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Abstract—The aim of Magnetic Drug Targeting (MDT) is to
concentrate drugs, attached to magnetic particles, in a
specific part of the human body by applying a magnetic
field. Computational simulations are performed of blood
flow and magnetic particle motion in a left coronary artery
and a carotid artery, using the properties of presently
available magnetic carriers and strong superconducting
magnets (up to B � 2 T). For simple tube geometries it is
deduced theoretically that the particle capture efficiency
scales as g �

ffiffiffiffiffiffiffiffiffiffi

Mnp
p

, with Mnp the characteristic ratio of the
particle magnetization force and the drag force. This relation
is found to hold quite well for the carotid artery. For the
coronary artery, the presence of side branches and domain
curvature causes deviations from this scaling rule, viz.
g ~ Mnp

b, with b > 1/2. The simulations demonstrate that
approximately a quarter of the inserted 4 lm particles can be
captured from the bloodstream of the left coronary artery,
when the magnet is placed at a distance of 4.25 cm. When the
same magnet is placed at a distance of 1 cm from a carotid
artery, almost all of the inserted 4 lm particles are captured.
The performed simulations, therefore, reveal significant
potential for the application of MDT to the treatment of
atherosclerosis.

Keywords—Magnetic drug targeting, Magnetic fields, Blood

flow, Coronary artery, Carotid artery.
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INTRODUCTION

The targeting of drugs to a specific region of the
human body can be significantly enhanced by attach-
ing the drugs to magnetic particles. By applying a
magnetic field at the target region, the particles can be
slowed down or even captured from the bloodstream.
This Magnetic Drug Targeting (MDT)2,17–19 technique

can significantly increase the specificity of certain
medical treatments, lowering the required dose and
reducing side-effects. The first clinical trials involved
permanent magnets externally to the body aimed at the
chemotherapeutic removal of superficial tumors.18 In
order to target locations further below the skin, the use
of magnetic stents4,10 and magnetic implants7,11,15 have
been investigated. Two-dimensional computational
simulations of magnetic particle motion in the carotid
artery bifurcation have previously been performed.3,23

In this geometry, the application of MDT revealed
significant potential for application to the treatment of
atherosclerosis. Thrombolytic agents attached to the
magnetic particles might in the future be used to dis-
solve plaque deposited on arterial walls. Recently also
the use of superconducting magnets has been consid-
ered for MDT.22,27

In this paper, we investigate computationally if
such a minimally invasive ex-vivo treatment is feasible
for application to specific large human arteries. First,
the blood flow and particle motion in a straight
cylindrical channel and a 90 degree bended tube are
analyzed. Next, unsteady simulations in the more
complex geometries of a left coronary artery and a
carotid artery are performed. The properties of pres-
ently available materials and magnets are used to
reveal the potentials and limits of the technique. The
focus on large arteries allows us to neglect diffusive
phenomena, like those discussed in Grief and Rich-
ardson,13 and describe the particle motion with a
discrete particle model. Enabled by the ever increas-
ing computer power, for the first time such magnetic
particle capture simulations are performed time-
dependently in a realistic three-dimensional domain.
This constitutes a significant improvement over pre-
vious two-dimensional simulations, allowing for the
incorporation of the effect of a realistic arterial
geometry on the particle and fluid motion. Similar
simulations are envisioned to be performed on a
patient-specific basis in the near future.
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MODEL EQUATIONS

Blood Flow

The Navier–Stokes equations for an incompressible
fluid ðr � uf ¼ 0Þ have been solved, numerically, for the
fluid velocity uf and pressure p

q
@uf
@t
þ ðuf � rÞuf

� �

¼ �rpþr � lrufð Þ ð1Þ

with q and l the density and dynamic viscosity of the
fluid, respectively. The relative importance of inertial
forces compared to viscous forces is given by the
dimensionless Reynolds number Re = qu0 l/l with u0
and l characteristic velocity and length scales of the flow
under consideration. For the left main coronary artery
for example u0 � 0.1 m/s and l � 4 mm such that with
l � 4 9 10�3 m2 s�1 the Reynolds number Re = 100,
which is well within the laminar flow regime.

The rheology of blood can be described by a gen-
eralized power law16

l ¼ kj _cjn�1

kð _cj jÞ ¼ l1 þ Dl exp � 1þ j _cj
a

� �

exp
�b
j _cj

� �

nð _cj jÞ ¼ n1 � Dn exp � 1þ j _cj
c

� �

exp
�d
j _cj

� �

ð2Þ

with _cj j the magnitude of the strain rate. Here the values
l¥ = 0.0035 Pas, n¥ = 1, Dl = 0.025 Pas, Dn = 0.45,
a = 50 s�1, b = 3 s�1, c = 50 s�1, and d = 4 s�1 have
been adapted from Ballyk et al.5

Particle Motion

Particle Magnetization Force

The magnetization force Fm, also known as the
Kelvin force or magnetophoretic force, on a magne-
tized particle of volume V is given by

