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ABSTRACT
We consider a data network in which, besides classes of users that use specific routes, one
class of users can split its traffic over several routes. We consider load balancing at the packet-
level, implying that traffic of this class of users can be divided among several routes at the same
time. Assuming that load balancing is based on an alpha-fair sharing policy, we show that the
network has multiple possible behaviors. In particular, we show that some classes of users,
depending on the state of the network, share capacity according to some Discriminatory
Processor Sharing (DPS) model, whereas each of the remaining classes of users behaves as in
a single-class single-node model. We compare the performance of this network with that of a
similar network, where packet-level load balancing is based on balanced fairness. We derive
explicit expressions for the mean number of users under balanced fairness, and show by
conducting extensive simulation experiments that these provide accurate approximations for the
ones under alpha-fair sharing.
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Abstract

We consider a data network in which, besides classes of users that use specific routes,

one class of users can split its traffic over several routes. We consider load balancing at the

packet-level, implying that traffic of this class of users can be divided among several routes

at the same time. Assuming that load balancing is based on an alpha-fair sharing policy,

we show that the network has multiple possible behaviors. In particular, we show that some

classes of users, depending on the state of the network, share capacity according to some

Discriminatory Processor Sharing (DPS) model, whereas each of the remaining classes of

users behaves as in a single-class single-node model.

We compare the performance of this network with that of a similar network, where

packet-level load balancing is based on balanced fairness. We derive explicit expressions

for the mean number of users under balanced fairness, and show by conducting extensive

simulation experiments that these provide accurate approximations for the ones under alpha-

fair sharing. 1

1This research has been funded by the Dutch BSIK/BRICKS (Basic Research in Informatics for Creating the

Knowledge Society) project.
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1 Introduction

The performance of communication networks can be improved when the service demands are

efficiently divided among the available resources, so-called load balancing. One can apply either

static or dynamic load balancing. In the former case the balancing is not affected by the state

of the network, whereas in the latter case it does depend on the system state. It is clear that

better performance can be achieved when using dynamic load balancing, but it is often hard to

find the optimal load balancing policy. Even for simple systems such a dynamic load balancing

problem has non-trivial solutions [16].

In this paper we analyze load balancing in data networks carrying elastic traffic, as considered

by [12]. Transfers in such networks can be represented by flows. We may distinguish between

load balancing at the flow-level or the packet-level, depending on whether an arriving flow is

entirely directed to a specific route (that it uses until the flow is finished) or a flow can be split

between several routes, respectively. This paper deals with packet-level load balancing, i.e., we

assume that packets of a flow can be divided among several routes.

Due to the dynamic nature of traffic, it is in general complicated to analyze the performance

of such networks. Flows arrive according to some stochastic process and bring along a random

amount of work. For each given number of flows present in the system, the allocated service

rates are determined by some sharing policy. As soon as the number of flows changes, it is

assumed that these rates are adapted instantly.

We analyze a network in which, besides classes of users that use specific routes, one class of

users can split its traffic over several routes. We note that this network is the simplest system

to analyze the performance and potential gains of load balancing at the packet-level, and it is

therefore of particular interest to gain insight. In addition, this system also accounts for rather

explicit results.

We assume that packet-level load balancing is based on an alpha-fair bandwidth sharing

policy as introduced in [13]. The family of alpha-fair policies covers several common notions

of fairness as special cases, such as max-min fairness (α → ∞), proportional fairness (α → 1)

and maximum throughput (α → 0). In [14] it has also been shown that the case α = 2, with

additional class weights set inversely proportional to the respective round trip times, provides

a reasonable modeling abstraction for the bandwidth sharing realized by TCP (Transmission

Control Protocol) in the Internet.

We show that the above network has multiple possible behaviors. In particular, we show

that packet-level load balancing based on alpha-fair sharing implies that some classes of users,

depending on the state of the network, share capacity according to some Discriminatory Pro-

cessor Sharing (DPS) model, whereas each of the remaining classes of users behaves as in a

single-class single-node model.

The flow-level performance of the above network is compared with that of a similar net-

work, where packet-level load balancing is based on balanced fairness, so-called insensitive load

balancing at the packet-level. The term ‘insensitive’ refers to the fact that the corresponding

steady-state distribution depends on the traffic characteristics through the traffic intensity only.

Insensitive load balancing at the flow-level was first introduced in [4], and extended to insensitive

load balancing at the packet-level in [10]. Optimal insensitive load balancing at the flow-level

utilizing local state information was addressed in [1]. In [8] it was shown that one can achieve
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Figure 1: The bandwidth-sharing network.

even better performance if capacity allocation and load balancing are optimized jointly. A

comparison between packet-level and flow-level insensitive load balancing was conducted in [11].

Assuming Poisson arrivals and exponentially distributed service requirements, the dynamics

of the flow population may be described by a Markov process under both packet-level load

balancing policies. We derive closed-form expressions for the mean number of users of each class

under insensitive load balancing. Extensive simulation experiments show that these are also

quite accurate approximations for the ones in a similar network where load balancing is based

on alpha-fair sharing, for which no explicit expressions are available.

The above results are in line with the findings of [3], in which it was shown that the per-

formance of networks operating under unweighted max-min fairness, unweighted proportional

fairness and balanced fairness is nearly similar. The results in this paper suggest that balanced

fairness is in fact a reasonable approximation for all unweighted alpha-fair sharing policies.

The remainder of this paper is organized as follows. In Section 2 we first provide a detailed

model description, and introduce balanced fairness and alpha-fair sharing. In the next section we

consider the model for a fixed flow population, and we characterize how bandwidth is allocated

under both policies. In Section 4 we consider the model at large time-scales, such that the state

of the network varies, and we derive explicit expressions for the mean number of users under

balanced fairness, and show by conducting extensive simulation experiments that these provide

accurate approximations for the ones under alpha-fair sharing. In the next section we examine

the gain than one can achieve for both policies by using packet-level load balancing instead of

static or flow-level load balancing. Section 6 concludes with some final observations.

