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Transient analysis of Brownian queues

ABSTRACT
We analyze a single-node network with Brownian input. We first derive an explicit expression for
the joint distribution function of the workloads at two different times, which also allows us to
calculate their covariance and exact large-buffer asymptotics. The nature of these asymptotics
depends on the model parameters, i.e., there are different regimes. By using sample-path large-
deviations (Schilder's theorem) these regimes can be interpreted: we explicitly characterize the
most likely way the buffer fills.
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Abstra
tWe analyze a single-node network with Brownian input. We �rst derive an expli
itexpression for the joint distribution fun
tion of the workloads at two di�erent times, whi
halso allows us to 
al
ulate their 
ovarian
e and exa
t large-bu�er asymptoti
s. The natureof these asymptoti
s depends on the model parameters, i.e., there are di�erent regimes. Byusing sample-path large-deviations (S
hilder's theorem) these regimes 
an be interpreted: weexpli
itly 
hara
terize the most likely way the bu�er �lls. 1

1This resear
h has been funded by the Dut
h BSIK/BRICKS (Basi
 Resear
h in Informati
s for Creating theKnowledge So
iety) proje
t. 1



1 Introdu
tionConsider fB(t) � 
t; t � 0g, where B(t) is a standard Brownian motion, and 
 > 0 is a s
alar.The re
e
tion of fB(t)� 
t; t � 0g at 0 
ould be 
alled a Brownian queue. It is well-known thatthe Brownian queue is a natural model for many 
ow systems, see [10℄. The behavior of a queueunder heavy-traÆ
 
onditions 
an often be approximated by a Brownian queue.In this report we analyze the transient behavior of a Brownian queue. We expli
itly derivethe joint distribution fun
tion P(Q0 > b0; QT > bT ), where Qt is the workload of the queue attime t, and b0; bT � 0. This also allows us to expli
itly 
al
ulate the 
ovarian
e between Q0and QT . By setting b0 = b, bT = �b, and T = 
b, with �; 
 � 0, and letting b ! 1, we alsoobtain exa
t large-bu�er asymptoti
s of the joint distribution fun
tion, i.e., we �nd a fun
tionf(�) su
h that P(Q0 > b;Q
b > 
b)=f(b) ! 1 as b ! 1. It turns out that the nature of theasymptoti
s depends on the value of �, 
, and the servi
e rate of the queue, i.e., there aredi�erent regimes. These regimes 
an be further interpreted relying on S
hilder's sample-pathlarge-deviations theorem. In parti
ular, we obtain the so-
alled most probable path, i.e., themost likely way the bu�er �lls.The Brownian queue was already studied in [1, 2, 3, 10℄. We note that some of the resultsderived in this report already appeared there, but these results were proved in a 
ompletelydi�erent manner.The remainder of the report is organized as follows. In Se
tion 2 we present a des
ription ofthe model, and we brie
y dis
uss S
hilder's sample-path large-deviations theorem. In Se
tion 3we derive an exa
t expression for P(Q0 > b0; QT > bT ), the 
ovarian
e between the workloads,large-bu�er asymptoti
s, and the most probable path. We then exploit these results to obtainsimilar results for P(QT > bT jQ0 = b0) in Se
tion 4. Finally, in Se
tion 5 we further dis
uss ourresults, and identify some open resear
h questions.
2 PreliminariesIn this se
tion we �rst present our queueing model. Subsequently, we dis
uss a large-deviationstheorem that is needed in Se
tions 3.4 and 4.3.
2.1 Queueing modelWe 
onsider a single-node network, with servi
e rate 
 > 0. We assume that the input pro
ess isa standard Brownian motion fB(t); t 2 Rg, with B(0) � 0. This implies that B(s; t) = B(t)�B(s) � N(0; t�s), i.e., the amount of traÆ
 that enters in the interval (s; t℄ is standard Normallydistributed with mean 0 and varian
e t� s. It 
an be veri�ed that �(s; t) := C ov(B(s); B(t)) =minfjsj; jtjg if s; t � 0 or s; t < 0, and �(s; t) = 0 otherwise. Also, let Qt denote the workload attime t, t 2 R . In this report we fo
us on the joint distribution of the workloads at time 0 andtime T > 0. In parti
ular, we derivep(b; T ) := P(Q0 > b0; QT > bT ); (1)with b0; bT � 0, and b = (b0; bT ). In addition, using (1), we also deriveq(b; T ) := P(QT > bT jQ0 = b0):
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2.2 Large deviationsWe 
ontinue with a des
ription of the framework of S
hilder's sample-path LDP (see [6℄, andalso Thm. 1.3.27 of [8℄ for a more detailed treatment). De�ne the path spa
e 
 as
 := �! : R ! R ; 
ontinuous; !(0) = 0; limt!1 !(t)1 + jtj = limt!�1 !(t)1 + jtj = 0� :We note that in [4℄ it was pointed out that B(�) 
an be realized on 
. Then one 
an 
onstru
ta reprodu
ing kernel Hilbert spa
e R � 
, 
onsisting of elements that are roughly as smooth asthe 
ovarian
e fun
tion �(s; �); for details, see [5℄. We start from a `smaller' spa
e R�, de�nedby
R� := (! : R ! R ; !(�) = nXi=1 ai�(si; �); ai; si 2 R ; n 2 N) :

