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The manipulation of magnetic particles in a continuous flow with magnetic fields is central to several
biomedical applications, including magnetic cell separation and magnetic drug targeting. A simplified two-
dimensional �2D� equation describing the motion of particles in a planar Poiseuille flow is considered for
various magnetic field configurations. Exact analytical solutions are derived for the particle motion under the
influence of a constant magnetization force and a force decaying as a power of the source distance, e.g., due to
a current carrying wire or a magnetized cylinder. For a source distance much larger than the transversal size of
the flow, a general solution is derived and applied to the important case of a magnetic dipole. This solution is
used to investigate the dependence of the particle capture efficiency on the dipole orientation. A correction
factor to convert the obtained 2D results to a three-dimensional cylindrical geometry is derived and validated
against computational simulations. Simulations are also used to investigate parameter ranges beyond the region
of applicability of the analytical results and to investigate more complex magnetic field configurations.
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I. INTRODUCTION

The ability to manipulate magnetic particles in fluid flows
by means of inhomogeneous magnetic fields is used in a
wide range of industrial and biomedical applications. An ex-
ample is high gradient magnetic separation �HGMS� which
includes the processing of minerals and the treatment of
wastewater �1�. Magnetic particles have a variety of bio-
medical applications, e.g., for hyperthermia treatment, for
cell separation, as contrast agents for magnetic resonance
imaging �MRI�, or in magnetic drug targeting �MDT�. In the
latter application, the localized delivery of chemotherapeutic
agents �2,3� is enhanced by attaching them to magnetic par-
ticles which can be attracted to a tumor by an external mag-
netic field. Application to cardiovascular disease is currently
under investigation. Knowledge of the particle trajectories in
an applied magnetic field can help estimate the fraction of
particles captured for a specific piece of artery, thereby al-
lowing an a priori estimate of the effectiveness of a specific
treatment. Significant theoretical �4–6�, experimental �7–10�,
and computational �11–14� progress in this direction has
been made over the past years. With immunomagnetic sepa-
ration, DNA, cells, organelles, proteins, etc. can be isolated
from a fluid for the purpose of, e.g., medical diagnosis. In
recent years an increased interest has arisen in applying this
technique to a continuously flowing fluid �15�. Continuous
flow magnetic separation is often investigated in microfluidic
devices, in which it can easily be integrated in-line with
other processing steps of a micro total analysis system
��TAS�, and components can be laterally separated depend-
ing on the component’s sizes and magnetic content.

In all mentioned applications, detailed knowledge of the
particle trajectories is needed for the design and application
of the devices. Due to the geometric complexity of both the
flow and the magnetic field, predictions of these trajectories

are in general obtained from numerical simulations. Analyti-
cal expressions for the particle trajectories can be obtained
for relatively simple geometries and under some simplifying
assumptions only. These simplifications are not generally
valid in, e.g., microfluidic devices for bioseparation, which
typically have multiple embedded magnetic source elements
integrated into the device close to the fluid channel �16,17�.

Nevertheless, there is a clear use and need for such ana-
lytical solutions. First of all, they can be used to validate
numerical simulation codes. Second, they provide insight
into the general scaling characteristics of particle movement
in magnetic fields that also hold for more complex geom-
etries. This is useful in explaining for instance the scaling
behavior found in �9,10�. Finally, although derived for
simple geometries, such analytical solutions may serve as
good approximations for the particle movement in more
complicated devices. As an example, knowledge of the be-
havior of magnetic particles in laminar flow under the influ-
ence of a circular current loop may help in the description of
the effectiveness of magnetic traps such as used in �18� to
focus single particles.

In this work we derive analytical expressions for the tra-
jectories of magnetic particles in Poiseuille flows for a range
of simple but generic magnetic fields. We ignore particle-
particle �e.g., dipole-dipole� interactions, as well as the effect
of the particles on the flow. These are valid approximations
for systems with small particle volume fractions, as in most
of the aforementioned applications.

Exact analytical solutions are derived for the particle mo-
tion in a planar Poiseuille flow in a constant or radial mag-
netization force field. These solutions are for instance rel-
evant for fluid devices in which magnetic fields are generated
by permanent magnetic elements or electromagnets outside
the fluid. The presented result for a line force parallel to the
flow is relevant for applications such as in �9�, where two
magnetic wires are used for the ex-vivo filtering of human
blood from magnetic drug-loaded or toxin-loaded spheres. It
might also be of use for applications with a conducting wire
mesh such as in �19�, as an approximate result for when the*j.w.haverkort@cwi.nl

PHYSICAL REVIEW E 80, 016302 �2009�

1539-3755/2009/80�1�/016302�12� ©2009 The American Physical Society016302-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301657393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.80.016302


distance between the wires is large. The presented solution
for a magnetic monopole is relevant for applications in
which spiked magnetic elements are used, such as in �20�.

We also present an approximate solution for a planar Poi-
seuille flow and a generic magnetic field under the assump-
tion that the source distance is much larger than the transver-
sal size of the flow. This is a valid assumption for
applications such as magnetic drug targeting, in which the
magnetic source is usually placed outside the body at a dis-
tance of several centimeters from the treated artery. The ob-
tained approximate solution is applied to the fundamental
case of magnetic particle motion in a planar Poiseuille flow
in the field of a magnetic dipole, for which the fraction of
captured particles is investigated as a function of the dipole
orientation.

Finally, again under the assumption that the source dis-
tance is much larger than the transversal size of the flow, we
derive a correction to transform the obtained results for the
planar Poiseuille flow into expressions for the Poiseuille flow
in a straight cylindrical tube. Three-dimensional computa-
tional simulations are used to validate and extend the ana-
lytical results.