2 Model

We consider the network as depicted in Figure 1. The network consists of L nodes, where node

i has service rate Ci, i = 1, . . . , L. There are L + 1 classes of users. Class i requires service at

node i, i = 1, . . . , L, whereas class 0 can be served at all nodes at the same time, i.e., class-0

users can split their traffic.

We assume that class-i users arrive according to a Poisson process of rate λi, and have ex-

ponentially distributed service requirements with mean µ−1
i , i = 0, . . . , L. The arrival processes

are all independent. The traffic load of class i is then ρi = λiµ
−1
i . Let n = (n0, . . . , nL) denote

the state of the network, with ni representing the number of class-i users.
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2.1 Balanced fairness

We first assume that the bandwidth is shared according to balanced fairness, as introduced

in [4]. Let φi(n) denote the service rate allocated to class i, i = 0, . . . , L, with balanced fairness,

when the network is in state n (here φ0(n) =
∑L

i=1 φ0i(n)). These service rates have to satisfy

the balance conditions

φi(n − ej)

φi(n)
=

φj(n − ei)

φj(n)
∀i, j = 0, . . . , L, ni, nj > 0, (1)

where ei denotes the (i + 1)th unit vector in R
L+1. All balanced service rates can be expressed

in terms of a unique balance function Φ(·), so that Φ(0) = 1 and

φi(n) =
Φ(n − ei)

Φ(n)
∀n : ni > 0, i = 0, . . . , L. (2)

Hence, characterization of Φ(n) implies that φi(n) is characterized as well. Define Φ(n) = 0 if

n /∈ N
L+1
0 . In order to obtain Φ(n), we need to solve the following maximization problem for

each n ∈ N
L+1
0 \{0}:

(BF ) max Φ(n)−1

s.t.
L
∑

j=1

φ0j(n) =
Φ(n − e0)

Φ(n)

φi(n) =
Φ(n − ei)

Φ(n)
, i = 1, . . . , L

φ0i(n) + φi(n) ≤ Ci, i = 1, . . . , L

φ0i(n), φi(n) ≥ 0, i = 1, . . . , L.

It is clear that Φ(n) can be obtained recursively: the Φ(n − ei)s are required to determine

Φ(n). Also note that (BF ) is a simple LP-problem, which can be solved using standard LP

algorithms. In Section 3.1, however, we solve (BF ) by rewriting the LP-problem in terms of a

related network.

2.2 Alpha-fair sharing

We next assume that the network operates under a so-called alpha-fair sharing policy, as intro-

duced in [13]. When the network is in state n 6= 0, the service rate x∗

i allocated to each of the

class-i users is obtained by solving the following optimization problem:

(AF ) max G(x)

s.t. n0x0i + nixi ≤ Ci, i = 1, . . . , L

x0i, xi ≥ 0, i = 1, . . . , L,

where the objective function G(x) is defined by

G(x) :=

{

n0κ0
(
∑L

i=1 x0i)1−α

1−α +
∑L

i=1 niκi
x1−α

i
1−α if α ∈ (0,∞)\{1};

n0κ0 log(
∑L

i=1 x0i) +
∑L

i=1 niκi log(xi) if α = 1.
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The κis are non-negative class weights, and α ∈ (0,∞) may be interpreted as a fairness coeffi-

cient. The cases α → 0, α → 1 and α → ∞ correspond to allocations which achieve maximum

throughput, proportional fairness, and max-min fairness, respectively. The value of x∗

0i denotes

how much capacity is assigned to path i (that requires service at node i) of class 0. Here

x∗

0 =
∑L

i=1 x∗

0i denotes how much capacity is assigned to a single class-0 user in the network.

Let si(n) := x∗

i ni denote the total service rate allocated to class i, i = 0, . . . , L.

3 Static setting

In this section we consider the model for a fixed flow population, i.e., the state n ∈ N
L+1
0 \{0}

is fixed, and we derive how bandwidth is shared between the various classes in case of balanced

fairness and alpha-fair sharing, respectively. The difficulty in solving problem (BF ) and (AF ),

as presented in the previous section, is that no explicit expressions are available for their optimal

solutions. We first show that the network depicted in Figure 1 is equivalent to another network.

In order to do so, let us first introduce the notion of the capacity set.

The allocations φ(n) = (φ0(n), . . . , φL(n)) and s(n) = (s0(n), . . . , sL(n)) are clearly con-

strained by the capacity set C ⊆ R
L+1
+ :

C :=







x ≥ 0 : ∃a1, . . . , aL ≥ 0,

L
∑

j=1

aj = 1, aix0 + xi ≤ Ci, i = 1, . . . , L







,

i.e., φ(n) ∈ C and s(n) ∈ C for all n ∈ N
L+1
0 . It is straightforward to show that the capacity set

C can also be expressed as

C̃ :=







x ≥ 0 :

L
∑

j=0

xj ≤

L
∑

j=1

Cj, xi ≤ Ci, i = 1, . . . , L







,

i.e., C = C̃. Since C̃ is the capacity set corresponding to the tree network depicted in Figure 2,

it follows that the networks depicted in Figures 1 and 2 are in fact equivalent. The tree has a

common link with capacity C1 + · · · + CL, and L + 1 branches with capacities ∞, C1, . . . , CL,

respectively. In this network class-i users require service at the node with service rate Ci and at

the common link, i = 1, . . . , L, whereas class-0 users only require service at the common link.

Note that each class of users corresponds to a specific route in the tree network.

As a side remark we mention that in general it is not true that a network (where some classes

of users can split their traffic over several routes at the same time) can be converted in a tree

network. In fact, if we extend the model depicted in Figure 1 by adding a class of users that

requires service at all L nodes simultaneously, then it is already not possible to represent the

network as a tree network. However, we note that in general one may still be able to convert a

traffic-splitting network in some other network (with dummy nodes) without traffic splitting.

3.1 Balanced fairness

In this subsection we derive the balanced fairness allocation by solving problem (BF ). Since

the models depicted in Figures 1 and 2 are equivalent, it follows that the balance function Φ̃(·)
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Figure 2: Tree network

corresponding to tree network coincides with Φ(·), i.e., Φ̃(·) = Φ(·), see [3]. In the following

lemma we present the solution of the optimization problem (BF ).

