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Transient analysis of Brownian queues

ABSTRACT
We analyze a single-node network with Brownian input. We first derive an explicit expression for
the joint distribution function of the workloads at two different times, which also allows us to
calculate their covariance and exact large-buffer asymptotics. The nature of these asymptotics
depends on the model parameters, i.e., there are different regimes. By using sample-path large-
deviations (Schilder's theorem) these regimes can be interpreted: we explicitly characterize the
most likely way the buffer fills.
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AbstratWe analyze a single-node network with Brownian input. We �rst derive an expliitexpression for the joint distribution funtion of the workloads at two di�erent times, whihalso allows us to alulate their ovariane and exat large-bu�er asymptotis. The natureof these asymptotis depends on the model parameters, i.e., there are di�erent regimes. Byusing sample-path large-deviations (Shilder's theorem) these regimes an be interpreted: weexpliitly haraterize the most likely way the bu�er �lls. 1
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1 IntrodutionConsider fB(t) � t; t � 0g, where B(t) is a standard Brownian motion, and  > 0 is a salar.The reetion of fB(t)� t; t � 0g at 0 ould be alled a Brownian queue. It is well-known thatthe Brownian queue is a natural model for many ow systems, see [10℄. The behavior of a queueunder heavy-traÆ onditions an often be approximated by a Brownian queue.In this report we analyze the transient behavior of a Brownian queue. We expliitly derivethe joint distribution funtion P(Q0 > b0; QT > bT ), where Qt is the workload of the queue attime t, and b0; bT � 0. This also allows us to expliitly alulate the ovariane between Q0and QT . By setting b0 = b, bT = �b, and T = b, with �;  � 0, and letting b ! 1, we alsoobtain exat large-bu�er asymptotis of the joint distribution funtion, i.e., we �nd a funtionf(�) suh that P(Q0 > b;Qb > b)=f(b) ! 1 as b ! 1. It turns out that the nature of theasymptotis depends on the value of �, , and the servie rate of the queue, i.e., there aredi�erent regimes. These regimes an be further interpreted relying on Shilder's sample-pathlarge-deviations theorem. In partiular, we obtain the so-alled most probable path, i.e., themost likely way the bu�er �lls.The Brownian queue was already studied in [1, 2, 3, 10℄. We note that some of the resultsderived in this report already appeared there, but these results were proved in a ompletelydi�erent manner.The remainder of the report is organized as follows. In Setion 2 we present a desription ofthe model, and we briey disuss Shilder's sample-path large-deviations theorem. In Setion 3we derive an exat expression for P(Q0 > b0; QT > bT ), the ovariane between the workloads,large-bu�er asymptotis, and the most probable path. We then exploit these results to obtainsimilar results for P(QT > bT jQ0 = b0) in Setion 4. Finally, in Setion 5 we further disuss ourresults, and identify some open researh questions.
2 PreliminariesIn this setion we �rst present our queueing model. Subsequently, we disuss a large-deviationstheorem that is needed in Setions 3.4 and 4.3.
2.1 Queueing modelWe onsider a single-node network, with servie rate  > 0. We assume that the input proess isa standard Brownian motion fB(t); t 2 Rg, with B(0) � 0. This implies that B(s; t) = B(t)�B(s) � N(0; t�s), i.e., the amount of traÆ that enters in the interval (s; t℄ is standard Normallydistributed with mean 0 and variane t� s. It an be veri�ed that �(s; t) := C ov(B(s); B(t)) =minfjsj; jtjg if s; t � 0 or s; t < 0, and �(s; t) = 0 otherwise. Also, let Qt denote the workload attime t, t 2 R . In this report we fous on the joint distribution of the workloads at time 0 andtime T > 0. In partiular, we derivep(b; T ) := P(Q0 > b0; QT > bT ); (1)with b0; bT � 0, and b = (b0; bT ). In addition, using (1), we also deriveq(b; T ) := P(QT > bT jQ0 = b0):
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2.2 Large deviationsWe ontinue with a desription of the framework of Shilder's sample-path LDP (see [6℄, andalso Thm. 1.3.27 of [8℄ for a more detailed treatment). De�ne the path spae 
 as
 := �! : R ! R ; ontinuous; !(0) = 0; limt!1 !(t)1 + jtj = limt!�1 !(t)1 + jtj = 0� :We note that in [4℄ it was pointed out that B(�) an be realized on 
. Then one an onstruta reproduing kernel Hilbert spae R � 
, onsisting of elements that are roughly as smooth asthe ovariane funtion �(s; �); for details, see [5℄. We start from a `smaller' spae R�, de�nedby
R� := (! : R ! R ; !(�) = nXi=1 ai�(si; �); ai; si 2 R ; n 2 N) :

