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ABSTRACT
This paper studies multiclass loss systems with two layers of servers, where each server at the
first layer is dedicated to a certain customer class, while the servers at the second layer can
handle all customer classes. The routing of customers follows an overflow scheme, where
arriving customers are preferentially directed to the first layer. Stochastic comparison and
coupling techniques are developed for studying how the system is affected by packing of
customers, altered service rates, and altered server configurations. This analysis leads to easily
computable upper and lower bounds for the performance of the system.
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Abstract

This paper studies multiclass loss systems with two layers of servers,
where each server at the first layer is dedicated to a certain customer
class, while the servers at the second layer can handle all customer
classes. The routing of customers follows an overflow scheme, where ar-
riving customers are preferentially directed to the first layer. Stochas-
tic comparison and coupling techniques are developed for studying how
the system is affected by packing of customers, altered service rates,
and altered server configurations. This analysis leads to easily com-
putable upper and lower bounds for the performance of the system.

Keywords: multiclass loss system, overflow routing, maximum packing,
stochastic order, preorder, coupling

AMS Subject Classification: 60K25, 60E15, 68M20, 90B15, 90B22

1 Introduction

This paper studies multiclass loss systems with two layers of servers, where
each server at the first layer is dedicated to a certain customer class, and
the servers at the second layer can handle all customer classes. Arriving
customers are routed to vacant servers in one of the layers, with preference
given to the first layer; or rejected otherwise. This policy is commonly
referred to as overflow routing.

Layered networks with overflow routing are commonly used in telecom-
munications services, because different layers of service may increase the sys-
tem capacity. In wireless communication networks for instance, the servers
at the first layer correspond to radio channels dedicated to a small geograph-
ical area (microcell), and the second layer represents available radio channels
in a larger area covering several microcells; in telephone call centers, the first
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layer consists of call agents trained to handling certain types of phone calls,
and the second layer represents call agents who are cross-trained to deal
with all types of calls.

The analysis of multilayer loss systems is challenging even under the
simplest statistical assumptions, because the distributions of the overflow
processes from the first layer are complex, and the direct numerical compu-
tation of the stationary distribution is unfeasible even for relatively small
systems (Louth, Mitzenmacher, and Kelly [8]). Hence, approximative meth-
ods are needed for performance analysis (see Kelly [7] for a broad overview).
Classical approximation techniques such as the equivalent random method
and the Hayward–Fredericks method [14], and the recently introduced hy-
perexponential decomposition (Franx, Koole, and Pot [3]), are based on
parametrically modeling the overflow processes from the first layer by sim-
pler processes. These methods have been observed to produce good ap-
proximations for many choices of system parameters. However, they may
require considerable amounts of computation, and it is not clear whether
they remain accurate over the full parameter range.

The goal of this paper is to approximate the system via upper and lower
bounds that are easy to compute numerically, and conservative in the sense
that the true performance remains between the bounds for all choices of
system parameters. To construct the upper bound, we modify the system
by redirecting customers from the second layer into the first layer as soon as
servers become vacant. This so-called maximum packing policy causes the
number of customers per class to have a product-form stationary distribution
(Everitt and Macfadyen [2]). The lower bound is constructed by moving all
servers from the second layer into the first, this way reducing the system
into a product of independent Erlang loss models.

The main tools for proving the validity of the bounds are (i) Massey’s
theorem [9] characterizing the comparability of two Markov jump processes;
and (ii) stochastic coupling, where versions of the queue-length processes
for the original and for the reference model are constructed in such a way
that the difference of the two processes remains positive with probability
one. In the context of loss systems, coupling-based stochastic bounds have
successfully been derived among others by Whitt [13], who analyzed several
single-class queueing systems; Nain [11], who focused on multiclass single-
layer loss systems; and Hordijk and Ridder [4], who studied a special case of
the two-layer loss system where the first layer is fully dedicated to a single
customer class. This paper extends some of the above results to general
multiclass two-layer loss systems, the main contribution being in showing
that maximum packing leads to upper bounds for the time-dependent and
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stationary distributions of the number of customers in the system. In the
special case where the first layer is fully dedicated to a single customer class,
this result improves the upper bound obtained by Hordijk and Ridder [4].

The paper is organized as follows. Section 2 introduces the model details
and notation. In Section 3 we prove a preliminary comparison result that is
key to analyzing the monotonicity of the system. Section 4 analyzes how the
time-dependent distribution of the system is affected by maximum packing,
different server configurations, and altered service rates, and in Section 5
we carry out a similar analysis for the system in steady state. Section 6
concludes the paper.

2 Model description

2.1 Two-layer loss system with overflow routing

We consider a loss system with K customer classes and two layers of servers,
where layer 1 contains Mk servers dedicated to class k, and layer 2 consists
of N servers capable of serving all customer classes. Arriving class-k cus-
tomers are routed to vacant servers in one of the layers, with preference
given to layer 1; or rejected otherwise (Figure 1). For analytical tractabil-
ity, we assume that the interarrival times and the service requirements of
class-k customers are exponentially distributed with parameters λk and µk,
respectively, and that all these random variables across all customer classes
are independent.