The inner produ
t on this spa
e R� is, for !a, !b 2 R�, de�ned as
h!a; !biR := * nXi=1 ai�(si; �); nXj=1 bj�(sj ; �)

+
R = nXi=1 nXj=1 aibj�(si; sj); (2)

noti
e that this implies h�(s; �);�(�; t)iR = �(s; t). This inner produ
t has the following usefulproperty, whi
h is known as the reprodu
ing kernel property,
!(t) = nXi=1 ai�(si; t) =

* nXi=1 ai�(si; �);�(t; �)
+
R = h!(�);�(t; �)iR:

From this we introdu
e the norm jj!jjR := ph!; !iR. The 
losure of R� under this norm isde�ned as spa
e R. Now we 
an de�ne the rate fun
tion:
I(!) := ( 12 jj!jj2R if ! 2 R;1 otherwise. (3)

As a side remark we mention that the above framework in fa
t holds for a general and versatile
lass of input pro
esses, 
overing a broad range of 
orrelation stru
tures, viz. the 
lass of 
enteredGaussian inputs (A(t); t 2 R ) (whi
h obviously 
overs standard Brownian input). In that 
aseone should set �(s; t) = C ov(A(s); A(t)), s � t. Using (2) and the de�nition of �(s; t) in 
aseof standard Brownian inputs (see Se
tion 2.1), we �nd that, for !(t) = Pni=1 ai�(si; t), withs1 < : : : < sn,12 jj!jj2R = 12 k�1Xi=1 k�1Xj=1 aiaj minfjsij; jsjjg+ 12 nXi=k nXj=k aiaj minfsi; sjg
= 12 Z 0�1(!0(t))2dt+ 12 Z 10 (!0(t))2dt;where k := minfi 2 f1; :::; ng : si � 0g if de�ned, and k := n+1 otherwise. It turns out that (3)is equivalent to

I(!) = ( 12 R1�1(!0(t))2dt if ! 2 R;1 otherwise, (4)
3



in 
ase of standard Brownian inputs (see Thm. 5.2.3 of [7℄).
Theorem 2.1 [S
hilder℄ For standard Brownian inputs the following sample-path large devi-ations prin
iple (LDP) holds:(a) For any 
losed set F � 
,

lim supn!1 1n log P 1n nXi=1 Bi(�) 2 F! � � inf!2F I(!);(b) For any open set G � 
,
lim infn!1 1n log P 1n nXi=1 Bi(�) 2 G! � � inf!2G I(!):

Remark: Theorem 2.1 shows that the LDP 
onsists of an upper and lower bound, whi
h applyto 
losed and open sets, respe
tively. We will use Theorem 2.1 for the open set S, to be de�nedin Se
tion 3.4. It 
an be veri�ed thatinf!2S I(!) = inf!2S I(!);where S is the 
losure of S. The way to prove this is to show that an arbitrarily 
hosen pathin S 
an be approximated by a path in S. This proof is 
ompletely analogously to [14℄ andAppendix A of [12℄.
3 Analysis of p(b; T )In this se
tion we derive the joint distribution fun
tion of the workloads at time 0 and time T ,the 
ovarian
e between these workloads, large-bu�er asymptoti
s, and the most probable pathleading to over
ow.
3.1 Joint distribution fun
tionIn this subse
tion we derive a 
losed-form expression for p(b; T ). It turns out that is easier to�rst 
al
ulate p(b; T ) := P(Q0 � b0; QT � bT ). Let �(�) denote the distribution fun
tion of astandard Normal random variable:�(x) = Z x�1 �(u)du = Z x�1 e�u2=2p2� du: (5)A

