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Abstract

We analyze a single-node network with Brownian input. We first derive an explicit
expression for the joint distribution function of the workloads at two different times, which
also allows us to calculate their covariance and exact large-buffer asymptotics. The nature
of these asymptotics depends on the model parameters, i.e., there are different regimes. By
using sample-path large-deviations (Schilder’s theorem) these regimes can be interpreted: we
explicitly characterize the most likely way the buffer fills. '
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1 Introduction

Consider {B(t) — ct,t > 0}, where B(t) is a standard Brownian motion, and ¢ > 0 is a scalar.
The reflection of {B(t) —ct,t > 0} at 0 could be called a Brownian queue. It is well-known that
the Brownian queue is a natural model for many flow systems, see [10]. The behavior of a queue
under heavy-traffic conditions can often be approximated by a Brownian queue.

In this report we analyze the transient behavior of a Brownian queue. We explicitly derive
the joint distribution function P(Qqy > by, Q1 > br), where Q; is the workload of the queue at
time ¢, and by, by > 0. This also allows us to explicitly calculate the covariance between Qg
and Q7. By setting bg = b, by = ab, and T = ~b, with o,y > 0, and letting b — oo, we also
obtain exact large-buffer asymptotics of the joint distribution function, i.e., we find a function
f(+) such that P(Qo > b,Q. > vb)/f(b) — 1 as b — oo. It turns out that the nature of the
asymptotics depends on the value of «, v, and the service rate of the queue, i.e., there are
different regimes. These regimes can be further interpreted relying on Schilder’s sample-path
large-deviations theorem. In particular, we obtain the so-called most probable path, i.e., the
most likely way the buffer fills.

The Brownian queue was already studied in [1, 2, 3, 10]. We note that some of the results
derived in this report already appeared there, but these results were proved in a completely
different manner.

The remainder of the report is organized as follows. In Section 2 we present a description of
the model, and we briefly discuss Schilder’s sample-path large-deviations theorem. In Section 3
we derive an exact expression for P(Qo > by, Q1 > br), the covariance between the workloads,
large-buffer asymptotics, and the most probable path. We then exploit these results to obtain
similar results for P(Qr > bp|Qo = bp) in Section 4. Finally, in Section 5 we further discuss our
results, and identify some open research questions.

2 Preliminaries

In this section we first present our queueing model. Subsequently, we discuss a large-deviations
theorem that is needed in Sections 3.4 and 4.3.

2.1 Queueing model

We consider a single-node network, with service rate ¢ > 0. We assume that the input process is
a standard Brownian motion {B(t),t € R}, with B(0) = 0. This implies that B(s,t) = B(t) —
B(s) ~ N(0,t—s), i.e., the amount of traffic that enters in the interval (s, ¢] is standard Normally
distributed with mean 0 and variance ¢t — s. It can be verified that I'(s,t) := Cov(B(s), B(t)) =
min{|s|, |t|} if s,t > 0 or s,t < 0, and I'(s,t) = 0 otherwise. Also, let Q; denote the workload at
time ¢, ¢t € R. In this report we focus on the joint distribution of the workloads at time 0 and

time 7" > 0. In particular, we derive

p(b,T) :=P(Qo > bo, Qr > br), (1)

with bg, by > 0, and b = (bg, by). In addition, using (1), we also derive

q(b,T) := P(Qr > br|Qo = bp).



2.2 Large deviations

We continue with a description of the framework of Schilder’s sample-path LDP (see [6], and
also Thm. 1.3.27 of [8] for a more detailed treatment). Define the path space Q as

t t
Q:=<¢w:R =R, continuous, w(0) =0, lim w(t) = lim w(t) =0;.
tooo 1+ [t]  t——00 14t