The inner produt on this spae R� is, for !a, !b 2 R�, de�ned as
h!a; !biR := * nXi=1 ai�(si; �); nXj=1 bj�(sj ; �)

+
R = nXi=1 nXj=1 aibj�(si; sj); (2)

notie that this implies h�(s; �);�(�; t)iR = �(s; t). This inner produt has the following usefulproperty, whih is known as the reproduing kernel property,
!(t) = nXi=1 ai�(si; t) =

* nXi=1 ai�(si; �);�(t; �)
+
R = h!(�);�(t; �)iR:

From this we introdue the norm jj!jjR := ph!; !iR. The losure of R� under this norm isde�ned as spae R. Now we an de�ne the rate funtion:
I(!) := ( 12 jj!jj2R if ! 2 R;1 otherwise. (3)

As a side remark we mention that the above framework in fat holds for a general and versatilelass of input proesses, overing a broad range of orrelation strutures, viz. the lass of enteredGaussian inputs (A(t); t 2 R ) (whih obviously overs standard Brownian input). In that aseone should set �(s; t) = C ov(A(s); A(t)), s � t. Using (2) and the de�nition of �(s; t) in aseof standard Brownian inputs (see Setion 2.1), we �nd that, for !(t) = Pni=1 ai�(si; t), withs1 < : : : < sn,12 jj!jj2R = 12 k�1Xi=1 k�1Xj=1 aiaj minfjsij; jsjjg+ 12 nXi=k nXj=k aiaj minfsi; sjg
= 12 Z 0�1(!0(t))2dt+ 12 Z 10 (!0(t))2dt;where k := minfi 2 f1; :::; ng : si � 0g if de�ned, and k := n+1 otherwise. It turns out that (3)is equivalent to

I(!) = ( 12 R1�1(!0(t))2dt if ! 2 R;1 otherwise, (4)
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in ase of standard Brownian inputs (see Thm. 5.2.3 of [7℄).
Theorem 2.1 [Shilder℄ For standard Brownian inputs the following sample-path large devi-ations priniple (LDP) holds:(a) For any losed set F � 
,

lim supn!1 1n log P 1n nXi=1 Bi(�) 2 F! � � inf!2F I(!);(b) For any open set G � 
,
lim infn!1 1n log P 1n nXi=1 Bi(�) 2 G! � � inf!2G I(!):