ording to Rei
h's formula [15℄,Q0 = supt�0fB(�t; 0)� 
tg and QT = sups�0fB(T � s; T )� 
sg: (6)
Hen
e, p(b; T ) 
an be rewritten asP�supt�0fB(�t; 0)� 
tg � b0; sups�0fB(T � s; T )� 
sg � bT� =
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P(8s; t � 0 : B(�t; 0) � b0 + 
t; B(T � s; T ) � bT + 
s) =P(8s; t � 0 : B(T; t+ T ) � b0 + 
t; B(0; s) � bT + 
s);where the last line is obtained by using time reversibility arguments. Now, 
onditioning on thevalue of B(0; T ), we get that p(b; T ) is equivalent toZ bT+
T�1 P(N(0; T ) = x)P(8s 2 [0; T ) : B(0; s) � bT + 
sjB(0; T ) = x)
P(8t � 0 : 8s � T : B(T; t+ T ) � b0 + 
t; B(0; s) � bT + 
sjB(0; T ) = x)dx:Let us �rst fo
us on the se
ond probability in the integral. Mandjes [11℄ derived thatP(8s 2 [0; T ) : B(0; s) � bT + 
sjB(0; T ) = x) = 1� exp (�2bT 
� 2bT (bT � x)=T ) ;by showing that this probability 
an be expressed in terms of the Brownian bridge after someres
aling. Pro
eeding with the third term in the integral, we �nd thatP(8t � 0 : 8s � T : B(T; T + t) � b0 + 
t; B(0; s) � bT + 
sjB(0; T ) = x) =P(8t � 0 : 8s � T : B(T; T + t) � b0 + 
t; B(T; s) � bT + 
s� x) =P(8s; t � 0 : B(T; T + t) � b0 + 
t; B(T; T + s) � bT + (s+ T )
� x) =P(8s; t � 0 : B(0; t) � b0 + 
t; B(0; s) � bT + (s+ T )
� x) =P(8t � 0 : B(0; t) � minfb0; bT + 
T � xg+ 
t):Exploiting the well-known result that P(8t � 0 : B(0; t) � b + 
t) = 1 � exp(�2b
), we �nally�nd that

P(8t � 0 : B(0; t) � minfb0; bT+
T�xg+
t) = ( 1� exp(�2b0
) if x � bT + 
T � b0;1� exp(�2(bT + 
T � x)
) if x > bT + 
T � b0:
Theorem 3.1 For ea
h b0; bT ; T � 0,p(b; T ) = �� �k1(b; T )�+ e�2bT 
� �k2(b; T )�+ e�2b0
� �k3(b; T )�+ e�2(b0+bT )
� �k4(b; T )� ;wherek1(b; T ) = �bT � 
T � b0pT ; k2(b; T ) = bT � 
T � b0pT ; k3(b; T ) = �bT � 
T + b0pT ; k4(b; T ) = �bT + 
T � b0pT :
Proof: From the above it follows that p(b; T ) equalsZ bT+
T�b0�1 P(N(0; T ) = x)�1� exp��2bT 
� 2bT (bT � x)T �� (1� exp(�2b0
)) dx+Z bT+
TbT+
T�b0 P(N(0; T ) = x)�1� exp��2bT 
� 2bT (bT � x)T �� (1� exp(�2(bT + 
T � x)
)) dx:
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It is a straightforward exer
ise to show that the �rst integral is equal to(1� exp(�2b0
))���bT + 
T � b0pT �� exp(�2bT 
)���bT + 
T � b0pT �� ;whereas the se
ond integral equals1����bT � 
T � b0pT ����bT + 
T � b0pT �+exp(�2bT 
)����bT + 
T � b0pT �+��bT � 
T � b0pT �� 1� :Using the well-known property that P(Qi � bi) = 1� exp(�2bi
), i = 0; T , and that 1��(x) =�(�x), the stated follows fromp(b; T ) = 1� P(Q0 � b0)� P(QT � bT ) + p(b; T ): 2
3.2 Covarian
e fun
tionIn the previous subse
tion we derived a 
losed-form expression for p(b; T ), see Theorem 3.1. Thisresult also allows us to 
al
ulate the 
ovarian
e between Q0 and QT , i.e., C ov(Q0; QT ), whi
hwe present in the next theorem.
Theorem 3.2 For ea
h T � 0,
�(T ) := C ov(Q0; QT ) = ��
2T 22 � T + 12
2��1� �(
pT )�+�(
pT ) 
TpT2 + pT2
 ! : (7)