Fm ¼
Z Z Z

V

l0M � rHdV ð3Þ

where l0 = 4p Æ 10�7 NA�2 is the magnetic perme-
ability of vacuum, M is the material’s magnetization
(magnetic dipole moment per unit volume), andH is the
auxiliary magnetic field. Particles with a diameter larger
than several tens of nanometers often consist of multiple
magnetic domains. The magnetization of such particles
can often be assumed to be approximately proportional
to the applied magnetic field. Above a certain magnetic
field strength the magnetization saturates to a constant
value Msat, resulting in the following model:

M ¼ vH H<Msat=v
MsatĤ H �Msat=v

�

: ð4Þ

Here the proportionality constant v is called the
magnetic susceptibility. A hat is used to indicate a
unit vector, i.e., Ĥ ¼ H=H with H ¼ Hj j: When the
magnetic field is approximately constant over the
volume pD3/6 of a spherical particle with diameter
D and the particle’s surrounding medium has a negli-
gible magnetic susceptibility, Eq. (3) becomes Fm ¼
ðpD3=6Þl0M � rH: For a curl-free magnetic field
M � rH ¼MrH such that, using Eq. (4),

Fm ¼
pD3

6 l0
v
2rH2 H<Msat=v

pD3

6 l0MsatrH H �Msat=v

(

: ð5Þ

Particle Trajectories

The trajectories r(t) and velocities up = dr/dt of
particles with mass m have been calculated by
integrating

m
d2r

dt2
¼ FD þ Fm: ð6Þ

Here Fm is the magnetization force of Eq. (5). The drag
force FD is modeled using the relations found in Morsi
and Alexander.21 For particle Reynolds numbers
Rep � q up � uf

�

�

�

�D=l� 1; as is generally the case for
the situations studied in this work, the drag force on a
spherical particle with diameter D is given by the
Stokes drag force

FD ¼ 3plD uf � up
� 	

; Rep � 1: ð7Þ

Using this expression and assuming for a moment
that the fluid velocity uf and magnetization force Fm

are time-independent, Eq. (6) can be written in terms
of the velocity difference DuðtÞ � upðtÞ � uf

dDuðtÞ
dt

¼ �DuðtÞ
s
þ Fm

m
: ð8Þ

The ‘particle relaxation time’ or ‘particle response
time’ s is given by

s � qpD
2=18l ¼ DRep

18jup � ufj
: ð9Þ

Equation (8) can be solved to yield Du ¼ Duðt ¼ 0Þ
e�t=s þ 1� e�t=s

� 	

um; where um ¼ Fms=m ¼ Fm=3plD:
The characteristic timescale s ¼ DRep=18jup � ufj over
which the particle changes its velocity becomes for
Rep� 1 of the order of, or smaller than, the time D=up
needed for the particle to traverse one particle diame-
ter. When one is not interested in this short-lived
transient behavior one can neglect the particle accel-
eration altogether. In this case FD þ Fm ¼ 0 or, using
Eq. (7),

up ¼ uf þ
Fm

3plD
ð10Þ
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showing that the particle velocity is given by the sum
of the fluid velocity uf and a ‘magnetic velocity’
um � Fm=3plD ¼ u0ðFm=FDÞ in the direction of the
magnetic force.

Capture Efficiency

A major challenge for Magnetic Drug Targeting is
to create a large enough magnetic force to capture
particles of reasonably small size. The material prop-
erties and magnetic field are therefore chosen such as
to maximize the capture efficiency (or collection effi-
ciency). The capture efficiency g for a piece of artery is
defined as the fraction of inserted particles that is
attracted by the magnetic field towards the vessel wall
and are captured or collected there. With nin and nout
the number of particles entering and leaving the artery
segment

g � nin � nout
nin

: ð11Þ

A short calculation serves to reveal how this
important quantity g scales with the characteristic
values of parameters such as the flow velocity (u0),
vessel radius (R), and auxiliary magnetic field (H). We
will assume Rep � 1 such that up ¼ uf þ um and we
simplify the analysis by assuming that um is perpen-
dicular to uf. With l ~ umt the distance over which
particles are displaced during a time t ~ L/u0 in the
direction of a magnetic force of spatial extent of the
order L, one obtains a scaling for the capture efficiency
g ~ l/R ~ (L/R)(um/u0). Introducing the aspect ratio
a � L=R and Mnp � um=u0 ¼ Fm=FD; the obtained
scaling relation becomes g ~ aMnp. The ‘particle
magnetization number’ Mnp can be written in terms of
characteristic integral quantities as

Mnp ¼
l0D

2MH

18lu0L
: ð12Þ

The above analysis assumed a uniform flow velocity
u0. To account for the typical laminar flow profile
found in arteries, we linearize the flow profile close to
the wall as uf = u0(l/R), with l � 1 the distance from
the wall. Replacing u0 by uf = u0(l/R) = u0g in the
scaling relation obtained from the above analysis, it
follows that g2 ~ (L/R)(um/u0) or

g �
ffiffiffiffiffiffiffiffiffiffiffiffi

aMnp
p

; g� 1: ð13Þ

Note that this strictly only holds for small capture
efficiencies g � 1, for which particles are captured
close to the wall where the flow velocity increases
approximately linearly with the distance from the wall.
The most important quantities for magnetic particle
capture, and Magnetic Drug Targeting in particular,
are thus found to be the ratio Mnp between the

magnetization force and the drag force and the ratio a
between the spatial extent of the magnetic field and the
vessel size. Perhaps surprisingly, due to the increasing
flow velocity with distance from the wall, the capture
efficiency is found to depend on the square root of
these quantities. This implies that a four times larger
force or a four times larger spatial extent of the force is
initially needed to double the capture efficiency.
Equation (13) can be written in terms of characteristic
integral quantities

g � D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0

18R

MH

lu0

s

; g� 1: ð14Þ

For undersaturated particles M = vH such that
g � HD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0v=18Rlu0
p