Remark: Theorem 2.1 shows that the LDP onsists of an upper and lower bound, whih applyto losed and open sets, respetively. We will use Theorem 2.1 for the open set S, to be de�nedin Setion 3.4. It an be veri�ed thatinf!2S I(!) = inf!2S I(!);where S is the losure of S. The way to prove this is to show that an arbitrarily hosen pathin S an be approximated by a path in S. This proof is ompletely analogously to [14℄ andAppendix A of [12℄.
3 Analysis of p(b; T )In this setion we derive the joint distribution funtion of the workloads at time 0 and time T ,the ovariane between these workloads, large-bu�er asymptotis, and the most probable pathleading to overow.
3.1 Joint distribution funtionIn this subsetion we derive a losed-form expression for p(b; T ). It turns out that is easier to�rst alulate p(b; T ) := P(Q0 � b0; QT � bT ). Let �(�) denote the distribution funtion of astandard Normal random variable:�(x) = Z x�1 �(u)du = Z x�1 e�u2=2p2� du: (5)Aording to Reih's formula [15℄,Q0 = supt�0fB(�t; 0)� tg and QT = sups�0fB(T � s; T )� sg: (6)
Hene, p(b; T ) an be rewritten asP�supt�0fB(�t; 0)� tg � b0; sups�0fB(T � s; T )� sg � bT� =
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P(8s; t � 0 : B(�t; 0) � b0 + t; B(T � s; T ) � bT + s) =P(8s; t � 0 : B(T; t+ T ) � b0 + t; B(0; s) � bT + s);where the last line is obtained by using time reversibility arguments. Now, onditioning on thevalue of B(0; T ), we get that p(b; T ) is equivalent toZ bT+T�1 P(N(0; T ) = x)P(8s 2 [0; T ) : B(0; s) � bT + sjB(0; T ) = x)
P(8t � 0 : 8s � T : B(T; t+ T ) � b0 + t; B(0; s) � bT + sjB(0; T ) = x)dx:Let us �rst fous on the seond probability in the integral. Mandjes [11℄ derived thatP(8s 2 [0; T ) : B(0; s) � bT + sjB(0; T ) = x) = 1� exp (�2bT � 2bT (bT � x)=T ) ;by showing that this probability an be expressed in terms of the Brownian bridge after someresaling. Proeeding with the third term in the integral, we �nd thatP(8t � 0 : 8s � T : B(T; T + t) � b0 + t; B(0; s) � bT + sjB(0; T ) = x) =P(8t � 0 : 8s � T : B(T; T + t) � b0 + t; B(T; s) � bT + s� x) =P(8s; t � 0 : B(T; T + t) � b0 + t; B(T; T + s) � bT + (s+ T )� x) =P(8s; t � 0 : B(0; t) � b0 + t; B(0; s) � bT + (s+ T )� x) =P(8t � 0 : B(0; t) � minfb0; bT + T � xg+ t):Exploiting the well-known result that P(8t � 0 : B(0; t) � b + t) = 1 � exp(�2b), we �nally�nd that

P(8t � 0 : B(0; t) � minfb0; bT+T�xg+t) = ( 1� exp(�2b0) if x � bT + T � b0;1� exp(�2(bT + T � x)) if x > bT + T � b0:
Theorem 3.1 For eah b0; bT ; T � 0,p(b; T ) = �� �k1(b; T )�+ e�2bT � �k2(b; T )�+ e�2b0� �k3(b; T )�+ e�2(b0+bT )� �k4(b; T )� ;wherek1(b; T ) = �bT � T � b0pT ; k2(b; T ) = bT � T � b0pT ; k3(b; T ) = �bT � T + b0pT ; k4(b; T ) = �bT + T � b0pT :
Proof: From the above it follows that p(b; T ) equalsZ bT+T�b0�1 P(N(0; T ) = x)�1� exp��2bT � 2bT (bT � x)T �� (1� exp(�2b0)) dx+Z bT+TbT+T�b0 P(N(0; T ) = x)�1� exp��2bT � 2bT (bT � x)T �� (1� exp(�2(bT + T � x))) dx:
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It is a straightforward exerise to show that the �rst integral is equal to(1� exp(�2b0))���bT + T � b0pT �� exp(�2bT )���bT + T � b0pT �� ;whereas the seond integral equals1����bT � T � b0pT ����bT + T � b0pT �+exp(�2bT )����bT + T � b0pT �+��bT � T � b0pT �� 1� :Using the well-known property that P(Qi � bi) = 1� exp(�2bi), i = 0; T , and that 1��(x) =�(�x), the stated follows fromp(b; T ) = 1� P(Q0 � b0)� P(QT � bT ) + p(b; T ): 2
3.2 Covariane funtionIn the previous subsetion we derived a losed-form expression for p(b; T ), see Theorem 3.1. Thisresult also allows us to alulate the ovariane between Q0 and QT , i.e., C ov(Q0; QT ), whihwe present in the next theorem.
Theorem 3.2 For eah T � 0,
�(T ) := C ov(Q0; QT ) = ��2T 22 � T + 122��1� �(pT )�+�(pT ) TpT2 + pT2 ! : (7)