Proof: First re
all that C ov(Q0; QT ) = EQ0QT � EQ0EQT . Then use the well-known fa
tthat Q0 and QT are both exponentially distributed with mean 1=(2
), i.e., EQ0EQT = 1=(4
2).Hen
e, we are left with EQ0QT . Using Theorem 3.1, we �nd thatEQ0QT = Z 10 Z 10 p(b; T )db0dbT =
�Z 10 Z 10 � �k1(b; T )�db0dbT + Z 10 Z 10 e�2bT 
� �k2(b; T )� db0dbT
+Z 10 Z 10 e�2b0
� �k3(b; T )�db0dbT + Z 10 Z 10 e�2(b0+bT )
� �k4(b; T )� db0dbT :By using (5), inter
hanging the order of integration, and applying integration by parts, straight-forward (though tedious) 
al
ulus yields that
�Z 10 Z 10 � �k1(b; T )�db0dbT = ��T2 + 
2T 22 ��1��(
pT )�+ 
TpT2 �(
pT ); (8)Z 10 Z 10 e�2bT 
� �k2(b; T )� db0dbT = � 12
2 � T2 ��1� �(
pT )�+ pT2
 �(
pT ); (9)Z 10 Z 10 e�2b0
� �k3(b; T )� db0dbT = � 12
2 � T2 ��1� �(
pT )�+ pT2
 �(
pT ); (10)Z 10 Z 10 e�2(b0+bT )
� �k4(b; T )�db0dbT = �T2 � 14
2��1� �(
pT )�+ 14
2�(
pT )�pT2
 �(
pT ): (11)
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Adding up (8), (9), (10) and (11), and subtra
ting 1=(4
2) yields the stated. 2First note that �(0) = Var(Q0) = 1=(4
2), i.e., the varian
e of an exponentially distributedvariable with mean 1=(2
), as required. Also, note that limT!1 �(T )! 0 as expe
ted, i.e., Q0and QT be
ome independent as T !1. The following proposition summarizes three propertiesof �(�). This proposition implies that (1� �(�)) is a distribution fun
tion on [0;1).
Proposition 3.3 �(�) is non-in
reasing, 
onvex and non-negative on [0;1).
Proof: �(T ) is non-in
reasing on [0;1) if �0(T ) � 0, i.e.,� �1 + 
2T � �1� �(
pT�+ 
pT��
pT� � 0;whi
h is equivalent to��
pT�1� ��
pT� � 
pT + 1
pT : (12)
Likewise, �(T ) is 
onvex on [0;1) if �00(T ) � 0, i.e.,�
2 �1� �(
pT�+ 
pT ��
pT� � 0;or equivalently,��
pT�1� ��
pT� � 
pT : (13)
Re
alling the standard equality (see page 5 of [13℄)1x+ 1=x�(x) � 1��(x) � 1x�(x);it is easily seen that both (12) and (13) hold. The non-negativity of �(T ) follows from the fa
tthat �(T ) is non-in
reasing and limT!1 �(T )! 0. 2The next proposition presents the exa
t asymptoti
s of �(T ). We denote f(x) � g(x) whenf(x)=g(x)! 1 if x!1.
Proposition 3.4 If T !1,�(T ) � 4
5TpT ��
pT� : (14)
Proof: First use that(1��(g(x))) � � 1g(x) � 1(g(x))3 + 3(g(x))5 � 15(g(x))7��(g(x)) (15)
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if g(x) is in
reasing and x!1. Using (15) and Theorem 3.2, it 
an then be veri�ed that
�(T ) �  4
5TpT + 1612
7T 2pT � 712
9T 3pT !��
pT� � 4
5TpT ��
pT� :We note that the 
orre
t exa
t asymptoti
s of �(T ) are not obtained, if one uses an approximationof (1� �(g(x))) that is less a

urate than (15). 2Remark: The 
orrelation 
oeÆ
ient between Q0 and QT is given by�(T ) := C or(Q0 ; QT ) = C ov(Q0 ; QT )pVar(Q0)pVar(QT ) = 4
2�(T ); (16)

as both Q0 and QT are exponentially distributed with mean 1=(2
). Note that �(0) = 1 andlimT!1 �(T ) ! 0. Due to (16), we also have that �(T ) is non-in
reasing, 
onvex and non-negative on [0;1), and that�(T ) � 16
3TpT ��
pT� :Hen
e, the exponential de
ay rate of both �(T ) and �(T ) equals �
2T � =2.We note that Theorem 3.2 and Propositions 3.3-3.4 already (partly) appeared (for �(T ),instead of �(T )) in [3℄. However, we note that our derivations are 
ompletely di�erent 
omparedto the ones presented in [3℄. We rely on Rei
h's formula to obtain the results, whereas [3℄ doesnot use this formula.
3.3 Exa
t large-bu�er asymptoti
sIn this subse
tion we derive the exa
t asymptoti
s of p(b; T ). De�ne �(x) := �p2�x��1 exp(�x2=2).We �rst present the following lemma.
Lemma 3.5 Let b0 = b, bT = �b and T = 
b, with �; 
 � 0. If b!1, then�(k1(b; T )) � ��(k1(b; T ));