II. MATHEMATICAL FORMULATION

A. Magnetization force

Particles above a critical size �tens of nanometers for the
most frequently used materials iron, magnetite and hematite�
consist of several magnetic domains. The magnetization be-
havior of these multidomain particles is fairly well described
by a model in which the magnetization M below saturation is
linear in the auxiliary magnetic field H �21�

M = � �H H � Msat/���

��/����MsatĤ H � Msat/��� ,� �1�

where � is the magnetic susceptibility, Msat is the saturation
magnetization, and a hat is used to denote a unit vector, i.e.,

Ĥ=H /H. The magnitude of a vectorial quantity will be de-
noted by the same symbol without applied boldface, e.g.,
H= �H�. In this work we adopt the linear magnetization
model of Eq. �1� and assume that the magnetization instan-
taneously aligns with the applied magnetic field. The magne-
tization force, which is also known as the magnetophoretic
force or the Kelvin force, exerted on a magnetized material is
per unit volume given by fm=�0M ·�H. Using the linear
magnetization model of Eq. �1� we obtain

fm = ��0� � H2/2 H � Msat/���
��/�����0Msat � H H � Msat/��� ,� �2�

where use has been made of the relation �H2 /2=H� ��
�H�+ �H ·��H and the assumption that H is curl free.

B. Particle equations of motion

The motion of spherical particles of diameter D in a
steady laminar Poiseuille flow will be considered. Assuming
low particle concentrations, the interaction between particles
and the effect of the particles on the fluid can be neglected.

The considered two-dimensional geometry is shown in Fig.
1. The maximum flow velocity is u0, the channel height is h,
and the distance from a magnetic source to the flow center-
line is d. An overbar on a parameter with dimension of
length will be used to denote nondimensionalization with h,

i.e., d̄=d /h, D̄=D /h, etc.
When necessary to avoid confusion, the subscripts f and p

will be used to denote the fluid and the particles, respec-
tively. We will assume that the particle Reynolds number
Rep= �up−u f�D /��1, where �=� /� f is the fluid kinematic
viscosity and up and u f as the particle and the fluid veloci-
ties, respectively. We will also assume the particles are much

smaller than the channel height, i.e., D̄�1. Because the ratio

��p /18� f�RepD̄ between the particle relaxation time
�pD2 /18� and the time scale h / �up−u f� of the particle mo-

tion becomes negligible for Rep�1 and D̄�1, we can de-
scribe the particle motion in terms of an equilibrium of
forces:

0 = FD + Fm + FL + Fg. �3�

�i� FD: for Rep�1, the drag force FD can be modeled
using Stokes’ expression FD=3	�D�u f −up�.

�ii� Fm: when the magnetic field is approximately constant
over the volume of a particle and the surrounding medium
has a negligible magnetic susceptibility, the magnetic force
Fm on a magnetic particle can be evaluated by multiplying
the magnetization force density from Eq. �2� by the particle
volume 	D3 /6 �4�.

�iii� FL: the lift forces FL on a spherical particle are asso-
ciated with velocity gradients in the fluid, in particular the
Faxen force and the Saffman lift force. The magnitude of the
Faxen force at the centerline of a Poiseuille flow is given by

1.052 35D̄FD for Rep�1 and D̄�1 �22�. The magnitude of
the Saffman lift force at a distance s= s̄h from the centerline

of a Poiseuille flow can be written as �K /3�2	��s̄ RepD̄FD,
with K=1.61 for Rep�1 and the channel Reynolds number
Re
1 / s̄ �23�. It follows that on an integral scale, thereby
excluding the region close to the wall, lift effects can be

neglected for Rep�1 and D̄�1.
�iv� Fg: the ratio between the gravitational force density

�pg and the magnetization force density ��0M �H� is gener-
ally very small in applications with magnetic particles, such
that the gravitational force Fg can be neglected.

The conditions Rep�1 and D̄�1, for which the Stokes
drag force can be used and inertial and lift effects can be
neglected, allow for the description of most biomedical ap-
plications. In this case the equations of motion simplify to a

u0
h

d

magnetic source

x

z
γ

D

FIG. 1. A schematic overview of the considered geometry, co-
ordinates, and geometrical variables.
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balance between the drag force and the magnetization force
Fm

0 = 3	�D�u f − up� + Fm. �4�

It follows that the particle velocity up=dx /dt can be writ-
ten as a sum of the fluid velocity u f and a “magnetic veloc-
ity” um	Fm /3	�D. For a flow in the x direction which
varies parabolically in the z direction, as shown in Fig. 1, the
equations for the x and z components of the particle velocity
become dx /dt=Fmx /3	�D+u0�1−z2 /h2� and dz /dt
=Fmz /3	�D. Dividing the first of these equations by the
second, one obtains the inverse of the tangent to the particle
trajectory

dx

dz
=

Fmx

Fmz
+

3	�Du0

Fmz

1 −

z2

h2� . �5�

We introduce Fm0 denoting the magnitude of the magne-
tization force at the channel centerline directly below the
magnetic source �the origin in the coordinates of Fig. 1�.
Next we nondimensionalize Eq. �5� by defining x	x /h and
Fm	Fm /Fm0:

dx̄

dz̄
=

F̄mx

F̄mz

+
1

MnpF̄mz

�1 − z̄2� . �6�

The dimensionless “particle magnetization number” Mnp
	Fm0 /3	�u0D=um0 /u0 gives the ratio between the magne-
tization force and the drag force for a motionless particle at
the origin or the ratio between its magnetic velocity um0 and

the fluid velocity u0 at the origin. When F̄m0x=0, Mnp alter-
natively denotes the tangent dz /dx to a particle trajectory
through the origin. The first-order ordinary differential equa-
tion �6� will, for various forms of the magnetization force
Fm, be the subject of investigation in this paper.

III. ANALYTICAL SOLUTIONS TO THE PARTICLE
EQUATIONS OF MOTION

The particle equation of motion �Eq. �6�� derived in the
previous section will be solved for various forms of the mag-
netization force Fm. First a solution is derived for the case in
which the force in the streamwise direction can be neglected
and the force in the transversal direction only depends on the

streamwise coordinate, i.e., Fm= F̄m�x̄�ẑ. In this case Eq. �6�
becomes a separable differential equation, which can be
solved by integration. As a special instance of this solution
method, the particle motion under the influence of a constant
magnetization force is obtained. The magnetization force ex-
erted by a localized magnetic source many channel heights

away generally satisfies the form Fm= F̄m�x̄�ẑ. This observa-
tion is used to calculate the particle trajectories in the field of
a magnetic dipole. Finally an exact solution is obtained for a
radial force that decays as a power of the distance to the
source.