Lemma 3.1 The balanced fairness function Φ(n) satisfies, with Φ(0) = 1,

Φ(n) = max

{

Φ(n − e1)

C1
, . . . ,

Φ(n − eL)

CL
,

∑L
i=0 Φ(n − ei)
∑L

i=1 Ci

}

, n ∈ N
L+1
0 \{0}. (3)

Proof: From the above it follows that we can obtain Φ(·) by determining Φ̃(·), as they are the

same. Subsequently, Φ̃(·) is obtained by using Equation (2) in [5]. 2

We note that Lemma 3.1 is in agreement with Equation (19) in [10]. From Lemma 3.1

it follows that Φ(n) can be obtained recursively. The total service rate allocated to class i,

i = 0, . . . , L, in each state n ∈ N
L+1
0 can be obtained using Lemma 3.1 and (2).

3.2 Alpha-fair sharing

In this subsection we focus on the alpha-fair allocation, that is obtained by solving problem (AF ).

Similar to the previous subsection, we can obtain the alpha-fair allocation s(n) by determining

the alpha-fair allocation s̃(n) in the tree network, as both networks are the same, implying that

s(n) = s̃(n). In order to obtain s̃(n) we need to solve the following maximization problem:

(AF2) max H(x)

s.t.

L
∑

i=0

nixi ≤

L
∑

i=1

Ci,

nixi ≤ Ci, i = 1, . . . , L,

xi ≥ 0, i = 0, . . . , L, (4)
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where the objective function H(x) is defined by

H(x) :=

{

∑L
i=0 niκi

x1−α
i

1−α if α ∈ (0,∞)\{1};
∑L

i=0 niκi log(xi) if α = 1.

Below we show that (AF2) is solvable, but the optimal solution strongly depends on the state

n 6= 0. We present a simple algorithm for obtaining the alpha-fair allocation.

Lemma 3.2 The alpha-fair allocation s(n) can be obtained with the following algorithm:

Set Stop:=False

Set S := {0, . . . , L}

WHILE Stop=False DO

Determine the |S|-class DPS allocation: si(n) :=
niκ

1/α
i

∑

j∈S\{0} Cj
∑

j∈S njκ
1/α
j

, i ∈ S

IF si(n) ≤ Ci for all i ∈ S\{0} THEN set Stop:=True

ELSE

Take any i∗ ∈ S\{0} such that si∗(n) > Ci

Set S := S\{i∗}

Set si∗(n) := Ci

END

END

Proof: First consider the Karush-Kuhn-Tucker (KKT) necessary conditions for problem (AF2).

If x is an optimal solution to problem (AF2), then there exist constants pi ≥ 0, i = 0, . . . , L,

such that,

n0κ0

xα
0

− n0p0; (5)

niκi

xα
i

− ni(p0 + pi), i = 1, . . . , L; (6)

p0

(

L
∑

i=1

Ci −
L
∑

i=0

nixi

)

= 0; (7)

pi (Ci − nixi) = 0, i = 1, . . . , L. (8)

Note that (5) and (6) hold for any α ∈ (0,∞). Solving (5)-(8) for (x0, . . . , xL) and (p0, . . . , pL)

yields
∑L

q=1
L!

q!(L−q)! = 2L − 1 possible solutions, however, depending on the state of the network

n, only one of the 2L − 1 solutions, x∗, is such that pi ≥ 0, i = 0, . . . , L, i.e., this is the

optimal solution for (AF2). For each of the other solutions there exists at least one Lagrange

parameter that is negative, implying that these solutions cannot be optimal. Note that the

existence of a unique optimal solution x∗ for (AF2) also follows as H(x) is strictly concave

and the constraints are linear. Straightforward calculus shows that the corresponding alpha-

fair allocation s̃i(n) = si(n) = nix
∗

i , i = 0, . . . , L, can be obtained by the above algorithm.

The algorithm reflects that 2L − 1 solutions exist for (5)-(8), but it also shows that only one

of these solutions, x∗, is found after termination of the algorithm. The Lagrange parameters
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corresponding to x∗ are such that pi = 0 if i ∈ S\{0}, and pi > 0 if i /∈ S\{0}, where S is the set

obtained after termination of the algorithm. Furthermore, p0 = 0 if n0 = 0 and if there exists

an i such that ni = 0, i = 1, . . . , L, otherwise p0 > 0. 2

4 Flow-level dynamics

In the previous section we considered the model for a fixed flow population, and we derived

expressions for the balanced fairness and alpha-fair allocations in each state of the network. In

this section we analyze the model at sufficiently large time scales. In this case we also have to

take the random nature of the traffic into account, i.e., the state of the network n varies at large

time scales.

4.1 Balanced fairness

Let N(t) = (N0(t), . . . , NL(t)) denote the state of the network at time t. Since we assumed

Poisson arrivals and exponentially distributed service requirements, N(t) is a Markov process

with transition rates:

q(n, n + ei) = λi; q(n, n − ei) = µiφi(n), i = 0, . . . , L,

in case of balanced fairness. In [3] it was shown that the process N(t) is stable if there exists

(ρ̃01, . . . , ρ̃0L) such that

L
∑

i=1

ρ̃0i = ρ0 and ρ̃0i + ρi < Ci, i = 1, . . . , L, (9)

or equivalently, if

L
∑

i=0

ρi <
L
∑

j=1

Cj and ρi < Ci, i = 1, . . . , L. (10)

It may be verified from (1) that the steady-state queue length distribution is given by

π(n) =
1

G(ρ)
Φ(n)

L
∏

i=0

ρni
i , n ∈ N

L+1
0 , (11)

where the normalization constant G(ρ) equals

G(ρ) = G(ρ0, . . . , ρL) =
∞
∑

n0=0

. . .
∞
∑

nL=0

Φ(n)
L
∏

i=0

ρni
i .

As a side remark we mention that (11) in fact holds for much more general traffic characteristics,

see [4] for a more detailed treatment.

When applying Little’s formula we find that

ENBF
i = ρi

∂G(ρ)
∂ρi

G(ρ)
= ρi

∂ log G(ρ)

∂ρi
, i = 0, . . . , L, (12)
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i.e., characterization of G(ρ) implies that ENBF
i , i = 0, . . . , L, is known as well.