λ1 λ2 λ3

M1 M2 M3

N

Layer 1

Layer 2

Figure 1: Two-layer loss network with three customer classes.

Denote by Xi,k the number of class-k customers being served at layer i.
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The system is described by the random vector X = (Xi,k) taking values in

S = {x ∈ Z
K
+ × Z

K
+ : x1,k ≤ Mk ∀k, |x|2 ≤ N}, (1)

where |x|2 =
∑K

k=1 x2,k. Let us also denote by ei,k the unit vector in Z
K
+×Z

K
+

corresponding to the coordinate direction (i, k). Moreover, define the sets

A1,k = {x ∈ S : x1,k < Mk}, (2)

A2,k = {x ∈ S : x1,k = Mk, |x|2 < N}, (3)

Bk = {x ∈ S : x1,k = Mk, |x|2 = N}. (4)

The set Ai,k represents the set of states where an arriving class-k customer
is assigned to a layer-i server, and Bk is the set of states where arriving
class-k customers are rejected. The process X is a continuous-time Markov
process on S with the upward transitions x 7→ x + ei,k at rate λi,k(x), and
downward transitions x 7→ x − ei,k at rate φi,k(x), where

λi,k(x) = λk1(x ∈ Ai,k),

φi,k(x) = µkxi,k.
(5)

2.2 Maximum packing

To approximate the original two-layer loss system, we consider a modifica-
tion of the system, where customers are redirected from layer 2 to layer 1 as
soon as servers become vacant. This corresponds to the so-called maximum
packing policy introduced by Everitt and Macfadyen [2]. The queue-length
process Xmp for this system is a continuous-time Markov process on S with
the upward transitions x 7→ x+ei,k at rate λ′

i,k(x), and downward transitions
x 7→ x − ei,k at rate φ′

i,k(x), where

λ′

i,k(x) = λk1(x ∈ Ai,k), i = 1, 2,

φ′

1,k(x) = µkx1,k1(x2,k = 0),

φ′

2,k(x) = µkx1,k1(x2,k > 0) + µkx2,k.

(6)

Remark 1. A remarkable property of the maximum packing policy is that
all states outside the set Smp = ∩K

k=1{x ∈ S : x1,k = Mk or x2,k = 0} are
transient for Xmp. Moreover, note that for x ∈ Smp, x1,k = Mk if and only
if x1,k + x2,k ≥ Mk, which implies that

x1,k = (x1,k + x2,k) ∧ Mk,

x2,k = (x1,k + x2,k − Mk)
+.

(7)
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As a consequence, the aggregate queue-length process (Xmp
1,k + Xmp

2,k )Kk=1, if

started in Smp, is equal in distribution to X̂mp, where X̂mp = (X̂mp
1 , . . . , X̂mp

K )

is a Markov process on Ŝmp = {x̂ ∈ Z
K
+ :

∑

k(x̂k − Mk)
+ ≤ N} generated

by the transitions

x̂ 7→

{

x̂ + ek, at rate λk1(x̂ + ek ∈ Ŝmp),

x̂ − ek, at rate φk(x̂) = µkx̂k.

The structure of the above transition rates implies that the stationary dis-
tribution of X̂mp is a product of Poisson distributions truncated to Ŝmp,
which is easy to compute numerically. The stationary distribution of Xmp

can then be recovered from that of X̂mp using the equalities (7).

3 Preliminary result

This section establishes a general result that allows us to compare two pro-
cesses taking values in S ⊂ Z

K
+ × Z

K
+ with respect to a specific preorder.

This preorder, tailored to fit the transition rates of the type in (5), is defined
by x ≺ y, if x1,k ≤ y1,k for all k and |x| ≤ |y|, where |x| =

∑

i,k xi,k. Recall
that the usual stochastic order [10] between random variables is defined by
X ≤st Y if E f(X) ≤ E f(Y ) for all nonnegative increasing functions f .

Consider a continuous-time Markov process X on S ⊂ Z
K
+ × Z

K
+ gener-

ated by the transitions

x 7→

{

x + ei,k at rate λi,k(x),

x − ei,k at rate φi,k(x),

i ∈ {1, 2}, k ∈ {1, . . . ,K}, where λi,k and φi,k are bounded nonnegative
functions on S. For consistency, we assume here that λi,k(x) = 0 for all
x ∈ S such that x + ei,k /∈ S and φi,k(x) = 0 for all x ∈ S such that
x − ei,k /∈ S. We assume that Y is a similar process with state-dependent
transition rates λ′

i,k and φ′

i,k.

Theorem 1. Let X and Y be continuous-time Markov processes on S having
upward transition rates λi,k and λ′

i,k, and downward transition rates φi,k and
φ′

i,k, respectively. Assume that:

(i) For all x, y ∈ S such that x ≺ y and x1,k = y1,k,

λ1,k(x) ≤ λ′

1,k(y), (8)

φ1,k(x) ≥ φ′

1,k(y). (9)
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(ii) For all x, y ∈ S such that x ≺ y and |x| = |y|,
∑

i,k

λi,k(x) ≤
∑

i,k

λ′

i,k(y), (10)

∑

i,k

φi,k(x) ≥
∑

i,k

φ′

i,k(y). (11)

Assuming that the initial states satisfy X(0) ≺ Y (0), it then follows that
X1,k(t) ≤st Y1,k(t) for all k and t, and |X(t)| ≤st |Y (t)| for all t.