Proof: First reall that C ov(Q0; QT ) = EQ0QT � EQ0EQT . Then use the well-known fatthat Q0 and QT are both exponentially distributed with mean 1=(2), i.e., EQ0EQT = 1=(42).Hene, we are left with EQ0QT . Using Theorem 3.1, we �nd thatEQ0QT = Z 10 Z 10 p(b; T )db0dbT =
�Z 10 Z 10 � �k1(b; T )�db0dbT + Z 10 Z 10 e�2bT � �k2(b; T )� db0dbT
+Z 10 Z 10 e�2b0� �k3(b; T )�db0dbT + Z 10 Z 10 e�2(b0+bT )� �k4(b; T )� db0dbT :By using (5), interhanging the order of integration, and applying integration by parts, straight-forward (though tedious) alulus yields that
�Z 10 Z 10 � �k1(b; T )�db0dbT = ��T2 + 2T 22 ��1��(pT )�+ TpT2 �(pT ); (8)Z 10 Z 10 e�2bT � �k2(b; T )� db0dbT = � 122 � T2 ��1� �(pT )�+ pT2 �(pT ); (9)Z 10 Z 10 e�2b0� �k3(b; T )� db0dbT = � 122 � T2 ��1� �(pT )�+ pT2 �(pT ); (10)Z 10 Z 10 e�2(b0+bT )� �k4(b; T )�db0dbT = �T2 � 142��1� �(pT )�+ 142�(pT )�pT2 �(pT ): (11)
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Adding up (8), (9), (10) and (11), and subtrating 1=(42) yields the stated. 2First note that �(0) = Var(Q0) = 1=(42), i.e., the variane of an exponentially distributedvariable with mean 1=(2), as required. Also, note that limT!1 �(T )! 0 as expeted, i.e., Q0and QT beome independent as T !1. The following proposition summarizes three propertiesof �(�). This proposition implies that (1� �(�)) is a distribution funtion on [0;1).
Proposition 3.3 �(�) is non-inreasing, onvex and non-negative on [0;1).
Proof: �(T ) is non-inreasing on [0;1) if �0(T ) � 0, i.e.,� �1 + 2T � �1� �(pT�+ pT��pT� � 0;whih is equivalent to��pT�1� ��pT� � pT + 1pT : (12)
Likewise, �(T ) is onvex on [0;1) if �00(T ) � 0, i.e.,�2 �1� �(pT�+ pT ��pT� � 0;or equivalently,��pT�1� ��pT� � pT : (13)
Realling the standard equality (see page 5 of [13℄)1x+ 1=x�(x) � 1��(x) � 1x�(x);it is easily seen that both (12) and (13) hold. The non-negativity of �(T ) follows from the fatthat �(T ) is non-inreasing and limT!1 �(T )! 0. 2The next proposition presents the exat asymptotis of �(T ). We denote f(x) � g(x) whenf(x)=g(x)! 1 if x!1.
Proposition 3.4 If T !1,�(T ) � 45TpT ��pT� : (14)
Proof: First use that(1��(g(x))) � � 1g(x) � 1(g(x))3 + 3(g(x))5 � 15(g(x))7��(g(x)) (15)
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if g(x) is inreasing and x!1. Using (15) and Theorem 3.2, it an then be veri�ed that
�(T ) �  45TpT + 16127T 2pT � 7129T 3pT !��pT� � 45TpT ��pT� :We note that the orret exat asymptotis of �(T ) are not obtained, if one uses an approximationof (1� �(g(x))) that is less aurate than (15). 2Remark: The orrelation oeÆient between Q0 and QT is given by�(T ) := C or(Q0 ; QT ) = C ov(Q0 ; QT )pVar(Q0)pVar(QT ) = 42�(T ); (16)

as both Q0 and QT are exponentially distributed with mean 1=(2). Note that �(0) = 1 andlimT!1 �(T ) ! 0. Due to (16), we also have that �(T ) is non-inreasing, onvex and non-negative on [0;1), and that�(T ) � 163TpT ��pT� :Hene, the exponential deay rate of both �(T ) and �(T ) equals �2T � =2.We note that Theorem 3.2 and Propositions 3.3-3.4 already (partly) appeared (for �(T ),instead of �(T )) in [3℄. However, we note that our derivations are ompletely di�erent omparedto the ones presented in [3℄. We rely on Reih's formula to obtain the results, whereas [3℄ doesnot use this formula.
3.3 Exat large-bu�er asymptotisIn this subsetion we derive the exat asymptotis of p(b; T ). De�ne �(x) := �p2�x��1 exp(�x2=2).We �rst present the following lemma.
Lemma 3.5 Let b0 = b, bT = �b and T = b, with �;  � 0. If b!1, then�(k1(b; T )) � ��(k1(b; T ));