:

Materials Used

Care has been taken to select materials that maxi-
mize the capture efficiency. Iron, which has a high
magnetic susceptibility and a high saturation magne-
tization, has recently successfully been made into drug-
susceptible carriers.6 With 67.5% iron and 32.5%
carbon (by weight) these particles have a density of
approximately q = 6450 kg/m3 and a saturation
magnetization of Msat = 106 A/m. The properties of
these particles were used in the simulations. Because
saturation occurs even for fields as low as 0.05 T, the
particles were assumed to be saturated in the entire
domain.

For the magnetic field we used the properties of a
cylindrical superconducting magnet with a diameter of
4.5 cm, a thickness of 1.5 cm and a maximum field
strength of B � 2 T, as reported in Takeda et al.27

Owing to its physical origin, the associated magnetic
field resembles that of circular line current. For a loop
of radius a, carrying a current I, with H0 � I=2a the
magnetic field is given by25

Hðz0; s0Þ ¼ H0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ s0Þ2 þ z02
q

 

KðkÞ ẑ� ŝð Þ

þEðkÞ 1� s02 � z02

ð1þ s0Þ2 þ z02 � 4s0
ẑþ ŝð Þ

!

: ð15Þ

Here K(k) and E(k) are elliptic integrals of the first and
second kind,1 respectively, with the argument k given
by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s0

ð1þ s0Þ2 þ z02

s

: ð16Þ

The cylindrical coordinates z and s represent the
distance parallel and perpendicular to the symme-
try axis, respectively (see Fig. 1). A prime denotes
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nondimensionalization with the loop radius a, i.e.,
s0 � s=a and z0 � z=a: A hat is again used to denote a
unit vector. The field on the symmetry axis is given by
H ¼ H0=2að1þ z02Þ3=2; directed towards the center of
the loop. At a distance z of several centimeters, a good
fit to the reported data is obtained using a current
I = 2.1 Æ 105 A through a loop of diameter
2a = 4.5 cm, located halfway the cylindrical magnet,
i.e., 7.5 mm below its upper surface as shown sche-
matically in Fig. 1. For smaller distances, however, a
current I = 1.857 Æ 105 A through a loop of 2a = 4 cm
in diameter provides a better fit. The first of these fits
was used for the coronary artery simulations while the
latter was used for the carotid artery. Both of these
fits are compared with the reported field gradient of
Takeda et al.27 in Fig. 1.

NUMERICAL SOLUTION METHODS

The fluid flow and particle equations were solved
using Fluent 6.3 by ANSYS, Inc., which is a finite-vol-
ume based solver for fluid flows in general geometries.
User-defined functions were written to implement the
viscosity model of Eq. (2) and the particle magnetiza-
tion force of Eq. (5) for the field of Eq. (15). Equa-
tion (1) was solved implicitly with a quadratic upwind
discretization (QUICK) of the nonlinear term. Equa-
tion (6) was numerically integrated using a sixth order
Runge–Kutta scheme whenever the left hand side was
significant, and an implicit Euler scheme otherwise.
With a typical particle relaxation time (see Eq. 9) of
s = qpD

2/18l � 10�7 s for a 1 lm particle the implicit
Euler scheme was used most of the time. The time step
for the fluid flow was chosen to be 1/100th of the flow
period. The particle time stepwas dynamically chosen to
yield a given tolerance. Alternative schemes, various
time step sizes and accuracy options were tested with no

appreciable differences, providing confidence in the
accuracy of the integration. To validate our implemen-
tation, the Fluent simulation results were compared to
results from identical simulations using an in-house fluid
and particle code.8 In addition a comparison with ana-
lytical expressions has been performed to further vali-
date the implementation.14

Particles with diameters of 250, 500 nm, 1, 2, and
4 lm were inserted into the flow, homogeneously dis-
tributed over the inlet. Simulations with a periodic
time-dependent velocity inlet were performed in which
particles were inserted at consecutive time intervals of
1/10th of the flow period, in order to be able to average
over a flow cycle. Per particle size per injection
approximately 260 particles were inserted. The particles
were made to elastically collide with the arterial wall. In
the case of the carotid artery an inelastic boundary
condition, in which the particle velocity vanishes after
impact, was also tested. The exact interaction of mag-
netic particles with the endothelial lining is much more
complicated than such a simple boundary condition
does justice to, see, e.g., Decuzzi et al.9 In the present
simulations however, the specific boundary conditions
do not strongly influence the results.

RESULTS

First, the fluid and particle motion in a straight
cylindrical channel and a ninety degree bended tube is
computed. These simulations serve to illustrate several
features also arising in more complex arterial config-
urations. Thereafter, results for the left coronary artery
and the carotid artery are discussed.