Proof. Denote the infinitesimal generators of X and Y by p and q, respec-
tively. Recall that U ⊂ S is called an upper set, if x ∈ U and x ≺ y implies
y ∈ U , and V ⊂ S is called a lower set, if the complement V c of V is an
upper set. Using a result of Massey [9, Theorem 5.3]1, it suffices to verify
that p(x,U) ≤ q(y, U) for all x ≺ y and for all upper sets U such that either
x ∈ U or y /∈ U . Because p(x,U) = −p(x,U c) for all x ∈ U , this condition
is equivalent to showing that for all x ≺ y,

∑

i,k

λi,k(x) 1(x + ei,k ∈ U) ≤
∑

i,k

λ′

i,k(y) 1(y + ei,k ∈ U) (12)

for all upper sets U such that x /∈ U, y /∈ U , and
∑

i,k

φi,k(x) 1(x + ei,k ∈ V ) ≥
∑

i,k

φ′

i,k(y) 1(y + ei,k ∈ V ) (13)

for all lower sets V such that x /∈ V, y /∈ V .
Assume x ≺ y and choose an upper set U such that x /∈ U, y /∈ U . To

verify the validity of (12), let us consider separately the cases |x| < |y| and
|x| = |y|. Assume first |x| < |y|. Then x + e1,k ≺ y for all k such that
x1,k < y1,k, and x + e2,k ≺ y for all k. Hence because U is an upper set and
y /∈ U , it follows that x + e1,k ∈ U only if x1,k = y1,k, and x + e2,k /∈ U for
all k. Thus,

∑

i,k

λi,k(x) 1(x + ei,k ∈ U) =
∑

k:x1,k=y1,k

λ1,k(x) 1(x + e1,k ∈ U). (14)

Moreover, using inequality (8), and noting that x + e1,k ≺ y + e1,k for all k
such that y + e1,k ∈ S, we see that for all k such that x1,k = y1,k,

λ1,k(x) 1(x + e1,k ∈ U) ≤ λ′

1,k(y) 1(y + e1,k ∈ U). (15)

1Massey formulated his result for partially ordered spaces, but all the proofs in his
paper [9] remain valid also for preorders that are not antisymmetric.
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Substituting (15) into (14) shows the validity of (12).
Let us next focus on the case |x| = |y|. Note first that if x + e1,l ∈ U for

some l such that x1,l < y1,l, or x+e2,l ∈ U for some l, then y+ei,k ∈ U for all
i and k. Hence it follows that the right-hand side of (12) equals

∑

i,k λ′

i,k(y),
which in light of assumption (10) guarantees the validity of (12). On the
other hand, if x + e2,k /∈ U for all k, and x1,k = y1,k for all k such that
x + e1,k ∈ U , then equation (14) holds. Assumption (8) again implies (15),
which together with (14) shows the validity of (12).

The proof is completed by carrying out an analogous reasoning for lower
sets, which shows that assumptions (9) and (11) imply (13).

4 Stochastic comparisons

This section contains the main results for analyzing the time-dependent dis-
tribution of the system. Assuming first that all service rates across different
customer classes are equal, we study how the system is affected by maxi-
mum packing (Section 4.1) and different server configurations (Section 4.2).
Section 4.3 provides a monotonicity result that allows to extend the analysis
to the case where the service rates are not assumed equal, and Section 4.4
describes bounds for the per-class number of customers in the system.

4.1 Maximum packing

Let X be the queue-length process of the two-layer loss system defined in
Section 2.1, and denote by Xmp the queue-length process corresponding to
the maximum packing policy, as defined in Section 2.2. Recall from Section 3
that the preorder x ≺ y is defined by x1,k ≤ y1,k for all k and |x| ≤ |y|.

Theorem 2. Assume that all service rates µk are equal. Given that the
initial states satisfy X(0) ≺ Xmp(0), it then follows that X1,k(t) ≤st Xmp

1,k (t)
for all k and t, and |X(t)| ≤st |X

mp(t)| for all t.

Remark 2. Example 1 in Section 5.2 shows that the statement of Theorem 2
may not be true, if the service rates are not assumed equal.

The proof of Theorem 2 is based on the following lemma.

Lemma 1. The transition rates λi,k(x) defined in (5) satisfy:

(i) For all x ≺ y and for all k such that x1,k = y1,k,

λ1,k(x) ≤ λ1,k(y). (16)
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(ii) For all x ≺ y and for all k such that |x| = |y|,

∑

i,k

λi,k(x) ≤
∑

i,k

λi,k(y). (17)

Proof. The inequality (16) is clear, because λ1,k(x) only depends on x1,k.
Assume next that x ≺ y and

∑

i,k xi,k =
∑

i,k yi,k. Assume that y ∈ Bk

for some k, where Bk is defined in (4). Then |y2| = N , which implies that
|x2| = N and x1,l = y1,l for all l. Thus x ∈ Bk. We may thus conclude that
for all k, 1(x /∈ Bk) ≤ 1(y /∈ Bk). Hence it follows that

∑

i,k

λi,k(x) =
∑

k

λk1(x /∈ Bk) ≤
∑

k

λk1(y /∈ Bk) =
∑

i,k

λi,k(y),

which shows the validity of (17).