We note that in [4] it was pointed out that B(-) can be realized on . Then one can construct
a reproducing kernel Hilbert space R C (), consisting of elements that are roughly as smooth as
the covariance function I'(s,-); for details, see [5]. We start from a ‘smaller’ space R*, defined

by
R* = {w ‘RoR, w()= ZaiF(Si, ), ai,si € Ryn € N} :
i—1

The inner product on this space R* is, for w,, wp € R*, defined as

n n n n
(Wa,wp)R 1= <Zaif(si,-),2bjF(Sj,-)> = ZZaibjF(si,Sj); (2)
i=1 j=1 g i=lj=1
notice that this implies (I'(s,-),I'(-,¢))r = I'(s,t). This inner product has the following useful
property, which is known as the reproducing kernel property,

w(t) =Y al(sit) = <Zaif(si,-),F(t,-)> = (w(-),T(t )R-
i—1 =1 R

From this we introduce the norm ||w||g := y/(w,w)r. The closure of R* under this norm is
defined as space R. Now we can define the rate function:

I(w) ::{ Yl if weR; (3)

oo otherwise.

As a side remark we mention that the above framework in fact holds for a general and versatile
class of input processes, covering a broad range of correlation structures, viz. the class of centered
Gaussian inputs (A(t),t € R) (which obviously covers standard Brownian input). In that case
one should set I'(s,t) = Cov(A(s), A(t)), s < t. Using (2) and the definition of I'(s,t) in case
of standard Brownian inputs (see Section 2.1), we find that, for w(¢) = Y I ; a;T'(s;, t), with
§1 < ...< 8p,

1 1 k—1k—1 1 n n
g\lwl\% = 3 0 " aiajmin{lsil, |s[} + 3 > ) aiajmin{s;, s;}
i=1 j=1 i=k j=k

0 o0
= 5[ _wwrass [ @y

where k := min{i € {1,...,n} : s; > 0} if defined, and k := n+ 1 otherwise. It turns out that (3)
is equivalent to

I(w) :{ [ (W)t if weR;

o0 otherwise,

(4)



in case of standard Brownian inputs (see Thm. 5.2.3 of [7]).

Theorem 2.1 [Schilder| For standard Brownian inputs the following sample-path large devi-
ations principle (LDP) holds:
(a) For any closed set F C (Q,

lim sup — logIP’< ZB ) < — 1n%I( w);
we

n—oo

(b) For any open set G C €,
liminf — log P 1%3()6(} > _ inf I(w)
iminf — — i (- > — in .
n—00 nog n weG “

Remark: Theorem 2.1 shows that the LDP consists of an upper and lower bound, which apply
to closed and open sets, respectively. We will use Theorem 2.1 for the open set S, to be defined
in Section 3.4. It can be verified that

inf I(w) = inf I
Inf I(w) = inf I{w),

where S is the closure of S. The way to prove this is to show that an arbitrarily chosen path
in S can be approximated by a path in S. This proof is completely analogously to [14] and
Appendix A of [12].

3 Analysis of p(b,T)

In this section we derive the joint distribution function of the workloads at time 0 and time T,
the covariance between these workloads, large-buffer asymptotics, and the most probable path
leading to overflow.

3.1 Joint distribution function

In this subsection we derive a closed-form expression for p(b, T'). It turns out that is easier to
first calculate p(b, T') := P(Qo < by, Q7 < br). Let ®(-) denote the distribution function of a
standard Normal random variable:

z) = /; o(u)du = /; e\/j_f du. (5)

According to Reich’s formula [15],

Qo = sup{B(—t,0) — ct} and Qr =sup{B(T —s,T) — cs}. (6)
>0 s>0

Hence, (b, T) can be rewritten as

P <sup{B(—t, 0) — ct} < bg,sup{B(T — s,T) —cs} < bT) =
t>0 s>0
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P(Vs,t > 0: B(—t,0) <bg+ct, B(T —s,T) < br +cs) =
P(Vs,t >0: B(T,t+T) < by + ct, B(0,s) < by + cs),

where the last line is obtained by using time reversibility arguments. Now, conditioning on the
value of B(0,T), we get that p(b,T) is equivalent to

bT+CT
/ P(N(0,T) = z)P(Vs € [0,T) : B(0,s) < br +¢s|B(0,T) = z)
PVt >0:Vs>T:B(T,t+T)<bg+ct,B(0,s) <bp+ecs/B(0,T)=x)dz.
Let us first focus on the second probability in the integral. Mandjes [11] derived that
P(Vs € [0,T) : B(0,s) < br+c¢s|B(0,T) = z) =1 — exp (—2bpc — 2bp(br — z)/T),

by showing that this probability can be expressed in terms of the Brownian bridge after some
rescaling. Proceeding with the third term in the integral, we find that

