj pji�j(X(s))� �i(X(s))gds;
is a martingale that satis�es E[M2i (t)℄ < Kt for i = 1; : : :N , t > 0 and some K > 0. Thisimplies that the pro
ess fMi(t)=t; t > 0g is a super-martingale bounded in L2 and 
onsequently,for i = 1; : : : ; N : Mi(t)t ! 0 (t!1); a.s. Assuming for simpli
ity that X(0) = 0, it is readilyseen from the de�nitions (8) and (7) that, for i = 1; : : : ; N , t > 0,1tMi(t) + �i +Xj pji'j(t)� Yi(t) = 'i(t);
This implies that lim supt!1 Xi(t)t < +1 as well as
lim supt!1 'i(t) = lim supt!1

0��i +Xj pji'j(t)� Yi(t)1A � �i +Xj pji lim supt!1 'j(t)� lim inft!1 Yi(t):
Using the dominated 
onvergen
e theorem, we get (16). (17) is obtained along the same lines.(18) follows from the dominated 
onvergen
e theorem as well as the equation:

1 = lim supt!1  NXi=1 'i(t)
! � NXi=1 lim supt!1 'i(t):

If � > 1, the total number of 
ustomers is transient, and hen
e for all t, almost surelyPNi=1 �i(X(t))�i =1 and PNi=1 'i(X(t))�i = 1. The last assertion thus follows from Proposition 2. 24.2 Ne
essary 
onditions of rate stability for 
onverging ratesIn this subse
tion, we study the 
ase �O = O, whi
h serves as a ben
hmark for �nding rate sta-bility 
onditions in the general 
ase. We show in the last se
tion that we 
an a
tually prove the
onvergen
e of the asymptoti
 growth rates for a set parallel nodes with homogeneous, asymp-toti
ally monotone allo
ations.De�nition 4 (~O; ~Q)For a given stability partitioning P = (S;U) (U 6= ?), de�ne (~O; ~Q) as the solution (when itexists) of: oi + qi = �i +Xj pjioj ; (20)NXi=1 oi�i = 1; (21)oi�i = oj�j := ~ZP (i; j 2 U); (22)qi = 0 (i 2 S): (23)
11



We �rst prove the existen
e of a unique solution for ~O; ~Q. We then give 
onditions for thissolution to be positive. To simplify the notations, suppose without lost of generality that thenodes are ordered so that the stable ones are the �rst ones, i.e. there exists an index m su
hthat S = [1;m℄ and U = [m+1; N ℄. De�ne GE1E2 as the trun
ation of the matrix G to the nodesin E1; E2 : GE1E2 = (G)i2E1;j2E2 and similarly the ve
tor vE = (vi)i2E . We then write the routingmatrix in the following form: P = � PSS PSUPUS PUU � :Re
all that the ve
tor � is de�ned as � = (l1�1; : : : ; lN�N ) and let us introdu
e the ve
tor !S ,and the positive 
onstants �P and �P as: !S = �SHSS ;�P =Xi2S (�UPUSHSS)ei�i ; �P =Xi2U li:where HSS = (I �PSS)�1. Remark that the matrix HSS is not in general the restri
tion of thematrix R.Proposition 5Fix a partition P = (S;U) (U 6= ?). There exists a unique solution (~O; ~Q) of equations (20) to(23), 
hara
terized by the following equations:~OS = (�S + ~ZP�UPUS)HSS ;~OU = ~ZP�U ;~ZP = 1�Pi2S !Si�i�P + �P :
Moreover, the solution ~O; ~Q is positive if and only if:Xi2S !Si�i � 1;

~ZP�U �IUU � PUU � PUSHSSPSU� � �U + �SHSSPSU :Proof: The system of equations (20) to (23)) 
an be rewritten as~OS = �S + ~OSPSS + ~ZP�UPUS ;~QU = �U + ~OSPSU + ~ZP�U (PUU � IUU );Xi2S ~OSi�i = 1� �P ~ZP :
The proposition follows from the fa
t that the matri
es IE � P E ; E = SS; UU are invertiblewith a positive inverse. Then, ~O � 0 and ~ZP � 0, if and only if:Xi2S !Si�i � 1:

12



Moreover, ~Q � 0 if and only if:~ZP(IUU � PUU )�U � �U + ~OSPSU : 2It is remarkable that the 
onditions of positivity of the output rates are not suÆ
ient to 
hara
-terize the stability set. In the 
ase of parallel nodes for instan
e, where we will a
tually derivethat �O = O, we show that the additional 
onditions underlined in Se
tion 3 are indeed neededto sharply 
hara
terize, for given input parameters, the rate stability set.4.3 Ne
essary 
onditions of rate stabilityTo derive ne
essary 
onditions for a given rate stability partitioning, we bound the outputrates, taking into a

ount the assumption of a feed-forward routing. The bounds are obtainedby 
omparing the maximum output rates with the outputs previously obtained in a (virtual)network where �Oi = Oi; 8i.Lemma 1For i = 1; : : : ; N , we have �Oi � !i;where the ve
tor ! = �R is the solution of the usual traÆ
 equations:! = �+ !P:Proof: Remark �rst that ! exists and is unique be
ause R = (I � P )�1 is a well de�nedpositive matrix sin
e I � P is substo
hasti
. De�ne the degree of a node i in the following way.If 8j = 1; : : : ; N; pji = 0, then di = 0. Otherwise, di = maxj: pji>0fdjg. Be
ause of the absen
eof loops in the network, there exists at least one node i0 of degree 0 (a sour
e). Using the traÆ
inequalities of the previous se
tion, we get for all nodes i0 of degree 0:�Oi0 � �i0 = !i0 :We further pro
eed by indu
tion on the degree of nodes. Suppose the assertion true for alldegree less than m. Consider a node of degree m+1. It is re
eiving traÆ
 from nodes of inferiordegree. Using the traÆ
 inequalities, the indu
tion assumption and the de�nition of !, we get:�Oi � �i + Xj:d(j)�m pji �Oj � �i + NXj=1 pji!j = !i: 2We now derive the lemma leading to the main result of this se
tion.Lemma 2For ea
h partitioning P = (S;U) (U 6= ?), we have:�ZP � ~ZP :If moreover PUS = 0, then 8i 2 S; �Oi � ~Oi:
13



Note that this result holds without restri
tion on the routing poli
y, and is not limited to feed-forward routing.Proof: Using Lemma 1 and the traÆ
 inequalities, we 
an write that�OS � !S + �ZP�SPUSHSS ; and1 � �P �ZP +Xi2S �Oi�i :Hen
e,
(�P + �P) �ZP +Xi2S !Si � �P �ZP +Xi2S �Oi�i � 1;

whi
h gives �ZP � ~ZP . If PUS = 0, the se
ond assertion follows from (5). 2We 
an now derive ne
essary 
onditions for the partitioning P = (S;U) to hold. We makeuse here of Lemma 1 and we therefore need the assumption of feed-forward routing.Theorem 3Suppose a given partitioning P = (S;U). Then for all i 2 U :!i�i > ~ZP :Proof: We write that the s
aled state of an unstable node is stri
tly positive 8i 2 U , Qi > 0,whi
h gives, using the traÆ
 inequalities:
8i 2 U ; NXj=1 pji �Oj + �i � �Oi � Qi > 0:

Using the two previous lemmas, it leads to
8i 2 U ; NXj=1 pji!j + �i � �i ~ZP � NXj=1 pji �Oj + �i � �Oi � Qi > 0:

whi
h gives !i�i > ~ZP : 2So far, only ne
essary 
onditions for a given rate stability partition of the nodes follow fromTheorem 3. We illustrate the obtained results on two examples, where the obtained ne
essary
onditions turn out to be suÆ
ient in the �rst example and not suÆ
ient in the se
ond.In the next two se
tions, where we derive ne
essary and suÆ
ient 
onditions of rate stabil-ity under some of the Assumptions A1 to A4, for two important spe
ial 
ases. In Se
tion 5 westudy a two-node tandem model, and in Se
tion 6 we 
onsider systems of parallel nodes, withshared resour
es.
14
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Figure 1: Two nodes in tandem.
5 Two-node tandem modelConsider the system of two nodes in tandem, illustrated in Figure 1 with an asymptoti
allyde
reasing extended pro
essor sharing allo
ation (see Se
tion 2). The routing matrix is givenby: P = � 0 p0 0 � : (24)Thus, a fra
tion p of the output rate of the �rst node is sent as input rate to the se
ond node.The following traÆ
 equations and inequalities hold (Theorem 2):Q1 + �O1 = �1;Q2 + �O2 � p �O1;�O1 + �O2 � 1:For the 
orresponding virtual model verifying �O = O, the traÆ
 equations are:~OP1 = �1 � ~QP1 ;~OP2 = p ~OP1 � ~QP2 ;~OP1�1 + ~OP2�2 = 1;~OPi�i = ~ZP for i 2 U:By P we denote the partition of nodes a

ording to their rate stability. P 
an thus be (S;S),(U ;S), (S;U), and (U ;U). The solution of ~O and ~Q are given in Table 5 for ea
h stability subsetP. A

ording to Theorem 3 the network is globally sto
hasti
ally stable if and only if � < 1