A. Longitudinally varying transversal force

When there is no magnetization force in the streamwise x
direction and the force in the transversal z direction is inde-

pendent of z, i.e., Fm= F̄m�x̄�ẑ, Eq. �6� becomes

MnpF̄m�x̄�
dx̄

dz̄
= 1 − z̄2, �7�

which can be directly integrated to yield for a particle mov-
ing from �x̄0 , z̄0� to �x̄ , z̄�,

M�x̄0, x̄� = 
z̄ −
z̄3

3
� − 
z̄0 −

z̄0
3

3
� . �8�

Here we introduced the magnetization force to drag force
ratio, integrated over the x̄ coordinate of the particle trajec-
tory:

M�x̄0, x̄� 	 Mnp�
x̄0

x̄

F̄mz�x̄��dx̄� =
1

3	�Du0

1

h
�

x0

x

Fmz�x��dx�.

�9�

Note from Eq. �8� that the vertical particle displacement
z̄− z̄0 depends solely on M. This quantity thereby provides
an intuitively sensible measure for the effectiveness of mag-
netic particle capture.

The solutions to the third-order polynomial equation Eq.
�8� are given by

z̄ =  �+ + �− and

−
1

2
���+ + �−� � i�3��+ − �−�� , � �10�

where ��= �v��v2−1�1/3 with v= �3 /2��z̄0
3 /3− z̄0−M� with

the real-valued physical solution satisfying −1 z̄1.

For a constant force in the z direction F̄mz	Fmz /Fm0=1
such that from Eq. �9� it follows that M=Mnp�x̄− x̄0�. From
Eq. �8� then, a particle inserted at the lower channel wall
z̄0=−1 will be the last to reach the upper wall at z̄=1 after a
distance x̄− x̄0=4 / �3Mnp�. The length 4h / �3Mnp�
=4	�u0Dh /Fm0 therefore gives the distance after which all
particles are filtered out upon application of a constant force.
The particle trajectory described by Eq. �10� for M
=Mnp�x̄− x̄0� is displayed in Fig. 2 for Mnp=1.

Inserting nin particles homogeneously distributed along
the z axis, we investigate for a given M�x̄0 , x̄� what fraction
of particles will be captured by the magnetic field, i.e., what
fraction will have reached z̄=1 before x̄. This capture effi-
ciency �or collection efficiency� will be denoted by �l, with

z

x

Poiseuille flow
Plug flow

-1.0

-0.5

0

0.5

1.0

0.5 1.0 1.5 2.00

FIG. 2. The trajectories of particles under the influence of a
constant force in the z direction �Mnp=1� in a parabolic Poiseuille
flow and in a constant plug flow with the same centerline velocity.
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the subscript l referring to the injection of particles along a
line. All particles inserted above a critical value z̄0 will reach
z̄=1, while all nout particles below z̄0 escape. The “line cap-
ture efficiency” �l is thus given by

�l 	
nin − nout

nin
=

�1 − z̄0�
2

. �11�

Here z̄0 is given by the solution to Eq. �8� with z̄=1,
which is the solution of Eq. �10� but now with v
= �3 /2��z̄3 /3− z̄+M� �z̄=1=3M /2−1. Expanding this solu-
tion in powers of �M, one finds to lowest order

�l =
1

2
�M, M � 1. �12�

The exact capture efficiency and this approximation are
both shown in Fig. 3 as a function of M. Equation �12�
shows that for small �l one has to increase the average mag-
netization force, or the length over which this force is ap-
plied, by a factor of 4 to double the capture efficiency. This is
due to the parabolic nature of the flow. The flow velocity
increases with distance from the wall, which adds to the
difficulty of capturing particles from further away.

Because Eq. �12� holds only for small capture efficiencies
it corresponds to particles close to the upper wall. Lineariz-
ing the parabolic flow near the wall yields uf =2u0�1− z̄�.
Equation �7� is then replaced by MnpF̄m�x̄�dx̄ /dz̄=2�1− z̄�.
This can be integrated for particles moving from �x̄0 , z̄0� to
�x̄ ,1� at the wall to yield M=1–2�z̄0− 1

2 z̄0
2�= �1− z̄0�2. The

capture efficiency �l= �1− z̄0� /2 is thus given by Eq. �12� or
for a constant force �l=

1
2
�Mnp�x̄− x̄0�. This rederivation of

the result of Eq. �12� for a linearized flow velocity clearly
shows that the square-root dependence can be attributed to
the increasing flow velocity with the distance from the wall.
In a small enough region close to the channel wall any par-
ticle magnetization force is approximately independent of z̄
and most flows increase linearly with the distance from the
wall, making Eq. �12� a quite general result. For a constant
velocity “plug flow” Eq. �8� would be replaced by M= z̄
− z̄0 such that �l=M /2, i.e., linearly in M.

We note that the proportionality ���Mnp can be found in
various experimental results. For example in Ref. �9� the
magnetic field of two magnetized cylindrical wires is used,
placed diametrically opposite each other and coaxial with the

flow. For particles well below saturation, a roughly linear
relationship between the capture efficiency and both H and
1 /�u0 is found, supporting the result of Eq. �12�. In Ref. �10�
a magnetized coil is placed coaxially with the flow. A rela-
tion for the capture efficiency is found which can quite well
be fitted with ��1 /�u0, again in agreement with the result
of Eq. �12�.

For a localized magnetic source with d̄
1, the magneti-
zation force within the channel is approximately constant in

the z direction, i.e., F̄mz= F̄mz�x̄�. In order to be able to use

the above results however, the term F̄mx / F̄mz in Eq. �6�
should be negligible in comparison with �1− z̄2� /MnpF̄mz.

Strictly speaking near z̄=1 this only holds for F̄mx=0. How-

ever, under the influence of any nonzero F̄mz, particles this
close to the wall will be swiftly captured. If one is thus not
interested in the exact particle motion close to the wall, on an

integral scale the term F̄mx / F̄mz can be neglected when ev-

erywhere in the domain F̄mx�1 /Mnp=3	�u0D /Fm0 or
Fmx�FD. In this approximation the particle motion is the
combined uncoupled motion of that of the fluid and that of
the velocity in the z direction induced by the magnetic field.
This approach is also taken in �4�, where it is used to derive
an approximate solution for the particle motion in the field of
a cylinder homogeneously magnetized perpendicular to its
axis. In the following section we will use it to calculate the
particle motion in the field of a magnetic dipole.