PVt >0:Vs>T:B(T,T+t) <by+ct,B(0,s) <br+cs/B0,T)=1x) =

PVt >0:Vs>T:B(T,T+t) <byg+ct, B(T,s) <br+cs—zx)=
P(Vs,t >0: B(T,T+t)<bo+ct, B(T,T +s)<br+(s+T)c—z) =
P(Vs,t > 0: B(0,t) <by+ct, B(0,s) <br+(s+T)c—x) =

P(Vt > 0: B(0,t) < min{bg, by + cT — z} + ct).

Exploiting the well-known result that P(V¢ > 0 : B(0,t) < b+ ct) = 1 — exp(—2bc), we finally
find that

. 1 — exp(—2bgc if ¢ <bp+cT — bg;

Theorem 3.1 For each by, by, T > 0,

p(0,T) = —® (k1(5,T)) + e 27°® (kao(5,T)) + & 20°® (k3(b,T)) + e 20tb1)eq (ky(5,T)),
where

—bT—CT—f—bg'

—br + T — by
VT ’ '

1k3(b,T) = 77

ky(b,T) =

Proof: From the above it follows that p(b, T') equals

/b::—cT—bO P(N(0,T) = z) <1 — exp (—2ch — ZbT(ng)) (1 — exp(—2byc)) dz +

/;::T_bo P(N(0,T) = ) (1 — exp (—Qch — 2@)) (1 — exp(—2(by + T — z)¢)) da.



It is a straightforward exercise to show that the first integral is equal to

(1 exp(—2boc)) <<1> (%) ~ exp(—2bpe)® <W>) ,

whereas the second integral equals

() o (e (o () o () )

Using the well-known property that P(Q; < b;) = 1 — exp(—2b;c), i = 0,T, and that 1 — ®(x) =
®(—x), the stated follows from

p(b,T) =1 —-P(Qqo < by) — B(Qr < br) +p(b, T). O

3.2 Covariance function

In the previous subsection we derived a closed-form expression for p(b, T'), see Theorem 3.1. This
result also allows us to calculate the covariance between Qo and Qr, i.e., Cov(Qo,@r), which
we present in the next theorem.

Theorem 3.2 For each T > 0,

01 = Cov(@0.Qr) = (- ~ T+ 515 ) (1 - @(evT) e/ D (CTf f) 7)

2 2¢2 2c

Proof: First recall that Cov(Qo, Qr) = EQoQr — EQoEQr. Then use the well-known fact
that Qo and Q7 are both exponentially distributed with mean 1/(2¢c), i.e., EQoEQr = 1/(4c?).
Hence, we are left with EQqQr. Using Theorem 3.1, we find that

EQoQr —/ / p(b, T)dbodbr =
0 0
/ / (k1(b, T)) dbodbr + / / e~ 27 (ko (b, T)) dbodbr
/ / e 2¢® (kg (b, T')) dbodbr + / / 2bot01)¢ (g (b, T)) dbodbr.

By using (5), interchanging the order of integration, and applying integration by parts, straight-
forward (though tedious) calculus yields that

[ vty = (2 ET) (-
/Ooo/ I < il _2> _ 8 )+£¢(C\F T:  (9)
[ty (1) (-t s om0

/Ooo /0°° 200 +b1)¢q (ky (B, T)) dbodby — (5@><

6

i)+ DL gy ®)

- @(cﬁ)) +4—C2<1>(C\/T)f \g—chﬁ(cﬁ). (11)

[y



Adding up (8), (9), (10) and (11), and subtracting 1/(4c?) yields the stated. ]

First note that #(0) = Var(Qo) = 1/(4c?), i.e., the variance of an exponentially distributed
variable with mean 1/(2¢), as required. Also, note that limp_,~, (7)) — 0 as expected, i.e., Qg
and Q1 become independent as T' — oc. The following proposition summarizes three properties
of (-). This proposition implies that (1 — 6(-)) is a distribution function on [0, co).