Ninety Degree Bended Tube

The studied geometry is shown in Fig. 2. A tetra-
hedral multi-block mesh was used, containing
approximately 112,000 nodes. The 90 degree bend,
with circular cross-section of radius R = 3.5 mm and

Measured Data
Fit a=2.25 cm I=2.1·105 A
Fit a=4.00 cm I=1.857·105 A

dB dz

z [cm]

[T
/m

]
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0 1 2 3 4 5 6
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FIGURE 1. A comparison between the measured magnetic
field gradient dB/dz of a cylindrical superconducting magnet27

and two fits using the field B 5 l0H = l0I/2a (1 + (z/a)2)3/2 of a
circular loop of radius a carrying a current I.

2R =
0.7 cm O

I

B=2T

R b
 =

 1.
96

 cm

3.5 cm

3.5 cm

wire (1)

1 c
m

FIGURE 2. A schematic overview of the geometrical para-
meters used for the 90 degree bended tube.
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radius of curvature Rb = 1.96 cm, is preceded and
followed by 3.5 cm of straight tube. With an average
inlet velocity of u0 = 0.1 ms�1 and a constant dynamic
viscosity l = 3.5 Æ 10�3 Pas the Reynolds number
Re = 200 and the Dean number De � Re

ffiffiffiffiffiffiffiffiffiffiffiffi

R=Rb

p

¼
84:5; allowing for a stable solution without flow sep-
aration. These conditions represent a physiologically
quite high curvature case similar to those of the cor-
onary artery bend.

The fluid velocity, resulting from the simulations, is
shown in Fig. 3. The presence of two characteristic
counter-rotating Dean-vortices can clearly be seen.
The centrifugal force in the fast flowing center of the
channel forces the fluid outwards. By continuity, a
counteracting inwards pressure force arises, forcing the
fluid to flow back through the more viscous region
near the sidewalls. Consequently the maximum flow
velocity is shifted from the center of the flow towards
the outer curvature of the bend, as can be seen from
Fig. 3.

For instructive purposes we first consider the mag-
netic particle motion in the magnetic field of an infi-
nitely long straight wire carrying a current I. The
magnitude of the field at a distance s from the wire is
given by H = I/2ps. The associated force on an
undersaturated spherical particle is, using Eq. (5), gi-
ven by Fm = l0vI

2D3�s/24ps3 in the direction �s of
the wire. Various wire positions have been investigated
which are, along with the magnetization force they
produce, schematically depicted in Fig. 4. For all
configurations the distance of closest approach from
the wire to the centerline of the tube was chosen to be
1 cm. For configuration 1 this is shown in Fig. 2. A
current I = 105 A was chosen, yielding a magnetic field

of B = l0H = 2 T on the tube centerline halfway the
bend.

For each of the five studied particle sizes (see sec-
tion ‘‘Numerical Solution Methods’’) nin � 350 parti-
cles were inserted into the fluid flow, homogeneously
distributed over the inlet. By counting the number of
particles nout escaping through the outlet, the capture
efficiency g was obtained from Eq. (11). For compar-
ison, the same simulation was performed using an
in-house fluid and particle code8 using nin = 10,000
particles. The results of these simulations are shown in
Fig. 5a. Because at most a few percent difference
between the results from the in-house code and the
results from Fluent was found, for clarity the latter
results are left out in this figure. Given the small dif-
ference between these results, the simulations in the
rest of this paper have been performed using Fluent.
The different curves in Fig. 5a correspond to the dif-
ferent wire configurations of Fig. 4. Although the
magnitude of the magnetization force halfway the
bend is the same in all cases, there is a large variation
in the capture efficiency. This can be attributed to
geometrical differences. Notice, for example, from
Fig. 4 that configuration 4 has the largest area over
which the magnetization force is appreciable, explain-
ing why for this configuration the most particles are
captured.

For comparison, the exact same simulation was
performed for a straight cylindrical domain, resulting
in a parabolic Poiseuille flow. The current carrying
wire was oriented at a right angle to the flow. For a
straight channel the capture efficiency was found to
vary approximation linearly with the particle diameter,
as can be seen from the dashed curve in Fig. 5a,
obtained with Fluent. Because the particle Reynolds

FIGURE 3. The velocity magnitude (contours) and second-
ary velocity (vectors) in the simulated bended tube. The
maximum secondary flow velocity is 40% of the average flow
velocity.

FIGURE 4. A schematic overview of the various considered
wire configurations and the corresponding particle magneti-
zation force per unit volume Fm/V for undersaturated particles
with a magnetic susceptibility v = 3.
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number Rep � 1, the only relevant non-geometrical
parameter involved is Mnp which is, from Eq. (12),
proportional to D2. The obtained proportionality
g ~ D, therefore, implies g �

ffiffiffiffiffiffiffiffiffiffi

Mnp
p

: The simulations
of a straight cylindrical channel therefore confirm
Eq. (13) and show that it continues to hold for mod-
erate capture efficiencies. This result for a straight
geometry has important consequences for magnetic
drug targeting. It shows that the capture efficiency is
less sensitive to the ratio between the magnetization
force and the drag force than one might expect. In
order to double the capture efficiency, a doubling of
the magnetization force does not suffice. The obtained
scaling shows that a four times higher magnetization
force is required to double the capture efficiency. On
the other hand when the flow velocity becomes four
times as high, the capture efficiency is only approxi-
mately halved. In section ‘‘Capture Efficiency’’ the
origin of this nonlinear behavior was shown to be due
to the approximately linear increase of the flow

velocity at small distance from the wall. To double the
capture efficiency, particles have to be captured from
twice as far where the particles move with a twice as
high flow velocity, thereby requiring a four times
higher force.