Proof of Theorem 2. Let λi,k(x) and φi,k(x) be the transition rates of X as
defined in (5), and let λ′

i,k(x) and φ′

i,k(x) be the corresponding rates for
Xmp as defined in (6). Because λ′

i,k(x) = λi,k(x) for all x, the validity of (8)
and (10) in Theorem 1 follow by Lemma 1. For the downward transitions,
note that for all x ≺ y such that x1,k = y1,k for some k, φ1,k(x) = µ1x1,k =
µ1y1,k ≥ µ1y1,k1(y2,k = 0) = φ′

1,k(y). Moreover, for all x ≺ y such that
|x| = |y|,

∑

k

(φ1,k(x) + φ2,k(x)) = µ1|x| = µ1|y| =
∑

k

(φ′

1,k(y) + φ′

2,k(y)),

so conditions (9) and (11) of Theorem 1 are valid. Hence Theorem 1 yields
the claim.

4.2 Different server configurations

This section studies the effect of moving one server from layer 1 to layer 2.
As in Section 2.1, we denote by X the queue-length process of the system
with server configuration M = (M1, . . . ,MK) in layer 1, and N servers in
layer 2. Let Y by the queue-length process of the modified system where
one class-k server from layer 1 has been replaced by a server in layer 2. We
assume k = 1 without loss of generality. Let M ′ = (M1 − 1,M2, . . . ,MK)
and N ′ = N + 1, and define the sets S′, A′

1,k and B′

k as in (1)–(4) with M
and N replaced by M ′ and N ′, respectively. Then Y is a Markov process
on S′ having transition rates of the form (5) with Ai,k replaced by A′

i,k.
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Let us denote by x2 =
∑

k x2,k the number of customers being served
at layer 2. Assuming that all service rates µk are equal, it follows that the
process (X1,1, . . . ,X1,K ;X2) is Markov. With a slight abuse of notation, we
will redefine the state space by S = {(x1,1, . . . , x1,K ;x2) ∈ Z

K
+ ×Z+ : x1,k ≤

Mk for all k, x2 ≤ N}, and denote by e2 the unit vector in Z
K
+ × Z+ corre-

sponding to the last coordinate. We will redefine the sets Ai,k, Bk, A
′

i,k, B
′

k,
and S′ in a similar way, identifying |x|2 with x2.

Theorem 3. Assume that all service rates µk are equal, and let ∆ =
{0, e2, e2 − e1,1, 2e2 − e1,1}. Then, assuming that the initial states satisfy
Y (0) − X(0) ∈ ∆, it follows that |X(t)| ≤st |Y (t)| for all t.

Proof. Because |x| ≤ |y| for all x ∈ S and y ∈ S′ such that y − x ∈ ∆,
it is sufficient to construct a coupling [12] of X and Y that takes values in
S∆ = {(x, y) ∈ S×S′ : y−x ∈ ∆}. Let (X̃, Ỹ ) be a continuous-time Markov
process on S∆ generated by the joint arrivals

(x, y) 7→ (x + e1,k, y + e1,k) at rate λk1(x ∈ A1,k, y ∈ A′

1,k), (18)

(x, y) 7→ (x + e1,k, y + e2) at rate λk1(x ∈ A1,k, y ∈ A′

2,k), (19)

(x, y) 7→ (x + e1,k, y) at rate λk1(x ∈ A1,k, y ∈ B′

k), (20)

(x, y) 7→ (x + e2, y + e2) at rate
∑

l λl1(x ∈ A2,l, y ∈ A′

2,l), (21)

(x, y) 7→ (x + e2, y) at rate
∑

l λl1(x ∈ A2,l, y ∈ B′

l), (22)

(x, y) 7→ (x, y + e2) at rate
∑

l λl1(x ∈ Bl, y ∈ A′

2,l), (23)

and joint departures

(x, y) 7→ (x − e1,k, y − e1,k) at rate µ1y1,k, (24)

(x, y) 7→ (x − e1,1, y − e2) at rate µ1(x1,1 − y1,1), (25)

(x, y) 7→ (x − e2, y − e2) at rate µ1x2, (26)

(x, y) 7→ (x, y − e2) at rate µ1(y1,1 + y2 − x1,1 − x2). (27)

Observe that all transition rates above are nonnegative, because y1,1 ≤
x1,1 and y1,1 + y2 ≥ x1,1 + x2, whenever y − x ∈ ∆. To ensure that the
transitions define a generator of a Markov process on S∆, we need to verify
that y′ − x′ ∈ ∆ for all transitions (x, y) 7→ (x′, y′), where y − x ∈ ∆. This
is obvious for transitions (18), (21), (24), and (26), because in these cases
y′ − x′ = y − x. Let us consider the remaining cases one-by-one:

• If transition (19) occurs, then k = 1, because y1,k = x1,k for all k 6= 1.
Then x1,1 < M1 and y1,1 = M1 − 1, so it follows that either y − x = 0
or y − x = e2. In both cases, y′ − x′ ∈ ∆.
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• If transition (20) occurs, then again k = 1. Then x1,1 < M1 and
y1,1 = M1 − 1, which implies y1,1 = x1,1. Moreover, y2 = N + 1,
which is only possible if y2 = x2 + 1. Hence y − x = e2, so that
y′ − x′ = e2 − e1,1 ∈ ∆.