B. Magnetic dipole

We proceed to solve the motion of undersaturated mag-

netic particles in the field of a magnetic dipole for d̄
1. As
discussed, in this case the first term on the right-hand side of
Eq. �6� can be neglected and the solution of the previous
section can be used. The magnetic field at a position vector r
emanating from the dipole is given by

H�r� =
m

4	r3 �3�m̂ · r̂�r̂ − m̂� . �13�

Note that again a hat is used to denote a unit vector, e.g.,
m̂=m /m with m= �m�. With H2= �m /4	r3�2�3�m̂ · r̂�2+1�,
the magnetization force density �0��H2 /2 below saturation
becomes

fm�r� =
�0�

2

 m

4	
�2 6

r7 ��m̂ · r̂�m̂ − �1 + 4�m̂ · r̂�2�r̂� .

�14�

Both the field H of Eq. �13� and this force density are
displayed in Fig. 4�b�. Note that for a dipole oriented in the
y direction m̂ · r̂=0 for y=0 such that fm=
−3�0��m /4	�2�r̂ /r7� for y=0. For this radial magnetization
force an exact analytical solution will be derived in the next
section. Allowing for an arbitrary orientation of the dipole,
we introduce the spherical coordinates � and � representing
the azimuthal angle between the dipole moment and the z
axis and the polar angle with the x axis, respectively, such
that m̂=sin � cos �x̂+sin � sin �ŷ+cos �ẑ. Evaluating Eq.

½√

M

M

ηl

Exact

0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1.0

FIG. 3. The line capture efficiency �l as a function of

M=Mnp�F̄mdx̄ for particles under the influence of a force

F= F̄m�x̄�ẑ.
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�14� for a dipole located at dẑ we obtain with r=−dẑ for the
force at the origin �in the coordinates of Fig. 1� Fm0
= ��0� /2�V�m /4	�2�18 cos �2+6� /d7. Performing the inte-
gration of Eq. �9� for y=0 we obtain

M = Cx̄�5 cos2� + 2 + sin2� cos2��

�
15 arctan x̄/d̄

16x̄d̄6
+

15

16d̄5r̄2
+

5

8d̄3r̄4
+

1

2d̄r̄6
�

+
C

r̄8 �cos � sin � cos ��6d̄2 − r̄2�

+ 3d̄x̄�cos2� − sin2� cos2��� , �15�

where r̄2= x̄2+ d̄2 and C	��0� /2��1 /3	�u0D��m /4	�2 /h7

=Mnp���d̄7 / �18 cos2�+6�. Note that Mnp now is a function
of the angle � between the dipole moment and the z axis.
Equation �15� evaluated between x̄0 and x̄, in combination
with the solution of Eq. �10�, gives an analytical expression
z̄�x̄� for the particle trajectories in the magnetic field of an

arbitrarily oriented magnetic dipole �for d̄
1 and F̄mx
�1 /Mnp�.

We are now in a position to answer the question for which
orientation of a magnetic dipole the most particles will be
captured. Evaluating Eq. �15� between the limits x̄0=−� and
x̄=� we obtain for M�	 limx�→�M�−x� ,x��

M� =
15	C

16d̄6
�5 cos2� + 2 + cos2� − cos2� cos2�� , �16�

which is plotted in Fig. 5. From this we find that M� is a
maximum for �=0 or 	, i.e., by aligning the magnetic dipole
in the �z direction. Using the result �l=�M /2 of Eq. �12�,
which is valid for M�1, we find that the capture efficiency
can be expressed as

�l = f��,���Mnp���d̄, M � 1 � d̄ , �17�

with

f��,��

= ��5	/128�

���5 cos2� + 2 + cos2� − cos2� cos2��/�3 cos2� + 1� .

Specifically for a dipole oriented in the x, y, and z directions,
respectively, we obtain

�l
�x� =�15	

128
�Mnp

�x�d̄, M � 1 � d̄ , �18�

�l
�y� =�10	

128
�Mnp

�y�d̄, M � 1 � d̄ , �19�

�l
�z� =�35	

512
�Mnp

�z�d̄, M � 1 � d̄ , �20�

where the superscripts �x�, �y�, and �z� refer to the corre-
sponding orientation of the dipole. In Fig. 6 these relations
are compared to the capture efficiency obtained from Eq.

�10�, which is exact in the limit d̄→�. From Eq. �14� it
follows that at a fixed distance r from the dipole, the mag-
netization force parallel to the dipole moment is four times
as high as that perpendicular to the dipole moment. This
implies that for the same magnetic dipole moment Mnp

�z�

=4Mnp
�y�=4Mnp

�x�. We thus find that the capture efficiencies
for the same magnetic dipole moment are related via �l

�z�

=�7 /3�l
�x�=�7�l

�y� for M�1� d̄.

(a) (b) (c)

FIG. 4. The magnetic field H �top� and associated magnetization
force density below saturation �0��H2 /2 �bottom� of �a� a current
carrying wire as an example of a power-law force, �b� a magnetic
dipole, and �c� a circular current loop �side view�. Note that the
length of the vectors is scaled proportional to their magnitude to the
power 1/5.
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FIG. 5. M�d̄6 /C as a function of the dipole angles � and �.
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FIG. 6. The capture efficiency �l for the field of a magnetic
dipole oriented in the x, y, and z directions for the specific case

d̄=80 /7. The analytical solution derived for d̄
1 is compared to

the approximation �M� /2 valid for M��1� d̄.
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Typically the multipole expansion of the magnetic field
associated with a current density distribution J�r� confined to
a region of dimension L contains a dominant dipole term. At
a distance d
L the magnetic field then resembles that of a
magnetic dipole. For such a localized current distribution the
magnetic dipole moment m	�1 /2��J�r��rd3r can thus for
d
L and d
h best be directed toward the flow in order to
maximize the capture efficiency. An example is a circular
wire of radius a carrying a current I, which has a dipole
moment m=	a2In̂, with n̂ the normal to the plane of the
current. For d
2a and d
h it follows that the capture effi-
ciency is maximized by orienting n̂ toward the flow.