�(k2(b; T )) � 8><>: ��(k2(b; T )) if � < 1 + 

;1=2 if � = 1 + 

;1 otherwise;
�(k3(b; T )) � 8><>: ��(k3(b; T )) if � > 1� 

;1=2 if � = 1� 

;1 otherwise;
�(k4(b; T )) � 8><>: ��(k4(b; T )) if � > 

 � 1;1=2 if � = 

 � 1;1 otherwise:
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Proof: First determine for whi
h values of bT =b0 = �, ki(b; T ), i 2 f1; 2; 3; 4g, is positive ornegative. Note that k1(b) is always negative. Hen
e, we obtain 1 + 

, 1 � 

 and 

 � 1 as
riti
al values from ki(b), i = 2; 3; 4, respe
tively. Next use the fa
t that �(�u) � �(u) and�(u) � 1 as u!1. Observe that �(0) = 1=2. 2We remark that the ��(ki(b; T ) terms in Lemma 3.5 are all positive, as �(ki(b; T ) is negativein the listed 
ases, i = 1; : : : ; 4. De�ne
(b; T ) := 2b0
+ (�bT � 
T + b0)22T :
Theorem 3.6 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 > 1. For b!1,

p(b; T ) �
8>>>>>>><>>>>>>>:

e�2(b0+bT )
 if 0 � � < �p

 � 1�2 ;�1� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�2(b0+bT )
 if � = �p

 � 1�2 ;�� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�
(b;T ) if �p

 � 1�2 < � < 1 + 

;�12 � 1p2�k3(b;T )� e�2bT 
 if � = 1 + 

;e�2bT 
 if � > 1 + 

:
Proof: We only prove the last statement, as the other four statements follow in a similar way.We have to prove thatp(b; T )e2bT 
 ! 1 as b!1; for � > 1 + 

:From Lemma 3.5 we obtain that for � > 1 + 

,�(k1(b; T )) � ��(k1(b; T )); �(k2(b; T )) � 1;�(k3(b; T )) � ��(k3(b; T )); �(k4(b; T )) � ��(k4(b; T )):Now straightforward 
al
ulus shows that, as b!1,�(k1(b; T )) = o�e�2bT 
� ;and the same applies for �(k3(b; T ))e�2b0
 and �(k4(b; T ))e�2(b0+bT )
. With �(k2(b; T )) � 1,Theorem 3.1 implies the stated. 2The following two theorems 
an be proven in a similar fashion as Theorem 3.6.
Theorem 3.7 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 = 1. For b!1,

p(b; T ) �
8>>>><>>>>:

e�2b0
 if � = 0;�� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�
(b;T ) if 0 < � < 1 + 

;�12 � 1p2�k3(b;T )� e�2bT 
 if � = 1 + 

;e�2bT 
 if � > 1 + 

:
9



Theorem 3.8 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 < 1. For b!1,
p(b; T ) �

8>>>>>>><>>>>>>>:
e�2b0
 if 0 � � < 1� 

;�12 � 1p2�k2(b;T )� e�2b0
 if � = 1� 

;�� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�
(b;T ) if 1� 

 < � < 1 + 

;�12 � 1p2�k3(b;T )� e�2bT 
 if � = 1 + 

;e�2bT 
 if � > 1 + 

:3.4 Most probable pathIn the previous subse
tion it was shown that the nature of the large-bu�er asymptoti
s stronglydepends on the model parameters � and 
, i.e., there are di�erent regimes. In this subse
tionwe will interpret these regimes by exploiting well-known sample-path large deviations results.S
hilder's theorem implies that the exponential de
ay rate of the joint over
ow probability is
hara
terized by the path that minimizes the de
ay rate. Among all paths su
h that the queueex
eeds b0 and bT at time 0 and T respe
tively, this is the so-
alled most probable path (MPP):informally speaking, given that this rare event o

urs, with overwhelming probability (b0; bT ) isrea
hed by a path `
lose to' the MPP.In order to apply `S
hilder', we feed the single-node network by n i.i.d. standard Browniansour
es. The link rate and bu�er thresholds are also s
aled by n: n
, nb0 and nbT , respe
tively.Using (6), pn(b; T ) 
an be expressed as