By exploiting the results of [6] on tree networks we can determine G(ρ), and it can be verified

that this results in

G(ρ) =
1

1 −
∑L

i=0 ρi
∑L

i=1 Ci

1 −
∑L

i=1 ρi
∑L

i=1 Ci

∏L
i=1

(

1 − ρi
Ci

) . (13)

Then by using (12) we can obtain a closed-form expression for ENBF
i , i = 0, . . . , L. The

expression for ENBF
i , i = 1, . . . , L, is in general quite complicated, in contrast to the expression

for the mean number of class-0 users, which is given by

ENBF
0 =

ρ0
∑L

i=1 Ci −
∑L

i=0 ρi

.

From (13) it follows that ENBF
i , i = 0, . . . , L, is finite if the stability condition (10) holds.

4.2 Alpha-fair sharing

As before, let N(t) = (N0(t), . . . , NL(t)) denote the state of the network at time t. In case of

alpha-fair sharing N(t) is a Markov process with transition rates:

q(n, n + ei) = λi; q(n, n − ei) = µisi(n), i = 0, . . . , L.

Since our network is equivalent to the tree network depicted in Figure 2, it follows from Theo-

rem 1 in [2] that the process N(t) is stable if (9) holds.

Lemma 3.2 shows that, depending on the state of the network n ∈ N
L+1
0 , the network has

2L − 1 possible behaviors. This illustrates the complication of finding closed-form expressions

for the mean number of users of each class. In fact, so far no expressions for the mean number of

users are available in case of alpha-fair sharing. To gain some insight, we derive in this section

approximations for the mean number of users of each class, i.e., ENAF
i , i = 0, . . . , L. The

approximations are validated by means of simulation experiments. We consider the case where

the network consists of L = 2 nodes, but we note that the approximations can be extended to

the case L > 2 in a similar fashion.

Using Lemma 3.2 in Section 3.2, it follows that the network, depending on the state n, has

three possible behaviors: (i) if

n1 >
C1

C2

(

(

κ2

κ1

)1/α

n2 +

(

κ0

κ1

)1/α

n0

)

,

then classes 0 and 2 behave as in a two-class DPS model with capacity C2 and relative weights

κ
1/α
i , i = 0, 2, whereas class 1 behaves as an M/M/1 queue with arrival rate λ1 and service rate

µ1C1; (ii) If

n1 <
C1

C2

(

κ2

κ1

)1/α

n2 −

(

κ0

κ1

)1/α

n0,

then classes 0 and 1 behave as in a two-class DPS model with capacity C1 and relative weights

κ
1/α
i , i = 0, 1, whereas class 2 behaves as an M/M/1 queue with arrival rate λ2 and service

9



rate µ2C2; (iii) otherwise the network will behave as in a three-class DPS model with capacity

C1 + C2 and relative weights κ
1/α
i , i = 0, 1, 2.

If the network were to behave as (i) all the time and if ρ1 < C1 and ρ0 + ρ2 < C2 (stability

conditions), then by exploiting the results of [7] we would obtain

EN
(i)
0 =

ρ0

C2 − ρ0 − ρ2



1 +
µ0ρ2

(

κ
1/α
2 − κ

1/α
0

)

κ
1/α
0 µ0(C2 − ρ0) + κ

1/α
2 µ2(C2 − ρ2)



 ;

EN
(i)
1 =

ρ1

C1 − ρ1
;

EN
(i)
2 =

ρ2

C2 − ρ0 − ρ2



1 +
µ2ρ0

(

κ
1/α
0 − κ

1/α
2

)

κ
1/α
0 µ0(C2 − ρ0) + κ

1/α
2 µ2(C2 − ρ2)



 .

Likewise, when the network behaves as (ii) and if ρ2 < C2 and ρ0+ρ1 < C1 (stability conditions),

we find

EN
(ii)
0 =

ρ0

C1 − ρ0 − ρ1



1 +
µ0ρ1

(

κ
1/α
1 − κ

1/α
0

)

κ
1/α
0 µ0(C1 − ρ0) + κ

1/α
1 µ1(C1 − ρ1)



 ;

EN
(ii)
1 =

ρ1

C1 − ρ0 − ρ1



1 +
µ1ρ0

(

κ
1/α
0 − κ

1/α
1

)

κ
1/α
0 µ0(C1 − ρ0) + κ

1/α
1 µ1(C1 − ρ1)



 ;

EN
(ii)
2 =

ρ2

C2 − ρ2
.

If the network behaves as a three-class DPS model, i.e., as (iii), and if ρ0 + ρ1 + ρ2 < C1 + C2

(stability condition), then one can obtain the mean number of users of each class by solving the

following set of linear equations for EN
(iii)
i , i = 0, 1, 2:

(C1 + C2)EN
(iii)
i − λ

2
∑

j=0

κ
1/α
j

λj

λ EN
(iii)
i + λi

λ EN
(iii)
j

κ
1/α
j µj + κ

1/α
i µi

= ρi, i = 0, 1, 2,

where λ := λ0+λ1+λ2, see [7]. In this case there also exists a closed-form expression for EN
(iii)
i ,

i = 0, 1, 2, but it is complicated.

We propose the following approximation: ENAF
i ≈ ENAP

i , i = 0, 1, 2, where

ENAP
0 := EN

(iii)
0 ; ENAP

1 := max{EN
(i)
1 , EN

(iii)
1 }; ENAP

2 := max{EN
(ii)
2 , EN

(iii)
2 }.

It can be verified that ENAP
0 is bounded if ρ0 + ρ1 + ρ2 < C1 +C2, ENAP

1 is bounded if ρ1 < C1

and ρ0 + ρ1 + ρ2 < C1 + C2, and ENAP
2 is bounded if ρ2 < C2 and ρ0 + ρ1 + ρ2 < C1 + C2.

Hence, the ENAP
i s are only all bounded if (9) holds, i.e., if the process N(t) is also stable.