• If transition (22) occurs, then x ∈ A2,l and y ∈ B′

l for some l. Then
x2 < N and y2 = N + 1, which implies that y − x = 2e2 − e1,1. Hence
y′ − x′ = e2 − e1,1 ∈ ∆.

• If transition (23) occurs, then x ∈ Bl and y ∈ A′

2,l for some l. Then
x2 = N and y2 < N + 1, so it follows that y2 = x2. Hence y − x = 0,
and thus y′ − x′ = e2 ∈ ∆.

• If transition (25) occurs, then y1,1 < x1,1. Because y − x ∈ ∆, this
implies that either y − x = e2 − e1,1, so that y′ − x′ = 0; or y − x =
2e2 − e1,1, so that y′ − x′ = e2.

• If transition (27) occurs, then y1,1 + y2 − x1,1 − x2 > 0. Because
y − x ∈ ∆, it follows that either y − x = e2, so that y′ − x′ = 0; or
y − x = 2e2 − e1,1, so y′ − x′ = e2 − e1,1.

Hence, all transitions map S∆ into S∆, and the process (X̃, Ỹ ) is well-
defined.

To show that (X̃, Ỹ ) is a coupling of X and Y , we must verify that the
marginal transition rates of (X̃, Ỹ ) match with the transition rates of X and
Y . Note first that the sum of transition rates such that x 7→ x+e1,k is equal
to λk1(x ∈ A1,k). Next, observe that x ∈ A2,l and y − x ∈ ∆ imply that
y /∈ A′

1,l. Hence the sum of transition rates where x 7→ x + e2 is equal to

∑

l

λl1(x ∈ A2,l, y ∈ A′

2,l ∪ B′

l) =
∑

l

λl1(x ∈ A2,l).

Further, because the sum of all transition rates such that x 7→ x−e1,k equals
µ1x1,k for all k, and the corresponding sum for x 7→ x− e2 is equal to µ1x2,
we may conclude that the transitions of X̃ and X occur at the same rates.

Turning the attention to the rates of Ỹ , note that y−x ∈ ∆ and y ∈ A′

1,1

imply that y1,1 < M1 − 1 and x1,1 ≤ y1,1 + 1, so it follows that x ∈ A1,1.
Moreover, y−x ∈ ∆ and y ∈ A′

1,k for k 6= 1 imply that x1,k = y1,k < Mk, so
x ∈ A1,k. Hence the total rate of transitions where y 7→ y + e1,k is equal to
λk1(x ∈ A1,k, y ∈ A′

1,k) = λk1(y ∈ A′

1,k). Further, because the net rate of
transitions where y 7→ y + e2 is equal to

∑

l λl1(y ∈ A′

2,l), and because the
corresponding net rates for y 7→ y − e1,k and y 7→ y − e2 are equal to µ1y1,k

10



and µ1y2, respectively, we conclude that the transitions of Ỹ and Y occur
at the same rates. Hence, the process (X̃, Ỹ ) is a coupling of X and Y .

4.3 Monotonicity with respect to service rates

The results in Sections 4.1 and 4.2 were proved under the assumption that
all service rates are equal. The following theorem describes a monotonicity
property that allows to compare systems not satisfying this assumption.
Denote by X the queue-length process of the two-layer loss system defined
in Section 2.1, and let X− and X+ be modifications of the system with all
service rates set to µmax = maxµk and µmin = min µk, respectively. Recall
that the preorder x ≺ y is defined by x1,k ≤ y1,k for all k and |x| ≤ |y|.

Theorem 4. Assume that the initial states satisfy X−(0) ≺ X(0) ≺ X+(0).
Then for all t,

X−

1,k(t) ≤st X1,k(t) ≤st X+
1,k(t)

for all k, and
|X−(t)| ≤st |X(t)| ≤st |X

+(t)|.

Remark 3. A simpler comparison statement, such as |X(t)| ≤st |X+(t)|
given |X(0)| ≤ |X+(0)|, is not true in general. Using Massey’s [9] criteria
for the preorder |x| ≤ |y|, it is not hard to check that a necessary condition
for the above property is that

∑

i,k λi,k(x) =
∑

i,k λi,k(y) whenever |x| = |y|.
This equality may fail for instance for x =

∑

k Mke1,k + (N − 1)e2,1 and
y = x − e1,1 + e2,1.