�(k2(b; T )) � 8><>: ��(k2(b; T )) if � < 1 + ;1=2 if � = 1 + ;1 otherwise;
�(k3(b; T )) � 8><>: ��(k3(b; T )) if � > 1� ;1=2 if � = 1� ;1 otherwise;
�(k4(b; T )) � 8><>: ��(k4(b; T )) if � >  � 1;1=2 if � =  � 1;1 otherwise:
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Proof: First determine for whih values of bT =b0 = �, ki(b; T ), i 2 f1; 2; 3; 4g, is positive ornegative. Note that k1(b) is always negative. Hene, we obtain 1 + , 1 �  and  � 1 asritial values from ki(b), i = 2; 3; 4, respetively. Next use the fat that �(�u) � �(u) and�(u) � 1 as u!1. Observe that �(0) = 1=2. 2We remark that the ��(ki(b; T ) terms in Lemma 3.5 are all positive, as �(ki(b; T ) is negativein the listed ases, i = 1; : : : ; 4. De�ne(b; T ) := 2b0+ (�bT � T + b0)22T :
Theorem 3.6 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  > 1. For b!1,

p(b; T ) �
8>>>>>>><>>>>>>>:

e�2(b0+bT ) if 0 � � < �p � 1�2 ;�1� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�2(b0+bT ) if � = �p � 1�2 ;�� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�(b;T ) if �p � 1�2 < � < 1 + ;�12 � 1p2�k3(b;T )� e�2bT  if � = 1 + ;e�2bT  if � > 1 + :
Proof: We only prove the last statement, as the other four statements follow in a similar way.We have to prove thatp(b; T )e2bT  ! 1 as b!1; for � > 1 + :From Lemma 3.5 we obtain that for � > 1 + ,�(k1(b; T )) � ��(k1(b; T )); �(k2(b; T )) � 1;�(k3(b; T )) � ��(k3(b; T )); �(k4(b; T )) � ��(k4(b; T )):Now straightforward alulus shows that, as b!1,�(k1(b; T )) = o�e�2bT � ;and the same applies for �(k3(b; T ))e�2b0 and �(k4(b; T ))e�2(b0+bT ). With �(k2(b; T )) � 1,Theorem 3.1 implies the stated. 2The following two theorems an be proven in a similar fashion as Theorem 3.6.
Theorem 3.7 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  = 1. For b!1,

p(b; T ) �
8>>>><>>>>:

e�2b0 if � = 0;�� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�(b;T ) if 0 < � < 1 + ;�12 � 1p2�k3(b;T )� e�2bT  if � = 1 + ;e�2bT  if � > 1 + :
9



Theorem 3.8 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  < 1. For b!1,
p(b; T ) �

8>>>>>>><>>>>>>>:
e�2b0 if 0 � � < 1� ;�12 � 1p2�k2(b;T )� e�2b0 if � = 1� ;�� 1p2�k2(b;T ) � 1p2�k3(b;T )� e�(b;T ) if 1�  < � < 1 + ;�12 � 1p2�k3(b;T )� e�2bT  if � = 1 + ;e�2bT  if � > 1 + :3.4 Most probable pathIn the previous subsetion it was shown that the nature of the large-bu�er asymptotis stronglydepends on the model parameters � and , i.e., there are di�erent regimes. In this subsetionwe will interpret these regimes by exploiting well-known sample-path large deviations results.Shilder's theorem implies that the exponential deay rate of the joint overow probability isharaterized by the path that minimizes the deay rate. Among all paths suh that the queueexeeds b0 and bT at time 0 and T respetively, this is the so-alled most probable path (MPP):informally speaking, given that this rare event ours, with overwhelming probability (b0; bT ) isreahed by a path `lose to' the MPP.In order to apply `Shilder', we feed the single-node network by n i.i.d. standard Browniansoures. The link rate and bu�er thresholds are also saled by n: n, nb0 and nbT , respetively.Using (6), pn(b; T ) an be expressed as