To obtain more information on the particle behavior in the
field of a magnetic dipole, we look at the quantity M�
−� , x̄�. From Eq. �8� the transversal displacement z̄− z̄0 of
particles at x̄ that entered from x̄0=−� depends solely on this
quantity. For a dipole aligned with the x, y, or z axis, M�
−� , x̄� is displayed in Fig. 7. From this figure we observe
that in total most particles will be captured for a dipole in the
z direction, i.e., limx̄→��M�−� , x̄��=M� is the largest for
this orientation. Far downstream the magnet however M�
−� , x̄� is smallest for this orientation such the least particles
will be captured. This complies with the anisotropic magne-
tization force distribution shown in Fig. 4. Aside from yield-
ing the highest capture efficiency, alignment toward the flow

thus also minimizes the spatial extent over which particles
are captured. In filtering applications this means a smaller
channel length can be used, in magnetic drug targeting it
implies better focusing of the medicine.

C. Power-law forces

With a magnetic field whose magnitude varies as H
=A� /rn�, where r is the distance to a line or point source,
according to Eq. �2� a magnetization force density fm=
−A /rnr̂ is associated. Here A=�0�n�A�2 and n=2n�+1 for
undersaturated and A=�0�� / ����Msatn�A� and n=n�+1 for
saturated particles. The dimensionless magnetization force is
in this case given by

Fm = − 
 d̄

r̄
�n

r̂ . �21�

For saturated and undersaturated particles, respectively, this
represents the following:

�i� For n=2 and n=3: the force of an infinitely long wire
carrying a current I such that A�= I /2	.

�ii� For n=3 and n=5: the force of an infinitely long cyl-
inder of radius Rc with a uniform magnetization Mc perpen-
dicular to its axis �4� such that A�=McRc

2 /2. Or a line dipole
�5,14�, two antiparallel wires carrying a current I an infini-
tesimal distance b apart �13�, with dipole strength P
= Ib /2	 such that A�= P. It also represents a magnetic mono-
pole with pole strength p such that A�= p /4	�0.

�iii� For n=7 it represents for ȳ=0 the force on undersatu-
rated particles of a magnetic dipole m oriented in the y di-
rection such that A�=m /4	.

The magnetic field and force F of a current carrying wire
are shown in Fig. 4�a�. We first analyze the magnetic particle
motion in the presence of a line source at a distance d from
and parallel to the centerline of the flow. In the coordinates

of Fig. 1 F̄mx=0 and F̄mz=−�z̄− d̄�d̄n / �z̄− d̄�n+1= d̄n / �d̄− z̄�n

such that the particle equation of motion �Eq. �6�� is readily
integrated to yield

x̄ − x̄0 =
1

Mnp

�d̄ − z̄�n+1

d̄n

− n2 + z̄2n2 + 2z̄d̄n − 5n + 3nz̄2 − 6 + 2z̄d̄ + 2z̄2 + 2d̄2

�n + 3��n + 2��n + 1�
��

z̄0

z̄

. �22�

In the limit d̄→� the distance �x̄− x̄0� �z̄0=−1
z̄=1 after which all

particles are captured becomes 4 / �3Mnp�. As expected, this
is the same length as in the case of a constant force. Note that
because for saturated particles the magnetization force is lin-
ear in the applied field, several similar terms for different

values of d̄, Mnp, and/or n can be added to the right-hand
side of Eq. �22�. In this way the obtained result can, e.g.,
describe the trajectories of saturated particles in the plane of
symmetry of the configuration studied in Ref. �24�. Orienting
a line source perpendicular to the flow

Fm = − d̄n x̄x̂ + �z̄ − d̄�ẑ

�x̄2 + �z̄ − d̄�2��n+1�/2
, �23�

such that the particle equation of motion �Eq. �6�� becomes

dx̄

dz̄
=

x̄

z̄ − d̄
−

�x̄2 + �z̄ − d̄�2��n+1�/2

Mnpd̄n�z̄ − d̄�
�1 − z̄2� . �24�

To solve Eq. �24� we introduce the angle � shown in Fig.
1. This is the same approach as that followed in Ref. �5� for

4

0

-4

-2 -1 0 1

(x)
(y)
(z)

-8

log2
M(-∞,x)d6

C

x

FIG. 7. log2�M�−� , x̄�d̄6 /C� for a magnetic dipole orientation
in the x, y, and z directions.
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the particular case of n=5. Changing coordinates from x̄ to
�=arctan −x̄

z̄−d̄
, Eq. �24� becomes

�z̄ − d̄�2

�cos2��
d�

dz̄
=

1 − z̄2

Mnpd̄n
��z̄ − d̄�2�tan2�� + �z̄ − d̄�2��n+1�/2.

�25�

Using 1+tan2 �=cos−2 � this can be written as

d�

dz̄
=

1

Mnpd̄n

�z̄ − d̄�n−1�1 − z̄2�
�cos ��n−1 . �26�

In terms of the radial coordinate r̄= �d̄− z̄� /cos � this
equation can be written as

1

r̄

dz̄

d�
=

MnpF̄m

1 − z̄2 . �27�

We note that this relation could also have been obtained in
a different way, from Fig. 8. From Eq. �4� we know that the
particle velocity up is given by the sum of the fluid velocity
u f and the magnetic velocity um=Fm /3	�D. This is in the
same direction as the vector spanned by the resulting particle
displacements dz̄ẑ in the z direction and r̄d��̂ tangential to
the force such that dz̄ /rd�=um /uf =Fm /3	�Duf and Eq.
�27� follows.

Equation �26� can be integrated to yield

Mnpd̄�
�i

�

�cos ���n−1d�� = −
1

d̄n−1

�z̄ − d̄�n

�n + 2��n + 1�n
�− n2 + n2z̄2

+ 2z̄d̄n − 3n + nz̄2 + 2d̄2 − 2��z̄i

z̄ f .