Proposition 3.3 6(-) is non-increasing, convex and non-negative on [0, 00).

Proof: 6(T) is non-increasing on [0, 00) if #'(T) <0, i.e.,
—(1+C2T) (1—@(0\/?) +C\/T¢ (cﬁ) <0

which is equivalent to

¢ (C\/T)
) T
1= (eVT) C\/_
Likewise, 8(T) is convex on [0, o) if 8”(T) > 0, i.e.,

e (1- (c\/—)+7 ¢ (evT) > 0,

(12)

or equivalently,
) (m/f)

1—-& (C\/T> - VT "

Recalling the standard equality (see page 5 of [13])

1

1
md)(:p) <1-8(z) < —¢(a),

it is easily seen that both (12) and (13) hold. The non-negativity of §(T") follows from the fact
that #(T) is non-increasing and limyp_, (7)) — 0. 0

The next proposition presents the exact asymptotics of (7). We denote f(z) ~ g(x) when
f(z)/g(z) = 1if z — oc.

Proposition 3.4 If T — oo,

6(T) ~ CST\F (C\F) (14)
Proof: First use that
1 1 3 15
(1= a0 ~ (55~ G * Gy~ ) 2o 1o



if g(z) is increasing and z — co. Using (15) and Theorem 3.2, it can then be verified that

1 1
equQW:T+J£3T_&;%T>¢@Wﬂ CSJ_(MF)

We note that the correct exact asymptotics of 8(T') are not obtained, if one uses an approximation
of (1 — ®(g(x))) that is less accurate than (15). O

Remark: The correlation coefficient between Qg and Q7 is given by

Cov(Qo, Qr)
\/Var(Qo)\/Var(QT)

as both Qp and Qr are exponentially distributed with mean 1/(2¢). Note that p(0) = 1 and
lim7 00 p(T) — 0. Due to (16), we also have that p(T") is non-increasing, convex and non-

p(T) := Cor(Qo, Qr) = — 4(T), (16)

negative on [0, 00), and that

mm~c3vﬁ (evT).

Hence, the exponential decay rate of both §(T') and p(T) equals (c*T) /2.

We note that Theorem 3.2 and Propositions 3.3-3.4 already (partly) appeared (for p(T),
instead of 6(T")) in [3]. However, we note that our derivations are completely different compared
to the ones presented in [3]. We rely on Reich’s formula to obtain the results, whereas [3] does
not use this formula.

3.3 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of p(b, T'). Define {(z) := (v27z) ! exp(—22/2).
We first present the following lemma.

Lemma 3.5 Let by = b, by = ab and T' = ~b, with o,y > 0. If b — oo, then
®(k1(b,T)) ~ —C(k1(b. T));

. ([ —C(ka(5,T)) ifa <1+cy;
D (ka(b,T)) ~ ¢ 1/2 ifa=1+cy;
1 otherwise;

( —C(ks(5,T)) ifa>1—cy
®(k3(b,T)) ~ 1/2 ifa=1-cy;
1 otherwise;

~C(ka(b,T)) ifa > ey 1,
B (ka(b,T)) ~ ¢ 1/2 ifa=cy—1;
1 otherwise.



Proof: First determine for which values of by /by = «, k;(b,T), i € {1,2,3,4}, is positive or
negative. Note that ki(b) is always negative. Hence, we obtain 1+ ¢y, 1 — ¢y and ¢y — 1 as
critical values from k;(b), i = 2, 3,4, respectively. Next use the fact that ®(—u) ~ ((u) and
®(u) ~ 1 as u — oco. Observe that ®(0) = 1/2. 0

We remark that the —((k;(b, T) terms in Lemma 3.5 are all positive, as ((k;(b, T is negative
in the listed cases, i = 1,...,4. Define

(—bT -l + bg)2

v(b,T) := 2byc + 5T

Theorem 3.6 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y > 1. For b — oo,

(e 2Abotbr)e if0<a< (Jov—1)7%
(1 bT \/ﬂkg b,T) ) 2botbr)e if a = (\/ﬁ* 1)2§
p(b,T) ~ ( bT \/ﬁkng) if (ﬁ—1)2<a<1+c7;
(1 ) o ien
g~ 2bre ifa>1+cy.