P ~Q1 ~Q2 ~O1 ~O2(S;S) 0 0 �1 �1p(S;U) 0 p�1 � (1� �1�1 )�2 �1 (1� �1�1 )�2(U ;S) �1 � �1�2p�1+�2 0 �1�2p�1+�2 p�1�2p�1+�2(U ;U) �1 � l1�1l1+l2 pl1�1l1+l2 � l2�2l1+l2 l1�1l1+l2 l2�2l1+l2Table 1: Output rates for the stability subsets.
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whi
h writes �1 < �1�2p�1 + �2 :Note that in this 
ase �O = ~O = O and �Q = ~Q = Q.Ne
essary 
onditions for (U ;U): For the partition (U ;U), given that ~ZP = 1l1+l2 ! =(�1; p�1), the following 
onditions given by Theorem 3 are ne
essary for the partition (U ;U):p > l2�2l1�1 ;�1 > �1l1l1 + l2 :Using the last assertion in Theorem 2, we further obtain that �ZP = ~ZP .Ne
essary 
onditions for (S;U): For the partitions (U ;S) and (S;U), the ne
essary 
on-ditions raised by Theorem 3 lead to the already known 
ondition � > 1. Using Theorem 3( �ZP > ~ZP), the �rst traÆ
 equation and the additional inequalities given by 2 and Proposition3, we obtain: �1l1�1 = ~O(S;U)1�1 = �O(S;U)1�1 < �O(U ;U)1�1 = ~O(U ;U)1�1 = 1l1 + l2 ; (25)whi
h leads to the ne
essary equation �1 < �1l1l1+l2 .Ne
essary 
onditions for (U ;S):�1p�2(�1p+ �2)l2�2 = ~O(U ;S)2�2 � �O(U ;S)2�2 < �O(U ;U)2�2 = ~O(U ;U)2�2 = 1l1 + l2 ; (26)
and this leads to the ne
essary inequality that p < l2�2l1�1 .The obtained ne
essary 
onditions are easily seen to lead to a 
omplete partitioning of theparameter set, whi
h gives a sharp 
hara
terization of the stability set. As a 
onsequen
e, theobtained 
onditions are both ne
essary and suÆ
ient, ex
ept on a boundary set of input param-eters.In Figure 2, the stability set is pi
tured for two di�erent sets of input parameters.
6 Parallel nodesIn this se
tion, we 
onsider parallel nodes and thus suppose that there is no internal routing,i.e., pij = 0, for all i; j. In that 
ase, we 
an derive a sharp 
hara
terization of the per-node ratestability. To this end, we �rst show that in that 
ase, the traÆ
 inequalities are a
tually a set oftraÆ
 equations (Theorem 4). This allows to prove that the output rates and asymptoti
 growthrates are 
onverging. Using the results of Se
tions 3 and 4, we then derive a 
hara
terization ofthe per-node stability (Theorem 5).
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Figure 2: Stability regions with (�1; l1; �2; l2) = (3; 1; 1; 1) for the left �gure, and (�1; l1; �2; l2) =(1; 1; 3; 1) for the right �gure.
6.1 Extended traÆ
 equationsIn this subse
tion, we pre
ise the traÆ
 inequalities obtained in the general 
ase by derivingtraÆ
 equations linking the input rates and the asymptoti
 output rates of the network.Theorem 4 (Extended traÆ
 equations)The asymptoti
 output rates O, �O and growth rates Q, �Q are �nite and satisfy the followinglinear equations: For i = 1; : : : ; N , Qj + �Oi = �i; (27)�Qj +Oi = �i: (28)Proof: We follow the same lines as in Theorem 2,Mi(t) := Xi(t)�Xi(0)� Z t0 f�i � �i(X(s))gds; (29)is a martingale that satis�es E[M2i (t)℄ < Kt for i = 1; : : :N , t > 0 and some K > 0. Thisimplies that lim supt!1 Xi(t)t < +1 and lim inft!1 Yi(t) = �i � lim supt!1 'i(t). Using thedominated 
onvergen
e theorem, we get equation (27) and (28). 26.2 Output rates 
onvergen
eWe �x P a partition of nodes su
h that nodes in S are rate stable while nodes in U are rateunstable. In the following proposition, we prove that the output rates of the di�erent nodes
onverge whi
h further allows a 
omplete des
ription of the rate stability set.Proposition 6Consider a set of parallel nodes with a de
reasing allo
ation verifying the assumptions A1; A2and A4. Then, Xi(t)t ! Qi; in probability; (30)'i(t)! Oi; in probability; (31)
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with ~Oi = �i (i 2 S); ~Oi = ~ZP�i (i 2 U);~Qi = 0 (i 2 S); ~Qi = �i � ~ZP�i (i 2 U):where ~ZP := 1�Pj2S �j�jPj2U lj = 1�Pj2S �j�P :
Proof: Let us �rst prove the 
onvergen
e of the rates. Note that an asymptoti
ally monotonehomogeneous allo
ation is a
tually monotone. Using the homogeneity and the monotony of theallo
ation, we get that for t large and for i = 1; : : : ; N :�i(X(t)) = �i�X(t)t � � �i(�Q);whi
h implies 'i(t) � �i(�Q):This leads to: �Qi � �i � �i(�Q) i = 1; : : : ; N:Similarly, for i 2 U : Qi � �i � �i(Q); i = 1; : : : ; N:Summing these inequalities for i = 1; : : : ; N and using the property of a work 
onserving allo-
ation, we obtain that: NXi=1 Qi�i � NXi=1 �i�i � 1 � NXi=1 �Qi�i :We hen
e dedu
e that �Qi = Qi and as a 
onsequen
e:i = 1; : : : ; N; �Oi = Oi = ~Oi:The 
onvergen
e in L1 of 'i(t) to a 
onstant imply the 
onvergen
e in probability of 'i(t) whi
h
ombined with the almost sure 
onvergen
e of the di�eren
e Yi(t)�'i(t) imply the 
onvergen
eof Yi(t) in probability. The traÆ
 equations de�ned previously together with the system 4.2allow us to 
omplete the proof. 2Remark 2 It appears plausible to prove an almost sure 
onvergen
e for these pro
esses evenwithout the assumption of exponential servi
e times nor Poisson arrivals. This result is out ofthe s
ope of this paper but we refer to the method presented in [15℄ and further used for a set ofdis
riminatory pro
essor sharing nodes (DPS) in [2℄ for su
h a derivation. These te
hniques,jointly used with the traÆ
 
onservation used here would prove the stated 
onvergen
e in the
ontext of stationary marked point pro
esses.
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6.3 Chara
terization of the per-node rate stabilityWe assume without loss of generality that the nodes are ranked in de
reasing order of the loads�i := �ili�i , in the sense that �1 � � � � � �N : (32)The following result shows the relation between the ordering of the nodes and the per-node ratestability.Proposition 7If node-i is rate stable and j < i, then node j is also rate stable.Proof: Suppose j 2 U , i 2 S and j < i. From Proposition 3, we get: �Oi�i < �Oj�j . From Theorem3, it follows that �Oi = �i and from Theorem 3, �Oj � �j . We thus �nd that
�i = �Oi�i < Oj�j � �j�j : (33)