P 1n nXi=1 Bi(�) 2 S! ;
whereS := ff 2 
j9s; t � 0 : �f(�t) > b0 + 
t; f(T )� f(T � s) > bT + 
sg :From `S
hilder' it follows thatJ(b; T ) := � limn!1 1n log pn(b; T ) = inff2S I (f ):As mentioned in the remark of Se
tion 2.2, we 
an repla
e `>' by `�' in S, without any impa
ton the de
ay rate.De�neU := ff 2 
j9t � 0 : �f(�t) > b0 + 
tg ;V := ff 2 
j9s � 0 : �f(T � s) > b0 + 
sg :Note that S � U and S � V , whi
h implies thatJ(b; T ) � inff2U I(f); (17)

J(b; T ) � inff2V I(f): (18)
10



From the above it follows that if the MPP in U is also 
ontained in set S, then there is equalityin (17), and likewise, if the MPP in V is also 
ontained in set S, then there is equality in (18).In [4℄ it was shown that the MPP in U is given by, for r 2 [�b0=
; 0℄,f�(r) = E (B(r)j �B(�b0=
) = b0 + 
t):Let (Y1; Y2) be bivariate Normally distributed. Now, using that the random variable (Y1jY2 = y),for some y 2 R , is Normally distributed with meanE (Y1 jY2 = y) = EY1 + C ov(Y1; Y2)VarY2 (y � EY2);it 
an be veri�ed that, for r 2 [�b0=
; 0℄,(f�)0(r) = 2
:The MPP is only spe
i�ed in the interval [�b0=
; 0℄, be
ause outside this interval the MPPgenerates traÆ
 with rate 0. Hen
e, this MPP is su
h that the queue starts to build up at time�b0=
 with 
onstant rate 
, giving Q0 = b0. Using (4), we �nd thatI(f�) = 12 b0
 (2
)2 = 2b0
;i.e., the de
ay rate equals 2b0
. The MPP in V has a similar stru
ture as the one above, and itis su
h that that the queue starts to grow at time T �bT=
 with 
onstant rate 
, giving QT = bT .The 
orresponding de
ay rate equals 2bT 
.We are now ready to provide some explanation for ea
h of the regimes of Theorems 3.6-3.8.Let us start with regime � � 1 + 

 in Theorems 3.6-3.8. Using that � = bT =b0 and 
 = T=b0,it is easily seen that this inequality is equivalent to bT � 
T � b0. Consider the MPP in Vmentioned above. Re
all that this MPP is su
h that the queue starts to grow at time T � bT =
.Due to bT � 
T � b0 � 0, it 
an be veri�ed that T � bT =
 � 0. It follows that if � � 1 + 

,then the MPP in V is also 
ontained in S, and therefore it is the MPP in S, i.e., over
ow of thequeue at time T implies over
ow at time 0 without any additional e�ort. The MPP is depi
tedin Figure 1 (top, left). Therefore, we �nd that J(b; T ) is equal to the de
ay rate 
orrespondingto the MPP in V , i.e., 2bT 
.Next 
onsider regime 0 � � � 1� 

 in Theorems 3.7-3.8, or equivalently bT � b0 � 
T . Inthis 
ase one 
an verify that the MPP in set U is also 
ontained in set S, and therefore it is theMPP in S. Thus, over
ow at time 0 implies over
ow at time T without any extra e�ort, andJ(b; T ) is therefore equal to 2b0
 in 
ase 0 � � � 1 � 

. Note that we only see this regime if

 � 1 (as � � 0 by de�nition). The MPP is depi
ted in Figure 1 (top, right).We pro
eed with regime 0 � � � (p

 � 1)2 in Theorem 3.6, or equivalently T � (pb0 +pbT )2=
. Consider the path that is su
h that the queue starts to build up with rate 
 inthe interval (�b0=
; 0℄, empties with rate 
 in the interval (0; b0=
℄, is empty in the interval(b0=
; T � bT =
℄, and is growing again with rate 
 in the interval (T � bT =
; T ℄, i.e., the MPP ofU and V 
ombined. It 
an be veri�ed that this path is 
ontained in set S if 0 � � � (p

�1)2.In Se
tion 3.5 we show that this path is in fa
t the MPP in S in 
ase 0 � � � (p

 � 1)2, butfor the moment assume that this is 
orre
t. Then J(b; T ) 
an be obtained by using (4), andequals 2b0
 + 2bT 
. Clearly, this is no surprise, as the path 
onsists of the MPP of U and V .11
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Figure 1: The most probable storage paths in set S.
Note that this suggests that Q0 and QT behave (almost) independently if, 
ompared to b0 andbT , T is large enough, as may be expe
ted. The MPP is depi
ted in Figure 1 (bottom, left).We now fo
us on the remaining regimes of Theorems 3.6-3.8. Consider the path that is su
hthat the queue starts to build-up with rate 
 in the interval (�b0=
; 0℄, and in the interval (0; T ℄builds-up with rate (bT � b0)=T . Clearly, this path yields Q0 = b0 and QT = T , and is thus
ontained in S. In Se
tion 3.5 we show that this is path is in fa
t the MPP. Assuming thatthis is the 
ase, J(b; T ) is obtained by using (4), and equals 
(b; T ). The MPP is depi
ted inFigure 1 (bottom, right).The following two theorems summarize the above mentioned.Theorem 3.9 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 > 1. Then it holds that