Proof: We only prove the last statement, as the other four statements follow in a similar way.
We have to prove that

p(b, T)e?T¢ — 1 as b — oo, for a > 1+ .
From Lemma 3.5 we obtain that for a > 1 4+ ¢,
O (k1 (b, T)) ~ =C(k1 (b, T));  @(ka(b,T)) ~ 15
B(ks(b,T)) ~ —C(ks(b,T));  @(ka(b,T)) ~ —((ka(b, T)).
Now straightforward calculus shows that, as b — oo,
®(ky (5, T)) = o (e*%TC) ,

and the same applies for ®(k3(b,T))e=2%¢ and ®(k4(b, T))e~2botbr)e. With &(ko(b, T)) ~ 1,
Theorem 3.1 implies the stated. O

The following two theorems can be proven in a similar fashion as Theorem 3.6.

Theorem 3.7 Let by = b, by = ab, T = b, with a,y > 0. Suppose ¢y = 1. For b — oo,

e~ 2boc if a =0;
1 —~bT) .
p(8,T) ~ ( Va6 ) \/mo,(w)) ! ifo<a<lder
| (% ) e ifa=1+cy
_Qch ifa>1+4cy.



Theorem 3.8 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y < 1. For b — oo,

e~ 2boc if0<a<l-—cy;
(% - m) e~ 2boc ifa=1-—cy;
p(b,T) ~ (— \/ﬂklg(E,T) — \/ﬁki(E,T) e 0T it —ey<a<l+ey
(3- méw‘m) e fo=ltey
| e 2bre ifa>1+4cy.

3.4 Most probable path

In the previous subsection it was shown that the nature of the large-buffer asymptotics strongly
depends on the model parameters a and -, i.e., there are different regimes. In this subsection
we will interpret these regimes by exploiting well-known sample-path large deviations results.
Schilder’s theorem implies that the exponential decay rate of the joint overflow probability is
characterized by the path that minimizes the decay rate. Among all paths such that the queue
exceeds by and by at time 0 and T respectively, this is the so-called most probable path (MPP):
informally speaking, given that this rare event occurs, with overwhelming probability (bg, br) is
reached by a path ‘close to’ the MPP.

In order to apply ‘Schilder’, we feed the single-node network by n i.i.d. standard Brownian
sources. The link rate and buffer thresholds are also scaled by n: nc, nbg and nbr, respectively.
Using (6), pn(b, T) can be expressed as

| &
P <E;Bz() € S) ;
where
S:={feQ3s,t >0: —f(—t) >bo+ct, f(T)— f(T —s) >br+cs}.
From ‘Schilder’ it follows that

J(b,T) = — lim l1ogpn(5, T) = inf I(f).

n—oo N fES

As mentioned in the remark of Section 2.2, we can replace ‘>’ by ‘>’ in S, without any impact
on the decay rate.
Define

U:={feQFt>0:—f(—t)>by+ct};

Vi={feQ3s>0:—f(T —s)>by+cs}.

Note that S C U and S C V, which implies that

J(b,T) > inf 1(£); (17)
J(b,T) > }ggf(f). (18)

10



From the above it follows that if the MPP in U is also contained in set S, then there is equality
n (17), and likewise, if the MPP in V is also contained in set S, then there is equality in (18).
In [4] it was shown that the MPP in U is given by, for r € [—bg/c, 0],

f*(r) =E(B(r)| — B(—=bg/c) = by + ct).