�28�

Performing the integration on the left-hand side and solv-
ing for z̄ yields an exact solution to Eq. �6� for the particle
trajectories z̄���. To obtain �l from Eq. �28�, one inserts the
limits �i=−	 /2 and �=	 /2 and seeks for a solution to the
resulting algebraic equation satisfying −1 z̄1. The inte-
gral of Eq. �28� can then be written as

�
−	/2

	/2

�cos ���n−1d�� = �	

�
n

2
�

�
n

2
+

1

2
� = B
n

2
,
1

2
� . �29�

The beta function �25� B�n /2,1 /2� is plotted in Fig. 9.
The values of B�n /2,1 /2� for n=2, 3, 4, 5, 6, and 7 are

given by 2, 	 /2, 4/3, 3	 /8, 16/15, and 5	 /16, respectively.
Note that, using Eq. �27�, the solution method deployed here
can be used for any radial force that can be written as a
product of a function of r and a function of �.

Although the exact analytical result of Eq. �28� contains
all the information on the particle trajectories, we take the

approach of the previous section and investigate the limit d̄


1. In this limit, the force in the z direction becomes F̄mz

= d̄n+1 / �x̄2+ d̄2��n+1�/2. Changing coordinates we find for

M�=Mnp�−�
� F̄mz�x̄�dx̄

M� = Mnpd̄�
−	/2

	/2

�cos ���n−1d�� = B
n

2
,
1

2
�Mnpd̄ .

�30�

This quantity is displayed in Fig. 9. The approximation
�l=�M� /2 of Eq. �12� yields

�l =
1

2
�B
n

2
,
1

2
�Mnpd̄, M � 1 � d̄ . �31�

In Fig. 10 a comparison is made between the exact cap-
ture efficiency �l from Eq. �28� and the approximation �l

=�M� /2 for the specific case of n=5 and d̄=80 /7. Note

that because in the limit d̄
1 the force becomes independent
of z̄, the capture efficiency in this case becomes symmetric
around �l=1 /2. Due to the increasing magnetization force

with increasing z̄, however, the exact result for d̄=80 /7,

uf

umdzz

rdγγ

magnetic source

up

γγ

FIG. 8. A schematic diagram showing the direction in which a
magnetic particle moves in a radial magnetization force.

M∞

Mnpd

1.0

1.2

1.4

1.6

1.8

2.0

2 3 4 5 6 7
n

FIG. 9. M� /Mnpd̄=B�n /2,1 /2� for a power-law force

Fm=−�d̄ / r̄�nr̂.
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d » 1
½√M∞ηl
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FIG. 10. The capture efficiency �l for a force Fm=−�d̄ / r̄�nr̂,

with n=5 and d̄=80 /7 as calculated from the exact solution to the

particle equations of motion, the result valid for d̄
1, and the ap-

proximation �l=
1
2
�M�= 1

2
�3	Mnpd̄ /8 valid for M��1� d̄.
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shown in Fig. 10, still shows some asymmetry.

IV. CONVERSION TO CYLINDRICAL GEOMETRY

So far a two-dimensional flow in the x direction has been
considered with a velocity magnitude that varies paraboli-
cally in the z direction. This includes the steady laminar flow
between two parallel plates u�z̄�=3�u��1− z̄2� /2 but also the
flow in a specific ȳ= ȳ1 plane of a cylindrical channel for
which u�ȳ , z̄�=2�u��1− ȳ2− z̄2�. By rewriting this for ȳ= ȳ1 as
u�ȳ1 , z̄�=2�2�u��1− �z̄ /��2�, with �=�1− ȳ1

2, the flow veloc-
ity is manifestly parabolic in the z direction for −� z̄�
with a peak flow velocity 2�u��2. When particle motion in
the y direction can be neglected, particles traverse a para-
bolic flow profile in the transverse direction. In this case

expressions obtained for the capture efficiency �l�Mnp , d̄� in
two dimensions can be used to determine the capture effi-

ciency �cyl	�cyl�Mnp , d̄� for particles inserted homoge-
neously distributed in a cylindrical domain. This can be
done, e.g., for a line source oriented in the y direction, for
which there is no particle magnetization force in the y direc-
tion. For a localized source at ȳ=0 generally a force in the y
direction exists for nonzero ȳ. This force however becomes
negligible compared to the force in the z direction when the

source is placed far away from the flow, i.e., for d̄
1. In the
remainder of this section it will be assumed that the particle
motion in the y direction can be neglected. Integrating the
line capture efficiency �l over a cross section and dividing
by the corresponding area

�cyl =
1

	
�

−1

1

�l
 Mnp

1 − ȳ2 ,
d̄

�1 − ȳ2�2�1 − ȳ2dȳ , �32�

where Mnp and d̄ have been rescaled with the lower peak
velocity and channel height for nonzero ȳ. Next we evaluate

Eq. �32� for �l	�l�Mnp , d̄�=cMnp
�d̄�, which was, for ex-

ample, shown to be a valid parametrization with �=�=1 /2

for M�1� d̄. With �l�Mnp / �1− ȳ2� , d̄ /�1− ȳ2�=�l / �1
− ȳ2��+�/2 and realizing that the capture efficiency exceeds 1
for ȳ2�1−�l

1/��+�/2�	 ȳc
2

�cyl =
4

	
�

0

1

min
 �l

�1 − ȳ2��+�/2 ,1��1 − ȳ2dȳ

=
4�l

	
�

0

ȳc

�1 − ȳ2��1−2�−��/2dȳ +
4

	
�

ȳc

1
�1 − ȳ2dȳ

�33�

=
4

	��0

ȳc

�l � �1 − ȳ2��1−2�−��/2dȳ −
1

2
ȳc

�1 − ȳc
2

−
1

2
arcsin ȳc� + 1. �34�

When ȳc�1 the integral of Eq. �33� can be evaluated ignor-
ing the fact that �l is restricted to 1, yielding

�cyl � �l

2�� 3
2 − � − �/2�

�	��2 − � − �/2�
=

2�l

	
B
1

2
,� + �/2� . �35�

This provides a valid approximation only when the inte-
grand in Eq. �33� does not diverge too fast, i.e., when 2�
+� is not too large. For �=�=1 /2 this approximation gives
a reasonably small error provided 1− ȳc�1.