In [3] it was argued that the performance of a network under proportional fairness (α = 1) and

max-min fairness (α → ∞) is closely approximated by that under balanced fairness. Therefore,

we also propose the following approximation: ENAF
i ≈ ENBF

i , i = 0, 1, 2. The value of ENBF
i ,

i = 0, 1, 2, can be obtained using (12), and is independent of the value of α.

10



γ ENAF
0 ENAF

1 ENAF
2 ENAP

0 ENAP
1 ENAP

2 ENBF
0 ENBF

1 ENBF
2

0.1 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 0.15 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 0.30 0.46 0.46 0.27 0.43 0.43 0.27 0.49 0.49

0.4 0.55 0.77 0.77 0.50 0.67 0.67 0.50 0.83 0.83

0.5 1.10 1.39 1.39 1.00 1.00 1.00 1.00 1.50 1.50

0.6 3.17 3.48 3.48 3.00 3.00 3.00 3.00 3.75 3.75

Table 1: Simulation results for scenario I.

γ α ENAF
0 ENAF

1 ENAF
2 ENAP

0 ENAP
1 ENAP

2 ENBF
0 ENBF

1 ENBF
2

0.1 1 0.06 0.12 0.12 0.06 0.11 0.11 0.06 0.11 0.11

0.2 1 0.13 0.28 0.27 0.12 0.25 0.25 0.14 0.27 0.27

0.3 1 0.23 0.54 0.49 0.22 0.43 0.43 0.27 0.49 0.49

0.4 1 0.39 0.97 0.83 0.35 0.67 0.67 0.50 0.83 0.83

0.5 1 0.68 1.95 1.46 0.59 1.43 1.00 1.00 1.50 1.50

0.6 1 1.55 5.93 3.47 1.38 4.82 2.80 3.00 3.75 3.75

0.1 2 0.06 0.12 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 2 0.14 0.27 0.26 0.13 0.25 0.25 0.14 0.27 0.27

0.3 2 0.26 0.50 0.48 0.24 0.43 0.43 0.27 0.49 0.49

0.4 2 0.47 0.88 0.81 0.42 0.67 0.67 0.50 0.83 0.83

0.5 2 0.87 1.71 1.44 0.77 1.23 1.00 1.00 1.50 1.50

0.6 2 2.35 4.81 3.66 2.06 3.95 2.98 3.00 3.75 3.75

0.1 5 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 5 0.15 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 5 0.28 0.48 0.46 0.26 0.43 0.43 0.27 0.49 0.49

0.4 5 0.52 0.82 0.78 0.46 0.67 0.67 0.50 0.83 0.83

0.5 5 1.00 1.51 1.40 0.90 1.09 1.00 1.00 1.50 1.50

0.6 5 2.84 3.95 3.61 2.60 3.38 3.01 3.00 3.75 3.75

0.1 ∞ 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 ∞ 0.15 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 ∞ 0.30 0.46 0.46 0.27 0.43 0.43 0.27 0.49 0.49

0.4 ∞ 0.55 0.77 0.77 0.50 0.67 0.67 0.50 0.83 0.83

0.5 ∞ 1.10 1.39 1.39 1.00 1.00 1.00 1.00 1.50 1.50

0.6 ∞ 3.17 3.48 3.48 3.00 3.00 3.00 3.00 3.75 3.75

Table 2: Simulation results for scenario II.

To examine the accuracy of the above approximations we have performed simulation exper-

iments. We consider the setting with C1 = C2 = 1, and we take λi = γ, µi = 1, i = 0, 1, 2, such

that ρ0 = ρ1 = ρ2 = γ. We first consider scenario I, where κi = 1, i = 0, 1, 2. Subsequently, we

consider scenario II, where κ0 = 5, κ1 = 1 and κ2 = 2. In scenario II we let the traffic load γ and

the alpha-fair coefficient α vary, whereas in scenario I we only let γ vary, as it can be verified

that the ENAF
i s and ENAP

i s are independent of the value of α in scenario I. To ensure stability

we assume that γ < 2
3 . The results are reported in Tables 1 and 2. Each reported simulation

value in these (and other) tables is measured over 4 · 106 events, i.e., arrivals or departures.

Remark: We have also determined a 95% confidence interval (CI) for each listed simulation value

in this paper, but these are not presented. We note, however, that the relative efficiency, i.e.,

the ratio of the half-length of the CI to the reported simulation value, is less than 3% for all

listed cases in Tables 1, 2, 5 and 6, and less than 10% for all listed cases in Tables 3 and 4.

Table 1 compares the value of ENAF
i obtained by simulation with the approximations ENAP

i

and ENBF
i , i = 0, 1, 2, for scenario I. The results show that ENAF

i ≥ ENAP
i , i = 0, 1, 2. Also,
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the table shows that ENAF
0 ≥ ENBF

0 and ENAF
i ≤ ENBF

i , i = 1, 2. Overall we see that both

approximations are accurate in case of equal class weights, especially for low traffic load.

Table 2 reports the results corresponding to scenario II, i.e., in case of unequal class weights.

In this case ENAF
i and ENAP

i do depend on the value of α, as is shown in the table. Again, we

see that ENAF
i ≥ ENAP

i , i = 0, 1, 2. For low traffic loads both approximations perform quite

well, but for high traffic loads we see that the balanced fairness approximation is less accurate

than the other one.

Tables 1 and 2 show that ENAF
i ≥ ENAP

i , i = 0, 1, 2, which may be explained as follows.

First note that the rate allocated to class 1 is smaller than or equal to C1 at all moments in

time under alpha-fair sharing, whereas rate C1 is continuously available to class 1 in (i). Clearly,

this implies that ENAF
1 ≥ EN

(i)
1 . With similar reasoning, we find that ENAF

2 ≥ EN
(ii)
2 . Since

class-i users cannot be allocated more than Ci, i = 1, 2, under alpha-fair sharing, whereas in

the three-class DPS model the upper bound is C1 + C2 for both classes, one may expect that

ENAF
i ≥ EN

(iii)
i , i = 1, 2. For any state n ∈ N

3
0\{0} it can be verified that the alpha-fair

allocation to class 0 is larger or equal than the one obtained in the three-class DPS model, so

one would expect ENAF
0 ≤ EN

(iii)
0 at first sight. However, recall that we argued that the number

of users of classes 1 and 2 in the model operating under alpha-fair sharing will (on average) be

larger than in the three-class DPS model, which causes that the total service allocated to class

0 in the model operating under alpha-fair sharing is less than or equal to that in the three-class

DPS model, i.e., we may also expect ENAF
0 ≥ EN

(iii)
0 . The above reasoning indeed suggests

that ENAF
i ≥ ENAP

i , i = 0, 1, 2.