The spatial force distribution inside the straight
channel is very similar to that of configuration 3 of the
bended tube. Correspondingly, the capture efficiency
of this configuration is very similar to that obtained in
a straight channel. Apparently the altered flow distri-
bution in the bended tube, compared to the parabolic
flow profile in a straight tube, does not lead to large
differences in the capture efficiency. For configuration
4, the capture efficiency also increases approximately
linearly with the particle diameter. For configurations
1 and 2, however, this linear relationship ceases to
hold. The observation that for configuration 2, for
which the magnetic source is placed on the inside of the
bend, it becomes increasingly difficult to capture par-
ticles of larger size seems to suggests an involvement of
the centrifugal force. The ratio between the centrifugal
force and the drag force is, however, only of the
order ðmu20=RbÞ=3plu0D ¼ qpD

2u0=18lRb ¼ Oð10�6Þ
for particles with a diameter of D = 2 lm. Rather, the
observed trend can be explained from the flow distri-
bution. As can be seen from Fig. 3, the fluid near the
outside of the bend is flowing much faster than the
fluid near the inside of the bend. To increase the cap-
ture efficiency, particles have to be attracted from
further away. For a wire at the inside of the bend this
means capturing particles from a region with a higher
flow velocity. For particles at the outside of the bend
this means capturing particles from a region of lower
flow velocity. This explains the convex and concave
shape of the capture efficiency curves in Fig. 5a for
configurations 1 and 2, respectively. When all particles
are captured, this consequence of the velocity distri-
bution approximately levels out. The two capture
efficiency curves therefore approach each other again
when g approaches 100%. For the wire at the inside of
the bend, a slightly higher particle diameter is needed
to capture all particles than for a wire at the outside of
the bend, even though the force distribution is some-
what more favorable for particle capture for the for-
mer configuration. This can be explained by the fact
that the secondary flow velocity, displayed in Fig. 3, is
mostly directed outwards. For the wire at the inside of
the bend, the secondary flow velocity primarily adds
negatively to the particle’s magnetic velocity, thereby
decreasing the capture efficiency.

The same simulation has been performed using the
magnetic field of a circular current loop, Eq. (15). A
loop with radius a = 1 cm, carrying a current I = 3 9

105 A, was placed at a distance of 1 cm from the
centerline halfway the bend. Fully saturated particles
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FIGURE 5. The particle capture efficiency g as a function of
the particle diameter D for (a) the different current carrying
wire configurations of Fig. 4 as well as for a straight tube and
(b) for various angles c of a circular current loop. Note that in
the figure both the size of the current loop and its distance to
the channel centerline are not drawn to scale. Note also that
these results, except for the four wire configurations in (a)
which have been obtained using an in-house code, have been
obtained with Fluent.
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were inserted with a saturation magnetization of
Msat = 106 Am�1. Systematically the angle c between
the axis of the current loop and the plane of the bend,
as shown in Fig. 5b, was varied from the outside of the
bend (c = 0�) to the inside of the bend (c = 180�). The
results are shown in Fig. 5b. Although admittedly few
data points have been used in this graph, the trend is
clear. It can be seen that for c = 45� the capture
efficiency varies approximately linearly with the par-
ticle diameter, or g �

ffiffiffiffiffiffiffiffiffiffi

Mnp
p

: Again the effect of the
flow distribution is reflected in the shapes of the curves
for the other orientations.

Left Coronary Artery

For the left coronary artery a geometry was used
that was obtained from the average data of 83 angio-
graphies from healthy patients. Details can be found in
Giannoglou et al.12 A steady solution independent of a
further increase in the number of nodes was reported,
depending on the specific criteria used, for a mesh with
60,000 or 80,000 nodes. Mesh independence is an
important criterion for obtaining accurate flow solu-
tions, ensuring the simulations resolve the important
flow features without much numerical diffusion alter-
ing the solution. We used a slightly under-resolved
mesh containing approximately 44,000 nodes and
200,000 cells. This can be defended on the basis that we
are not interested in the detailed flow pattern but in the
effect of a reasonable average flow on the particle
motion. As discussed in section ‘‘Discussion and
Conclusions’’ various other approximations made in
the simulations are arguably more important than
numerical errors. The computational domain (see
Fig. 7) includes the largest side branch of the coronary
artery, the circumflex artery, and several other large
side branches. The left main coronary artery, with an
initial diameter of 2R = 4.5 mm evolves into the left
anterior descending artery with a final diameter of
0.9 mm. A flattened radial velocity profile ufðr; tÞ ¼
ð4=3ÞuinðtÞð1� ðr=RÞ6Þ was used as an inlet boundary
condition, where uin(t) is given by the characteristic
pulsating flow profile displayed in Fig. 6. The average
Reynolds number based on inlet parameters is
approximately Re � 100. The flow rate was forced to
distribute itself over the several outlets according to
Murray’s law,24 i.e., proportional to the third power of
the outlet radii. The outlet radii and the corresponding
fraction of the total flow rate per outlet, following
from Murray’s law, are reported in Soulis et al.26