Proof of Theorem 4. Note that X+ has the same upward transitions as X
and downward transitions φ′

1,k(x) = µminx1,k, and φ′

2,k(x) = µminx2,k. Now
for all x ≺ y such that x1,k = y1,k for some k, µkx1,k ≥ µminx1,k = µminy1,k,
and for all x ≺ y such that |x| = |y|,

∑

k

µk(x1,k + x2,k) ≥ µmin

∑

k

(x1,k + x2,k) = µmin

∑

i,k

(y1,k + y2,k),

so conditions (9) and (11) of Theorem 1 are valid. Moreover, (8) and (10)
hold by Lemma 1, so Theorem 1 yields the claim for X+. The claim for X−

is proved in a similar way.

4.4 Per-class bounds

In this section, we prove upper and lower bounds for the per-class number
of customers in the system. Let Zn

λ,µ be the number of customers in the

11



standard n-server Erlang loss system, defined as the Markov process on
{0, 1, . . . , n} having the upward transitions x 7→ x+1 at rate λ1(x < n) and
the downward transitions x 7→ x − 1 at rate µx.

Theorem 5. Assume ZMk

λk,µk
(0) ≤ X1,k(0) + X2,k(0) ≤ ZMk+N

λk,µk
(0). Then

for all t,
ZMk

λk,µk
(t) ≤st X1,k(t) + X2,k(t) ≤st ZMk+N

λk ,µk
(t). (28)

Proof. Assume without loss of generality that k = 1. For the first inequality,
construct a Markov process (W̃ , X̃) on

S1 = {(w, x) ∈ {0, . . . ,M1} × S : w ≤ x1,1 + x2,1}

via the class-1 transitions (i = 1, 2)

(w, x) 7→ (w + 1, x + ei,1) at rate λ11(w < M1, x ∈ Ai,1), (29)

(w, x) 7→ (w, x + ei,1) at rate λ11(w = M1, x ∈ Ai,1), (30)

(w, x) 7→ (w + 1, x) at rate λ11(w < M1, x ∈ B1), (31)

(w, x) 7→ (w − 1, x − e1,1) at rate µ1(w ∧ x1,1), (32)

(w, x) 7→ (w − 1, x − e2,1) at rate µ1(w − x1,1)
+, (33)

(w, x) 7→ (w, x − e1,1) at rate µ1(x1,1 − w)+, (34)

(w, x) 7→ (w, x − e2,1) at rate µ1(x2,1 − (w − x1,1)
+), (35)

and the class-k transitions for k 6= 1 and i = 1, 2,

(w, x) 7→ (w, x + ei,k) at rate λk1(x ∈ Ai,k), (36)

(w, x) 7→ (w, x − ei,k) at rate µkxi,k. (37)

Note that all transition rates in (29) – (37) are nonnegative; for the rate
in (35), observe that w − x1,1 ≤ x2,1 for (w, x) ∈ S1.

Let us next verify that all transitions map S1 into S1. Observe first
that transition (31) occurs only if w < M1 and x1,1 = M1, which implies
that (w + 1, x) ∈ S1. Next, transition (34) occurs only if x1,1 > w, which
shows that (w, x − e1,1) ∈ S1. Moreover, transition (35) occurs only if
x2,1 > (w − x1,1)

+ ≥ w − x1,1, which again shows that (w, x − e2,1) ∈ S1. It
is clear that all other transitions map S1 → S1. Thus the Markov process
(W̃ , X̃) on S1 is well-defined.

Moreover, the total rates of transitions in (29) – (37) where w 7→ w + 1
and w 7→ w − 1 are equal to λ11(w < M1) and µ1w, respectively. Likewise,
we see that the total transition rates for x 7→ x + ei,k and x 7→ x − ei,k are

12



equal to λk1(x ∈ Ai,k) and µkxi,k, respectively, for all i and k. This shows

that (W̃ , X̃) is a coupling of ZM1

λ1,µ1
and X, so the first inequality in (28) is

valid.
To prove the second inequality, construct a Markov process (X̃, Ỹ ) on

S2 = {(x, y) ∈ S × {0, . . . ,M1 + N} : x1,1 + x2,1 ≤ y}

via the class-1 transitions for i = 1, 2,

(x, y) 7→ (x + ei,1, y + 1) at rate λ11(x ∈ Ai,1, y < M1 + N), (38)

(x, y) 7→ (x + ei,1, y) at rate λ11(x ∈ Ai,1, y = M1 + N), (39)

(x, y) 7→ (x, y + 1) at rate λ11(x ∈ B1, y < M1 + N), (40)

(x, y) 7→ (x − ei,1, y − 1) at rate µ1xi,1, (41)

(x, y) 7→ (x, y − 1) at rate µ1(y − x1,1 − x2,1), (42)

and the class-k transitions for k 6= 1 and i = 1, 2,

(x, y) 7→ (x + ei,k, y) at rate λk1(x ∈ Ai,k), (43)

(x, y) 7→ (x − ei,k, y) at rate µkxi,k. (44)

Note that all transition rates in (38) – (44) are nonnegative for all (x, y) ∈ S2.
Let us now verify that all transitions map S2 into S2. Observe first

that transition (39) occurs only if y = M1 + N and either x1,1 < M1 or
|x|2 < N , which implies that (x + ei,1, y) ∈ S2 for i = 1, 2. Moreover,
transition (42) occurs only if x1,1 +x2,1 < y, so that (x, y−1) ∈ S2. Clearly,
all other transitions map S2 into S2. Thus the Markov process (X̃, Ỹ ) on
S2 is well-defined.