J(b; T ) � 8><>: 2(b0 + bT )
 if 0 � � � �p

 � 1�2 ;
(b; T ) if �p

 � 1�2 < � < 1 + 

;2bT 
 if � � 1 + 

:
Theorem 3.10 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 � 1. Then it holdsthat

J(b; T ) � 8><>: 2b0
 if 0 � � � 1� 

;
(b; T ) if 1� 

 < � < 1 + 

;2bT 
 if � � 1 + 

:3.5 Dis
ussionUsing Theorems 3.6-3.8 also the logarithmi
 large-bu�er asymptoti
s follow dire
tly. ComparingTheorems 3.6-3.8 with Theorems 3.9-3.10, we �nd that the logarithmi
 large-bu�er and loga-12



rithmi
 many-sour
es asymptoti
s mat
h. Indeed, sin
e we assumed that in the many-sour
esframework the standard Brownian sour
es are i.i.d., and be
ause a standard Brownian motion is
hara
terized by independent in
rements they should mat
h, see for instan
e Example 7.4 of [9℄.This implies that the paths depi
ted in Figure 1 ((bottom, left) and (bottom, right)) are in fa
tMPPs in set S.In the analysis we assumed that the input pro
ess was a standard Brownian motion, i.e., nodrift and v(t) = t. We now show how the results 
an be extended to general Brownian input,whi
h have drift � > 0 and varian
e v(t) = �t, � > 0. Clearly, we should have that 
 > � > 0 toensure stability. We denote the input pro
ess of a general Brownian motion by fB�(t); t 2 Rg.Note that B�(s; t) = N(�(t � s); �(t � s)) = �(t � s) +p�N(0; t � s) = �(t � s) +p�B(s; t).This implies thatQ�0 = supt�0fB�(�t; 0)� 
tg = supt�0fp�B(�t; 0)� (
� �)tg = p� supt�0 �B(�t; 0)� 
� �p� t� ;
Q�T = sups�0fB�(T�s; T )�
sg = sups�0fp�B(T�s; T )�(
��)sg = p� sups�0 �B(T � s; T )� 
� �p� s� :Hen
e, in order to generalize the results of this se
tion, it follows that we have to set 
  (
 � �)=p� and bi  bi=p�, i = 0; T there. In addition, in order to generalize the results ofSe
tion 3.2 on the 
ovarian
e, we also need to multiply the right-hand side of (7) and (14) byp�p� = �. The results on the 
orrelation 
oeÆ
ient 
an be generalized in similar way.
4 Analysis of q(b; T )In the previous se
tion we derived an 
losed-form expression for p(b; T ), large-bu�er asymptoti
s,and the most probable paths to over
ow. In this se
tion we fo
us on q(b; T ), and we derive similarresults by exploiting the results of the previous se
tion.
4.1 Conditional distribution fun
tionIn this subse
tion we derive an exa
t expression for q(b; T ). With mild abuse of notation, wealso write qf (b; T ) := ��p(b; T )=�b0 = P(Q0 = b0; QT > bT ).
Theorem 4.1 For ea
h b0; bT ; T � 0,q(b; T ) = � �k3(b; T )�+ exp(�2bT 
)� �k4(b; T )� :
Proof: We have that