A superconducting cylindrical magnet, modeled by
a circular current loop (see section ‘‘Materials Used’’),
was in the simulations positioned approximately at the
patient’s chest. The magnet’s symmetry axis was
directed towards the target location, located opposite

various side branches, as indicated by the arrow in
Fig. 7. This location is a well-known region of low
endothelial shear stress, which correlates with the
formation of atheromatous plaques.26 A possible
future application of the simulated technique could be
the magnetic targeting of thrombolytic drugs, able to
dissolve a plaque, in order to prevent a threatening
plaque rupture. Three different magnet orientations
were investigated, while the distance from the magnet’s
center to the target location was kept fixed at
z = 5 cm. For configurations 1, 2, and 3 the axis of the
magnet was, in the coordinates of Figs. 7 and 8,
directed in the (1,�3,�1), (1,�2,�1), and (1,�2,�2)
direction, respectively. The magnetic field associated
with configuration 2 is shown in Fig. 7.

Figure 8 shows stream traces for two time instances
during the cardiac flow cycle, which is displayed in
Fig. 6. Note that t = 0 s corresponds to a period of
deceleration in which an adverse pressure gradient
exists, causing some flow reversal.

Particles of various sizes were inserted through the
inlet, at several instances during one flow cycle (as
discussed in section ‘‘Numerical Solution Methods’’).
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FIGURE 6. The used inlet velocity uin for the left coronary
artery (dashed line) and for the carotid artery (solid line),
which is a fit to the data points of Marshall et al.20
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FIGURE 7. The magnitude of the magnetization force per unit
volume Fm/V at the surface of the left coronary artery for the
magnet oriented in the direction (1,22,21) (configuration 2).
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The resulting particle distributions at several time
instances, after the first injection at t = 0 s, are
displayed in Fig. 9. Contrary to the simulations

performed in the absence of a magnetic field, several
flow seconds after the first injection a significant frac-
tion of the particles was still present in the domain
when a magnetic field was applied. Under the influence
of the magnetization force these particles will remain in
the domain as long the magnetic field is applied.

The fraction of injected particles that are captured is
displayed in Fig. 10a for the different orientations of
the magnetic field. A significant fraction of the 4 lm
particles is captured, constituting a positive result for
the ex-vivo application of MDT to large arteries. Also
note from Fig. 10a the super linear increase of the
capture efficiency g with particle diameter D, con-
trasting with the result g �

ffiffiffiffiffiffiffiffiffiffi

Mnp
p

� D previously
obtained for a Poiseuille flow. Upon doubling the
particle size from 2 to 4 lm, the capture efficiency
approximately quadruples. This is similar to what was
found in the previous section when a magnetic source
was placed on the outside of a 90 degree bended tube.
Because in these simulations the relevant parameters
were comparable to those of the left coronary artery,
the same underlying mechanism might indeed play a
role. The effect in the case of the left coronary artery is
however much more pronounced and part of its origin
finds its reason in the following. Figure 10b shows the
fraction d of the particles that escape through the cir-
cumflex side branch. Without an applied magnetic
field, this fraction was approximately d = 50%,

FIGURE 8. Stream traces and contours of the velocity mag-
nitude uf in the left coronary artery at two different time
instances. Note that several computational flow cycles pre-
ceded t 5 0 s, in order to arrive at a solution not changing
from one flow cycle to the next.

FIGURE 9. Particle distribution in the left coronary artery, at several time instances after the first injection of particles. Note that
the particle sizes are not drawn to scale. In the absence of a magnetic field the trajectories of particles with a different diameter
initially overlap due to negligible inertia. When the magnetic field of Fig. 7 is applied, the larger particles are attracted towards the
side where they can exchange attached drugs with the arterial wall.
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irrespective of particle size. When a magnetic field is
applied this fraction decreases significantly for the
larger particles. Particles that would otherwise have
left the domain through the circumflex sidebranch are
now either attracted into the left main coronary artery
where they are possibly captured, or captured in the
circumflex sidebranch as can be seen in Fig. 9. Both of
these effects add to the capture efficiency. Because
these effects only occur for the larger particles, for
which the magnetization force is large enough, it helps
explaining the super linear increase of the capture
efficiency with particle diameter D. Note that for
smaller particles, the fraction of particles d leaving
through the circumflex artery actually increases. This is
mostly due to particles near the wall opposite the tar-
get region, which in the absence of a magnetic field
would have slowly moved into the main coronary
artery. Through the action of the magnetization force,
however, these particles enter a region of faster flowing
fluid where they have a chance of ending up in the
circumflex artery.