Moreover, the total rates of transitions in (38) – (44) where x 7→ x+ ei,k

and x 7→ x − ei,k are equal to λk1(x ∈ Ai,k) and µkxi,k, respectively, for all
i and k. The corresponding total rates for y 7→ y + 1 and y 7→ y − 1 are
equal to λ11(y < M1 + N) and µ1y, respectively. This shows that (X̃, Ỹ ) is
a coupling of X and ZM1+N

λ1,µ1
, so the second inequality in (28) holds.

5 Bounds of the steady-state performance

In this section, we apply the results of Section 4 to analyze the system in
steady state. We assume from now on that all arrival rates and service rates
are strictly positive, which implies that all Markov processes treated in the
sequel have a unique stationary distribution.
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5.1 Per-class performance

Let X̄k be a random variable describing the stationary number of class-k
customers in the system, and denote its mean by Tk. Moreover, denote by
θk the stationary mean class-k throughput (the number of class-k customers
completing service per unit time), and by bk the class-k blocking probability.
Note that Tk can be viewed as the mean class-k work throughput (amount
of class-k work served per unit time). We use the quadruple (M,N, λ, µ), to
indicate that a performance quantity corresponds to a system with server
configuration M = (M1, . . . ,MK) at layer 1, N servers at layer 2, arrival
rates λ = (λ1, . . . , λK), and service rates µ = (µ1, . . . , µK).

Let erl(n, a) be a random variable on {0, 1, . . . , n} with distribution

(
∑n

j=0
aj

j!
)−1 ai

i!
, and denote its mean by merl(n, a), and the probability of

being equal to n by berl(n, a). Note that berl(n, a) is equal to the famous
Erlang B formula.

Theorem 6. The stationary number of class-k customers in the system
satisfies

erl(Mk, λk/µk) ≤st X̄k(M,N, λ, µ) ≤st erl(Mk + N,λk/µk). (45)

Especially, the stationary class-k mean number of customers is bounded by

merl(Mk, λk/µk) ≤ Tk(M,N, λ, µ) ≤ merl(Mk + N,λk/µk), (46)

the stationary class-k mean throughput by

µkmerl(Mk, λk/µk) ≤ θk(M,N, λ, µ) ≤ µkmerl(Mk + N,λk/µk), (47)

and the stationary class-k blocking probability by

berl(Mk + N,λk/µk) ≤ bk(M,N, λ, µ) ≤ berl(Mk, λk/µk). (48)

Proof. Let us consider a version of the queue-length process X started at
X(0) = 0, and let ZMk

λk,µk
and ZMk+N

λk,µk
be as in Theorem 5, both started

at zero. Because all these processes are irreducible and positive recurrent,
and because stochastic ordering is closed with respect to convergence in
distribution [5], (45) follows by taking t → ∞ in (28).

The inequalities (46) follow by taking expectations, and the bounds (47)
are a consequence of θk = µk ETk. In light of the conservation laws λk(1 −
bk) = θk and λk(1 − berl) = µkmerl, these bounds in turn imply (48).

Figure 2 illustrates the bounds in (45) for a loss network with server
configuration M = (5, 5) and N = 5, where λ = (7.5, 7.5) and µ = (1, 1.3).
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Figure 2: Complementary cumulative distribution functions of the number
of customers in class 1 (left) and class 2 (right).

Remark 4. The Erlang bounds (48) for the blocking probability are well-
known in the literature (see for example [1]). The stochastic inequalities (45)
can be viewed as extensions of these classical bounds.

5.2 Overall performance

Let X̄ =
∑

k X̄k be a random variable describing the stationary total number
of customers in the system, and let T =

∑

k Tk be its mean. Moreover,
denote the stationary mean total throughput by θ, and the stationary overall
blocking probability by b. Note that T may be viewed as the mean total
work throughput (total amount of work served by the system in unit time).
We indicate by X̄mp, Tmp, θmp, bmp the corresponding quantities for a system
with maximum packing.

Denote by µmin and µmax the vectors where all entries of µ are replaced by
µmin = mink µk and µmax = maxk µk, respectively, and let rµ = µmax/µmin.
Moreover, let us denote by CM,N the set of server configurations where all
layer-2 servers have been replaced by servers in layer 1, so that

CM,N = {M ′ ∈ Z
K
+ : M ′

k ≥ Mk ∀k and
∑

k

M ′

k =
∑

k

Mk + N}.