Let (Y1, Y2) be bivariate Normally distributed. Now, using that the random variable (Y71|Y2 = y),

for some y € R, is Normally distributed with mean

(COV(Yl, Yg)

E(Y1]Ys = y) = EY;
(Y1]Y2 =y) ' T Vary,

(y — EY2)

it can be verified that, for r € [—bg/c, 0],

(f)'(r) = 2c.

The MPP is only specified in the interval [—bg/c, 0], because outside this interval the MPP
generates traffic with rate 0. Hence, this MPP is such that the queue starts to build up at time
—bo/c with constant rate ¢, giving Qo = bg. Using (4), we find that

1) = 32 (2¢)” = 2boe,
i.e., the decay rate equals 2bgc. The MPP in V has a similar structure as the one above, and it
is such that that the queue starts to grow at time T'— by /c with constant rate ¢, giving Qr = by.
The corresponding decay rate equals 2bpc.

We are now ready to provide some explanation for each of the regimes of Theorems 3.6-3.8.
Let us start with regime a > 1 + ¢y in Theorems 3.6-3.8. Using that a = by /by and v = T'/by,
it is easily seen that this inequality is equivalent to by — ¢T' > bg. Consider the MPP in V
mentioned above. Recall that this MPP is such that the queue starts to grow at time 7' — by /c.
Due to by — ¢T' > by > 0, it can be verified that T' — by /c < 0. It follows that if a > 1 + ¢y,
then the MPP in V is also contained in S, and therefore it is the MPP in S, i.e., overflow of the
queue at time 7" implies overflow at time 0 without any additional effort. The MPP is depicted
in Figure 1 (top, left). Therefore, we find that J(b, T) is equal to the decay rate corresponding
to the MPP in V| i.e., 2bpc.

Next consider regime 0 < a@ < 1 — ¢y in Theorems 3.7-3.8, or equivalently by < by — ¢T'. In
this case one can verify that the MPP in set U is also contained in set S, and therefore it is the
MPP in S. Thus, overflow at time 0 implies overflow at time T without any extra effort, and
J(b,T) is therefore equal to 2bgc in case 0 < a < 1 — ¢y. Note that we only see this regime if
¢y <1 (as @ > 0 by definition). The MPP is depicted in Figure 1 (top, right).

We proceed with regime 0 < o < (/7 — 1)2 in Theorem 3.6, or equivalently T > (y/bg +
Vbr)%/c. Consider the path that is such that the queue starts to build up with rate c in
the interval (—bg/c, 0], empties with rate ¢ in the interval (0,bp/c|, is empty in the interval
(bo/c, T — br/cl, and is growing again with rate ¢ in the interval (T' — by /¢, TY, i.e., the MPP of
U and V combined. It can be verified that this path is contained in set S if 0 < o < (/7 — 1)2.
In Section 3.5 we show that this path is in fact the MPP in S in case 0 < a < (y/ey — 1), but
for the moment assume that this is correct. Then .J(b,T) can be obtained by using (4), and
equals 2bgc + 2bpc. Clearly, this is no surprise, as the path consists of the MPP of U and V.

11



Qo Qr Qo Qr
- b
br

br — T
- —c
. by — T
by
br
c ¢
! t ! t
T —br/e 0 T —bg/c 0 T
Qo Qr Qo Qr
B
br
; o — o)/ T
hr
. . : bo
e c.- ‘e
. i s C
T T T t ™ t
—by/c ] bo/c T —brfc T —by/c 0 T

Figure 1: The most probable storage paths in set S.

Note that this suggests that Qy and Q7 behave (almost) independently if, compared to by and
bp, T is large enough, as may be expected. The MPP is depicted in Figure 1 (bottom, left).

We now focus on the remaining regimes of Theorems 3.6-3.8. Consider the path that is such
that the queue starts to build-up with rate c in the interval (—bg/c,0], and in the interval (0, T’
builds-up with rate (by — bg)/T'. Clearly, this path yields Qo = by and Qr = T, and is thus
contained in S. In Section 3.5 we show that this is path is in fact the MPP. Assuming that
this is the case, J(b, T) is obtained by using (4), and equals (b, T). The MPP is depicted in
Figure 1 (bottom, right).