Carotid Artery

The carotid artery geometry was obtained from an
MRI scan of a single patient with a mild stenosis at the
location of the carotid sinus.28 An unstructured tetra-
hedral mesh was generated with 53,000 nodes and
263,000 cells, which is shown in Fig. 11a.

Average data of 14 healthy carotid arteries20 was
used to make a piecewise polynomial of the flow rate
q(t) in mL/s:

This fit was used to vary in time the flow rate of a
parabolic inlet velocity profile. The average Reynolds
number based on inlet parameters is approximately
Re � 200. An average flow distribution of approxi-
mately 70% to the internal and 30% to the external
carotid arteries has been reported,20 which was used as
an outlet boundary condition. The target location,
indicated by the black arrow in Fig. 12, was chosen at
the carotid bifurcation which is usually located only a
small distance below the skin. The distance between
the surface of the magnet and the target location was
chosen between 1 and 2 cm (z = 1.75 and 2.75 cm, see
section ‘‘Materials Used’’). The symmetry axis of the
cylindrical magnet was directed normal to the plane of

the bifurcation, resulting in the distributions of the
magnetization force per unit volume Fm/V shown in
Fig. 12. In this figure, apart from the magnitude Fm/V,
also the radial s-component Fms/V, is shown. Here the
cylindrical coordinate s is the distance to the axis of
symmetry of the cylindrical magnet.

Figure 11b shows stream traces and velocity mag-
nitude contours at one instant during the flow cycle.
Particles of various sizes were inserted, spread over one
flow cycle (see section ‘‘Numerical Solution Meth-
ods’’). Figure 13 shows how a large fraction of these
particles accumulate on the arterial wall. The magnetic
field configuration corresponding to this simulation
results is shown in Fig. 12. The capture efficiency as a
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FIGURE 10. Results for the left coronary artery of (a) the
capture efficiency g as a function of particle diameter D for
various magnetic field orientations and (b) the fraction d of
injected particles that leave the domain through the circum-
flex artery or one of its side branches. The magnetic field of
configuration 2 is shown in Fig. 7.

qðtÞ ¼
946:67t3 þ 130t2 þ 0:9333tþ 3:94 0 s � t<0:15 s
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function of particle size is displayed in Fig. 14, show-
ing that almost all 4 lm particles were captured when
the magnet was placed at 1 cm from the carotid
bifurcation. This much closer proximity of the magnet

is the reason why the capture efficiency is much higher
than for the left coronary artery. The capture efficiency
significantly decreases when the magnet distance is
increased from 1 to 2 cm from the target location and
is slightly higher when zero velocity after impact with
the vessel wall is assumed (inelastic boundary condi-
tion). From Fig. 14 the capture efficiency can be seen
to vary approximately linearly with the particle diam-
eter D, as in the simulations of a cylindrical Poiseuille
flow. Apparently, the more complex geometry, the
time-dependent flow, and the non-Newtonian viscosity
do not change significantly the result g �

ffiffiffiffiffiffiffiffiffiffi

Mnp
p

of
Eq. (13).

Figure 15 shows the vertical position at which par-
ticles of two different sizes are captured. The small
fraction gtot � 15% of the 250 nm particles that are
captured, have been captured almost homogeneously
over the entire domain. The magnet was directed at a
vertical position z � 6 cm � 0.55 zmax cm such that,
from Fig. 15, most of the 4 lm particles have been
captured before the target location. Under the influ-
ence of the radial force Fms, shown in Fig. 12, the
particles eventually might drift towards the target
location. When however the particles are captured in a
healthy segment of the artery, not covered with plaque,
the particles might, under the influence of the magne-
tization force, move through the pores in the vessel
wall out of the bloodstream. The pores in the endo-
thelium are just small enough to prevent red blood cells
to leave the artery, but smaller particles can easily be
pulled through by an exerted magnetization force.
Using a smaller magnet or changing the orientation of
the magnet can result in a better focusing and thereby a
more effective treatment. This is an example of how
computational simulations can be used as a tool for
analysing, in advance, a certain treatment.

FIGURE 11. (a) The fully unstructured tetrahedral mesh of a
carotid artery. At the beginning of the internal carotid artery
(right branch) a dent can be seen at the location of the carotid
sinus, signaling the presence of plaque. (b) Flow stream tra-
ces together with velocity magnitude contours in the carotid
artery geometry at t 5 0.8 s. A skewed velocity profile can
clearly be seen in the internal carotid artery just after the
carotid bifurcation.

FIGURE 12. The magnetization force per unit volume Fm/V at
the surface of the carotid artery, with (a) the magnitude Fm/V
and (b) the cylindrical s-component Fms/V, with s the distance
to the axis of symmetry of the cylindrical magnet. The black
arrow indicates the target position and orientation of the
magnet, located at d 5 1 cm from the target location.
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DISCUSSION AND CONCLUSIONS

For negligible particle inertia it has been argued that
the particle capture efficiency g, for g � 1, satisfies the
scaling relation g ~ (aMnp)

b with b = 1/2. Here
a = L/R is the ratio between a characteristic value for
the spatial extent L of the magnetic field and the vessel
radius R. The dimensionless ‘particle magnetization
number’ Mnp = l0D