This 
ontradi
ts �j � �i. 2Denote ~Z(m) = ~Zf1:::;mg = (1�Pi�m �i)Pi>m li The following result shows that the partitioning P =(S;U) has a simple stru
ture.Theorem 5 (Stru
ture of stability partitioning)Consider a set of parallel nodes with a de
reasing allo
ation verifying the assumptions A1; A2and A4. The stability partitioning P = (S;U) is 
hara
terized as follows:P = (S;U) with S = f1 : : : ;mg and U = fm+ 1; : : :Ng if and only if�m � ~Z(m) < �m+1: (34)Proof: Using Proposition 7, there exists k su
h that S = f1 : : : ; kg and U = fk + 1; : : :Ng.Theorem 3 
ombined with Proposition 6 gives that ~Z(k) = �Z(k) < �(k+1). Proposition 7 gives:�Ok�k � �Ok+1�k+1 ;whi
h 
ombined with the traÆ
 equations leads to�k � ~Z(k):As ~Z(�) is a de
reasing fun
tion, we 
on
lude that m = k. 2We emphasize that Theorem 5 gives a 
omplete 
hara
terization of the rate stability parti-tioning for model instan
es that satisfy Assumptions A1, A2 and A4 and are monotone. Typi
alexamples of su
h allo
ations are the 
oupled pro
essors allo
ation (de�ned in Se
tion 2.1), andfor some utility-based allo
ation on some tree topology (see [6℄).
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7 Con
luding remarks and 
hallenges for further resear
hThe results presented in this paper provide new intuition and fundamental insight in the stabil-ity and throughput behavior of queueing models in whi
h resour
es are shared among di�erentqueues. These results should be viewed as a �rst step in understanding the behavior of this typeof queueing networks, and open up a wealth of 
hallenging open resear
h questions. Some ofthese questions will be brie
y tou
hed upon below.In the 
ontext of stability and throughput 
hara
teristi
s, several interesting questions remainto be answered. First, when X is a 
ontinuous-time Markov 
hain, it a
tually remains an openand 
ru
ial question to know for whi
h input parameters, rate instability of node i 
oin
ides tothe 
onvergen
e of Xi to in�nity (either in probability or in law). In [7℄, per-node sto
hasti
stability is established for parallel nodes with monotone allo
ation fun
tions. It is remarkablethat, ex
ept possibly on the boundary of the stability sets, the 
onditions of rate instability (andthus sto
hasti
 instability) that we have derived here 
oin
ide with the sharp 
hara
terization ofthe sto
hasti
 instability set given in [7℄. This en
ouraging observation 
alls for a generalizationof this result to more 
omplex topologies. Se
ond, the derivation of ne
essary 
onditions for ratestability for models that are not 
overed by the ones dis
ussed in Se
tions 5 and 6 is an openarea. For example, 
onsider a seemingly simple three-node network where all 
ustomers arriveat node 1, and then either move to node 2 (with probability p1) or to node 3 (with probabilityp2) before departing from the system, with 0 � p1 + p2 < 1. Then it 
an be shown that thene
essary 
onditions obtained in this paper do not lead to a full partitioning of the parameterset. This observation shows that extension of the ne
essary 
onditions presented in Se
tions 3and 4 to a broader 
lass of models is far from trivial, and addresses an open area for furtherresear
h. In addition to 
onsidering stability and throughput, one may also be interested otherperforman
e metri
s su
h as steady-state sojourn-time distributions of 
ustomers at the di�erentnodes, the optimal stati
 or dynami
 assignment of servers to the nodes, depending on the stateof the system. Derivation of su
h results is another interesting topi
 for further resear
h.
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