V. COMPUTATIONAL RESULTS

Computational simulations in a cylindrical geometry have
been performed to investigate the accuracy of the correction
factors �cyl /�l derived in the previous section and to extend
the obtained analytical results beyond their region of appli-
cability. The analysis of the optimal orientation of a magnetic
dipole for magnetic particle capture is with simulations ex-

tended to d̄=O�1�. Finally the capture efficiency for the mag-
netic field of a circular current loop is investigated.

The simulations have been performed, using commercial
fluid dynamics software FLUENT 6.0 �Fluent Inc., Lebanon,
NH�. The fully developed laminar flow of a Newtonian fluid
has been simulated in a cylindrical domain, such that a Poi-
seuille flow resulted. A one-way coupled discrete particle
model was used with a drag force �26� that becomes equal to
the Stokes drag force for Rep0.1.

A channel diameter 2h=7 mm, an average flow velocity
�u�=u0 /2=0.1 m /s, a kinematic viscosity �=3.5
�10−6 m2 /s, and density � f =1000 kg /m3 were used, such
that Re=200 and roughly corresponding to a strongly ideal-
ized blood flow in a large artery.

A magnetic source was placed halfway the length of the

channel. By varying its distance to the centerline, d̄ was var-
ied. Particles of various sizes were inserted such that Mnp
was varied. Per particle size nin=266 particles were inserted
homogeneously distributed over the circular inlet. The par-
ticles were assumed to be undersaturated everywhere in the
domain.

The source strength in all simulations was chosen such
that for a particle with D=0.5 �m and �=3, a value of
Mnp=1 /2 resulted. The particle diameters were successively
halved to yield diameters ranging from D=1 /2 �m to
�1 /2�8 �m�3.9 nm corresponding to values of Mnp rang-
ing from Mnp=1 /2 to �1 /2�15. By counting the number of
particles nout leaving the domain through the outlet, the cap-
ture efficiency �	�nin−nout� /nout as a function of both Mnp

and d̄ was obtained for several magnetic field configurations.
The domain was chosen large enough to ensure a negli-

gible magnetization force at both the inlet and the outlet.
This was confirmed by observing no change in capture effi-
ciency when the domain size was increased.

A. Comparison with analytical results

First we consider simulations with d=4 cm such that d̄
	d /h�11.4 and the particle displacement in the y direction
is small compared to the displacement in the z direction. In
this case the correction factors �cyl /�l of Sec. IV can be used
to approximately convert the analytical results obtained in
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two dimensions to the three-dimensional cylindrical domain.
First we look at a power-law source for which an exact ana-
lytical solution to the particle equation of motion has been
obtained in Sec. III C. Figure 11 compares �l obtained from
Eq. �28� with data from the simulations for n=3 and n=5. It
can be seen that �l severely underestimates the capture effi-
ciency. This was expected from the fact that �l gives the
fraction of particles captured with ȳ=0, where both the fluid
velocity and the distance to the upper wall is largest of all
values of ȳ. In Fig. 11 also �cyl is displayed, which is ob-
tained using the correction of Eq. �34� with �=�=1 /2. After
this correction, good correspondence is obtained with the
computational results. The remaining differences can be at-

tributed to the fact that the parametrization �l=cMnp
�d̄�, with

�=�=1 /2 used in the correction �cyl /�l, is only valid for

d̄
1 and M�1.
The correction factor �cyl /�l that is used in Fig. 11 is

plotted in Fig. 12 along with the approximation of Eq. �35�
2B�1 /2,3 /4� /	=4�2��3 /4�2 /	3/2�1.53 for 1− ȳc�1. The
two correction factors approach each other in the limit Mnp
→0, for which ȳc→1.

A similar comparison between the analytical result and
simulations has been performed for various orientations of a
magnetic dipole. The results are shown in Fig. 13. The ana-
lytical result used for the capture efficiency was obtained

using the expression for M� of Eq. �16� valid for d̄
1.

B. Varying the source distance

Simulations with the source distance varying from d
=4 mm, 5 mm, 1 cm, 2 cm to 4 cm, with h=3.5 mm yielded

d̄=d /h=8 /7, 10/7, 20/7, 40/7, and 80/7. From the results of

these simulations, performed for several different magnetic
fields, the capture efficiency was found to be parametrized
quite effectively by a power of Mnp, i.e.,

� = gMnp
q , �36�

with g and q functions of d̄. Using only data points corre-
sponding to 0.04�0.96, at least four data points re-
mained per simulation which had a �Pearson product-
moment� correlation r�0.997 with the fit of Eq. �36�. It
should be noted that by our choice of successively halving
the particle diameters, linearly the data points are unevenly
distributed between 0�1 with a higher density for
smaller values of �.

In Fig. 14 the result of the fit of Eq. �36� for the prefactor

g�d̄� and exponent q�d̄� are displayed for various power-law
forces: a current carrying wire �line source with n=3�, a
cylinder magnetized perpendicular to its axis �line source
with n=5�, and a magnetic monopole �point source with n

=5�. The first thing to note is that the exponent q�d̄� tends to

a value of 1/2 for d̄
1 in accordance with the theory devel-

oped in Sec. III A. More interestingly, for smaller values of d̄
the exponent q is lower than this asymptotic value. In this
case more than a magnetization force quadrupling is needed
to double the capture efficiency. This is due to the fact that
for a more than linearly decaying force strength, a doubling
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FIG. 11. The capture efficiency � for �a� a current carrying wire
�power-law force with n=3� and �b� a magnetized cylinder �power-

law force with n=5� obtained computationally with d̄=80 /7 is
compared with �l from the two-dimensional exact analysis and �cyl

corrected for the cylindrical geometry.
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d̄=80 /7� compared to the approximation 2B�1 /2,3 /4� /	 for
1− ȳc�1.
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of the force does not double the distance over which the
force is larger than a certain value. The prefactor g�d̄� was

found to be an increasing function of d̄, which can be ex-
plained by the increasing extent over which the magnetiza-

tion force acts with increasing d̄.
The curves for a magnetic monopole and a magnetized

cylinder, a point source with n=5 and a line source with n
=5, respectively, closely resemble each other. For any spe-
cific value of Mnp however the capture efficiency is slightly
higher for the latter magnetic source. This can be explained
by the fact that the distance particles travel toward the wall is
for a point source everywhere equal to or larger than for a
line source, for which there is no particle motion in the y
direction.