2MH/18lu0L is the characteristic
ratio between the magnetization force and the drag
force. In a simulation of a cylindrical Poiseuille flow,
the capture efficiency was found to be approximately
proportional to the particle diameter D, in agreement
with the obtained scaling relation. In a ninety degree

420.5 10.25
D [µm]

FIGURE 13. Particle positions as seen from inside the main
carotid artery at various time instances after the first injection.
The particles are colored by their diameter D and not draw to
scale. The main carotid artery branches off to the internal
carotid artery and to the external carotid artery, the left and
right branch respectively. The magnetization force used in
these simulations is shown in Fig. 12.
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FIGURE 14. The capture efficiency g as a function of particle
diameter D for two different distances d of the magnet surface
to the target location. For d 5 1 cm an inelastic boundary
condition for the interaction of particles with the wall is also
tested. The magnetization force used in the d 5 1 cm simu-
lations is displayed in Fig. 12.
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FIGURE 15. A cumulative histogram of the fraction n/ntot of
particles captured in the carotid artery, as a function of the
vertical dimensionless capture position z/zmax in the coordi-
nates of Fig. 11a. Here zmax = 11.12 cm and ntot = 593 for the
250 nm particles and ntot = 3976 for the 4 lm particles. For
these simulations the magnet was placed at a distance of
d 5 1 cm and the associated magnetization force is shown in
Fig. 12.
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bended tube, b was found to be below or above 1/2
depending on whether the magnetic source was placed
more to the inside or to the outside of the bend,
respectively.

In simulations of a left coronary artery, only a small
fraction of the inserted 2 lm iron–carbon magnetic
particles could be captured with a superconducting
magnet placed externally to the body. This fraction
was found to increase approximately fourfold to 25%
upon an increase of the particle diameter from D = 2
to 4 lm. This super linear increase was partially due to
the fact that the magnetic source was placed on the
outside of the coronary artery bend such that b > 1/2,
but also due to the redirection of particles that would,
in the absence of a magnetic field, have left through the
circumflex sidebranch.

In the much more superficially located carotid
artery more than 50% of the 2 lm particles and almost
all of the 4 lm particles could be captured with the
same magnet positioned at a distance of 1 cm. In this
case the capture efficiency was found to be approxi-
mately proportional to the particle diameter D, in
agreement with the obtained scaling relation
g �

ffiffiffiffiffiffiffiffiffiffiffiffi

aMnp
p

: The fact that the theoretically obtained
scaling relation for g � 1 approximately holds up to
quite high g in this complex geometry with a time-
dependent velocity and a non-Newtonian viscosity
model shows its usefulness and generality. As the
simulations of the coronary artery show, however, it
must be used with care. Side branches and domain
curvature can significantly alter the scaling.

It must be noted that various simplifications have
been introduced regarding the geometry, the boundary
conditions and the particle modeling. Improvements in
the accuracy of the detailed flow pattern are however
unlikely to severely alter the results of the simulations.
More significant simplifications have been made in the
modeling of the drag force. Attached drugs can sig-
nificantly change the particle shape and effective par-
ticle diameter for the drag. Because for a fixed
geometry and negligible inertia the only relevant
parameter is Mnp, one can however simply adjust the
present results for such a change in effective diameter.
The most severe simplification was made by evaluating
the drag force via Stokes’ expression, using the mac-
roscopic non-Newtonian fluid viscosity l. This mac-
roscopic fluid viscosity arises from the complex
interaction between the constituents of the blood and is
approximately a factor 3.5 higher than the viscosity of
the blood plasma alone. Very small particles will move
along stream traces in the blood plasma without col-
liding with blood constituents, therefore experiencing a
drag force proportional to the viscosity of the blood
plasma. The viscous drag experienced by particles of
the order of or smaller than the blood cells, as used in

the present work, might therefore be much smaller
than that which is presently used by considering the
macroscopic viscosity. This would significantly change
the outcome of the simulations. The obtained results
therefore possibly significantly underestimate the cap-
ture efficiency, especially for smaller particles.

Computational simulations, as those discussed in
this work, make it possible to study the feasibility of a
medical technique before entering clinical trials. Fur-
thermore, simulations are useful for investigating the
influence of various factors independently, and for
optimization. Later on in the development of a tech-
nique simulations are envisioned to aid a doctor by
providing on-the-fly numerical experiments. The per-
formed simulations for the coronary and carotid
arteries, using present-day materials and magnets, have
shown to yield favorable capture efficiencies, justifying
further investigation of the considered medical tech-
nique. Pre-clinical and clinical studies will have to
show whether or not it will turn out to be feasible to
use the discussed techniques to treat cardiovascular
diseases. It remains, for example, to be seen what effect
a strong inhomogeneous magnetic fields has on the
functioning of the heart. Since, for effective treatment,
the magnetic field has to be applied for quite some
time, this is an important issue. This also holds for the
study of the removal of the magnetic particles after-
wards. From a physics point of view, however, the
obtained results are encouraging with regard to the
application of the Magnetic Drug Targeting technique
to cardiovascular diseases.
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particle motion in a Poiseuille flow. Phys. Rev. E 80(1):
016302, 2009.

15Iacob, Gh., O. Rotariu, N. J. C. Strachan, and U. O.
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