P 1n nXi=1 Bi(�) 2 S! ;
whereS := ff 2 
j9s; t � 0 : �f(�t) > b0 + t; f(T )� f(T � s) > bT + sg :From `Shilder' it follows thatJ(b; T ) := � limn!1 1n log pn(b; T ) = inff2S I (f ):As mentioned in the remark of Setion 2.2, we an replae `>' by `�' in S, without any impaton the deay rate.De�neU := ff 2 
j9t � 0 : �f(�t) > b0 + tg ;V := ff 2 
j9s � 0 : �f(T � s) > b0 + sg :Note that S � U and S � V , whih implies thatJ(b; T ) � inff2U I(f); (17)

J(b; T ) � inff2V I(f): (18)
10



From the above it follows that if the MPP in U is also ontained in set S, then there is equalityin (17), and likewise, if the MPP in V is also ontained in set S, then there is equality in (18).In [4℄ it was shown that the MPP in U is given by, for r 2 [�b0=; 0℄,f�(r) = E (B(r)j �B(�b0=) = b0 + t):Let (Y1; Y2) be bivariate Normally distributed. Now, using that the random variable (Y1jY2 = y),for some y 2 R , is Normally distributed with meanE (Y1 jY2 = y) = EY1 + C ov(Y1; Y2)VarY2 (y � EY2);it an be veri�ed that, for r 2 [�b0=; 0℄,(f�)0(r) = 2:The MPP is only spei�ed in the interval [�b0=; 0℄, beause outside this interval the MPPgenerates traÆ with rate 0. Hene, this MPP is suh that the queue starts to build up at time�b0= with onstant rate , giving Q0 = b0. Using (4), we �nd thatI(f�) = 12 b0 (2)2 = 2b0;i.e., the deay rate equals 2b0. The MPP in V has a similar struture as the one above, and itis suh that that the queue starts to grow at time T �bT= with onstant rate , giving QT = bT .The orresponding deay rate equals 2bT .We are now ready to provide some explanation for eah of the regimes of Theorems 3.6-3.8.Let us start with regime � � 1 +  in Theorems 3.6-3.8. Using that � = bT =b0 and  = T=b0,it is easily seen that this inequality is equivalent to bT � T � b0. Consider the MPP in Vmentioned above. Reall that this MPP is suh that the queue starts to grow at time T � bT =.Due to bT � T � b0 � 0, it an be veri�ed that T � bT = � 0. It follows that if � � 1 + ,then the MPP in V is also ontained in S, and therefore it is the MPP in S, i.e., overow of thequeue at time T implies overow at time 0 without any additional e�ort. The MPP is depitedin Figure 1 (top, left). Therefore, we �nd that J(b; T ) is equal to the deay rate orrespondingto the MPP in V , i.e., 2bT .Next onsider regime 0 � � � 1�  in Theorems 3.7-3.8, or equivalently bT � b0 � T . Inthis ase one an verify that the MPP in set U is also ontained in set S, and therefore it is theMPP in S. Thus, overow at time 0 implies overow at time T without any extra e�ort, andJ(b; T ) is therefore equal to 2b0 in ase 0 � � � 1 � . Note that we only see this regime if � 1 (as � � 0 by de�nition). The MPP is depited in Figure 1 (top, right).We proeed with regime 0 � � � (p � 1)2 in Theorem 3.6, or equivalently T � (pb0 +pbT )2=. Consider the path that is suh that the queue starts to build up with rate  inthe interval (�b0=; 0℄, empties with rate  in the interval (0; b0=℄, is empty in the interval(b0=; T � bT =℄, and is growing again with rate  in the interval (T � bT =; T ℄, i.e., the MPP ofU and V ombined. It an be veri�ed that this path is ontained in set S if 0 � � � (p�1)2.In Setion 3.5 we show that this path is in fat the MPP in S in ase 0 � � � (p � 1)2, butfor the moment assume that this is orret. Then J(b; T ) an be obtained by using (4), andequals 2b0 + 2bT . Clearly, this is no surprise, as the path onsists of the MPP of U and V .11
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Figure 1: The most probable storage paths in set S.
Note that this suggests that Q0 and QT behave (almost) independently if, ompared to b0 andbT , T is large enough, as may be expeted. The MPP is depited in Figure 1 (bottom, left).We now fous on the remaining regimes of Theorems 3.6-3.8. Consider the path that is suhthat the queue starts to build-up with rate  in the interval (�b0=; 0℄, and in the interval (0; T ℄builds-up with rate (bT � b0)=T . Clearly, this path yields Q0 = b0 and QT = T , and is thusontained in S. In Setion 3.5 we show that this is path is in fat the MPP. Assuming thatthis is the ase, J(b; T ) is obtained by using (4), and equals (b; T ). The MPP is depited inFigure 1 (bottom, right).The following two theorems summarize the above mentioned.Theorem 3.9 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  > 1. Then it holds that