4.2.1 Fluid and quasi-stationary regimes

To test the performance of the two approximations in case of extreme parameter values, we now

assume that the flow dynamics of the various classes occur on widely separate time scales, i.e.,

in fluid and quasi-stationary regimes.

Formally, let λ
(r)
i := λifi(r) and µ

(r)
i := µifi(r), where fi(r) represents the time scale

associated with class i as function of r, i = 0, . . . , L. Note that the traffic intensity of class i

equals ρ
(r)
i := λ

(r)
i /µ

(r)
i = ρi, i = 0, . . . , L, so it is independent of r. Let N

(r)
i be the number

of class-i flows in the r-th system. Before analyzing the quality of the approximations, we first

present the following useful proposition.

Proposition 4.1 Assume that L+1 classes of users share C units of capacity according to DPS,

where class i has relative weight κi, i = 0, . . . , L. If fi(r)/fi−1(r) → 0 as r → ∞, i = 1, . . . , L,

i.e., higher indexed classes operate on faster time scales, then

EN
(∞)
i =

ρi

C −
∑L

j=i ρi

+
i−1
∑

j=0

κj

κi

ρiρj
(

C −
∑L

r=j ρr

)(

C −
∑L

r=j+1 ρr

) , i = 0, . . . , L.

Proof: In [9] the above result was already proved for L = 1. For L > 1 the authors showed

that EN
(∞)
j , j = 1, . . . , L, could be obtained by determining EN

(∞)
i , i = 0, . . . , j − 1, i.e., as

a recursion. Straightforward calculus, however, shows that this recursion reduces to the above

result. 2
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γ ENAF
0 ENAF

1 ENAF
2 EN

AP (∞)
0 EN

AP (∞)
1 EN

AP (∞)
2 ENBF

0 ENBF
1 ENBF

2

0.1 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 0.14 0.25 0.25 0.14 0.25 0.25 0.14 0.27 0.27

0.3 0.27 0.45 0.45 0.27 0.43 0.43 0.27 0.49 0.49

0.4 0.51 0.76 0.76 0.50 0.67 0.67 0.50 0.83 0.83

0.5 1.02 1.34 1.34 1.00 1.00 1.00 1.00 1.50 1.50

0.6 3.06 3.30 3.30 3.00 3.00 3.00 3.00 3.75 3.75

Table 3: Results corresponding to the fluid and quasi-stationary regimes (scenario I).

Let us return to the setting with L = 2 nodes and L+1 = 3 classes of users. Proposition 4.1

allows us to obtain simple closed-form expressions for E
AP
i , i = 0, 1, 2, when r → ∞. Assuming

that higher indexed classes operate on faster time scales and that the stability conditions (10)

hold, we find

EN
AP (∞)
0 :=

ρ0

C1 + C2 − ρ0 − ρ1 − ρ2
;

EN
AP (∞)
1 := max

{

ρ1

C1 − ρ1
,

ρ1

C1 + C2 − ρ1 − ρ2
+

κ
1/α
0 ρ0ρ1

κ
1/α
1 (C1 + C2 − ρ0 − ρ1 − ρ2)(C1 + C2 − ρ1 − ρ2)

}

;

EN
AP (∞)
2 := max

{

ρ2

C2 − ρ2
,

ρ2

C1 + C2 − ρ2
+

1
∑

j=0

κ
1/α
j ρjρ2

κ
1/α
2 (C1 + C2 −

∑2
r=j ρr)(C1 + C2 −

∑2
r=j+1 ρr)

}

.

In case of equal class weights, κi = κ, i = 0, 1, 2, it is not hard to see that

EN
AP (∞)
0 =

ρ0

C1 + C2 − ρ0 − ρ1 − ρ2
;

EN
AP (∞)
1 = max

{

ρ1

C1 − ρ1
,

ρ1

C1 + C2 − ρ0 − ρ1 − ρ2

}

;

EN
AP (∞)
2 = max

{

ρ2

C2 − ρ2
,

ρ2

C1 + C2 − ρ0 − ρ1 − ρ2

}

.

Clearly, the EN
AP (∞)
i s strongly depend on the ordering of the classes with respect to the time

scales. In case of other orderings than the one mentioned above one can obtain expressions in a

similar fashion.

The accuracy of the approximations in the fluid and quasi-stationary regimes is examined

by performing simulation experiments. We take C1 = C2 = 1, λ0 = γ, λ1 = 10γ, λ2 = 100γ,

µ0 = 1, µ1 = 10, µ2 = 100, so that ρi = γ, i = 0, 1, 2, and assume that higher indexed classes

operate on faster time scales.

Tables 3 and 4 report the results for scenario I and II, respectively. Recall that the ENAF
i s

and EN
AP (∞)
i s are independent of the value of α in scenario I, whereas they are sensitive to the

value of α in scenario II. The tables show that also in the fluid and quasi-stationary regimes the

approximations are promising.