The following two theorems summarize the above mentioned.

Theorem 3.9 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y > 1. Then it holds that

2(bo + br)e if0<a< (\/ﬁ—l)Q;

J(b,T) ~< ~4(b,T) if (Vea—1)7<a<1+ey
2brc ifa>1+cy.

Theorem 3.10 Let by = b, by = ab, T = ~b, with a,v > 0. Suppose ¢y < 1. Then it holds
that

2bgc if0<a<l-—cy;
Jb,T)~< (b, T) ifl —ey<a<l+ey;
2bpc ifa>1+cy.
3.5 Discussion
Using Theorems 3.6-3.8 also the logarithmic large-buffer asymptotics follow directly. Comparing
Theorems 3.6-3.8 with Theorems 3.9-3.10, we find that the logarithmic large-buffer and loga-
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rithmic many-sources asymptotics match. Indeed, since we assumed that in the many-sources
framework the standard Brownian sources are i.i.d., and because a standard Brownian motion is
characterized by independent increments they should match, see for instance Example 7.4 of [9].
This implies that the paths depicted in Figure 1 ((bottom, left) and (bottom, right)) are in fact
MPPs in set S.

In the analysis we assumed that the input process was a standard Brownian motion, i.e., no
drift and v(¢) = t. We now show how the results can be extended to general Brownian input,
which have drift 4 > 0 and variance v(t) = At, A > 0. Clearly, we should have that ¢ > u > 0 to
ensure stability. We denote the input process of a general Brownian motion by {B*(t),t € R}.
Note that B*(s,t) = N(u(t — s), A\t — 8)) = u(t — s) + VAN(0,t — 8) = u(t — s) + VAB(s,t).
This implies that

Qi = sup{B*(~1.0) — ct} = sup{VAB(—£.0) ~ (¢ = )t} = Visp {B(—t, 0) - Ck“t} ;

o= *(T—s,T)—cs} = su —s,T)—(c—u)s} = su — s, —Ci'us )
Qi = sup(B* (T3, T)=cs} = sup(VAB(T—s, ) ~(e=p)a} = VRsup { BT = 5.7) = <L}

Hence, in order to generalize the results of this section, it follows that we have to set ¢ «+
(¢ — p)/vVX and b; < b;/v/A, i = 0,T there. In addition, in order to generalize the results of
Section 3.2 on the covariance, we also need to multiply the right-hand side of (7) and (14) by
VAVA = . The results on the correlation coefficient can be generalized in similar way.

4 Analysis of ¢(b,T)

In the previous section we derived an closed-form expression for p(b, T'), large-buffer asymptotics,
and the most probable paths to overflow. In this section we focus on ¢(b, T'), and we derive similar
results by exploiting the results of the previous section.

4.1 Conditional distribution function

In this subsection we derive an exact expression for q(g, T). With mild abuse of notation, we
also write q]c(g, T):= —8p(5, T)/0byp = P(Qo = bo, QT > br).
Theorem 4.1 For each by, by, T > 0,

q(d,T) = @ (k3(b,T)) + exp(—2brc)® (ka(b,T)) .

Proof: We have that

— o P(Qo=bo,Qr >br)  q(bT)
Q(va) = P(QO _ bO) ~ 9¢e—2boc’
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as the workload @ is exponentially distributed with mean 1/(2c). As mentioned, g;(b, T) can
be obtained by deriving —dp(b, T')/dbg, with p(b, T) as in Theorem 3.1. This yields

GB.T) = ——daB.T) + e P70(ka(b.T)) +

2ce™ " (k3 (b, T)) — %e_%%(ka (b.7)) +

266—2(b0+bT)Cq)(k4 (5, T)) + %6_2(b0+bT)c¢(k4 (E’ T))

Straightforward calculus also shows that

1 ~2(bo+br) 7 1 7
——e¢ CPp(kqe(b,T)) — k1(b,T)) =0,
QCe_QbOC\/T ¢( 4( )) 206_2b06ﬁ¢( 1( ))
and
b ey oy L oboc (1 (7YY
200 ooy T ¢(ka2(0,T)) 206*2,)06\/@ ¢(k3(b,T)) = 0,
which proves the stated. u

We note that Harrison [10] also obtained Theorem 4.1. However, q(b,T) was derived in a
completely different manner. In [10] the author first calculated the joint distribution of By — cT'
and max;cjo 71{ B¢ — ct} using Martingales, and used this to derive q(b,T).