Theorem 7. The stationary total number of customers in the system sat-
isfies

X̄(M ′, 0, λ, µmax) ≤st X̄(M,N, λ, µ) ≤st X̄mp(M,N, λ, µmin) (49)
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for all M ′ ∈ CM,N . Especially, the stationary mean number of customers is
bounded by

max
M ′∈CM,N

T (M ′, 0, λ, µmax) ≤ T (M,N, λ, µ) ≤ Tmp(M,N, λ, µmin), (50)

the stationary mean throughput by

max
M ′∈CM,N

r−1
µ θ(M ′, 0, λ, µmax) ≤ θ(M,N, λ, µ) ≤ rµθmp(M,N, λ, µmin),

(51)
and the stationary blocking probability by

1 − rµ(1 − bmp(M,N, λ, µmin))

≤ b(M,N, λ, µ) ≤ min
M ′∈CM,N

(

1 − r−1
µ (1 − b(M ′, 0, λ, µmax))

)

. (52)

Remark 5. In the case where all service rates µk are equal, the bounds (51)
and (52) can be written in a more natural form as

max
M ′∈CM,N

θ(M ′, 0, λ, µ) ≤ θ(M,N, λ, µ) ≤ θmp(M,N, λ, µ),

and
bmp(M,N, λ, µ) ≤ b(M,N, λ, µ) ≤ min

M ′∈CM,N

b(M ′, 0, λ, µ).

Remark 6. The upper and lower bounds in (49), and hence the also the
bounds in (50) – (52), are easy to compute numerically. The fast com-
putation of the upper bound is explained in Remark 1. To compute the
lower bound, observe that X̄(M ′, 0, λ, µmax) has the same distribution as
∑

k erl(M ′

k, λk/µmax), where the terms in the sum are independent.

Proof of Theorem 7. Let X be the queue-length process of the original sys-
tem, let W be the queue-length process in the system corresponding to the
parameters (M ′, 0, λ, µmax), and let Y be the queue-length process of the
maximum packing system with parameters (M,N, λ, µmin). Assume that all
processes are started at zero initial state. Then Theorem 2 and Theorem 3
combined with Theorem 4 imply that

|W (t)| ≤st |X(t)| ≤st |Y (t)| (53)

for all t. Because all of the above processes are irreducible and positive recur-
rent, and because stochastic ordering is closed with respect to convergence
in distribution [5], taking t → ∞ in (53) shows the validity of (49). The
bounds in (50) follow by taking expectations, and the bounds in (51) from
θ =

∑

k µkTk. These bounds in turn imply (52), because of the conservation
law (

∑

k λk)(1 − b) = θ.
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Figure 3: Bounds of the mean number of customers for M = (5, 5), N = 5,
and λ = (λnet/2, λnet/2); where µ = (1, 1) on the left, and µ = (1, 1.3) on
the right.

Figure 3 illustrates the bounds (50) of the mean number of customers in
a two-class system where the net arrival rate λnet is varying. The right plot
shows that the bounds become slightly less accurate when the service rates
are different. This lack of accuracy is mainly a consequence of replacing µ
by µmin and µmax in (49).

Intuitively one might think that the upper bound in (49) might be
strengthened to hold without replacing µ by µmin. Example 1 shows that
this is not true in general. A similar observation for a model describing the
assignment of channels in cellular radio networks has been made by Kelly [6].

Example 1. Consider a two-class loss network with server configuration
M = (1, 0) and N = 2. Assume λ = (1, 1) and µ = (1

5
, 10), so that

the service rates differ from each other by a factor of 50. Table 1 lists
numerically calculated values of the stationary mean number of customers
(per class and total) for the original loss network and the modification with
maximum packing.

Class 1 Class 2 Total

T (M,N, λ, µ) 2.325657 0.038612 2.364269
Tmp(M,N, λ, µ) 2.317818 0.046344 2.364162
T (M,N, λ, µmin) 1.615744 0.997537 2.613281
Tmp(M,N, λ, µmin) 1.474617 1.172442 2.647059

Table 1: Mean number of customers in a loss network with and without
maximum packing.
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Example 2 shows that replacing one layer-2 server by a layer-1 server
may not decrease the stationary mean number of customers, if not all service
rates µk are equal. This shows that it is necessary to replace µ by µmax in
order to achieve a lower bound in (49).

Example 2. Consider a two-class loss network with two different server
configurations (i) M = (0, 0) and N = 3, and (ii) M ′ = (1, 0), N ′ = 2.
Assume that λ and µ are as in Example 1. Numerically calculated values
for the stationary mean number of customers (per class and total) given in
Table 2.

Class 1 Class 2 Total

T (M,N, λ, µ) 2.317808 0.046356 2.364164
T (M ′, N ′, λ, µ) 2.325657 0.038612 2.364269
T (M,N, λ, µmax) 0.099891 0.099891 0.199782
T (M ′, N ′, λ, µmax) 0.099906 0.099453 0.199359

Table 2: Mean number of customers in a loss network with two different
server configurations.

6 Conclusions

Stochastic comparison and coupling techniques were developed for analyzing
multiclass two-layer loss systems. First, assuming all service rates to be
equal, we proved that maximum packing stochastically increases the total
number of customers, and that moving a server from the second layer to the
first has the opposite effect. The monotonicity of the system with respect
to service rates was then shown to extend the above conclusions to systems
where the service rates may differ from each other. As a consequence, easily
computable upper and lower bounds for the performance of the system were
derived. An important topic for future research is to develop analytical
methods for quantifying the tightness of these bounds.
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