In Ref. �5� a fit ��Mnp
0.45 is made of the exact analytical

result �Eq. �28�� for a power-law force with n=5 and d̄=3.
The value q=0.45 is close to that obtained in our simula-
tions, as can be seen from Fig. 14. In Ref. �13� an advection-
diffusion equation is solved for the particle concentration

using the same magnetic force. For d̄=1.1 the obtained cap-
ture efficiency can be fitted by ��Mnp

0.27, corresponding
quite well with our result in Fig. 14.

For a magnetic dipole, the results of the parametrization
of Eq. �36� are displayed in Fig. 15. Again we note that for a
dipole of the same magnetic moment, the value of Mnp for
the z orientation is four times higher than that of the x and y
orientations of the dipole. Taking this into account we see
that more particles are captured for a z orientation than for an
x orientation. For an x orientation in turn, the capture effi-
ciency is higher than for a y orientation. The computational
results therefore show that the conclusion obtained in Sec.

III B for d̄
1 continues to hold for values of d̄=O�1�.
A dipole orientation toward the flow was also used in the

experiments reported in Ref. �7�, involving a rectangular

flow domain. Particles moving from the channel wall oppo-
site the wall closest to the dipole traverse an approximately
parabolic flow profile such that, for high capture efficiencies,
it should be possible to make a comparison with the present
work. Above ��20% an approximate dependence �

�Mnp
0.48 is reported for d̄=1.75 �7�. Figure 15 shows for a z

dipole a somewhat smaller value of q�0.32. It should how-
ever be noted that reported deviation from a pure magnetic
dipole field and the rectangular geometry make an accurate
comparison difficult.

Finally, the particle motion in the magnetic field of a cir-
cular current loop was investigated computationally. An ana-
lytical expression for the magnetic field �27� was used to
calculate the associated magnetization force. Both the field
and the force on an undersaturated particle are shown in Fig.
4�c�. A loop radius of a=1 cm was used, yielding ā	a /h
=20 /7. This extra geometrical parameter and the direction of
the loop normal oriented in the z direction were not varied.
Interesting to note from the results of the parametrization of

Eq. �36�, displayed in Fig. 16, is the initial decrease in g�d̄�
with d̄. This is due to the spatial distribution of the magne-
tization force of a circular current loop. By moving the loop
away from the channel while keeping Mnp constant, the spa-
tial extent over which the force acts on the particles in-
creases. The fringe fields very close to the loop, shown in
Fig. 4, however die out much faster than the field along the
symmetry axis through the loop. Initially this latter effect

decreases the capture efficiency. For larger values of d̄ the
former effect increases the efficiency again. Because the spa-
tial extent of these fringe fields is of the order of the loop
radius a, this would predict for fixed Mnp a minimum cap-

ture efficiency for d̄=O�ā�, which can indeed be observed

from Fig. 16. Decreasing d̄ from ā to 0.4ā in the simulations,
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FIG. 14. The computational result of the parametrization
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the value of Mnp needed to capture the same fraction of
particles decreased by significantly a factor of approximately
3. A similar effect might be relevant when using electromag-
nets or superconducting magnets for particle capture.

VI. CONCLUDING REMARKS

Under the assumption of small particle Reynolds numbers
and negligible gravitational and lift forces, the velocity of a
spherical magnetic particle in a flow with velocity u f under
the influence of a magnetization force Fm can be written up
=u f +Fm /3	�D=u f +u0MnpFm. For a flow in the x direction
which varies parabolically in the z direction, this particle
equation of motion was solved for a force in the transversal z
direction only depending on the streamwise x̄ coordinate,

i.e., Fm= F̄m�x̄�ẑ. In terms of the quantity M=Mnp�F̄mdx̄ the
particle capture efficiency was found to be approximated by

� =
1

2
�M, M � 1. �37�

This result shows that a four times higher magnetization
force or a four times smaller drag force is required to double
the capture efficiency, in agreement with various reported
experimental and computational results �5,7,9,10�. The
square-root behavior of Eq. �37� was found to be a conse-
quence of the fact that the flow velocity initially increases
linearly with the distance from the wall. Because this holds
for almost any flow, the result applies very generally. For a

relative magnetic source distance d̄
1 the magnetization
force in the channel can often be approximated by Fm

= F̄mz�x̄�ẑ, making the obtained result valuable for various

magnetic fields. For d̄
1 the most relevant contribution to
the magnetic field is generally a dipole term, which was in-
vestigated analytically. It was found that an orientation of the
dipole moment toward the flow yields the highest capture

efficiency. An exact solution for all d̄ was obtained for the
particle motion in a radial magnetic field, applicable to, e.g.,
the field of a current carrying wire and a uniformly magne-
tized cylinder.

Under the assumption of negligible particle displacement
in the y direction a correction factor was constructed to con-
vert the capture efficiency from a planar to a cylindrical ge-
ometry. Using this correction good correspondence was ob-

tained for d̄
1 between the analytical results and
computational simulations in a cylindrical geometry. From
these simulations, the capture efficiency was found to be
effectively parametrized by �=gMnp

q, where g and q are the

functions of the relative magnetic source distance d̄. For d̄

1 the exponent q was found to be approximately 1/2. Be-
cause mostly data points for low capture efficiencies have
been used in these fits, this confirms the result of Eq. �37�.
For all investigated magnetic field configurations, q was

found to be below 1/2 for smaller values of d̄ due to the more
than linear decay with distance of the associated magnetiza-
tion forces. The prefactor g was found to be an increasing

function of d̄. This can be attributed to the increasing spatial
extent over which the magnetization force acts with increas-

ing d̄. For a circular current loop, however, g was found to
have a minimum at d roughly corresponding to the loop ra-
dius due to rapidly decaying fringe fields close to the loop.
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