5 Comparison with static and flow-level load balancing

In the previous sections we considered load balancing at the packet-level. In this section we

quantify how much better packet-level load balancing is than static and flow-level load balancing.
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γ α ENAF
0 ENAF

1 ENAF
2 EN

AP (∞)
0 EN

AP (∞)
1 EN

AP (∞)
2 ENBF

0 ENBF
1 ENBF

2

0.1 1 0.06 0.12 0.12 0.06 0.11 0.11 0.06 0.11 0.11

0.2 1 0.14 0.31 0.28 0.14 0.25 0.25 0.14 0.27 0.27

0.3 1 0.26 0.63 0.52 0.27 0.51 0.43 0.27 0.49 0.49

0.4 1 0.45 1.23 0.92 0.50 1.17 0.71 0.50 0.83 0.83

0.5 1 0.89 2.85 1.82 1.00 3.00 1.67 1.00 1.50 1.50

0.6 1 2.49 10.28 5.44 3.00 12.00 6.21 3.00 3.75 3.75

0.1 2 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 2 0.14 0.27 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 2 0.27 0.51 0.48 0.27 0.43 0.43 0.27 0.49 0.49

0.4 2 0.49 0.93 0.83 0.50 0.71 0.67 0.50 0.83 0.83

0.5 2 1.03 1.94 1.58 1.00 1.62 1.24 1.00 1.50 1.50

0.6 2 2.69 5.53 4.17 3.00 5.78 4.21 3.00 3.75 3.75

0.1 5 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 5 0.14 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 5 0.27 0.47 0.46 0.27 0.43 0.43 0.27 0.49 0.49

0.4 5 0.52 0.82 0.79 0.50 0.67 0.67 0.50 0.83 0.83

0.5 5 1.00 1.51 1.42 1.00 1.19 1.08 1.00 1.50 1.50

0.6 5 2.86 4.06 3.65 3.00 3.85 3.41 3.00 3.75 3.75

0.1 ∞ 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 ∞ 0.14 0.25 0.25 0.14 0.25 0.25 0.14 0.27 0.27

0.3 ∞ 0.27 0.45 0.45 0.27 0.43 0.43 0.27 0.49 0.49

0.4 ∞ 0.51 0.76 0.76 0.50 0.67 0.67 0.50 0.83 0.83

0.5 ∞ 1.02 1.34 1.34 1.00 1.00 1.00 1.00 1.50 1.50

0.6 ∞ 3.06 3.30 3.30 3.00 3.00 3.00 3.00 3.75 3.75

Table 4: Results corresponding to the fluid and quasi-stationary regimes (scenario II).

We consider the same parameter values as in the previous section (without considering fluid and

quasi-stationary regimes), and calculate the mean number of users of each class under static and

flow-level load balancing, so that we can make a comparison with packet-level load balancing.

As before, we first assume that load balancing is based on balanced fairness, and subsequently

on alpha-fair sharing.

5.1 Balanced fairness

When static or flow-level load balancing is used, that is based on balanced fairness, we now need

to keep track of the number of class-0 users at node i, i = 1, 2. Let n0i denote the number of

class-i users at node i, i = 1, 2. Then the balance function is given by (see [1])

Φ(n) =

(

n01 + n1

n1

)(

n02 + n2

n2

)

Cn1+n01
1 Cn2+n02

2

,

and we obtain

φ0i(n) =
n0i

n0i + ni
Ci; φi(n) =

ni

n0i + ni
Ci, i = 1, 2.

Hence, at both nodes capacity is shared according to egalitarian Processor Sharing (PS).

Let us first consider static load balancing. Clearly, considering the symmetric parameter

setting of the previous section, the optimal static policy is to route class-0 arrivals to node i,

i = 1, 2, with probability 1
2 . Using the parameter values of the previous section, we thus find
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γ ENBF st
0 ENBF st

1 ENBF st
2 ENBF fl

0 ENBF fl
1 ENBF fl

2 ENBF
0 ENBF

1 ENBF
2

0.1 0.12 0.12 0.12 0.11 0.12 0.12 0.06 0.11 0.11

0.2 0.29 0.29 0.29 0.25 0.27 0.27 0.14 0.27 0.27

0.3 0.55 0.55 0.55 0.46 0.50 0.50 0.27 0.49 0.49

0.4 1.00 1.00 1.00 0.82 0.87 0.87 0.50 0.83 0.83

0.5 2.00 2.00 2.00 1.59 1.64 1.64 1.00 1.50 1.50

0.6 6.00 6.00 6.00 5.15 5.27 5.27 3.00 3.75 3.75

Table 5: Results for static, flow-level and packet-level load balancing in case of balanced fairness.

that class-i (class-0) users arrive according to a Poisson process of rate γ (1
2γ) at node i, and

both class-0 and class-i users have exponentially distributed service requirements with mean 1,

i = 1, 2. Recalling that Ci = 1, i = 1, 2, and since capacity is shared according to PS at both

nodes, it is a straightforward exercise to show that

ENBFst
i :=

γ

1 − 3
2γ

, i = 0, 1, 2,

where ENBFst
0 denotes the mean number of class-0 users in the network (at node 1 or node 2).

In Table 5 we report the ENBFst
i s for different values of the load γ.

Using the closed-form expressions for ENBFst
i and ENBF

i , i = 0, 1, 2, it is straightforward to

derive that

ENBFst
0

ENBF
0

= 2;
ENBFst

i

ENBF
i

=
4 − 4γ

4 − 5γ
≥ 1, i = 1, 2,

given that the load γ of each class is smaller than 2
3 .

In case of flow-level load balancing it is optimal (under the current setting) to route class-0

users to node 1 if n01 +n1 < n02 +n2, and to node 2 if n01 +n1 > n02 +n2. If n01 +n1 = n02 +n2

then an arriving class-0 user is sent to node i with probability 1
2 , i = 1, 2. In other words, an

arriving class-0 user should join the shortest queue, see [15]. Since no explicit expressions

are known for the mean number of users ENBFfl
i of class i, i = 0, 1, 2, under flow-level load

balancing, we have performed simulation experiments to obtain these values. The results are

also reported in Table 5.

Table 5 shows that packet-level load balancing outperforms both static and flow-level load

balancing, and flow-level load balancing is better than static load balancing, as was expected,

i.e., ENBF
i ≤ ENBFfl

i ≤ ENBFst
i , i = 0, 1, 2. For low values of γ (low loads), the results are

quite similar, but for higher loads the differences become more significant. We note that these

results are in line with the findings of [11].