J(b; T ) � 8><>: 2(b0 + bT ) if 0 � � � �p � 1�2 ;(b; T ) if �p � 1�2 < � < 1 + ;2bT  if � � 1 + :
Theorem 3.10 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  � 1. Then it holdsthat

J(b; T ) � 8><>: 2b0 if 0 � � � 1� ;(b; T ) if 1�  < � < 1 + ;2bT  if � � 1 + :3.5 DisussionUsing Theorems 3.6-3.8 also the logarithmi large-bu�er asymptotis follow diretly. ComparingTheorems 3.6-3.8 with Theorems 3.9-3.10, we �nd that the logarithmi large-bu�er and loga-12



rithmi many-soures asymptotis math. Indeed, sine we assumed that in the many-souresframework the standard Brownian soures are i.i.d., and beause a standard Brownian motion isharaterized by independent inrements they should math, see for instane Example 7.4 of [9℄.This implies that the paths depited in Figure 1 ((bottom, left) and (bottom, right)) are in fatMPPs in set S.In the analysis we assumed that the input proess was a standard Brownian motion, i.e., nodrift and v(t) = t. We now show how the results an be extended to general Brownian input,whih have drift � > 0 and variane v(t) = �t, � > 0. Clearly, we should have that  > � > 0 toensure stability. We denote the input proess of a general Brownian motion by fB�(t); t 2 Rg.Note that B�(s; t) = N(�(t � s); �(t � s)) = �(t � s) +p�N(0; t � s) = �(t � s) +p�B(s; t).This implies thatQ�0 = supt�0fB�(�t; 0)� tg = supt�0fp�B(�t; 0)� (� �)tg = p� supt�0 �B(�t; 0)� � �p� t� ;
Q�T = sups�0fB�(T�s; T )�sg = sups�0fp�B(T�s; T )�(��)sg = p� sups�0 �B(T � s; T )� � �p� s� :Hene, in order to generalize the results of this setion, it follows that we have to set   ( � �)=p� and bi  bi=p�, i = 0; T there. In addition, in order to generalize the results ofSetion 3.2 on the ovariane, we also need to multiply the right-hand side of (7) and (14) byp�p� = �. The results on the orrelation oeÆient an be generalized in similar way.
4 Analysis of q(b; T )In the previous setion we derived an losed-form expression for p(b; T ), large-bu�er asymptotis,and the most probable paths to overow. In this setion we fous on q(b; T ), and we derive similarresults by exploiting the results of the previous setion.
4.1 Conditional distribution funtionIn this subsetion we derive an exat expression for q(b; T ). With mild abuse of notation, wealso write qf (b; T ) := ��p(b; T )=�b0 = P(Q0 = b0; QT > bT ).
Theorem 4.1 For eah b0; bT ; T � 0,q(b; T ) = � �k3(b; T )�+ exp(�2bT )� �k4(b; T )� :
Proof: We have that