q(b; T ) = P(Q0 = b0; QT > bT )P(Q0 = b0) = qf (b; T )2
e�2b0
 ;
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as the workload Q0 is exponentially distributed with mean 1=(2
). As mentioned, qf (b; T ) 
anbe obtained by deriving ��p(b; T )=�b0, with p(b; T ) as in Theorem 3.1. This yieldsqf (b; T ) = � 1pT �(k1(b; T )) + 1pT e�2bT 
�(k2(b; T )) +2
e�2b0
�(k3(b; T ))� 1pT e�2b0
�(k3(b; T )) +2
e�2(b0+bT )
�(k4(b; T )) + 1pT e�2(b0+bT )
�(k4(b; T )):Straightforward 
al
ulus also shows that12
e�2b0
pT e�2(b0+bT )
�(k4(b; T ))� 12
e�2b0
pT �(k1(b; T )) = 0;and 12
e�2b0
pT e�2bT 
�(k2(b; T ))� 12
e�2b0
pTe�2b0
�(k3(b; T )) = 0;whi
h proves the stated. 2We note that Harrison [10℄ also obtained Theorem 4.1. However, q(b; T ) was derived in a
ompletely di�erent manner. In [10℄ the author �rst 
al
ulated the joint distribution of BT � 
Tand maxt2[0;T ℄fBt � 
tg using Martingales, and used this to derive q(b; T ).4.2 Exa
t large-bu�er asymptoti
sIn this subse
tion we derive the exa
t asymptoti
s of q(b; T ). The proof of the following threetheorems is similar to the proof of Theorem 3.6. We omit the proofs. De�neÆ(b; T ) := (�bT � 
T + b0)22T = 
(b; T )� 2b0
:
Theorem 4.2 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 > 1. For b!1,

q(b; T ) � 8>><>>:
e�2bT 
 if 0 � � < (p

 � 1)2;�1� 1p2�k3(b;T )� e�2bT 
 if � = (p

 � 1)2;� 1p2�k3(b;T )e�Æ(b;T ) if � > (p

 � 1)2:

Theorem 4.3 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 = 1. For b!1,q(b; T ) � ( 1 if � = 0;� 1p2�k3(b;T )e�Æ(b;T ) if � > 0:
Theorem 4.4 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 < 1. For b!1,

q(b; T ) � 8><>: 1 if 0 � � < 1� 

;1=2 if � = 1� 

;� 1p2�k3(b;T )e�Æ(b;T ) if � > 1� 

:
14



4.3 Most probable pathWe 
an interpret the di�erent regimes of the asymptoti
s of q(b; T ) by using S
hilder's theorem.To this end, we feed the single-node network by n i.i.d. standard Brownian sour
es. The linkrate and bu�er thresholds are also s
aled by n: n
, nb0 and nbT , respe
tively. LetK(b; T ) := � limn!1 1n log qn(b; T ):The following two theorems present the logarithmi
 many-sour
es asymptoti
s of q(b; T ). Theproofs are similar to the ones in Se
tion 3.4, and therefore we omit the proofs.
Theorem 4.5 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 > 1. Then it holds that

K(b; T ) � ( 2bT 
 if 0 � � � �p

 � 1�2 ;Æ(b; T ) if � > �p

 � 1�2 :
Theorem 4.6 Let b0 = b, bT = �b, T = 
b, with �; 
 � 0. Suppose 

 � 1. Then it holds that

K(b; T ) � ( 0 if 0 � � � 1� 

;Æ(b; T ) if � > 1� 

:The MPPs asso
iated with Theorems 4.5-4.6 are 
losely related to the ones depi
ted inFigure 1, however, now only de�ned on the interval (0; T ℄. The MPP 
orresponding to regime� > (p

 � 1)2 in Theorem 4.5 and regime � > 1� 

 in Theorem 4.6 is depi
ted in Figure 1(bottom, right). The MPP asso
iated with regime 0 � � � 1� 

 in Theorem 4.4 is depi
tedin Figure 1 (top, right). In this regime K(b; T ) = 0, be
ause Q0 = b0 implies that QT � bTwithout additional e�ort. For regime 0 � � � (p

 � 1)2 in Theorem 4.5 the 
orrespondingMPP is illustrated in Figure 1 (bottom, left). Using (4), we �nd that these MPPs indeed yieldTheorems 4.5-4.6.By 
omparing Theorems 4.2-4.4 with Theorems 4.5-4.6, it is not hard to see that the logarith-mi
 large-bu�er and logarithmi
 many-sour
es asymptoti
s of q(b; T ) mat
h, as was expe
ted.Similar to Se
tion 3.5, the results in this se
tion 
an be extended to general Brownian input bysetting 
 (
� �)=p� and bi  bi=p�, i = 0; T there.
5 Con
lusionIn this report we analyzed a single-node network with Brownian input. We derived the jointdistribution fun
tion of the workloads at time 0 and T , the 
ovarian
e between these workloads,the 
onditional distribution fun
tion of the workload at time T given a 
ertain workload at time0, large bu�er asymptoti
s, and the most probable path leading to over
ow.A natural extension of the present work is to analyze the joint over
ow probability in atwo-node tandem queue with Brownian input, where we observe queue I at time 0, and queue IIat time T , i.e., P((QI)0 > b0; (QII)T > bT ). Another future resear
h dire
tion in
ludes extendingthe results to other input pro
esses, e.g., light-tailed L�evy pro
esses.15
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