5.2 Alpha-fair sharing

In case static or flow-level load balancing is executed through alpha-fair sharing, we also need

to be aware of the number of class-0 users at nodes 1 and 2. In case ni class-i users and n0i

class-0 users are present at node i, the allocated service rates are

s∗i (n) =
κ

1/α
i niCi

κ
1/α
0 n0i + κ

1/α
i ni

, s∗0i(n) =
κ

1/α
0 n0iCi

κ
1/α
0 n0i + κ

1/α
i ni

, i = 1, 2.
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γ α ENAF st
0 ENAF st

1 ENAF st
2 ENAF fl

0 ENAF fl
1 ENAF fl

2 ENAF
0 ENAF

1 ENAF
2

0.1 1 0.11 0.12 0.12 0.10 0.12 0.12 0.06 0.12 0.12

0.2 1 0.25 0.31 0.30 0.23 0.28 0.28 0.13 0.28 0.27

0.3 1 0.44 0.61 0.59 0.40 0.54 0.53 0.23 0.54 0.49

0.4 1 0.71 1.17 1.12 0.64 0.98 0.94 0.39 0.97 0.83

0.5 1 1.21 2.47 2.32 1.09 1.97 1.85 0.68 1.95 1.46

0.6 1 2.90 7.85 7.26 2.81 6.68 6.21 1.55 5.93 3.47

0.1 2 0.11 0.12 0.12 0.11 0.12 0.12 0.06 0.12 0.11

0.2 2 0.27 0.30 0.29 0.24 0.27 0.27 0.14 0.27 0.26

0.3 2 0.48 0.58 0.57 0.43 0.53 0.51 0.26 0.50 0.48

0.4 2 0.83 1.10 1.06 0.71 0.94 0.91 0.47 0.88 0.81

0.5 2 1.54 2.28 2.17 1.30 1.83 1.78 0.87 1.71 1.44

0.6 2 4.17 7.13 6.69 4.03 6.43 6.09 2.35 4.81 3.66

0.1 5 0.12 0.12 0.12 0.11 0.12 0.11 0.06 0.11 0.11

0.2 5 0.28 0.29 0.29 0.25 0.27 0.27 0.15 0.26 0.26

0.3 5 0.52 0.56 0.56 0.44 0.51 0.50 0.28 0.48 0.46

0.4 5 0.93 1.04 1.03 0.78 0.92 0.90 0.52 0.82 0.78

0.5 5 1.80 2.12 2.07 1.51 1.77 1.73 1.00 1.51 1.40

0.6 5 5.21 6.50 6.29 4.46 5.20 5.07 2.84 3.95 3.61

0.1 ∞ 0.12 0.12 0.12 0.11 0.12 0.12 0.06 0.11 0.11

0.2 ∞ 0.29 0.29 0.29 0.25 0.27 0.27 0.15 0.26 0.26

0.3 ∞ 0.55 0.55 0.55 0.46 0.50 0.50 0.30 0.46 0.46

0.4 ∞ 1.00 1.00 1.00 0.82 0.87 0.87 0.55 0.77 0.77

0.5 ∞ 2.00 2.00 2.00 1.59 1.64 1.64 1.10 1.39 1.39

0.6 ∞ 6.00 6.00 6.00 5.15 5.27 5.27 3.17 3.48 3.48

Table 6: Results for static, flow-level and packet-level load balancing in case of alpha-fair sharing

(scenario II).

Hence, capacity is shared according to DPS with relative weights κ
1/α
0 and κ

1/α
i at node i,

i = 1, 2.

Again, due to symmetric parameter values, in case of static load balancing it is optimal to

route class-0 arrivals to node i, i = 1, 2, with probability 1
2 . Using the parameter values of the

previous section, we thus find that class-i (class-0) users arrive according to a Poisson process of

rate γ (1
2γ) at node i, and both class-0 and class-i users have exponentially distributed service

requirements with mean 1, i = 1, 2. Using that Ci = 1, i = 1, 2, and since capacity is shared

according to DPS at both nodes, the results of [7] imply that

ENAFst
0 :=

1
2γ

1 − 3
2γ



2 +
γ
(

κ
1/α
1 − κ

1/α
0

)

κ
1/α
0 (1 − 1

2γ) + κ
1/α
1 (1 − γ)

+
γ
(

κ
1/α
2 − κ

1/α
0

)

κ
1/α
0 (1 − 1

2γ) + κ
1/α
2 (1 − γ)



 ;

ENAFst
i :=

γ

1 − 3
2γ



1 +

1
2γ
(

κ
1/α
0 − κ

1/α
i

)

κ
1/α
0 (1 − 1

2γ) + κ
1/α
i (1 − γ)



 , i = 1, 2.

Note that ENAFst
i = ENBFst

i , i = 0, 1, 2, in case of equal class weights. Therefore, we only focus

on scenario II, and these results are shown in Table 6.

The optimal flow-level load balancing policy is as before to join the shortest queue, see [15].

As no explicit expressions for the mean number of users ENAFfl
i of class i, i = 0, 1, 2, are

available under flow-level load balancing, we resort to simulation experiments to obtain these

values. Note that ENAFfl
i = ENBFfl

i , i = 0, 1, 2, in case of equal class weights, so we only

report the results corresponding to scenario II, see Table 6.
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Tables 6 shows that packet-level load balancing performs better than both static and flow-

level load balancing: ENAF
i ≤ ENAFfl

i ≤ ENAFst
i , i = 0, 1, 2. Again, the results seem to vary

more in case of high values of γ.

6 Conclusion

We analyzed a network consisting of L nodes, with L + 1 classes of users. Class-i users require

service at node i only, i = 1, . . . , L, whereas class-0 users can split their traffic over the L nodes.

We considered load balancing at the packet-level, implying that class-0 users can split their

traffic over the L nodes at the same time. We assumed that load balancing was based on bal-

anced fairness and an alpha-fair bandwidth sharing policy, respectively. We characterized how

bandwidth is allocated in each state of the network under these two policies. Assuming Poisson

arrivals and exponentially distributed service requirements, we derived expressions (approxima-

tions) for the mean number of users of each class under these two policies. For both policies we

also showed that one can achieve significant performance gains if one performs packet-level load

balancing instead of static or flow-level load balancing, especially for highly loaded systems.

A topic for further research is extending the results to a more general network, e.g., so-called

linear networks where some classes can split their traffic over multiple nodes at the same time.

In this case it is considerably harder, if possible at all, to derive expressions for the mean number

of users of each class under the above-mentioned policies, as the network does not reduce to a

tree network.
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