q(b; T ) = P(Q0 = b0; QT > bT )P(Q0 = b0) = qf (b; T )2e�2b0 ;
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as the workload Q0 is exponentially distributed with mean 1=(2). As mentioned, qf (b; T ) anbe obtained by deriving ��p(b; T )=�b0, with p(b; T ) as in Theorem 3.1. This yieldsqf (b; T ) = � 1pT �(k1(b; T )) + 1pT e�2bT �(k2(b; T )) +2e�2b0�(k3(b; T ))� 1pT e�2b0�(k3(b; T )) +2e�2(b0+bT )�(k4(b; T )) + 1pT e�2(b0+bT )�(k4(b; T )):Straightforward alulus also shows that12e�2b0pT e�2(b0+bT )�(k4(b; T ))� 12e�2b0pT �(k1(b; T )) = 0;and 12e�2b0pT e�2bT �(k2(b; T ))� 12e�2b0pTe�2b0�(k3(b; T )) = 0;whih proves the stated. 2We note that Harrison [10℄ also obtained Theorem 4.1. However, q(b; T ) was derived in aompletely di�erent manner. In [10℄ the author �rst alulated the joint distribution of BT � Tand maxt2[0;T ℄fBt � tg using Martingales, and used this to derive q(b; T ).4.2 Exat large-bu�er asymptotisIn this subsetion we derive the exat asymptotis of q(b; T ). The proof of the following threetheorems is similar to the proof of Theorem 3.6. We omit the proofs. De�neÆ(b; T ) := (�bT � T + b0)22T = (b; T )� 2b0:
Theorem 4.2 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  > 1. For b!1,

q(b; T ) � 8>><>>:
e�2bT  if 0 � � < (p � 1)2;�1� 1p2�k3(b;T )� e�2bT  if � = (p � 1)2;� 1p2�k3(b;T )e�Æ(b;T ) if � > (p � 1)2:

Theorem 4.3 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  = 1. For b!1,q(b; T ) � ( 1 if � = 0;� 1p2�k3(b;T )e�Æ(b;T ) if � > 0:
Theorem 4.4 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  < 1. For b!1,

q(b; T ) � 8><>: 1 if 0 � � < 1� ;1=2 if � = 1� ;� 1p2�k3(b;T )e�Æ(b;T ) if � > 1� :
14



4.3 Most probable pathWe an interpret the di�erent regimes of the asymptotis of q(b; T ) by using Shilder's theorem.To this end, we feed the single-node network by n i.i.d. standard Brownian soures. The linkrate and bu�er thresholds are also saled by n: n, nb0 and nbT , respetively. LetK(b; T ) := � limn!1 1n log qn(b; T ):The following two theorems present the logarithmi many-soures asymptotis of q(b; T ). Theproofs are similar to the ones in Setion 3.4, and therefore we omit the proofs.
Theorem 4.5 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  > 1. Then it holds that

K(b; T ) � ( 2bT  if 0 � � � �p � 1�2 ;Æ(b; T ) if � > �p � 1�2 :
Theorem 4.6 Let b0 = b, bT = �b, T = b, with �;  � 0. Suppose  � 1. Then it holds that

K(b; T ) � ( 0 if 0 � � � 1� ;Æ(b; T ) if � > 1� :The MPPs assoiated with Theorems 4.5-4.6 are losely related to the ones depited inFigure 1, however, now only de�ned on the interval (0; T ℄. The MPP orresponding to regime� > (p � 1)2 in Theorem 4.5 and regime � > 1�  in Theorem 4.6 is depited in Figure 1(bottom, right). The MPP assoiated with regime 0 � � � 1�  in Theorem 4.4 is depitedin Figure 1 (top, right). In this regime K(b; T ) = 0, beause Q0 = b0 implies that QT � bTwithout additional e�ort. For regime 0 � � � (p � 1)2 in Theorem 4.5 the orrespondingMPP is illustrated in Figure 1 (bottom, left). Using (4), we �nd that these MPPs indeed yieldTheorems 4.5-4.6.By omparing Theorems 4.2-4.4 with Theorems 4.5-4.6, it is not hard to see that the logarith-mi large-bu�er and logarithmi many-soures asymptotis of q(b; T ) math, as was expeted.Similar to Setion 3.5, the results in this setion an be extended to general Brownian input bysetting  (� �)=p� and bi  bi=p�, i = 0; T there.
5 ConlusionIn this report we analyzed a single-node network with Brownian input. We derived the jointdistribution funtion of the workloads at time 0 and T , the ovariane between these workloads,the onditional distribution funtion of the workload at time T given a ertain workload at time0, large bu�er asymptotis, and the most probable path leading to overow.A natural extension of the present work is to analyze the joint overow probability in atwo-node tandem queue with Brownian input, where we observe queue I at time 0, and queue IIat time T , i.e., P((QI)0 > b0; (QII)T > bT ). Another future researh diretion inludes extendingthe results to other input proesses, e.g., light-tailed L�evy proesses.15
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