4.2 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of ¢(b,T). The proof of the following three

theorems is similar to the proof of Theorem 3.6. We omit the proofs. Define

(=bp — T + bgy)?
2T

§(b,T) := =~(b,T) — 2bgc.

Theorem 4.2 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y > 1. For b — oo,

o 2bre if 0 < a < (\/ey—1)%
a.1) ~$ (1= Zmigy) e 7 o= (Vo7 - 1>
- if > (/&7 — 1)2.

Theorem 4.3 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y =1. For b — oo,

_ 1 if a = 0;
qbT)~y 1 _sm) ifa>0.

\/ﬂks (EaT)

Theorem 4.4 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y < 1. For b — oo,

1 if0<a<l-—cy;
q(b,T) ~ < 1/2 ifa=1-cy;
NI ifa>1—cy.
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4.3 Most probable path

We can interpret the different regimes of the asymptotics of (b, T) by using Schilder’s theorem.
To this end, we feed the single-node network by n i.i.d. standard Brownian sources. The link
rate and buffer thresholds are also scaled by n: nc, nby and nbr, respectively. Let

_ 1 _
K(b,T):=— lim —logq,(b,T).
n—oo n,
The following two theorems present the logarithmic many-sources asymptotics of q(b, T'). The
proofs are similar to the ones in Section 3.4, and therefore we omit the proofs.

Theorem 4.5 Let by = b, by = ab, T = b, with o,y > 0. Suppose ¢y > 1. Then it holds that

KG.7)~ | e o< (Ve o)
) (5(5’T) ifOL> (\/ﬁ_l)Z

Theorem 4.6 Let by = b, by = ab, T = b, with a,y > 0. Suppose ¢y < 1. Then it holds that

K(,T) 0 f0<a<l-—cy;
’ §(b,T) ifa>1—ecy.

The MPPs associated with Theorems 4.5-4.6 are closely related to the ones depicted in
Figure 1, however, now only defined on the interval (0,7]. The MPP corresponding to regime
a > (\/ey — 1)? in Theorem 4.5 and regime o > 1 — ¢y in Theorem 4.6 is depicted in Figure 1
(bottom, right). The MPP associated with regime 0 < o < 1 — ¢y in Theorem 4.4 is depicted
in Figure 1 (top, right). In this regime K (b, T) = 0, because Qg = by implies that Q7 > br
without additional effort. For regime 0 < a < (y/cy — 1)? in Theorem 4.5 the corresponding
MPP is illustrated in Figure 1 (bottom, left). Using (4), we find that these MPPs indeed yield
Theorems 4.5-4.6.

By comparing Theorems 4.2-4.4 with Theorems 4.5-4.6, it is not hard to see that the logarith-
mic large-buffer and logarithmic many-sources asymptotics of ¢(b, T) match, as was expected.

Similar to Section 3.5, the results in this section can be extended to general Brownian input by

setting ¢ « (¢ — p)/v/X and b; < b; /v, i = 0, T there.

5 Conclusion

In this report we analyzed a single-node network with Brownian input. We derived the joint
distribution function of the workloads at time 0 and T', the covariance between these workloads,
the conditional distribution function of the workload at time T given a certain workload at time
0, large buffer asymptotics, and the most probable path leading to overflow.

A natural extension of the present work is to analyze the joint overflow probability in a
two-node tandem queue with Brownian input, where we observe queue I at time 0, and queue II
at time T, i.e., P((Q1)o > bo, (Qu)r > br). Another future research direction includes extending
the results to other input processes, e.g., light-tailed Lévy processes.
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